
JSS Journal of Statistical Software
February 2015, Volume 64, Issue 2. doi: 10.18637/jss.v000.i00

Fitting Heavy Tailed Distributions: The poweRlaw

Package

Colin S. Gillespie

Newcastle University

Abstract

Over the last few years, the power law distribution has been used as the data gener-
ating mechanism in many disparate fields. However, at times the techniques used to fit
the power law distribution have been inappropriate. This paper describes the poweRlaw

R package, which makes fitting power laws and other heavy-tailed distributions straight-
forward. This package contains R functions for fitting, comparing and visualizing heavy
tailed distributions. Overall, it provides a principled approach to power law fitting.

Keywords: power laws, heavy tailed, fitting, estimation, R, Zipf, Pareto.

1. Introduction

The nineteenth century Italian economist, Vilfredo Pareto, observed that many processes do
not follow the Gaussian distribution. This observation leads to the so-called 80/20 rule, that
is:

80% of all effects results from 20% of all causes.

This rule has been used to describe a wide variety of phenomena. For example, 20% of
employees of any business are responsible for 80% of productive output or 20% of all people
own 80% of all wealth. By the middle of the twentieth century, examples of these heavy tailed
distributions had been used to describe the number of papers published by scientists, sizes of
cities and word frequency (see Keller 2005 for references).

In a similar vein, in 1999 two ground-breaking papers were published in Science and Nature
(Barabási and Réka 1999; Albert, Jeong, and Barabási 1999). In the first, the key result
was that the distribution of hyper-links in the World Wide Web seemed to follow a power
law distribution. Essentially, the connectivity of web pages, k, decreased with rate kα. This

https://doi.org/10.18637/jss.v000.i00

2 poweRlaw: Fitting Heavy Tailed Distributions

●

●
●

●●● ●●●
●
●

●

Words

C
D

F

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0 (a) ● ● ●●●

●●●●●●●●●●●●●●●●●●●●●

●
●
●

●

●

Casualities
C

D
F

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0 (b) ●

●
●●●

●
●

●

Frequency

C
D

F

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0 (c)

Figure 1: The cumulative distribution functions (CDFs) and their maximum likelihood power
law (green) and log normal (orange) fit. (a): Unique words in the novel Moby Dick. (b):
Native American Casualities in the American Indian War. (c): Word frequency in the Swiss-
Prot database (version 9). Further details of the data sets are given in Section 1.

suggested a large connection variance, with a small number of large key nodes. The second
paper presented a model that could generate these networks and coined the phrase scale-free.
This phrase implicitly linked these networks to the physics of phase transitions.

Since these two landmark papers, there has been an explosion in supposed scale-free phenom-
ena (see Clauset, Shalizi, , and Newman (2009) for a recent overview). Particular examples
include

• the occurrence of unique words in the novel Moby Dick by Herman Melville (Newman
2005), Figure 1a;

• casualty numbers in armed conflicts (Bohorquez, Gourley, Dixon, Spagat, and Johnson
2009; Friedman 2014), Figure 1b;

• comparing manually curated databases with automatically curated biological databases
(Bell, Gillespie, Swan, and Lord 2012), Figure 1c.

Recently, this apparent ubiquity of power laws in a wide range of disparate disciplines was
questioned by Stumpf and Porter (2012). The authors point out that many “observed” power
law relationships are highly suspect. In particular, estimating the power law exponent on
a log-log plot, whilst appealing, is a very poor technique for fitting these types of models.
Instead, a systematic, principled and statistical rigorous approach should be applied (see
Goldstein, Morris, and Yen 2004).

In this paper we describe the R (R Core Team 2014) package poweRlaw (Gillespie 2015). This
package enables power laws and other heavy tailed distributions to be fitted in a straightfor-
ward manner. In particular, the package provides an easy to use interface to the techniques
proposed by Clauset et al. (2009). Functions are provided for plotting, comparing distribu-
tions and estimating parameter uncertainty.

2. Mathematical background

In this section, we introduce the discrete and continuous power law distributions. We will
discuss methods for fitting these distributions. While this section just considers power law

Journal of Statistical Software 3

distributions, the techniques discussed in Sections 2.2 and 2.3 are general and can be applied
to any distribution.

