Package ‘popkin’

January 7, 2023
Title Estimate Kinship and FST under Arbitrary Population Structure
Version 1.3.23

Description Provides functions to estimate the kinship matrix of individuals from a large set of bial-
lelic SNPs, and extract inbreeding coefficients and the generalized FST (Wright's fixation in-
dex). Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.

LazyData true

Depends R (>=3.5.0)

Imports RColorBrewer, graphics, grDevices, ape
Suggests BEDMatrix, testthat, knitr, rmarkdown, bnpsd
License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

VignetteBuilder knitr

URL https://github.com/StoreylLab/popkin/

BugReports https://github.com/StoreyLab/popkin/issues
NeedsCompilation no

Author Alejandro Ochoa [aut, cre] (<https://orcid.org/0000-0003-4928-3403>),
John D. Storey [aut] (<https://orcid.org/0000-0001-5992-402X>)

Maintainer Alejandro Ochoa <alejandro.ochoa@duke.edu>
Repository CRAN
Date/Publication 2023-01-07 00:30:02 UTC

R topics documented:

popkin-package
admix_label cols
admix_order_cols L. e e
avg_kinship_subpops L
5]

https://doi.org/10.1371/journal.pgen.1009241
https://github.com/StoreyLab/popkin/
https://github.com/StoreyLab/popkin/issues
https://orcid.org/0000-0003-4928-3403
https://orcid.org/0000-0001-5992-402X

2 popkin-package
hgdp_subset e e e e 8
inbr . .. e 9
inbr_diag 10
mean_kinship L 11
n_eff . . e 12
plot_admix e e e e e e 14
plot_phylo e 18
plot_popkin L 19
POPKIN . . . o e e e e 24
POPKIN_A . . . o e e e 26
popkin_af e e e 28
popkin_A_min_subpops 29
PWESt . e 30
rescale_popkin L e 31
validate_kinship o 32
weights_subpops L e e e 34
Index 36
popkin-package A package for estimating kinship and FST under arbitrary population
structure
Description
The heart of this package is the popkin() function, which estimates the kinship matrix of all in-
dividual pairs from their genotype matrix. Inbreeding coefficients, the generalized FST, and the
individual-level pairwise FST matrix are extracted from the kinship matrix using inbr(), fst(),
and pwfst(), respectively. fst() accepts weights for individuals to balance subpopulations ob-
tained with weights_subpops (). Kinship matrices can be renormalized (to change the most recent
common ancestor population or MRCA) using rescale_popkin(). Coancestry matrices can be
estimated from allele frequency matrices using popkin_af (). Lastly, kinship, coancestry, and pair-
wise FST matrices can be visualized using plot_popkin() (with the help of inbr_diag() for
kinship matrices only).
Author(s)
Maintainer: Alejandro Ochoa <alejandro.ochoa@duke.edu> (ORCID)
Authors:
* John D. Storey <jstorey@princeton.edu> (ORCID)
See Also

Useful links:

https://github.com/StoreylLab/popkin/
Report bugs at https://github.com/StoreylLab/popkin/issues

https://orcid.org/0000-0003-4928-3403
https://orcid.org/0000-0001-5992-402X
https://github.com/StoreyLab/popkin/
https://github.com/StoreyLab/popkin/issues

admix_label_cols 3

Examples

estimate and visualize kinship and FST from a genotype matrix

Construct toy data

X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

subpops2 <- 1:3 # alternate labels treat every individual as a different subpop

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
all downstream analysis require "kinship”, none use "X" after this
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

plot the kinship matrix, marking the subpopulations
note inbr_diag replaces the diagonal of kinship with inbreeding coefficients
plot_popkin(inbr_diag(kinship), labs = subpops)

extract inbreeding coefficients from kinship
inbreeding <- inbr(kinship)

estimate FST

weights <- weights_subpops(subpops) # weigh individuals so subpopulations are balanced
Fst <- fst(kinship, weights) # use kinship matrix and weights to calculate fst

Fst <- fst(inbreeding, weights) # estimate more directly from inbreeding vector (same result)

estimate and visualize the pairwise FST matrix

pairwise_fst <- pwfst(kinship) # estimated matrix

leg_title <- expression(paste('Pairwise ', F[ST])) # fancy legend label
NOTE no need for inbr_diag() here!

