Package ‘profvis’

September 20, 2024

Title Interactive Visualizations for Profiling R Code
Version 0.4.0

Description Interactive visualizations for profiling R code.
License MIT + file LICENSE

URL https://profvis.r-lib.org, https://github.com/r-1lib/profvis

BugReports https://github.com/r-1ib/profvis/issues
Depends R (>=4.0)

Imports htmlwidgets (>= 0.3.2), rlang (>= 1.1.0), vctrs
Suggests htmltools, knitr, rmarkdown, shiny, testthat (>= 3.0.0)
VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, rmarkdown
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

Author Hadley Wickham [aut, cre],

Winston Chang [aut],

Javier Luraschi [aut],

Timothy Mastny [aut],

Posit Software, PBC [cph, fnd],

jQuery Foundation [cph] (jQuery library),

jQuery contributors [ctb, cph] (jQuery library; authors listed in
inst/htmlwidgets/lib/jquery/AUTHORS.txt),

Mike Bostock [ctb, cph] (D3 library),

D3 contributors [ctb] (D3 library),

Ivan Sagalaev [ctb, cph] (highlight.js library)

Maintainer Hadley Wickham <hadley@posit.co>
Repository CRAN
Date/Publication 2024-09-20 11:50:10 UTC

https://profvis.r-lib.org
https://github.com/r-lib/profvis
https://github.com/r-lib/profvis/issues

2 print.profvis

Contents
PAUSE .« o o e e e e e e e 2
Print.profVis L e 2
Profvis . . . L L 3
profvisOutput L e 5
Profvis_ui e e e e e 6

Index 8

pause Pause an R process
Description

This function pauses an R process for some amount of time. It differs from Sys.sleep() in that
time spent in pause will show up in profiler data. Another difference is that pause uses up 100\
whereas Sys. sleep does not.

Usage

pause(seconds)

Arguments

seconds Number of seconds to pause.

Examples

Wait for 0.5 seconds
pause(0.5)

print.profvis Print a profvis object

Description

Print a profvis object

Usage

S3 method for class 'profvis'
print(x, ..., width = NULL, height = NULL, split = NULL, aggregate = NULL)

profvis 3

Arguments
X The object to print.
Further arguments to passed on to other print methods.
width Width of the htmlwidget.
height Height of the htmlwidget
split Orientation of the split bar: either "h" (the default) for horizontal or "v" for
vertical.
aggregate If TRUE, the profiled stacks are aggregated by name. This makes it easier to see
the big picture. Set your own global default for this argument with options(profvis.aggregate
=).
profvis Profile an R expression and visualize profiling data
Description

This function will run an R expression with profiling, and then return an htmlwidget for interactively
exploring the profiling data.

Usage

profvis(
expr = NULL,
interval = 0.01,
prof_output = NULL,
prof_input = NULL,
timing = NULL,
width = NULL,
height = NULL,
split = c("h", "v"),
torture = 0,
simplify = TRUE,
rerun = FALSE

Arguments

expr Expression to profile. The expression will be turned into the body of a zero-
argument anonymous function which is then called repeatedly as needed. This
means that if you create variables inside of expr they will not be available out-
side of it.

The expression is repeatedly evaluated until Rprof () produces an output. It
can be a quosure injected with rlang: :inject () but it cannot contain injected
quosures.

Not compatible with prof_input.

interval

prof_output

prof_input

timing

width
height
split

torture

simplify

rerun

Details

profvis

Interval for profiling samples, in seconds. Values less than 0.005 (5 ms) will
probably not result in accurate timings

Name of an Rprof output file or directory in which to save profiling data. If NULL
(the default), a temporary file will be used and automatically removed when the
function exits. For a directory, a random filename is used.

The path to an Rprof () data file. Not compatible with expr or prof_output.

The type of timing to use. Either "elapsed” (the default) for wall clock time,
or "cpu” for CPU time. Wall clock time includes time spent waiting for other
processes (e.g. waiting for a web page to download) so is generally more useful.

If NULL, the default, will use elapsed time where possible, i.e. on Windows or
on R 4.4.0 or greater.