2.1. The power law distribution

At the most basic level, there are two types of power law distributions: discrete and contin-
uous. The continuous version has probability density function (PDF)

p(x) =
α − 1

xmin



x

xmin

−α

, (1)

where α > 1 and xmin > 0. While the discrete case has probability mass function (PMF)

P(X = x) =
x−α

ζ(α, xmin)
, (2)

where

ζ(α, xmin) =
∞

∑

n=0

(n + xmin)−α (3)

is the generalized zeta function (Abramowitz and Stegun 1972)1. When xmin = 1, ζ(α, 1)
is the standard zeta function. The cumulative density functions have a relatively simple
structure. For the continuous version we have

P(X ≤ x) = 1 −



x

xmin

−α+1

, (4)

whilst for the discrete version we have

P(X ≤ x) =
ζ(α, x)

ζ(α, xmin)
. (5)

The moments of the power law distribution are particularly interesting. For the continuous
power law we have

E[Xm] =

∫ ∞

xmin

xmp(x) dx =
α − 1

α − 1 − m
xm

min .

So when

• 1 < α ≤ 2, all moments diverge, i.e., E[X] = ∞;

• 2 < α ≤ 3, all second and higher-order moments diverge, i.e., E[X2] = ∞;

• 3 < α ≤ m + 1, all m and higher-order moments diverge, i.e., E[Xm] = ∞.

2.2. Fitting heavy tailed distributions

To estimate the scaling parameter α is relatively straightforward. The maximum likelihood
estimator (MLE) for the continuous power law is

α̂ = 1 + n



n
∑

i=1

ln
xi

xmin

]−1

, (6)

1The poweRlaw package uses the zeta function from the VGAM package to perform this calculation (see
Yee 2010).

4 poweRlaw: Fitting Heavy Tailed Distributions

Table 1: Estimating the uncertainty in xmin (Clauset, Young, and Gleditsch 2007)

1: Set N equal to the number of values in the original data set.
2: for i in 1:B:
3: Sample N values (with replacement) from the original data set.
4: Estimate xmin and α using the Kolmogorov-Smirnov statistic.
5: end for

where xi are the observed data values and xi ≥ xmin (Muniruzzaman 1957). The discrete
MLE of α̂ is not available, instead we use the approximation

α̂ ≃ 1 + n



n
∑

i=1

ln
xi

xmin − 0.5

]−1

. (7)

The discrete MLE approximation is identical to the exact continuous MLE, except for the
additional 0.5 in the denominator (see Clauset et al. (2009) for a complete derivation).

When calculating the MLE for α, we condition on a particular value of xmin. When power
laws are used in practice, it is usually argued that only the tails of the distribution follow
a power law, and so xmin must be estimated. However as xmin increases, the amount of
data discarded also increases. So it clear that some care must be taken when choosing this
parameter.

The most common approach used to estimate xmin is from a visual inspection of the data
on a log-log plot. Clearly, this is highly subjective and error prone. Instead, Clauset et al.
(2009) recommend estimating the lower threshold using a Kolmogorov-Smirnov approach.
This statistic is simply the maximum distance between the data and fitted model CDFs

D = max
x≥xmin

♣S(x) − P (x)♣, (8)

where S(x) and P (x) are the CDFs of the data and model respectively (for x ≥ xmin). The
estimate of xmin is the value of xmin that minimizes D. This approach is completely general
and can be used in conjunction with other distributions.

2.3. Parameter uncertainty

For a particular value of xmin, the standard error of the MLE α̂ can be calculated analytically.
However, to account for the additional uncertainty of xmin it is necessary to use a bootstrap
procedure (Efron and Tibshirani 1993). Essentially, we sample with replacement from the
original data set and then re-infer the parameters at each step (see Algorithm 1). The
bootstrapping algorithm can be applied to any distribution and can run in parallel.

2.4. Alternative distributions

The techniques discussed in the preceding sections provide flexible methods for estimating
distribution parameters and the lower cut-off, xmin. In this section, we discuss methods for
testing whether the underlying distribution could plausibly have a power law form.