plot_popkin(pairwise_fst, labs = subpops, leg_title = leg_title)

rescale the kinship matrix using different subpopulations (implicitly changes the MRCA)
kinship2 <- rescale_popkin(kinship, subpops2)

toy allele frequency data
P <- matrix(runif(9), nrow = 3)

estimate coancestry from allele frequency matrix
(useful from P matrices from admixture models)
coancestry <- popkin_af(P)

admix_label_cols Label ancestries based on best match to individual labels

4 admix_label_cols

Description

Returns labels for each ancestry (columns) of an admixture matrix which is the best matching label
among the average individual (rows) of each subpopulation. More specifically, each ancestry is
associated to the subpopulation label in which its admixture proportion was the highest averaging
over all individuals from that subpopulation. If there are two or more ancestries that match to the
same label, these are made unique by appending its order of appearance (if the label is "A", then
the first column that matches to it is labeled "A1", the next one "A2", etc).

Usage
admix_label_cols(Q, labs)

Arguments

Q The admixture proportions matrix.

labs Subpopulation labels for individuals (rows of Q).
Value

The best label assignments for the ancestries (columns of Q), made unique by indexes if there are
overlaps.

See Also

admix_order_cols() to automatically order ancestries given ordered individuals.

plot_admix() for plotting admixture matrices.

Examples

toy admixture matrix with labels for individuals/rows that match well with ancestry/columns
Q <- matrix(

c(
0.1, 0.8, 0.1,
0.1, 0.7, 0.2,
0.0, 0.4, 0.6,
0.0, 0.3, 0.7,
0.9, 0.9, 0.1

),

nrow = 5,

ncol = 3,

byrow = TRUE

)
labs <- c('X', 'X', 'Y', 'Y', 'Z")

to calculate matches and save as column names, do this:
colnames(Q) <- admix_label_cols(Q, labs)

expected column names: c('Z', 'X', 'Y")

admix_order_cols 5

admix_order_cols Reorder admixture matrix columns

Description

Returns the order of the columns (ancestries) of an admixture matrix so that they are in their av-
erage order of appearance in rows (individuals). More specifically, for each ancestry it calculates
its mean row (expected row number weighted by this ancestry’s proportion distribution among
rows), and returns the order in which these mean row values are increasing. In datasets where
the rows/individuals are already ordered in a meaningful way (for example, by distance from the
species’ geographical origin, and generally grouping the most similar individuals together), this
function can lead to a more pleasing automated visualization of the admixture proportions.
Usage

admix_order_cols(Q)

Arguments

Q The admixture proportions matrix.

Value

The desired order of the columns (a vector of indexes).

See Also

admix_label_cols() to automatically assign labels to ancestries given labels to individuals.

plot_admix() for plotting admixture matrices.

Examples

here is a toy admixture proportions matrix with columns in no meaningful order
Q <- matrix(

c(
0.1, 0.8, 0.1,
0.1, 0.7, 0.2,
0.0, 0.4, 0.6,
0.0, 0.3, 0.7,
0.9, 0.0, 0.1

),

nrow = 5,

ncol = 3,

byrow = TRUE

)

get nicer order

indexes <- admix_order_cols(Q)
apply reordering to columns

Q <- Q[, indexes]

6 avg_kinship_subpops

notice that now the first columns takes on the highest values initially,
followed by the second column, and lastly the third column.

avg_kinship_subpops Calculate a kinship matrix between subpopulations by averaging indi-
vidual data

Description

This function calculates a kinship matrix between subpopulations, whose values are the average
kinship values between all individual pairs where one individual is in the first subpopulation and
the other individual is in the second subpopulation. To estimate coancestry instead of kinship,
which is recommended to get more interpretable diagonal values, the input kinship matrix should
be transformed using inbr_diag().

Usage
avg_kinship_subpops(kinship, subpops, subpop_order = unique(subpops))

Arguments
kinship A symmetric n-by-n kinship matrix.
subpops The length-n vector of subpopulation assignments for each individual.

subpop_order The optional order of subpopulations in the output matrix. subpop_order must
contain every unique subpopulation in subpops. Any additional subpopulations
in subpop_order (missing in subpops) are ignored. By default, subpopulations
are in the order of first appearance in subpops.

Value
The symmetric K-by-K kinship matrix between subpopulations, where K is the number of unique

subpopulations in subpops, ordered as in subpop_order.

