Package ‘psm3mkyv’

June 7, 2024

Title Evaluate Partitioned Survival and State Transition Models
Version 0.3.2

Description Fits and evaluates three-state partitioned survival analyses
(PartSAs) and Markov models (clock forward or clock reset) to
progression and overall survival data typically collected in oncology clinical tri-
als. These model structures are typically considered in
cost-effectiveness modeling in advanced/metastatic cancer indications.
Muston (2024). * " Informing structural assumptions for three state oncology cost-
effectiveness models through model efficiency and fit". Applied Health Eco-
nomics and Health Policy.

License GPL (>= 3)
URL https://merck.github.io/psm3mkv/, https://github.com/Merck/psm3mky

BugReports https://github.com/Merck/psm3mkv/issues
Encoding UTF-8
Depends R (>=4.1.0)

Imports admiral, dplyr, flexsurv, ggplot2, pharmaverseadam, purrr,
rlang, SimplicialCubature, stats, survival, stringr, tibble,
tidyr

Suggests boot, covr, ggsci, HMDHFDplus, knitr, rmarkdown, testthat (>=
3.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
RoxygenNote 7.3.1
NeedsCompilation no

Author Dominic Muston [aut, cre] (<https://orcid.org/0000-0003-4876-7940>),
Merck & Co., Inc., Rahway, NJ, USA and its affiliates [cph, fnd]

Maintainer Dominic Muston <dominic.muston@merck.com>
Repository CRAN
Date/Publication 2024-06-07 20:00:05 UTC

https://merck.github.io/psm3mkv/
https://github.com/Merck/psm3mkv
https://github.com/Merck/psm3mkv/issues
https://orcid.org/0000-0003-4876-7940

2 calc_allrmds

Contents
calc_allrmds L e 2
calc_haz_psm 4
calc_LIKES 5
calc_rmd . ..o e 7
Calc_SUrvV_pSmPPS . . . v o o o e e e e 8
check_consistent_pfs 9
compare_psm_likes 10
CONStrain_survprob e e 11
create_dummydata L. e 12
create_extrafields L e 13
find_bestfit e 13
fit_ends_mods_par e e 14
fit_ends_mods_spl e 16
graph_psm_hazards 17
Graph_pPSM_SUIVS o i vt e e e e e e e e e e e e e e e e e e 18
Graph_SUIVS o e e e e e e 19
PrOD_OS_PSIM . . . v o v v e e e e e e e e e e e e e e e 21
prob_os_stm_cf e e 22
PrOD_OS_StM_CI v o vt i it e e e e e e e e e e e e e 23
Prob_pd_psmo e e e e e 24
prob_pd_stm_cf e 25
Prob_pd_StM_Cr e e e e e e 26
prob_pf psm e e e 27
prob_pf_stm Lo e 28
prob_pps_cf e 29
PIOD_PPS_CI . . o o o e 30
viookup . . .o e 31

Index 32

calc_allrmds Calculate restricted mean durations for each health state and all three
models
Description

Calculate restricted mean durations for each health state (progression free and progressed disease)
for all three models (partitioned survival, clock forward state transition model, clock reset state
transition model).

calc_allrmds 3

Usage

calc_allrmds(
ptdata,
inclset = 0,
dpam,
psmtype = "simple"”,
cuttime
Ty = 10,
lifetable = NA,
discrate = 0,

I}
(S

rmdmethod = "int",
timestep = 1,
boot = FALSE
)
Arguments
ptdata Dataset of patient level data. Must be a tibble with columns named:
* ptid: patient identifier
e pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-
soring)
¢ os.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
* ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).
inclset Vector to indicate which patients to include in analysis
dpam List of statistical fits to each endpoint required in PSM, STM-CF and STM-CR
models.
psmtype Either "simple" or "complex" PSM formulation
cuttime Time cutoff - this is nonzero for two-piece models.
Ty Time duration over which to calculate. Assumes input is in years, and patient-
level data is recorded in weeks.
lifetable Optional, a life table. Columns must include 1ttime (time in years, or 52.18
times shorter than the time index elsewhere, starting from zero) and 1x
discrate Discount rate (% per year)
rmdmethod can be "int" (default for full integral calculations) or "disc" for approximate
discretized calculations
timestep required if method=="int", default being 1
boot logical flag to indicate whether abbreviated output is required (default = FALSE),

for example for bootstrapping

4 calc_haz_psm

Value

List of detailed numeric results

* cutadj indicates the survival function and area under the curves for PFS and OS up to the
cutpoint

* results provides results of the restricted means calculations, by model and state.