Since it is possible to fit a power law distribution to any data set, it is appropriate to test
whether the observed data actually follows a power law. A standard goodness-of-fit test is

Journal of Statistical Software 5

Table 2: Testing the power law hypothesis (Clauset et al. 2009)

1: Calculate point estimates for xmin and the scaling parameter α.
2: Calculate the Kolmogorov-Smirnov statistic, KSd, for the original data set.
3: Set n1 equal to the number of values below xmin.
4: Set n2 = n − n1 and P = 0.
5: for i in 1:B:
6: Simulate n1 values from a uniform distribution: U(1, xmin) and n2 values

from a power law distribution (with parameter α).
7: Calculate the associated Kolmogorov-Smirnov statistic, KSsim.
8: If KSd > KSsim, then P = P + 1.
9: end for

10: P = P/B.

to use bootstrapping to generate a p value to quantify the plausibility of the hypothesis. If
the p value is large, then any difference between the empirical data and the model can be
explained with statistical fluctuations. If p ≃ 0, then the model does not provide a plausible
fit to the data and another distribution may be more appropriate. When testing against the
power law distribution the hypotheses are:

H0: data is generated from a power law distribution;

H1: data is not generated from a power law distribution.

The bootstrapping procedure is detailed in Algorithm 2. Essentially, we perform a hypothesis
test by generating multiple data sets (with parameters xmin and α) and then “re-inferring" the
model parameters. However, this technique does have computational issues. In particular,
when the scaling parameter α ≤ 2, the first moment (i.e., E[X]) is infinite and so extremely
large values frequently occur. Since generating random numbers for the discrete power law
distributions involves partitioning the cumulative density this may make this approach un-
suitable.

An alternative approach to assessing the power law model is a direct comparison with another
model. A standard technique is to use Vuong’s test, which is a likelihood ratio test for model
selection using the Kullback-Leibler criterion. The test statistic, R, is the ratio of the log
likelihoods of the data between the two competing models. The sign of R indicates which
model is better. Since the value of R is subject to error, we use the method proposed by
Vuong (1989). See Appendix C in Clauset et al. (2009) for further details.

3. Example: word frequency in Moby Dick

This example investigates the frequency of occurrence of unique words in the novel Moby
Dick by Herman Melville (Clauset et al. 2009; Newman 2005). The data can be downloaded
from http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm or directly loaded from
the poweRlaw package

R> data("moby", package = "poweRlaw")

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

6 poweRlaw: Fitting Heavy Tailed Distributions

This data set contains the frequency of 18855 words. The most commonly occurring word
occurred 14086 times.

3.1. Fitting a discrete power law

To fit a discrete power law, we first create a discrete power law object using the displ

constructor2.

R> library("poweRlaw")

R> pl_m <- displ$new(moby)

The object pl_m is an S4 reference object. Initially the lower cut-off, xmin, is set to the
smallest x value and the scaling parameter, α, is set to NULL.

R> pl_m$getXmin()

[1] 1

R> pl_m$getPars()

NULL

The object also has standard setters:

R> pl_m$setXmin(5)

R> pl_m$setPars(2)

For a given xmin value, we can estimate the corresponding α value using its MLE.

R> estimate_pars(pl_m)

$pars

[1] 1.926

$value

[1] 14873

$counts

function gradient

5 5

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

attr(,"class")

[1] "estimate_pars"

2
displ: discrete power law.

Journal of Statistical Software 7

Alternatively, we can estimate the exponent using a parameter scan

R> estimate_pars(pl_m, pars = seq(1.5, 2.5, 0.01))

To estimate the lower bound xmin, we use the Kolmogorov-Smirnov approach described in
Section 2.2

R> (est_pl <- estimate_xmin(pl_m))

$KS

[1] 0.008253

$xmin

[1] 7

$pars

[1] 1.953

attr(,"class")

[1] "estimate_xmin"

For the Moby Dick data set, the minimum is achieved when xmin = 7 and D(7) = 0.00825.
Similar to the estimate_pars functions we can limit the search space using the xmin and
pars arguments.

To set the power law object to these optimal values, we just use the xmin setter.

R> pl_m$setXmin(est_pl)

To allow the user to explore different distributions and model fits, all distribution objects
have generic plot methods. For example,

R> plot(pl_m)

creates a log-log plot of the data, while the lines function

R> lines(pl_m, col = 2)

adds the fitted distribution (to get Figure 1a). When calling the plot and lines function,
the data plotted is invisibly returned, i.e.,

R> dd <- plot(pl_m)

R> head(dd, 3)

x y

1 1 1.0000

2 2 0.5141

3 3 0.3505

8 poweRlaw: Fitting Heavy Tailed Distributions

This makes it straightforward to create graphics using other R packages.