Examples

a toy kinship matrix with 5 individuals belonging to 2 subpopulations
kinship <- matrix(

c(
0.7, 0.4, 0.4, 0.1, 0.0,
0.4, 0.7, 0.4, 0.2, 0.1,
0.4, 0.4, 0.7, 0.2, 0.0,
0.1, 0.2, 0.2, 0.6, 0.1,
0.0, 0.1, 0.0, 0.1, 0.6

),

nrow = 5,

1l
(&,

ncol

fst 7

)
subpops <- c(1, 1, 1, 2, 2)

calculate mean kinship between (and within) subpopulations
a 2x2 matrix
avg_kinship_subpops(kinship, subpops)

calculate coancestry estimate instead (difference is diagonal)
avg_kinship_subpops(inbr_diag(kinship), subpops)

fst Calculate FST from a population-level kinship matrix or vector of in-
breeding coefficients

Description

This function simply returns the weighted mean inbreeding coefficient. If weights are NULL (de-
fault), the regular mean is calculated. If a kinship matrix is provided, then the inbreeding coeffi-
cients are extracted from its diagonal using inbr () (requires the diagonal to contains self-kinship
values as popkin() returns, and not inbreeding coefficients as inbr_diag() returns). If there is
local inbreeding and it can be estimated (from known pedigrees, for example), it can be subtracted
from the total inbreeding coefficients, resulting in a vector of structural inbreeding that correctly
averages into FST.

Usage

fst(x, weights = NULL, x_local = NULL)

Arguments
X The vector of inbreeding coefficients, or the kinship matrix if x is a matrix.
weights Weights for individuals (optional, defaults to uniform weights)
x_local An optional vector of inbreeding coefficients, or a local kinship matrix if x_local
is a matrix.
Details

The returned weighted mean inbreeding coefficient equals the generalized FST if all individuals are
"locally outbred" (i.e. if the self-relatedness of every individual stems entirely from the population
structure rather than due partly to having unusually closely related parents, such as first or second
cousins). Note most individuals in population-scale human data are locally outbred. If there are
locally-inbred individuals, but their local inbreeding cannot be estimated, then the returned value
will overestimate FST. Good estimates of local inbreeding can be passed (parameter x_local), in
which case the code will subtract their effect and FST will be more accurate.

Value

FST

8 hgdp_subset

Examples

Get FST from a genotype matrix

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- ¢(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix "kinship” from the genotypes "X"!

kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels
weights <- weights_subpops(subpops) # can weigh individuals so subpopulations are balanced
Fst <- fst(kinship, weights) # use kinship matrix and weights to calculate fst

Fst <- fst(kinship) # no (or NULL) weights implies uniform weights

inbr <- inbr(kinship) # if you extracted inbr for some other analysis...

Fst <- fst(inbr, weights) # ...use this inbreeding vector as input too!
hgdp_subset HGDP subset
Description

Subset of the HGDP dataset.

Usage

hgdp_subset

Format

a matrix of 0’s, 1’s and 2’s.

Value

genotype matrix

Source

Stanford HGDP http://www.hagsc.org/hgdp/files.html

http://www.hagsc.org/hgdp/files.html

inbr 9

inbr Extract inbreeding coefficients from a kinship matrix

Description

The kinship matrix contains transformed inbreeding coefficients along the diagonal. This function
extracts the vector of inbreeding values from the input kinship matrix, by transforming the diagonal
using the formula 2 * x - 1.

Usage
inbr(kinship)

Arguments

kinship The n-by-n kinship matrix.

Value

The length-n vector of inbreeding coefficient for each individual.

See Also

inbr_diag() to replace kinship diagonal with inbreeding values (better for plots)

Examples

HHHHHHEH

illustrate the main transformation on a 2x2 kinship matrix:

same inbreeding values for both individuals

inbr <- 0.2

corresponding self kinship (diagonal values) for both individuals
kinship_self <- (1 + inbr)/2

actual kinship matrix (zero kinship between individuals)

kinship <- matrix(c(kinship_self, @, 0, kinship_self), nrow=2)

expected output of inbr (extracts inbreeding coefficients)
inbr_exp <- c(inbr, inbr)

actual output from this function

inbr_obs <- inbr(kinship)

verify that they match (up to machine precision)

stopifnot(all(abs(inbr_obs - inbr_exp) < .Machine$double.eps))