Examples

Create dataset and fit survival models (splines)
bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_par(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
RMD using default "int" method, no lifetable constraint
calc_allrmds(bosonc, dpam=params)
RMD using discretized ("disc") method, no lifetable constraint
calc_allrmds(bosonc, dpam=params, rmdmethod="disc"”, timestep=1, boot=TRUE)

calc_haz_psm Derive pre and post-progression hazards of death under PSM

Description
Derive the hazards of death pre- and post-progression under either simple or complex PSM formu-
lations.

Usage

calc_haz_psm(timevar, ptdata, dpam, psmtype)

Arguments
timevar Vector of times at which to calculate the hazards
ptdata Dataset of patient level data. Must be a tibble with columns named:

* ptid: patient identifier
e pfs.durn: duration of PFS from baseline

* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-
soring)

calc_likes 5

¢ os.durn: duration of OS from baseline

* os.flag: event flag for OS (=1 if death occurred, O for censoring)

e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
* ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).

Survival data for all other endpoints (time to progression, pre-progression death,
post-progression survival) are derived from PFS and OS.

dpam List of survival regressions for each endpoint:

* pre-progression death (PPD)

* time to progression (TTP)

* progression-free survival (PFS)

¢ overall survival (OS)

* post-progression survival clock forward (PPS-CF) and
* post-progression survival clock reset (PPS-CR).

psmtype Either "simple" or "complex" PSM formulation

Value

List of pre, the pre-progression hazard, and post, the post-progression hazard

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
calc_haz_psm(0:10, ptdata=bosonc, dpam=params, psmtype="simple")
calc_haz_psm(@:10, ptdata=bosonc, dpam=params, psmtype="complex")

calc_likes Calculate likelihoods for three three-state model structures

Description

Calculate likelihood values and other summary output for the following three state models struc-
tures: partitioned survival, clock forward state transition, and clock reset state transition. The func-
tion requires appropriately formatted patient-level data, a set of fitted survival regressions, and the
time cut-off (if two-piece modeling is used).

6 calc_likes

Usage

calc_likes(ptdata, dpam, cuttime = Q)

Arguments

ptdata Dataset of patient level data. Must be a tibble with columns named:
e ptid: patient identifier
¢ pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for
censoring)
¢ 0s.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
* ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
e ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).

Survival data for all other endpoints (time to progression, pre-progression death,
post-progression survival) are derived from PFS and OS.

dpam List of survival regressions for each endpoint:

* pre-progression death (PPD)

* time to progression (TTP)

* progression-free survival (PFS)

 overall survival (OS)

* post-progression survival clock forward (PPS-CF) and
* post-progression survival clock reset (PPS-CR).

cuttime Time cutoff - this is nonzero for two-piece models.

Value
A list of three tibbles: all is a tibble of results for all patients:

* methname: the model structure or method.
* npar: is the number of parameters used by that method.

* npts_1 to npts_4 are the number of patients experiencing outcomes 1-4 respectively (see
below), and npts_tot the total.

e 11_1to 11_4 are the log-likelihood values for patients experiencing outcomes 1-4 respectively
(see below), and 11_tot the total. valid is a tibble of the same design as all but only in
patients with valid likelihoods for all 4 methods sum is a tibble in respect of patients with valid
likelihoods for all 4 methods providing:

* npts: number of patients contributing results for this method.
* npar: number of parameters used by that method.

* 11: total log-likelihood

» AIC: Akaike Information Criterion value for this model

* BIC: Bayesian Information Criterion value for this model

The four outcomes are as follows:

calc_rmd 7

* (1) refers to patients who remain alive and progression-free during the follow-up;
* (2) refers to patients who die without prior progression during the follow-up;
* (3) refers to patients who progress and then remain alive for the remaining follow-up, and

* (4) refers to patients who progress and die within the follow-up.

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)

calc_likes(bosonc, dpam=params)

calc_rmd Calculate restricted mean durations

Description
Calculates the restricted mean duration, given the form of a parametric distribution of Royston-
Parmar splines

Usage
calc_rmd(Tw, type = NA, spec = NA, survobj = NULL)

Arguments
Tw is the time horizon (weeks) over which the mean should be calculated.
type is either "par" for regular parametric form (exponential, weibull etc) or "spl" for
Royston-Parmar splines.
spec is a list comprising: If type=="par": dist is the statistical distribution (named
per flexsurv::flexsurvreg) and pars is a vector of the parameters for that distri-
bution.

* Exponential distribution (exp) requires the rate parameter.

* Weibull distribution (both weibullPH and weibull formulations) requires
the shape and scale parameters.

* Log-logistic distribution (11ogis) requires the shape and scale parameters.

* Log-normal distribution (Lnorm) requires the meanlog and sdlog parame-
ters.