To fit other distributions, we follow a similar procedure. For example, to fit the discrete log
normal distribution, we begin by creating a ‘dislnorm’ object and estimating the parameters3.

R> ln_m <- dislnorm$new(moby)

R> est_ln <- estimate_xmin(ln_m)

Then we update the object

R> ln_m$setXmin(est_ln)

and add the corresponding line to the plot

R> lines(ln_m, col = 3)

giving Figure 1a.

Figure 1 gives example data sets, with associated power law and log normal fits. Plotting
the data in this manner has two clear benefits. First, it highlights how much data is being
discarded when fitting xmin. Second, it provides an easy comparison with other distributions.

3.2. Parameter uncertainty

To get a handle on the uncertainty in the parameter estimates, we use a bootstrapping
procedure, via the bootstrap function. This procedure can be applied to any distribution
object. Furthermore, the bootstrap procedure can utilize multiple CPU cores to speed up
inference using the base package parallel. To generate five thousand bootstrap samples, using
four cores, we use the following command.

R> bs <- bootstrap(pl_m, no_of_sims = 5000, threads = 4, seed = 1)

By default the bootstrap function will use the MLE to infer the parameter values and check
all values of xmin. When the xmin search space is large, then it is recommend that it is
truncated. For example

R> bootstrap(pl_m, xmins = seq(2, 20, 2))

will only calculate the Kolmogorov-Smirnov statistics at values of xmin equal to

2, 4, 6, . . . , 20 .

A similar argument exists for the parameters.

The bootstrap function returns a ‘bs_xmin’ object. This object is a list that consists of three
components:

1. gof: the goodness-of-fit statistic obtained from the Kolmogorov-Smirnov test. This
value should correspond to the value obtained from the estimate_xmin function;

3
dislnorm: discrete log-normal.

Journal of Statistical Software 9

1000 2000 3000 4000 5000

6.40

6.45

6.50

6.55

6.60

6.65

6.70

6.75

Cumulative mean

Iteration

X
m

in

1000 2000 3000 4000 5000

1.946

1.947

1.948

1.949

1.950

Cumulative mean

Iteration

P
a
r

1

1000 2000 3000 4000 5000

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

Cumulative std dev

Iteration

X
m

in

1000 2000 3000 4000 5000

0.0225

0.0230

0.0235

0.0240

0.0245

0.0250

0.0255

Cumulative std dev

Iteration

P
a
r

1

Figure 2: Results from the standard bootstrap procedure (for the power law model) using the
Moby Dick data set: bootstrap(pl_m). The top row shows the sequential mean estimate of
parameters xmin and α. The bottom row shows the sequential estimate of standard deviation
for each parameter. The dashed-green lines give approximate 95% confidence intervals. After
5000 iterations, the standard deviation of xmin and α is estimated to be 1.8 and 0.02 respec-
tively.

2. bootstraps: a data frame containing the results from the bootstrap procedure;

3. sim_time: the average simulation time, in seconds, for a single bootstrap.

The bootstrap results can be explored in a variety of ways. First we can estimate the standard
deviation of the parameter uncertainty, i.e.,

R> sd(bs$bootstraps[, 2])

[1] 1.781

R> sd(bs$bootstraps[, 3])

[1] 0.02429

Alternatively, we can visualize the results using the plot method

10 poweRlaw: Fitting Heavy Tailed Distributions

xmin

F
re

q
u
e
n
c
y

0 5 10 15 20

0

500

1000

1500

2000 (a)

α
F

re
q
u
e
n
c
y

1.85 1.90 1.95 2.00 2.05

0

100

200

300

400

500 (b)

●

●

●

●
●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●●
●●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●

●

●

●

●● ●
●

●

●

●

●

●
●●

●

●●

●
●

●

●

●●●●

●
●

●●

●

●

●

●
●●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●● ●

●

●

●

●
●

●
●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●● ●●
●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
● ●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●
●

●

●
●
●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●● ●

●
●

●
●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
● ●

●
●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

●

●
●●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ● ●

●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●
●

●

●

● ● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●
●

●●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

● ●
●

●

●

● ●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●
●
●

●●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●●●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

● ●

●

● ●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●●

●

●●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●●
●

● ●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

● ●

● ●

●

●
●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●●

● ●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

● ●●

● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●
●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

0 5 10 15 20

1.80

1.85

1.90

1.95

2.00

2.05

xmin

α

(c)

Figure 3: Characterizing uncertainty in parameter values using five thousand bootstraps.
(a) Histogram of xmin (standard deviation 1.8). (b) Histogram of α (standard deviation 0.02).
(c) Scatter-plot of the xmin against α.