HHHHHHHEH

Construct toy data

X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!
"file" is path to BED file (excluding .bed extension)

10 inbr_diag

library(BEDMatrix)
X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

extract inbreeding coefficients from Kinship
inbr <- inbr(kinship)

inbr_diag Replace kinship diagonal with inbreeding coefficients

Description

The usual kinship matrix contains self-kinship values along their diagonal given by diag(kinship)
= (1+1inbr) / 2, where inbr is the vector of inbreeding coefficient. This function returns a mod-
ified kinship matrix with diagonal values replaced with inbr (off-diagonal values stay the same).
The resulting matrix is better for visualization, but is often not appropriate for modeling (e.g. in
mixed-effects models for association or heritability estimation).

Usage
inbr_diag(kinship)

Arguments
kinship A kinship matrix with self-kinship values along the diagonal. Can pass multiple
kinship matrices contained in a list. If NULL, it is returned as-is.
Value

The modified kinship matrix, with inbreeding coefficients along the diagonal, preserving column
and row names. If the input was a list of kinship matrices, the output is the corresponding list of
transformed matrices. NULL inputs are preserved without causing errors.

See Also

The inverse function is given by bnpsd: : coanc_to_kinship().

inbr() to extract the vector of inbreeding values from a kinship matrix.

Examples

HHEHHHEHEE

illustrate the main transformation on a 2x2 kinship matrix:

same inbreeding values for both individuals

inbr <- 9.2

corresponding self kinship (diagonal values) for both individuals
kinship_self <- (1 + inbr)/2

mean_kinship 11

kinship between the two individuals

kinship_between <- 0.1

actual kinship matrix

kinship <- matrix(c(kinship_self, kinship_between, kinship_between, kinship_self), nrow=2)
expected output of inbr_diag (replaces self kinship with inbreeding)
kinship_inbr_diag_exp <- matrix(c(inbr, kinship_between, kinship_between, inbr), nrow=2)
actual output from this function

kinship_inbr_diag_obs <- inbr_diag(kinship)

verify that they match (up to machine precision)

stopifnot(all(abs(kinship_inbr_diag_obs - kinship_inbr_diag_exp) < .Machine$double.eps))

for a list of matrices, returns list of transformed matrices:
inbr_diag(list(kinship, kinship))

a list with NULL values also works
inbr_diag(list(kinship, NULL, kinship))

HHHHHHHAH

Construct toy data (to more closely resemble real data analysis)

X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

lastly, replace diagonal of kinship matrix with inbreeding coefficients
kinship_inbr_diag <- inbr_diag(kinship)

mean_kinship Calculate the weighted mean kinship

Description

This function computes a particular weighted mean kinship that arises in the context of kinship and
FST estimators and in the definition of the effective sample size. This function allows for weights
to be zero or even negative, but they are internally normalized to sum to one.

Usage
mean_kinship(kinship, weights = NULL)

Arguments

kinship The kinship matrix
weights Weights for individuals (optional). If NULL (default), uniform weights are used.

12

Value

n_eff

The weighted mean kinship matrix, equivalent to drop(weights %*% kinship %*% weights) after
normalizing weights to sum to one.

Examples

construct a dummy kinship matrix

kinship <- matrix(c(@.5, @, @, 0.6), nrow=2)

this is the ordinary mean
mean_kinship(kinship)

weighted mean with twice as much weight on the second individual
(weights are internally normalized to sum to one)

weights <- c(1, 2)
mean_kinship(kinship, weights)

n_eff

Calculates the effective sample size of the data

Description

The effective sample size n_eff is the equivalent number of independent haplotypes that gives the
same variance as that observed under the given population. The variance in question is for the
weighted sample mean ancestral allele frequency estimator. It follows that n_eff equals the inverse
of the weighted mean kinship. If max = TRUE, a calculation is performed that implicitly uses optimal
weights which maximize n_eff, which equals the sum of the elements of the inverse kinship matrix.
However, if nonneg = TRUE and if the above solution has negative weights (common), optimal non-
negative weights are found instead (there are three algorithms available, see algo). If max = FALSE,
then the input weights are used in this calculation, and if weights are NULL, uniform weights are

used.
Usage
n_eff(
kinship,
max = TRUE,

weights = NULL,
nonneg = TRUE,

algo = c("gradient”, "newton”, "heuristic"),

tol = 1e-10

n_eff

Arguments
kinship

max

weights

nonneg

algo

tol

Details

13

An n-by-n kinship matrix.