8 calc_surv_psmpps

¢ Gamma and Gompertz distributions (gamma and gompertz) require the shape
and rate parameters.

* Generalized Gamma requires the mu, sigma and Q parameters if using the
standard parameterization (gengamma) or shape, scale and k parameters if
using the original parameterization (gengamma.orig). If type=="spl":

* gamma - Vector of parameters describing the baseline spline function, as de-
scribed in flexsurv::flexsurvspline. This may be supplied as a vector with
number of elements equal to the length of knots, in which case the parame-
ters are common to all times. Alternatively a matrix may be supplied, with
rows corresponding to different times, and columns corresponding to knots.

* knots - Vector of locations of knots on the axis of log time, supplied in
increasing order. Unlike in flexsurv::flexsurvspline, these include the two
boundary knots.

* scale - Either "hazard", "odds", or "normal", as described in flexsurv::flexsurvspline.
With the default of no knots in addition to the boundaries, this model re-
duces to the Weibull, log-logistic and log-normal respectively. The scale
must be common to all times.

survobj is a survival fit object from flexsurv::flexsurvspline or flexsurv::flexsurvreg

Value

the restricted mean duration, a numeric value.

Examples

calc_rmd(Tw=200,
type="spl”,
spec=list(gamma=c(0.1,0.2,0.1), knots=c(-5,2,4), scale="normal")
)
calc_rmd(Tw=250,
type="par”,
spec=list(dist="1norm", pars=c(3,1))

)

calc_surv_psmpps Derive PPS survival function under a PSM

Description

Derive the post-progression survival (PPS) function under the simple or complex PSM formulation.

Usage

calc_surv_psmpps(totime, fromtime = @, ptdata, dpam, psmtype = "simple")

check_consistent_pfs 9

Arguments
totime Vector of times to which the survival function is calculated
fromtime Vector of times from which the survival function is calculated
ptdata Patient-level dataset
dpam List of fitted survival models for each endpoint
psmtype Either "simple" or "complex" PSM formulation

Value

Vector of PPS survival function values

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
calc_surv_psmpps(totime=1:10,
fromtime=rep(1,10),
ptdata=bosonc,
dpam=params,
psmtype="simple")

check_consistent_pfs Check consistency of PFS definition Check that PFS is defined con-
sistently with TTP and OS in a dataset. This convenience function
compares pfs.durn with the lower of ttp.durn and os.durn, and
checks that the event field pfs.flag is consistent with ttp.flag and
os.flag (is 1 when either ttp.flag or os.flag is one).

Description

Check consistency of PFS definition Check that PFS is defined consistently with TTP and OS in a
dataset. This convenience function compares pf's.durn with the lower of ttp.durn and os.durn,
and checks that the event field pf's. flag is consistent with ttp.flag and os. flag (is 1 when either
ttp.flag or os.flag is one).

Usage

check_consistent_pfs(ds)

10 compare_psm_likes

Arguments
ds Tibble of complete patient-level dataset
e ttp.durn, pfs.durn, and os.durn are the durations of TTP (time to pro-
gression), PFS (progression-free survival), and OS (overall survival).
e ttp.flag, pfs.flag, and os. flag, and pps.flag are event flag indicators
for TTP, PFS, and OS respectively (1=event, O=censoring).
Value

List containing:

* durn: Logical vector comparing expected and actual PFS durations
» flag: Logical vector comparing expected and actual PFS event flags
 all: Single logical value of TRUE if all durations and flags match as expected, FALSE other-

wise
Examples

ponc <- create_dummydata("pharmaonc”)
check_consistent_pfs(ponc)

compare_psm_likes Compare likelihoods of PSMs

Description

Compare the total log-likelihood values for the patient-level dataset after fitting PSM-simple and
PSM-complex models to each combination of endpoint distributions

Usage

compare_psm_likes(ptdata, fitslist, cuttime = 0)

Arguments

ptdata Dataset of patient level data. Must be a tibble with columns named:

* ptid: patient identifier

e pfs.durn: duration of PFS from baseline

* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-

soring)

¢ os.durn: duration of OS from baseline

* os.flag: event flag for OS (=1 if death occurred, O for censoring)

e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)

* ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).
fitslist List of distribution fits to relevant endpoints, after calling fit_ends_mods_par()

or fit_ends_mods_spl()

cuttime Time cutoff - this is nonzero for two-piece models.

constrain_survprob 11

Value

List containing

¢ results: Dataset of calculation results for each model

* bests: Tibble indicating which is the best fitting model individually or jointly, to each end-
point, according to AIC or BIC

Examples

Fit parametric distributions to a dataset
bosonc <- create_dummydata("flexbosms")
parfits <- fit_ends_mods_par(bosonc)

splfits <- fit_ends_mods_spl(bosonc)

Present comparison of likelihood calculations
compare_psm_likes(bosonc, parfits)
compare_psm_likes(bosonc, splfits)

constrain_survprob Constrain survival probabilities according to hazards in a lifetable
Recalculated constrained survival probabilities (by week) as the lower
of the original unadjusted survival probability and the survival implied
by the given lifetable (assumed indexed as years).