R> plot(bs, trim = 0.1)

to obtain Figure 2. The top row of graphics in Figure 2 give a sequential 95% confidence
interval for the mean estimate of the parameters. The bottom row of graphics give a 95%
confidence interval for the standard deviation of the parameters. The parameter trim in the
plot function controls the percentage of samples displayed. When trim = 0, all iterations
are displayed. When trim = 0.1, we only display the final 90% of data.

We can also construct histograms of the parameters

R> hist(bs$bootstraps[, 2], breaks = "fd")

R> hist(bs$bootstraps[, 3], breaks = "fd")

to get Figures 3a & b. A joint scatter plot is useful in highlighting the strong dependency
that often exists between the scaling parameter α and xmin

R> plot(bs$bootstraps[, 2], bs$bootstraps[, 3])

and yields Figure 3c.

A similar bootstrap analysis can be obtained for the log normal distribution

R> bootstrap(ln_m)

In this case we would obtain uncertainty estimates for both of the log normal parameters.

3.3. Comparison to other distributions

The main thrust of Stumpf and Porter (2012) is that many of the systems that are char-
acterized as having a power law distribution, could equally come from another heavy tailed
distribution. The poweRlaw package provides two methods for testing the power law hy-
potheses.

The first method uses the bootstrapping technique described in Algorithm 2. This is accessed
using a similar interface as the standard bootstrap function.

Journal of Statistical Software 11

1000 2000 3000 4000 5000

7.5

7.6

7.7

7.8

7.9

8.0

8.1

Cumulative mean

Iteration

X
m

in

1000 2000 3000 4000 5000

1.951

1.952

1.953

1.954

1.955

Cumulative mean

Iteration

P
a

r
1

1000 2000 3000 4000 5000

0.62

0.64

0.66

0.68

0.70

Cumulative mean

Iteration

p
−

va
lu

e
1000 2000 3000 4000 5000

3.0

3.2

3.4

3.6

3.8

Cumulative std dev

Iteration

X
m

in

1000 2000 3000 4000 5000

0.023

0.024

0.025

0.026

0.027

Cumulative std dev

Iteration

P
a

r
1

Figure 4: Results from the bootstrap procedure for determining the plausibility of the power
law hypothesis for the Moby Dick data set: bootstrap_p(m_pl). The top row shows the
sequential mean estimate of parameters xmin, α and the p value. The bottom row shows the
sequential estimate of standard deviation for each parameter. The dashed-green lines give
approximate 95% confidence intervals.

R> bs_p <- bootstrap_p(pl_m, no_of_sims = 5000, threads = 4, seed = 1)

Again this function can be run in parallel (using the threads argument) and has the option
to restrict the xmin search space. The output from the bootstrap_p function has very similar
structure to the bootstrap function. However, this function does return one additional
element – the p value for the hypothesis test:

H0: data is generated from a power law distribution;

H1: data is not generated from a power law distribution.

In this particular example, we estimate p = 0.681, i.e., the underlying distribution for gener-
ating the Moby Dick data set could be a power law distribution. Again, the output can be
easily visualized with

R> plot(bs_p)

to obtain Figure 4. Notice that Figure 4 has an additional plot for the p value. This enables
the user to assess the accuracy of the estimated p value.

12 poweRlaw: Fitting Heavy Tailed Distributions

The second method is to directly compare two distributions using a likelihood ratio test. For
this test, both distributions must use the same xmin value. For example, to compare the
power law model to the log normal, we first the set threshold to be the same as the power
law model.

R> ln_m <- dislnorm$new(moby)

R> ln_m$setXmin(7)

Next we estimate the parameters (conditional on xmin = 7)

R> est <- estimate_pars(ln_m)

and update the model

R> ln_m$setPars(est)

Then we can use Vuong’s method to compare models.