If TRUE, returns the maximum n_eff value among those computed using all pos-
sible vectors of weights that sum to one (and which are additionally non-negative
if nonneg = TRUE). If FALSE, n_eff is computed using the specific weight vector
provided.

Weights for individuals (optional). If NULL, uniform weights are used. This
parameter is ignored if max = TRUE.

If TRUE (default) and max = TRUE, non-negative weights that maximize n_eff are
found. See algo. This has no effect if max = FALSE.

Algorithm for finding optimal non-negative weights (applicable only if nonneg
=TRUE and max = TRUE and the weights found by matrix inversion are non-
negative). May be abbreviated. If "gradient" (default), an optimized gradient
descent algorithm is used (fastest; recommended). If "newton", the exact multi-
variate newton’s Method is used (slowest since (n+1)-by-(n+1) Hessian matrix
needs to be inverted at every iteration; use if possible to confirm that "gradient"
gives the best answer). If "heuristic", if the optimal solution by the inverse ma-
trix method contains negative weights, the most negative weight in an iteration
is forced to be zero in all subsequent iterations and the rest of the weights are
solved for using the inverse matrix method, repeating until all resulting weights
are non-negative (also slow, since inversion of large matrices is required; least
likely to find optimal solution).

Tolerance parameter for "gradient" and "newton" algorithms. The algorithms
converge when the norm of the step vector is smaller than this tolerance value.

The maximum n_eff possible is 2 * n, where n is the number of individuals; this value is attained
only when all haplotypes are independent (a completely unstructured population in Hardy-Weinberg
equilibrium). The minimum n_eff possible is 1, which is attained in an extremely structured pop-
ulation with FST of 1, where every individual has exactly the same haplotype at every locus (no
heterozygotes). Moreover, for K extremely-differentiated subpopulations (FST = 1 per subpopula-
tion) n_eff =K. In this way, n_eff is smaller than the ideal value of 2 * n depending on the amount
of kinship (covariance) in the data.

Occasionally, depending on the quality of the input kinship matrix, the estimated n_eff may be
outside the theoretical [1, 2%n] range, in which case the return value is set to the closest boundary
value. The quality of the results depends on the success of matrix inversion (which for numerical
reasons may incorrectly contain negative eigenvalues, for example) or of the gradient optimization.

Value

A list containing n_eff and weights (optimal weights if max = TRUE, input weights otherwise).

Examples

Get n_eff from a genotype matrix

14 plot_admix

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix "kinship” from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels
weights <- weights_subpops(subpops) # can weigh individuals so subpopulations are balanced

use kinship matrix to calculate n_eff

default mode returns maximum n_eff possible across all non-negative weights that sum to one
also returns the weights that were optimal

obj <- n_eff(kinship)

n_eff_max <- obj$n_eff

w_max <- obj$weights

version that uses weights provided

obj <- n_eff(kinship, max = FALSE, weights = weights)

n_eff_w <- obj$n_eff

w <- obj$weights # returns input weights renormalized for good measure

no (or NULL) weights implies uniform weights
obj <- n_eff(kinship, max = FALSE)

n_eff_u <- obj$n_eff

w <- obj$weights # uniform weights

plot_admix Make a structure/admixture plot

Description

This function facilitates structure plots with options that resemble those of plot_popkin() in name
and results. The biggest difference is this function plots single panels (technically 2 panels including
the legend, unless it is omitted), whereas plot_popkin() can plot multiple kinship matrices with a
shared legend.

Usage

plot_admix(
Q,
col = RColorBrewer: :brewer.pal(max(ncol(Q), 3), "Paired"),
mar_pad = 0.2,
panel_letters = NA,
panel_letters_cex = 1.5,

plot_admix 15

panel_letters_adj = -0.1,
axis_lab_cex =1,

xlab = "Individuals”,
xlab_line = 1,

xlab_cex = axis_lab_cex,
ylab = "Ancestry”,

ylab_line = 2,
ylab_side = 2,
ylab_cex = axis_lab_cex,
leg_title = "Ancestries”,

leg_title_cex = axis_lab_cex,
leg_title_line = 2,

leg_cex =1,

leg_mar = leg_title_line + 1,
leg_width = 0.2,

leg_las = 0,

leg_omit = FALSE,

layout_add = !leg_omit,

names = FALSE,

names_cex = 1,

names_line = NA,

names_las = 2,

labs = NULL,
labs_cex =1,
labs_las = 0,

labs_line = 0,
labs_sep = TRUE,
labs_lwd = 1,
labs_col = "black”,
labs_ticks = FALSE,
labs_text = TRUE,
labs_even = FALSE,