Description

Constrain survival probabilities according to hazards in a lifetable Recalculated constrained survival
probabilities (by week) as the lower of the original unadjusted survival probability and the survival
implied by the given lifetable (assumed indexed as years).

Usage
constrain_survprob(
survprob1,
survprob2 = NA,
lifetable = NA,
timevec = @:(length(survprobl) - 1)
)
Arguments
survprob1 (Unconstrained) survival probability value or vector
survprob? Optional survival probability value or vector to constrain on (default = NA)
lifetable Lifetable (default = NA)

timevec Vector of times corresponding with survival probabilities above

12 create_dummydata

Value

Vector of constrained survival probabilities

Examples

ltable <- tibble::tibble(lttime=0:20, 1x=c(1,0.08,0.05,0.03,0.01,rep(0,16)))
survprob <- ¢(1,0.5,0.4,0.2,0)

constrain_survprob(survprob, lifetable=1table)

timevec <- 100%(0:4)

constrain_survprob(survprob, lifetable=1ltable, timevec=timevec)

survprob2 <- ¢(1,0.45,0.35,0.15,0)

constrain_survprob(survprob, survprob2)

create_dummydata Create dummy dataset for illustration

Description

Create dummy dataset to illustrate psm3mkv

Usage

create_dummydata(dsname)

Arguments

dsname Dataset name, as follows:

Value

* flexbosms provides a dataset based on flexsurv::bosms3(). This con-
tains all the fields necessary for psm3mkv. Durations have been converted
from months in the original dataset to weeks.

* pharmaonc provides a dataset based on pharmaverseadam::adsl and phar-
maverseadam::adrs_onco to demonstrate how this package can be used with
ADaM ADTTE datasets.

* survcan provides a dataset based on survival: :cancer (). This contains
the necessary ID and overall survival fields only. Durations have been con-
verted from days in the original dataset to weeks. You will additionally
need to supply PFS and TTP data (fields pfs.durn, pfs.flag, ttp.durn and
ttp.flag) to use psm3mkv.

Tibble dataset, for use with psm3mkyv functions

Examples

create_dummydata(”survcan”) |> head()
create_dummydata("flexbosms") |> head()
create_dummydata(”pharmaonc”) |> head()

create_extrafields 13

create_extrafields Create the additional time-to-event endpoints, adjusting for cutpoint

Description

Create the additional time-to-event endpoints, adjusting for cutpoint

Usage

create_extrafields(ds, cuttime = 0)

Arguments
ds Patient-level dataset
cuttime Time cutpoint
Value

Tibble of complete patient-level dataset, adjusted for cutpoint ttp.durn, pfs.durn, ppd.durn and
os.durn are the durations of TTP (time to progression), PFS (progression-free survival), PPD (pre-
progression death) and OS (overall survival) respectively beyond the cutpoint. pps.durn is the
duration of survival beyond progression, irrespective of the cutpoint. pps.odurn is the difference
between ttp.durn and os.durn (which may be different to pps.durn). ttp.flag, pfs.flag,
ppd.flag, os.flag, and pps.flag are event flag indicators for TTP, PFS, PPD, OS and PPS re-
spectively (1=event, O=censoring).

Examples

bosonc <- create_dummydata("flexbosms")
create_extrafields(bosonc, cuttime=10)

find_bestfit Find the "best" survival regression from a list of model fits

Description

When there are multiple survival regressions fitted to the same endpoint and dataset, it is necessary
to identify the preferred model. This function reviews the fitted regressions and selects that with the
minimum Akaike or Bayesian Information Criterion (AIC, BIC), depending on user choice. Model
fits must be all parametric or all splines.

Usage

find_bestfit(reglist, crit)

14 fit_ends_mods_par

Arguments
reglist List of fitted survival regressions to an endpoint and dataset.
crit Criterion to be used in selection of best fit, either "aic" (Akaike Information
Criterion) or "bic" (Bayesian Information Criterion).
Value

List of the single survival regression with the best fit.

