
The poweRlaw package: a general overview

Colin S. Gillespie

Last updated: February 2, 2025

The poweRlaw package provides code to fit heavy tailed distributions, including discrete
and continuous power-law distributions. Each model is fitted using a maximum likeli-
hood procedure and cut-off value, xmin, is estimated by minimising the Kolmogorov-
Smirnoff statistic.

1 Installation

The package is hosted on CRAN and can be installed in the standard way

install.packages("poweRlaw")

The developmental version is hosted on github and can be installed using the devtools package1

install.packages("devtools")

devtools::install_github("csgillespie/poweRlaw")

Once installed, the package can be loaded ready for use with the standard library command

library("poweRlaw")

2 Accessing documentation

Each function and dataset in the package is documented. The command

help(package = "poweRlaw")

will give a brief overview of the package and a complete list of all functions. The list of vignettes
associated with the package can be obtained with

vignette(package = "poweRlaw")

or

1If you are using Windows, then you will need to install the Rtools package first.

1

An overview of the poweRlaw package

browseVignettes("poweRlaw")

Help on functions can be obtained using the usual R mechanisms. For example, help on the
method displ can be obtained with

?displ

and the associated examples can be run with

example(displ)

A list of demos and data sets associated with the package can be obtained with

demo(package = "poweRlaw")

data(package = "poweRlaw")

If you use this package, please cite it. The appropriate citation is

Colin S. Gillespie (2015). Fitting Heavy Tailed Distributions: The poweRlaw Package. Journal of
Statistical Software, 64(2), 1-16. URL http://www.jstatsoft.org/v64/i02/.

The bibtex version can be obtained via

citation("poweRlaw")

For a different way of handling powerlaw type distributions, see

Colin S. Gillespie (2017). Estimating the number of casualties in the American Indian war: a

Bayesian analysis using the power law distribution. Annals of Applied Statistics, 2018. URL:
https://arxiv.org/abs/1710.01662.

3 Example: Word frequency in Moby Dick

This example investigates the frequency of occurrence of unique words in the novel Moby Dick by
Herman Melville (see Clauset et al. (2009); Newman (2005)). The data can be loaded directly

data("moby")

3.1 Fitting a discrete power-law

To fit a discrete power-law,2 we create a discrete power-law object using the displ method3

m_m = displ$new(moby)

Initially the lower cut-off xmin is set to the smallest x value and the scaling parameter α is set to
NULL

2The examples vignette contains a more thorough analysis of this particular data set.
3displ: discrete power-law.

2

An overview of the poweRlaw package

m_m$getXmin()

[1] 1

m_m$getPars()

NULL

This object also has standard setters

m_m$setXmin(5)

m_m$setPars(2)

For a given xmin value, we can estimate the corresponding α value by numerically maximising the
likelihood 4

(est = estimate_pars(m_m))

$pars

[1] 1.925882

##

$value

[1] 14872.57

##

$counts

function gradient

5 5

##

$convergence

[1] 0

##

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

##

attr(,"class")

[1] "estimate_pars"

For the Moby Dick data set, when xmin = 5, we estimate α to be 1.926.
The default method for estimating the lower bound xmin, is to minimise the distance between

the data and the fitted model CDF, that is

D(x) = max
x≥xmin

|S(x)− P (x)|

where S(x) is the data CDF and P (x) is the theoretical CDF (equation 3.9 in Clauset et al.
(2009)). The value D(x) is known as the Kolmogorov-Smirnov statistic5. Our estimate of xmin is
then the value of x that minimises D(x):

4Instead of calculating the MLE, we could use a parameter scan: estimate pars(m m, pars=seq(2, 3, 0.1))
5Using the distance argument we can use other distances for estimating xmin. See help(estimate xmin)

3

An overview of the poweRlaw package

(est = estimate_xmin(m_m))

$gof

[1] 0.008252634

##

$xmin

[1] 7

##

$pars

[1] 1.952728

##

$ntail

[1] 2958

##

$distance

[1] "ks"

##

attr(,"class")

[1] "estimate_xmin"

For the Moby-Dick data set, the minimum6 is achieved when xmin = 7 and D(7) = 0.00825. We
can then set parameters of power-law distribution to these ”optimal” values

m_m$setXmin(est)

All distribution objects have generic plot methods7

Plot the data (from xmin)

plot(m_m)

Add in the fitted distribution

lines(m_m, col = 2)

which gives figure 1. When calling the plot and lines functions, the data plotted is actually
invisibly returned, i.e.

dd = plot(m_m)

head(dd, 3)

x y

1 1 1.0000000

2 2 0.5141342

3 3 0.3505171

This makes it straight forward to create graphics using other R packages, such as ggplot2.