)
Arguments

Q The admixture proportions matrix, with n individuals along rows and K ances-
tries along columns. Rows should sum to 1, but this is not enforced. There
must be at least 2 ancestries. The ancestry labels used by the legend must be the
column names, which are unlabeled if the column names are missing.

col A vector of at least K colors for the ancestries (extra colors are ignored). By
default uses the "Paired" palette of RColorBrewer, which has at most 12 colors,
so please provide colors if K> 12. Since the minimum number of colors for
"Paired" is 3, when K = 2 we ask for 3 colors, then remove the middle color
internally.

mar_pad Margin padding used for legend panel only (margins for first/main panel are not

altered by this function).

16

panel_letters

plot_admix

Panel letter to include in first/main panel (default NA is no letter). Despite name
(matches plot_popkin()), must be scalar.

panel_letters_cex

Scaling factor of panel letter (default 1.5).

panel_letters_adj

axis_lab_cex

xlab
xlab_line
xlab_cex
ylab
ylab_line
ylab_side

ylab_cex

leg_title
leg_title_cex
leg_title_line
leg_cex

leg_mar

leg_width

leg_las

leg_omit

layout_add

X-axis adjustment for panel letter (default -0.1). Negative values place the letter
into the left margin area. Might need adjustment depending on the size of the
left margin.

AXIS LABEL OPTIONS

Scaling factor for x-axis, y-axis, and legend title labels (which can also be set
individually, see below).

X-axis label (default "Individuals"). Set to NA to omit.

The value of 1ine for x1ab passed to graphics: :mtext().
Scaling factor for x-axis label.

Y-axis label (default "Ancestry"). Set to NA to omit.

The value of 1ine for ylab passed to graphics: :mtext().

The value of side for ylab passed to graphics: :mtext() (2 is y-axis, 1 is
x-axis, can also place on top (3) or right (4)).

Scaling factor for y-axis label.
LEGEND (COLOR KEY) OPTIONS

The name of the categorical ancestry variable (default "Ancestries").
Scaling factor for legend title label.

The value of 1ine for leg_title passed to graphics: :mtext().
Scaling factor for ancestry labels.

Margin values for the kinship legend panel only. A length-4 vector (in c(
bottom, left, top, right) formatthat graphics: :par() 'mar’ expects) spec-
ifies the full margins, to which mar_pad is added. Otherwise, the margins used
in the last panel are preserved with the exception that the left margin is set to
mar_pad, and if leg_mar is length-1 (default), it is added to mar_pad to specify
the right margin. By default the right margin is large enough to accommodate
leg_title for the given value of leg_title_line.

The width of the legend panel, relative to the width of the main panel. This value
is passed to graphics: :layout () (ignored if layout_add = FALSE).

The ancestry label orientations (in format that graphics: :mtext() expects).

If TRUE, no legend (second panel) is produced (default FALSE is to include leg-
end).

If TRUE (default) then graphics::layout() is called internally to create two
panels: the main panel and the color key legend. The original layout is reset
when plotting is complete and if layout_add = TRUE. If a non-standard layout
or additional panels (beyond those provided by this function) are desired, set to
FALSE and call graphics: : layout() yourself beforehand.

INDIVIDUAL LABEL OPTIONS

plot_admix

names
names_cex

names_line

17

If TRUE, the row (individual) names are plotted in the structure barplot.
Scaling factor for the individual names.