Examples

bosonc <- create_dummydata("flexbosms")
Parametric modeling

fits_par <- fit_ends_mods_par(bosonc)
find_bestfit(fits_par$ttp, "aic")

Splines modeling
fits_spl <- fit_ends_mods_spl(bosonc)
find_bestfit(fits_spl$ttp, "bic")

fit_ends_mods_par Fit multiple parametric survival regressions to the multiple required
endpoints

Description

Fits multiple parametric survival regressions, according to the distributions stipulated, to the multi-
ple endpoints required in fitting partitioned survival analysis, clock forward and clock reset semi-
markov models.

Usage

fit_ends_mods_par(
simdat,
cuttime = 0,
ppd.dist = c("exp”, "weibullPH", "llogis"”, "lnorm”, "gamma", "gompertz"),
ttp.dist = c("exp", "weibullPH", "llogis"”, "lnorm"”, "gamma"”, "gompertz"),
pfs.dist = c("exp", "weibullPH", "llogis"”, "lnorm"”, "gamma"”, "gompertz"),

os.dist = c("exp”, "weibullPH", "llogis", "lnorm”, "gamma", "gompertz"),
pps_cf.dist = c("exp”, "weibullPH", "llogis", "lnorm", "gamma", "gompertz"),
pps_cr.dist = c("exp”, "weibullPH", "llogis"”, "lnorm", "gamma", "gompertz"),

expvar = NA

fit_ends_mods_par

Arguments

simdat

cuttime

ppd.dist

ttp.dist

pfs.dist

os.dist

pps_cf.dist

pps_cr.dist

expvar

Value

15

Dataset of patient level data. Must be a tibble with columns named:
e ptid: patient identifier
e pfs.durn: duration of PFS from baseline

 pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-
soring)

¢ os.durn: duration of OS from baseline

* os.flag: event flag for OS (=1 if death occurred, O for censoring)

¢ ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
* ttp.flag: event flag for TTP (=1 if progression occurred, 0 for censoring).

Survival data for all other endpoints (time to progression, pre-progression death,
post-progression survival) are derived from PFS and OS.

Cut-off time for a two-piece model, equals zero for one-piece models.

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Pre-Progression Death (PPD).

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Time To Progression (TTP).

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Progression-Free Survival (PFS).

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Overall Survival (OS).

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Post Progression Survival, where time is from baseline (clock forward).

Vector of distributions (named per flexsurv::flexsurvreg()) to be fitted to
Post Progression Survival, where time is from progression (clock reset).

Explanatory variable for modeling of PPS

A list by endpoint, then distribution, each containing two components:

* result: A list of class flexsurvreg containing information about the fitted model.

* error: Any error message returned on fitting the regression (NULL indicates no error).

See Also

Spline modeling is handled by fit_ends_mods_spl()

Examples

bosonc <- create_dummydata("flexbosms")
fit_ends_mods_par(bosonc, expvar=bosonc$ttp.durn)

16 fit_ends_mods_spl

fit_ends_mods_spl Fit multiple spline regressions to the multiple required endpoints

Description

Fits multiple survival regressions, according to the distributions stipulated, to the multiple endpoints
required in fitting partitioned survival analysis, clock forward and clock reset semi-markov models.

Usage
fit_ends_mods_spl(
simdat,
knot_set = 1:3,
scale_set = c("hazard”, "odds"”, "normal"),
expvar = NA
)
Arguments
simdat Dataset of patient level data. Must be a tibble with columns named:
* ptid: patient identifier
* pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-
soring)
e os.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
« ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).
Survival data for all other endpoints (time to progression, pre-progression death,
post-progression survival) are derived from PFS and OS.
knot_set is a vector of the numbers of knots to consider, following flexsurv: :flexsurvspline()).
scale_set is a vector of the spline scales to consider, following flexsurv: :flexsurvspline()).
expvar Explanatory variable for modeling of PPS
Value

A list by endpoint, then distribution, each containing two components:

* result: A list of class flexsurv::flexsurvspline containing information about the fitted model.

* error: Any error message returned on fitting the regression (NULL indicates no error). Also,
the given cuttime.