R> comp <- compare_distributions(pl_m, ln_m)

The object comp object contains Vuong’s test statistic, p value and the ratio of the log likeli-
hoods. For this particular comparison, we have p = 0.682 which relates to the hypotheses

H0: both distributions are equally far from the true distribution;

H1: one of the test distributions is closer to the true distribution.

Hence, we cannot reject H0 and it is not possible to determine which is the best fitting model.

4. Package overview

In the previous example we created a ‘displ’ object

R> pl_m <- displ$new(moby)

to represent the discrete power law distribution. This particular object has class ‘displ’ and
also inherits the ‘discrete_distribution’ class. Other available distributions are given in
Table 3.

The classes given in Table 3 are S4 reference classes4. Each ‘distribution’ object has four
fields:

• dat: the data set;

• xmin: the lower cut-off xmin;

• pars: a vector of parameter values;

• internal: a list of values used in different numerical procedures. This will differ be-
tween distribution objects. In general, the user will not interact with the internal

field.
4See ?setRefClass for further details on reference classes.

Journal of Statistical Software 13

Distribution Class name # of parameters

Discrete power law ‘displ’ 1
Discrete log normal ‘dislnorm’ 2
Discrete exponential ‘disexp’ 1
Poisson ‘dispois’ 1

Continuous power law ‘conpl’ 1
Continuous log normal ‘conlnorm’ 2
Exponential ‘conexp’ 1

Table 3: Available distributions in the poweRlaw package. Each class also inherits either the
‘discrete_distribution’ or ‘ctn_distribution’ class.

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

P
(X

 =
 x

)

● α = 1.5

α = 2.0

α = 2.5

(a)

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

x

P
(X

 >
=

 x
)

(b)

Figure 5: The (a) probability mass function and (b) probability distribution function for the
discrete power law, where xmin = 1 and α as indicated.

Using this particular object orientated framework has three distinct benefits.

1. After fitting a single distribution, fitting all other distributions follows an almost iden-
tical route.

2. It is straightforward to add new distributions to the package.

3. The internal field allows efficient caching of data structures when updating the xmin

and pars fields. In particular, when the data is first loaded, efficient vector operations
can be carried out and used as a look-up table, i.e., taking log’s of the data.

Distribution objects have a number of methods available (see Table 4). All dist_* methods
depend on the type of distribution. For example, to plot the probability mass function of the
discrete power law distribution, we first create a discrete power law object

R> m <- displ$new()

R> m$setXmin(1)

then use the dist_pdf function to obtain the probabilities for particular parameter values

14 poweRlaw: Fitting Heavy Tailed Distributions

Method name Description

dist_cdf Cumulative density/mass function (CDF)
dist_pdf Probability density/mass function (PDF)
dist_rand Random number generator
dist_data_cdf Data CDF
dist_ll Log likelihood

estimate_xmin Point estimates of the cut-off point and parameter values
estimate_pars Point estimates of the parameters (conditional on the current xmin value)

bootstrap Bootstrap procedure (uncertainty in xmin)
bootstrap_p Bootstrap procedure to test whether we have a power law

Table 4: A list of methods available for ‘distribution’ objects. These methods do not
change the object states.

R> x <- 1:20

R> m$setPars(1.5)

R> plot(x, dist_pdf(m, x), type = "b")

R> m$setPars(2.0)

R> lines(x, dist_pdf(m, x), type = "b")

R> m$setPars(2.5)

R> lines(x, dist_pdf(m, x), type = "b")

This gives Figure 5a. Likewise, to obtain the CDF we use the dist_cdf function, i.e.,

R> plot(x, dist_cdf(m, x), type = "b")

to obtain Figure 5b.

The other methods, estimate_* and bootstrap_*, work with general distribution objects
(although internally they use dist_* methods). See the associated help files for further
details.

5. Conclusion

In recent years an over-enthusiastic fitting of power laws to a wide variety of systems has
resulted in the inevitable (and needed) call for caution. Stumpf and Porter (2012) correctly
highlight that many supposed power law relationships are at best dubious and some obviously
false. These problems in determining the underlying distribution of these mechanisms can (in
some part) be attributed to the lack of available and easy to use software packages for fitting
heavy tailed distributions. The poweRlaw package aims to solve this problem. By providing
an easy to use and consistent interface, researchers can now fit, and more importantly, compare
a variety of truncated distributions fitted to their data set.