Line where individual names are placed.

names_las Orientation of labels relative to axis. Default (2) makes labels perpendicular to
axis.
SUBPOPULATION LABEL OPTIONS

labs Subpopulation labels for individuals in the admixture matrix. Use a matrix of
labels to show groupings at more than one level (for a hierarchy or otherwise).

labs_cex A vector of label scaling factors for each level of labs.

labs_las A vector of label orientations (in format that graphics: :mtext () expects) for
each level of labs.

labs_line A vector of lines where labels are placed (in format that graphics: :mtext()
expects) for each level of labs.

labs_sep A vector of logicals that specify whether lines separating the subpopulations are
drawn for each level of labs.

labs_1lwd A vector of line widths for the lines that divide subpopulations (if labs_sep =
TRUE) for each level of labs.

labs_col A vector of colors for the lines that divide subpopulations (if labs_sep = TRUE)
for each level of labs.

labs_ticks A vector of logicals that specify whether ticks separating the subpopulations are
drawn for each level of labs.

labs_text A vector of logicals that specify whether the subpopulation labels are shown for
each level of labs. Useful for including separating lines or ticks without text.

labs_even A vector of logicals that specify whether the subpopulations labels are drawn
with equal spacing for each level of labs. When TRUE, lines mapping the equally-
spaced labels to the unequally-spaced subsections of the heatmap are also drawn.
Additional options passed to graphics: :barplot().

See Also

admix_order_cols() to automatically order ancestries given ordered individuals.

admix_label_cols() to automatically assign labels to ancestries given labels to individuals.

Examples

create random proportions for two ancestries

Q <- runif(10)

Q <= cbind(Q, 1 - Q)

add ancestry names

colnames(Q) <- c('A1', 'A2")

plot this data!
plot_admix(Q)

See vignette for more elaborate examples!

18 plot_phylo

plot_phylo Plot a phylo tree object

Description

This is a wrapper around ape: :plot.phylo() that makes several adjustments so plots agree more
with accompanying kinship matrices. In particular, tree is reversed on the y-axis to match matrix
orientation, y-axis spacing is more padded for small trees, and an x-axis scale is always added.

Usage
plot_phylo(
tree,
xlab = "Coancestry”,
xmax = NULL,
leg.n =5,

edge_width = 1,

Arguments
tree A phylo object to plot.
xlab The x-axis label (default "Coancestry").
Xmax X-axis maximum limit.
leg_n The desired number of ticks in the x-axis (input to pretty(), see that for more
details).
edge_width The width of the tree edges (passed to ape: :plot.phylo() as edge.width).
Additional parameters passed to ape: :plot.phylo(). However, these param-
eters cannot be passed: x.lim (controlled via xmax), y.lim (a better default
for small trees is passed and cannot be changed) and font (takes the value of
par('font"') instead of ape’s default of 3 (italic)).
See Also

plot_popkin() can create multipanel figures including kinship matrices and trees (calling the
present function in the process).

Examples

create a small random tree
library(ape)
tree <- rtree(3)

plot it!
plot_phylo(tree)

plot_popkin

19

plot_popkin

Visualize one or more kinship matrices and other related objects

Description

This function plots one or more kinship matrices, trees (class phylo objects, see ape package),
and arbitrary functions, and a shared legend for the kinship color key. Many options allow for fine
control of individual or subpopulation labeling.

Usage

plot_popkin(
kinship,
titles = NULL,
col = NULL,
col_n = 100,
mar = NULL,
mar_pad = 0.2,
oma = 1.5,

diag_line = FALSE,

panel_letters = toupper(letters),

panel_letters_cex
panel_letters_adj

1.5,
-0.1,

ylab = "Individuals”,

ylab_adj = NA,
ylab_line = 0,
ylab_side = 2,

ylab_per_panel = FALSE,
layout_add = TRUE,
layout_rows = 1,
leg_per_panel = FALSE,
leg_title = "Kinship",
leg_cex = 1,

leg_.n =5,

leg_mar = 3,

leg_width = 0.3,
leg_column = NA,

names = FALSE,
names_cex = 1,
names_line = NA,
names_las = 2,

labs = NULL,
labs_cex = 1,
labs_las = 0,
labs_line = o,
labs_sep = TRUE,

labs_1lwd =

|
i

20

plot_popkin

labs_col = "black”,
labs_ticks = FALSE,

labs_text =

TRUE,

labs_even = FALSE,
null_panel_data = FALSE,
weights = NULL,

raster = is.null(weights),

sym = FALSE,

Arguments

kinship

titles

col

col_n

mar

mar_pad

oma

A numeric kinship matrix, a phylo or function object, or a list of any such
objects (at least one kinship matrix is expected). This list may contain NULL
elements (makes blank panels with titles; good for placeholders or non-existent
data) phylo objects are plotted with plot_phylo(), which is a wrapper around
ape::plot.phylo() that makes some adjustments so resulting plots are more
consistent with accompanying kinship matrices. function elements are exe-
cuted without arguments, and are expected to produce single arbitrary plot pan-
els.