Width of the htmlwidget.
Height of the htmlwidget

Orientation of the split bar: either "h" (the default) for horizontal or "v" for
vertical.

Triggers garbage collection after every torture memory allocation call.

Note that memory allocation is only approximate due to the nature of the sam-
pling profiler and garbage collection: when garbage collection triggers, memory
allocations will be attributed to different lines of code. Using torture = steps
helps prevent this, by making R trigger garbage collection after every torture
memory allocation step.

Whether to simplify the profiles by removing intervening frames caused by lazy
evaluation. Equivalent to the filter.callframes argument to Rprof ().

If TRUE, Rprof() is run again with expr until a profile is actually produced.
This is useful for the cases where expr returns too quickly, before R had time to
sample a profile. Can also be a string containing a regexp to match profiles. In
this case, profvis() reruns expr until the regexp matches the modal value of
the profile stacks.

An alternate way to use profvis is to separately capture the profiling data to a file using Rprof (),
and then pass the path to the corresponding data file as the prof_input argument to profvis().

See Also

print.profvis() for printing options.

Rprof () for more information about how the profiling data is collected.

Examples

Only run these examples in interactive R sessions
if (interactive()) {

Profile some code

profvis({

profvisOutput

dat <- data.frame(

X

rnorm(5e4),

y = rnorm(5e4)

)

plot(x ~ y, data = dat)
m <- Im(x ~ y, data = dat)
abline(m, col = "red")

b

Save a profile to an HTML file
p <- profvis({
dat <- data.frame(

X

rnorm(5e4),

y = rnorm(5e4)

)

plot(x ~ y, data = dat)
m <- Im(x ~ y, data = dat)
abline(m, col = "red")

b

htmlwidgets::saveWidget(p, "profile.html")

Can open in browser from R
browseURL("profile.html")

}

profvisOutput Widget output and renders functions for use in Shiny

Description

Widget output and renders functions for use in Shiny

Usage

profvisOutput (outputId, width = "100%", height = "600px")

renderProfvis(expr, env = parent.frame(), quoted = FALSE)

Arguments
outputId Output variable for profile visualization.
width Width of the htmlwidget.
height Height of the htmlwidget
expr An expression that returns a profvis object.

6 profvis_ui

env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())?
profvis_ui profvis Ul for Shiny Apps
Description

Use this Shiny module to inject profvis controls into your Shiny app. The profvis Shiny module
injects UI that can be used to start and stop profiling, and either view the results in the profvis UI or
download the raw .Rprof data. It is highly recommended that this be used for testing and debugging
only, and not included in production apps!

Usage

profvis_ui(id)

profvis_server(input, output, session, dir = ".")
Arguments
id Output id from profvis_server.

input, output, session
Arguments provided by shiny: :callModule().

dir Output directory to save Rprof files.

Details

The usual way to use profvis with Shiny is to simply call profvis(shiny: :runApp()), but this
may not always be possible or desirable: first, if you only want to profile a particular interaction
in the Shiny app and not capture all the calculations involved in starting up the app and getting it
into the correct state; and second, if you’re trying to profile an application that’s been deployed to a
server.

For more details on how to invoke Shiny modules, see this article.

Examples

In order to avoid "Hit <Return> to see next plot” prompts,
run this example with ~example(profvis_ui, ask=FALSE)"

if(interactive()) {
library(shiny)
shinyApp(
fluidPage(
plotOutput(”plot”),
actionButton("new”, "New plot"),
profvis_ui("profiler”)

https://shiny.rstudio.com/articles/modules.html

profvis_ui

),
function(input, output, session) {
callModule(profvis_server, "profiler”)

output$plot <- renderPlot({
input$new
boxplot(mpg ~ cyl, data = mtcars)
)]
}
)
3

Index

pause, 2

print.profvis, 2
print.profvis(), 4

profvis, 3

profvis_server (profvis_ui), 6
profvis_ui, 6
profvisOutput, 5

quote(), 6

renderProfvis (profvisOutput), 5
rlang::inject(), 3

Rprof(), 4

shiny: :callModule(), 6
Sys.sleep(), 2

	pause
	print.profvis
	profvis
	profvisOutput
	profvis_ui
	Index