3.2 Uncertainty in xmin

Clauset et al. recommend a bootstrap8 procedure to get a handle on parameter uncertainty. Essen-
tially, we sample with replacement from the data set and then re-infer the parameters (algorithm
1).

6These estimates match the values in the Clauset et al. paper.
7Generic lines and points functions are also available.
8The distance measure used can be altered. See the associated help page for details.

4

An overview of the poweRlaw package

1 10 100 1000 10000

1e−04

1e−03

1e−02

1e−01

1e+00

x

C
D

F

x

F
re

q
u
e
n
c
y

0 5 10 15 20 25 30

0

500

1000

1500

F
re

q
u
e
n
c
y

1.80 1.85 1.90 1.95 2.00 2.05 2.10

0

100

200

300

400

500

0 5 10 15 20 25 30

1.80

1.85

1.90

1.95

2.00

2.05

2.10

x

α

Figure 1: (a) Plot of the data CDF for the Moby Dick data set. This corresponds to figure 6.1(a) in
Clauset et al. (2009). The line corresponds to a power-law distribution with parameters
xmin = 7 and α = 1.95.(b) Characterising uncertainty in parameter values using the
bootstrap xmin uncertainty, (c) α uncertainty (d) Bivariate scatter plot of xmin and α.

To run the bootstrapping procedure, we use the bootstrap function

bs = bootstrap(m_m, no_of_sims = 1000, threads = 1)

this function runs in parallel, with the number of threads used determined by the threads argu-
ment. To detect the number of cores on your machine, you can run:

parallel::detectCores()

[1] 8

The object returned by bootstrap is a list with six elements.

• The original gof statistic.

• The results of the bootstrapping procedure.

• The average time (in seconds) for a single bootstrap.

5

An overview of the poweRlaw package

Algorithm 1: Uncertainty in xmin

1: Set N equal to the number of values in the original data set
2: for i in 1:B:
3: Sample N values from the original data set
4: Estimate xmin and α
5: end for

Algorithm 2: Do we have a power-law?

1: Calculate point estimates of xmin and the scaling parameter α.
2: Calculate the KS statistic, KSd, for the original data set.
3: Set ntail equal to the number of values above or equal to xmin.
4: for i in 1:B:
5: Simulate a value n1 from a binomial distribution with parameters n and ntail/n.
6: Sample, with replacement, n− n1 values from the data set that is less than xmin.
7: Sample n1 values from a discrete power-law distribution (with parameter α).
8: Calculate the associated KS statistic, KSsim.
9: If KSd > KSsim, then P = P + 1.
10: end for
11: p = P/B.

• The random number seed.

• The package version.

• The distance measure used.

The results of the bootstrap procedure can be investigated with histograms

hist(bs$bootstraps[, 2], breaks = "fd")

hist(bs$bootstraps[, 3], breaks = "fd")

and a bivariate scatter plot

plot(jitter(bs$bootstraps[, 2], factor = 1.2), bs$bootstraps[, 3])

These commands give figure 1b–d.

3.3 Do we have a power-law?

Since it is possible to fit a power-law distribution to any data set, it is appropriate to test whether
it the observed data set actually follows a power-law.9 Clauset et al, suggest that this hypothesis
is tested using a goodness-of-fit test, via a bootstrapping procedure. Essentially, we perform a
hypothesis test by generating multiple data sets (with parameters xmin and α) and then ”re-
inferring” the model parameters. The algorithm is detailed in Algorithm 2.
When α is close to one, this algorithm can be particularly time consuming to run, for two

reasons.

1. When generating random numbers from the discrete power-law distribution, large values are
probable, i.e. values greater than 108. To overcome this bottleneck, when generating the
random numbers all numbers larger than 105 are generated using a continuous approxima-
tion.

9Algorithm 2 can be easily extended for other distributions.