Acknowledgements

The author gratefully acknowledges Aaron Clauset and Jeff Friedman for their constructive
comments on the manuscript and discussions on the implementation of the methodology.

Journal of Statistical Software 15

References

Abramowitz M, Stegun IA (1972). Handbook of Mathematical Function with Formulas,
Graphs, and Mathematical Tables, volume 55 of Applied Mathematics Series. 10th edi-
tion. National Bureau of Standards.

Albert R, Jeong H, Barabási AL (1999). “Internet: Diameter of the World-Wide Web.”
Nature, 401(6749), 130–131.

Barabási AL, Réka A (1999). “Emergence of Scaling in Random Networks.” Science,
286(5439), 509–512.

Bell MJ, Gillespie CS, Swan D, Lord P (2012). “An Approach to Describing and Analysing
Bulk Biological Annotation Quality: A Case Study Using UniProtKB.” Bioinformatics,
28(18), i562–i568.

Bohorquez JC, Gourley S, Dixon AR, Spagat M, Johnson NF (2009). “Common Ecology
Quantifies Human Insurgency.” Nature, 462(7275), 911–914.

Clauset A, Shalizi CR, , Newman MEJ (2009). “Power-Law Distributions in Empirical Data.”
SIAM Review, 51(4), 661–703.

Clauset A, Young M, Gleditsch KS (2007). “On the frequency of severe terrorist events.”
Journal of Conflict Resolution, 51(1), 58–87.

Efron B, Tibshirani R (1993). An Introduction to the Bootstrap, volume 57. Chapman &
Hall/CRC.

Friedman JA (2014). “Using Power Laws to Estimate Conflict Size.” Journal of Conflict
Resolution. doi:10.1177/0022002714530430. Forthcoming.

Gillespie CS (2015). poweRlaw: Analysis of Heavy Tailed Distributions. R package version
0.30.0, URL http://CRAN.R-project.org/package=poweRlaw.

Goldstein ML, Morris SA, Yen GG (2004). “Problems with Fitting to the Power-Law Distri-
bution.” The European Physical Journal B, 41(2), 255–258.

Keller EF (2005). “Revisiting ‘Scale-Free’ Networks.” BioEssays: News and Reviews in
Molecular, Cellular and Developmental Biology, 27(10), 1060–1068.

Muniruzzaman ANM (1957). “On Measures of Location and Dispersion and Test of Hypoth-
esis on a Pareto Distribution.” Calcutta Statistical Association Bulletin, 7(27), 115–126.

Newman MEJ (2005). “Power Laws, Pareto Distributions and Zipf’s Law.” Contemporary
Physics, 46(5), 323–351.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Stumpf MPH, Porter MA (2012). “Mathematics. Critical Truths about Power Laws.” Science,
335(6069), 665–666.

https://doi.org/10.1177/0022002714530430
http://CRAN.R-project.org/package=poweRlaw
http://www.R-project.org/

16 poweRlaw: Fitting Heavy Tailed Distributions

Vuong QH (1989). “Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses.”
Econometrica, 57(2), 307–333.

Yee TW (2010). “The VGAM Package for Categorical Data Analysis.” Journal of Statistical
Software, 32(10), 1–34. URL http://www.jstatsoft.org/v32/i10/.

Affiliation:

Colin S. Gillespie
School of Mathematics & Statistics
Newcastle University
Newcastle upon Tyne
NE1 7RU, United Kingdom
E-mail: colin.gillespie@newcastle.ac.uk

URL: http://www.mas.ncl.ac.uk/~ncsg3/

Journal of Statistical Software https://www.jstatsoft.org/

published by the Foundation for Open Access Statistics https://www.foastat.org/

February 2015, Volume 64, Issue 2 Submitted: 2013-06-10
doi:10.18637/jss.v000.i00 Accepted: 2014-05-28

http://www.jstatsoft.org/v32/i10/
mailto:colin.gillespie@newcastle.ac.uk
http://www.mas.ncl.ac.uk/~ncsg3/
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v000.i00

	Introduction
	Mathematical background
	The power law distribution
	Fitting heavy tailed distributions
	Parameter uncertainty
	Alternative distributions

	Example: word frequency in Moby Dick
	Fitting a discrete power law
	Parameter uncertainty
	Comparison to other distributions

	Package overview
	Conclusion