See Also

Parametric modeling is handled by fit_ends_mods_par()

graph_psm_hazards 17

Examples

Create dataset in suitable form using bos dataset from the flexsurv package
bosonc <- create_dummydata("flexbosms")
fit_ends_mods_spl(bosonc, expvar=bosonc$ttp.durn)

graph_psm_hazards Graph the PSM hazard functions

Description

Graph the PSM hazard functions

Usage

graph_psm_hazards(timevar, endpoint, ptdata, dpam, psmtype)

Arguments

timevar Vector of times at which to calculate the hazards
endpoint Endpoint for which hazard is required (TTP, PPD, PES, OS or PPS)
ptdata Dataset of patient level data. Must be a tibble with columns named:
* ptid: patient identifier
¢ pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for
censoring)
* os.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
* ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).
dpam List of survival regressions for each endpoint:
* pre-progression death (PPD)
* time to progression (TTP)
* progression-free survival (PFS)
e overall survival (OS)
* post-progression survival clock forward (PPS-CF) and
* post-progression survival clock reset (PPS-CR).

psmtype Either "simple" or "complex" PSM formulation

Value
List containing:

* adj is the hazard adjusted for constraints

* unadj is the unadjusted hazard

18 graph_psm_survs

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_par(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit

Create graphics
psmh_simple <- graph_psm_hazards(
timerange=(0:10)*6,
endpoint="0S",
dpam=params,
psmtype="simple")
psmh_simple$graph

T R E R

graph_psm_survs Graph the PSM survival functions

Description

Graph the PSM survival functions

Usage

graph_psm_survs(timevar, endpoint, ptdata, dpam, psmtype)

Arguments
timevar Vector of times at which to calculate the hazards
endpoint Endpoint for which hazard is required (TTP, PPD, PES, OS or PPS)
ptdata Dataset of patient level data. Must be a tibble with columns named:
e ptid: patient identifier
e pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for
censoring)
¢ 0s.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
e ttp.flag: event flag for TTP (=1 if progression occurred, O for censoring).
dpam List of survival regressions for each endpoint:

* pre-progression death (PPD)

graph_survs 19

* time to progression (TTP)

* progression-free survival (PFS)

* overall survival (OS)

* post-progression survival clock forward (PPS-CF) and
* post-progression survival clock reset (PPS-CR).

psmtype Either "simple" or "complex" PSM formulation

Value
List containing:

* adj is the hazard adjusted for constraints

* unadj is the unadjusted hazard

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_par(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
Graphic illustrating effect of constraints on 0S model
psms_simple <- graph_psm_survs(
timevar=6x(0:10),
endpoint="0S",
ptdata=bosonc,
dpam=params,
psmtype="simple”
)
psms_simple$graph

graph_survs Graph the observed and fitted state membership probabilities

Description

Graph the observed and fitted state membership probabilities for PF, PD, OS and PPS.

Usage

graph_survs(ptdata, dpam, cuttime = Q)

20 graph_survs

Arguments

ptdata Dataset of patient level data. Must be a tibble with columns named:
e ptid: patient identifier
* pfs.durn: duration of PFS from baseline
* pfs.flag: event flag for PFS (=1 if progression or death occurred, O for cen-
soring)
¢ os.durn: duration of OS from baseline
* os.flag: event flag for OS (=1 if death occurred, O for censoring)
e ttp.durn: duration of TTP from baseline (usually should be equal to pfs.durn)
* ttp.flag: event flag for TTP (=1 if progression occurred, 0 for censoring).

Survival data for all other endpoints (time to progression, pre-progression death,
post-progression survival) are derived from PFS and OS.

dpam List of survival regressions for each endpoint:

* pre-progression death (PPD)

* time to progression (TTP)

* progression-free survival (PFS)

« overall survival (OS)

* post-progression survival clock forward (PPS-CF) and
* post-progression survival clock reset (PPS-CR).

cuttime is the cut-off time for a two-piece model (default O, indicating a one-piece
model)

Value

List of two items as follows. data is a tibble containing data derived and used in the derivation of
the graphics. graph is a list of four graphics as follows:

» pf: Membership probability in PF (progression-free) state versus time since baseline, by
method

* pd: Membership probability in PD (progressive disease) state versus time since baseline, by
method

* os: Probability alive versus time since baseline, by method

* pps: Probability alive versus time since progression, by method

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_par(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic”)$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,

prob_os_psm 21

pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
Create graphics
gs <- graph_survs(ptdata=bosonc, dpam=params)
gs$graph$pd

prob_os_psm Calculate probability of being alive in a partitioned survival model

Description

Calculates membership probability of being alive at a particular time (vectorized), given either state

transition model (clock forward or clock reset) with given statistical distributions and parameters.

This is the sum of membership probabilities in the progression free and progressed disease states.
Usage

prob_os_psm(time, dpam, starting = c(1, @, 0))

Arguments
time Time (numeric and vectorized)
dpam List of survival regressions for model endpoints. This must include overall sur-
vival (OS).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_os_psm(@:100, params)

22 prob_os_stm_ct

prob_os_stm_cf Calculate probability of being alive under the state transition clock
forward model

Description

Calculates membership probability of being alive at a given time (vectorized). This probability is
from the state transition clock forward model, according to the given statistical distributions and
parameters.