6

An overview of the poweRlaw package

x

F
re

q
u

e
n

c
y

0 10 20 30 40

0

500

1000

1500

α

F
re

q
u

e
n

c
y

1.80 1.85 1.90 1.95 2.00 2.05

0

100

200

300

400

500

0 10 20 30 40

1.80

1.85

1.90

1.95

2.00

2.05

x

α

Figure 2: Histograms of the bootstrap results and bivariate scatter plot of the bootstrap results.
The values of xmin and α are obviously strongly correlated.

2. To calculate the Kolmogorov-Smirnov statistic, we need explore the state space. It is com-
putationally infeasible to explore the entire state space when max(x) >> 105. To make this
algorithm computational feasible, we split the state space into two sections. The first section
is all values from

xmin, xmin + 1, xmin + 2, . . . , 105

this set is combined with an additional 105 values from

105, . . . ,max(x)

To determine whether the underlying distribution is a power-law we use the bootstrap p function

This may take a while

Use the mle to estimate the parameters

bs_p = bootstrap_p(m_m, no_of_sims = 1000, threads = 2)

The object returned from the bootstrap procedure contains seven elements

• A p-value - bs_p$p. For this example, p = 0.6738 which indicates that we can not rule out
the power law model. See section 4.2 of the Clauset paper for further details.

• The original goodness of fit statistic - bs_p$gof.

• The result of the bootstrap procedure (a data frame).

• The average time (in seconds) for a single bootstrap realisation.

• The simulator seed.

• The package version.

• The distance measure used.

The results of this procedure are shown in figure 2.

7

An overview of the poweRlaw package

4 Distribution objects

For the Moby Dick example, we created a displ object

m_m = displ$new(moby)

The object m m has class displ and inherits the discrete distribution class. A list of available
distributions are given in table 1.

Distribution Object name # Parameters

Discrete Power-law displ 1
Discrete Log-normal dislnorm 2
Discrete Exponential disexp 1
Poisson dispois 1

CTN Power-law conpl 1
CTN Log-normal conlnorm 2
CTN Exponential conexp 1
CTN Weibull conweibull 2

Table 1: Available distributions in the poweRlaw package. These objects are all reference classes.

All distribution objects listed in table 1 are reference classes.10 Each distribution object has four
fields:

• dat: a copy of the data set.

• xmin: the lower cut-off xmin.

• pars: a vector of parameter values.

• internal: a list of values use in different numerical procedures. This will differ between
distribution objects.

By using the mutable states of reference objects, we are able to create efficient caching. For
example, the mle of discrete power-laws uses the statistic:

n∑

i=xmin

log(xi)

This value is calculated once for all values of xmin, then iterated over when estimating xmin.
All distribution objects have a number of methods available. A list of methods is given in table

2. See the associated help files for further details.

5 Loading data

Typically data is stored in a csv or text file. To use this data, we load it in the usual way11

10See ?setRefClass for further details on references classes.
11The blackouts data set was obtained from Clauset’s website, but that no longer works.

8

An overview of the poweRlaw package

Method Name Description

dist cdf Cumulative density/mass function (CDF)
dist pdf Probability density/mass function (PDF)
dist rand Random number generator
dist data cdf Data CDF
dist ll Log-likelihood
estimate xmin Point estimates of the cut-off point and pa-

rameter values
estimate pars Point estimates of the parameters (condi-

tional on the current xmin value)
bootstrap Bootstrap procedure (uncertainty in xmin)
bootstrap p Bootstrap procedure to test whether we have

a power-law
get n The sample size
get ntail The number of values greater than or equal

to xmin

Table 2: A list of functions for distribution functions. These objects do not change the object
states. However, they may not be thread safe.

blackouts = read.table("blackouts.txt")$V1

Distribution objects take vectors as inputs, so

m_bl = conpl$new(blackouts)

will create a continuous power law object.

References

A. Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM

Review, 51(4):661–703, 2009.

M.E.J. Newman. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5):
323–351, 2005.

9

An overview of the poweRlaw package

xmin search space truncated at 1e+05

You have three options

1. Increase xmax in estimate xmins

2. Specify xmins explicitly

3. Ignore and hope for the best (which may be OK)

1e+03 1e+04 1e+05 1e+06 1e+07

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

x

y

Figure 3: CDF plot of the blackout dataset with line of best fit. Since the minimum value of x is
large, we fit a continuous power-law as this is more efficient.

10

	Installation
	Accessing documentation
	Example: Word frequency in Moby Dick
	Fitting a discrete power-law
	Uncertainty in xmin
	Do we have a power-law?

	Distribution objects
	Loading data

