Package 'primePCA'

October 14, 2022

Type Package
Title Projected Refinement for Imputation of Missing Entries in PCA
Version 1.2
Date 2021-8-5
Author Ziwei Zhu, Tengyao Wang, Richard J. Samworth
Maintainer Ziwei Zhu <ziweiz@umich.edu></ziweiz@umich.edu>
Description Implements the primePCA algorithm, developed and analysed in Zhu, Z., Wang, T. and Samworth, R. J. (2019) High-dimensional principal component analysis with heterogeneous missingness. arXiv:1906.12125 >.
Imports softImpute, Matrix, MASS, methods
RoxygenNote 7.1.1
License GPL-3
NeedsCompilation no
Repository CRAN

Date/Publication 2021-08-05 15:10:02 UTC

R topics documented:

col_scale	. 2
inverse_prob_method	. 2
primePCA	. 3
sin_theta_distance	. 4

5

Index

col_scale

Description

Center and/or normalize each column of a matrix

Usage

col_scale(X, center = T, normalize = F)

Arguments

Х	a numeric matrix with NAs or "Incomplete" matrix object (see softImpute package)
center	center each column of X if center == TRUE. The default value is TRUE.
normalize	normalize each column of X such that its sample variance is 1 if normalize == TRUE. The default value is False.

Value

a centered and/or normalized matrix of the same dimension as X.

inverse_prob_method	Inverse probability	weighted method	for	estimating	the	top	K
	eigenspaces						

Description

Inverse probability weighted method for estimating the top K eigenspaces

Usage

```
inverse_prob_method(X, K, trace.it = F, center = T, normalize = F)
```

Arguments

Х	a numeric matrix with NAs or "Incomplete" matrix object (see softImpute package)
К	the number of principal components of interest
trace.it	report the progress if trace.it == TRUE
center	center each column of X if center == TRUE. The default value is TRUE.
normalize	normalize each column of X such that its sample variance is 1 if normalize == TRUE. The default value is False.

primePCA

Value

Columnwise centered matrix of the same dimension as X.

Examples

```
X <- matrix(1:30 + .1 * rnorm(30), 10, 3)
X[1, 1] <- NA
X[2, 3] <- NA
v_hat <- inverse_prob_method(X, 1)</pre>
```

primePCA

primePCA algorithm

Description

primePCA algorithm

Usage

```
primePCA(
   X,
   K,
   V_init = NULL,
   thresh_sigma = 10,
   max_iter = 1000,
   thresh_convergence = 1e-05,
   thresh_als = 1e-10,
   trace.it = F,
   prob = 1,
   save_file = "",
   center = T,
   normalize = F
)
```

Arguments

Х	an n -by- d data matrix with NA values	
К	the number of the principal components of interest	
V_init	an initial estimate of the top K eigenspaces of the covariance matrix of X. By default, primePCA will be initialized by the inverse probability method.	
thresh_sigma	used to select the "good" rows of X to update the principal eigenspaces σ_* in the paper).	
<pre>max_iter</pre>	maximum number of iterations of refinement	
thresh_convergence		
	The algorithm is halted if the Frobenius-norm sine-theta distance between the	
	two consecutive iterates	

thresh_als	This is fed into thresh in svd.als of softImpute. is less than thresh_convergence.
trace.it	report the progress if trace.it = TRUE
prob	probability of reserving the "good" rows. prob == 1 means to reserve all the "good" rows.
save_file	the location that saves the intermediate results, including V_cur, step_cur and loss_all, which are introduced in the section of returned values. The algorithm will not save any intermediate result if save_file == "".
center	center each column of X if center == TRUE. The default value is TRUE.
normalize	normalize each column of X such that its sample variance is 1 if normalize == TRUE. The default value is False.

Value

a list is returned, with components V_cur, step_cur and loss_all. V_cur is a d-by-K matrix of the top K eigenvectors. step_cur is the number of iterations. loss_all is an array of the trajectory of MSE.

Examples

```
X <- matrix(1:30 + .1 * rnorm(30), 10, 3)
X[1, 1] <- NA
X[2, 3] <- NA
v_tilde <- primePCA(X, 1)$V_cur</pre>
```

sin_theta_distance Frobenius norm sin theta distance between two column spaces

Description

Frobenius norm sin theta distance between two column spaces

Usage

```
sin_theta_distance(V1, V2)
```

Arguments

V1	a matrix with orthonormal columns
V2	a matrix of the same dimension as V1 with orthonormal columns

Value

the Frobenius norm sin theta distance between two V1 and V2

Index

col_scale, 2
inverse_prob_method, 2

primePCA, 3

sin_theta_distance,4