Usage

prob_os_stm_cf(time, dpam, starting = c(1, @, 0))

Arguments
time Time (numeric and vectorized) from baseline.
dpam List of survival regressions for model endpoints. This must include pre-progression
death (PPD), time to progression (TTP) and post progression survival calculated
under the clock forward model (PPS-CF).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_os_stm_cf(0:100, params)

prob_os_stm_cr 23

prob_os_stm_cr Calculate probability of being alive under the state transition clock
reset model

Description

Calculates membership probability of being alive at a given time (vectorized). This probability
is from the state transition clock reset model, according to the given statistical distributions and
parameters.

Usage

prob_os_stm_cr(time, dpam, starting = c(1, 0, 0))

Arguments
time Time (numeric and vectorized) from baseline.
dpam List of survival regressions for model endpoints. This must include pre-progression
death (PPD), time to progression (TTP) and post progression survival calculated
under the clock reset model (PPS-CR).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)

prob_os_stm_cr(0:100, params)

24 prob_pd_psm

prob_pd_psm Calculate membership probability of progressed disease state in a par-
titioned survival model

Description

Calculates membership probability of having progressed disease at a particular time (vectorized),
given the partitioned survival model with certain statistical distributions and parameters.

Usage

prob_pd_psm(time, dpam, starting = c(1, 0, 0))

Arguments
time Time (numeric and vectorized)
dpam List of survival regressions for model endpoints. This must include progression-
free survival (PFS) and overall survival (OS).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pd_psm(@:100, params)

prob_pd_stm_cf 25

prob_pd_stm_cf Calculate probability of having progressed disease under the state
transition clock forward model

Description

Calculates membership probability of the progressed disease state at a given time (vectorized).
This probability is from the state transition clock forward model, according to the given statistical
distributions and parameters.

Usage

prob_pd_stm_cf(time, dpam, starting = c(1, @, 0))

Arguments
time Time (numeric and vectorized) from baseline.
dpam List of survival regressions for model endpoints. This must include pre-progression
death (PPD), time to progression (TTP) and post progression survival calculated
under the clock forward model (PPS-CF).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pd_stm_cf(0:100, params)

26 prob_pd_stm_cr

prob_pd_stm_cr Calculate probability of having progressed disease under the state
transition clock reset model

Description

Calculates membership probability of the progressed disease state at a given time (vectorized).
This probability is from the state transition clock reset model, according to the given statistical
distributions and parameters.

Usage

prob_pd_stm_cr(time, dpam, starting = c(1, 0, 0))

Arguments
time Time (numeric and vectorized) from baseline.
dpam List of survival regressions for model endpoints. This must include pre-progression
death (PPD), time to progression (TTP) and post progression survival calculated
under the clock reset model (PPS-CR).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pd_stm_cr(@:100, params)

prob_pf_psm 27

prob_pf_psm Calculate probability of being progression free in partitioned survival
model

Description

Calculates membership probability for the progression free state, at a particular time (vectorized),
given a partitioned survival model with given statistical distributions and parameters.

Usage

prob_pf_psm(time, dpam, starting = c(1, 0, 0))

Arguments
time Time (numeric and vectorized)
dpam List of survival regressions for model endpoints. This must include progression-
free survival (PES).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pf_psm(@:100, params)

28 prob_pf_stm

prob_pf_stm Calculate probability of being progression free in either state transi-
tion model (clock forward or clock reset)

Description

Calculates membership probability for the progression free state, at a particular time (vectorized),
given either state transition model (clock forward or clock reset) with given statistical distributions
and parameters.

Usage

prob_pf_stm(time, dpam, starting = c(1, 0, 0))

Arguments
time Time (numeric and vectorized)
dpam List of survival regressions for model endpoints. This must include pre-progression
death (PPD) and time to progression (TTP).
starting Vector of membership probabilities (PF, PD, death) at time zero.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pf_stm(@:100, params)

prob_pps_cf 29

prob_pps_cf Calculate probability of post progression survival under the state tran-
sition clock forward model

Description

Calculates probability of post progression survival at a given time from progression (vectorized).
This probability is from the state transition clock forward model, according to the given statistical
distributions and parameters.

Usage

prob_pps_cf(ttptimes, ppstimes, dpam)

Arguments
ttptimes Time (numeric and vectorized) from progression - not time from baseline.
ppstimes Time (numeric and vectorized) of progression
dpam List of survival regressions for model endpoints. This must include post pro-
gression survival calculated under the clock forward state transition model.
Value

Vector of the mean probabilities of post-progression survival at each PPS time, averaged over TTP
times.

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pps_cf(0:100, 0:100, params)

30 prob_pps_cr

prob_pps_cr Calculate probability of post progression survival under the state tran-
sition clock reset model

Description

Calculates probability of post progression survival at a given time from progression (vectorized).
This probability is from the state transition clock reset model, according to the given statistical
distributions and parameters.

Usage

prob_pps_cr(time, dpam)

Arguments
time Time (numeric and vectorized) from baseline - not time from progression.
dpam List of survival regressions for model endpoints. This must include post pro-
gression survival calculated under the clock reset state transition model.
Value

Numeric value

Examples

bosonc <- create_dummydata("flexbosms")
fits <- fit_ends_mods_spl(bosonc)
Pick out best distribution according to min AIC
params <- list(
ppd = find_bestfit(fits$ppd, "aic")$fit,
ttp = find_bestfit(fits$ttp, "aic")$fit,
pfs = find_bestfit(fits$pfs, "aic")$fit,
os = find_bestfit(fits$os, "aic")$fit,
pps_cf = find_bestfit(fits$pps_cf, "aic")$fit,
pps_cr = find_bestfit(fits$pps_cr, "aic")$fit
)
prob_pps_cr(0:100, params)

vlookup 31

vlookup VLOOKUP function

Description

Function to lookup values according to an index. Aims to behave similarly to VLOOKUP in Mi-
crosoft Excel, however several lookups can be made at once (indexval can be a vector) and inter-
polation is available where lookups are inexact (choice of 4 methods).

Usage
vlookup(indexval, indexvec, valvec, method = "geom")
Arguments
indexval The index value to be looked-up (may be a vector of multiple values)
indexvec The vector of indices to look-up within
valvec The vector of values corresponding to the vector of indices
method Method may be floor, ceiling, arith or geom (default).
Value

Numeric value or vector, depending on the lookup/interpolation method chosen:

* floor: Floor (minimum) value, where interpolation is required between measured values
e ceiling: Ceiling (maximum) value, where interpolation is required between measured values
* arith: Arithmetic mean, where interpolation is required between measured values

* geom: Geometric mean, where interpolation is required between measured values

See Also
HMDHFDplus::readHMDweb can be used to obtain lifetables from the Human Mortality Database

Examples

Suppose we have survival probabilities at times @ to 20

times <- 0:20

survival <- 1-timesx*0.04

We would like to look-up the survival probability at time 7
vlookup(7, times, survival)

In this case, the floor, ceiling, arith and geom values are identical
because survival time 7 is known, and no interpolation is necessary
vlookup(c(7, 7.5), times, survival)

The second row of the returned tibble reveal different estimates of the survival at time 7.5.
The values vary according to the interpolation method between

observed survival values at times 7 and 8.

Index

calc_allrmds, 2
calc_haz_psm, 4
calc_likes, 5
calc_rmd, 7
calc_surv_psmpps, 8
check_consistent_pfs, 9
compare_psm_likes, 10
constrain_survprob, 11
create_dummydata, 12
create_extrafields, 13

find_bestfit, 13
fit_ends_mods_par, 14
fit_ends_mods_par(), 16
fit_ends_mods_spl, 16
fit_ends_mods_spl(), 15
flexsurv::bosms3(), 12

flexsurv::flexsurvreg, 7, 8
flexsurv::flexsurvreg(), 15
flexsurv::flexsurvspline, 8, 16
flexsurv::flexsurvspline(), 16

graph_psm_hazards, 17
graph_psm_survs, 18
graph_survs, 19

HMDHFDplus: : readHMDweb, 31

pharmaverseadam: :adrs_onco, 12
pharmaverseadam: :adsl, 12

prob_os_psm, 21
prob_os_stm_cf, 22
prob_os_stm_cr, 23
prob_pd_psm, 24
prob_pd_stm_cf, 25
prob_pd_stm_cr, 26
prob_pf_psm, 27
prob_pf_stm, 28
prob_pps_cf, 29
prob_pps_cr, 30

psm3mkv, 12
survival::cancer(), 12

vlookup, 31

	calc_allrmds
	calc_haz_psm
	calc_likes
	calc_rmd
	calc_surv_psmpps
	check_consistent_pfs
	compare_psm_likes
	constrain_survprob
	create_dummydata
	create_extrafields
	find_bestfit
	fit_ends_mods_par
	fit_ends_mods_spl
	graph_psm_hazards
	graph_psm_survs
	graph_survs
	prob_os_psm
	prob_os_stm_cf
	prob_os_stm_cr
	prob_pd_psm
	prob_pd_stm_cf
	prob_pd_stm_cr
	prob_pf_psm
	prob_pf_stm
	prob_pps_cf
	prob_pps_cr
	vlookup
	Index