Titles to add to each matrix panel (default is no titles). Applied to kinship and
phylo panels only.

Colors for kinship heatmap (default is a red-white-blue palette symmetric about
zero constructed using RColorBrewer).

The number of colors to use in the heatmap (applies if col = NULL).

Margins shared by all panels (if a vector) or for each panel (if a list of such
vectors). If the vector has length 1, mar corresponds to the shared lower and
left margins, while the top and right margins are set to zero. If this length is 2,
mar[1] is the same as above, while mar[2] is the top margin. If this length is
4, then mar is a fully-specified margin vector in the standard format c(bottom,
left, top, right) that graphics::par() 'mar’ expects. Vectors of invalid
lengths produce a warning. Note the padding mar_pad below is added to every
margin if set. If NULL, the original margin values are used without change, and
are reset for every panel that has a NULL value. The original margins are also
reset after plotting is complete. Applied to panels of all types (kinship, phylo,
and function).

Margin padding added to all panels (mar above and leg_mar below). Default
0.2. Must be a scalar or a vector of length 4 to match graphics: :par() 'mar’.
Applied to panels of all types (kinship, phylo, and function).

Outer margin vector. If length 1, the value of oma is applied to the left outer mar-
gin only (so ylab below displays correctly) and zero outer margins elsewhere.
If length 4, all outer margins are expected in standard format graphics: :par()
’mar’ expects (see mar above). mar_pad above is never added to outer margins.
If NULL, no outer margins are set (previous settings are preserved). Vectors of
invalid lengths produce a warning. Note: if layout_add = FALSE, this function
still (re)sets the outer margins if oma is not NULL, which can be convenient if

plot_popkin

diag_line

panel_letters

21

plot_popkin generates the first few panels, but otherwise a partial multipanel
figure will be reset unless oma = NULL is also set!

If TRUE adds a line along the kinship diagonal (default no line). May also be a
vector of logicals to set per panel (lengths must agree). Has no effect on non-
kinship panels.

Vector of strings for labeling panels (default A-Z). No labels are added if NULL,
or when there is only one panel except if its set to a single letter in that case (this
behavior is useful if goal is to have multiple external panels but popkin only
creates one of these panels). Applied to panels of all types (kinship, phylo, and
function).

panel_letters_cex

Scaling factor of panel letters (default 1.5).

panel_letters_adj

ylab

ylab_adj

ylab_line

ylab_side

ylab_per_panel

layout_add

layout_rows

leg_per_panel

X-axis adjustment for panel letters (default -0.1). Negative values place the letter
into the left margin area. Might need adjustment depending on the size of the
left margin.

The y-axis label (default "Individuals"). If length(ylab) ==1, the label is
placed in the outer margin (shared across panels); otherwise length(ylab)
must equal the number of panels and each label is placed in the inner margin
of the respective panel. Applied to panels of all types (kinship, phylo, and func-
tion).

The value of adj for ylab passed to graphics: :mtext(). If length(ylab)
== 1, only the first value is used, otherwise length(ylab_adj) must equal the
number of panels.

The value of line for ylab passed to graphics: :mtext(). If length(ylab)
== 1, only the first value is used, otherwise length(ylab_line) must equal the
number of panels.

The value of side for ylab passed to graphics: :mtext() (2 is y-axis, 1 is x-
axis, can also place on top (3) or right (4)). If length(ylab) == 1, only the first
value is used, otherwise length(ylab_side) must equal the number of panels.

Forces y-axis labels to appear for each panel, in the inner margins. Most useful
to cover the case where there is a single panel but no outer margins (oma = NULL).
LAYOUT OPTIONS

If TRUE (default) then graphics: : layout () is called internally with appropriate
values for the required number of panels for each matrix, the desired number of
rows (see layout_rows below) plus the color key legend. The original layout is
reset when plotting is complete if layout_add = TRUE. If a non-standard layout
or additional panels (beyond those provided by plot_popkin) are desired, set
to FALSE and call graphics::layout() yourself beforehand; in this case you
may want to set oma = NULL (above) as well!

Number of rows in layout, used only if layout_add = TRUE.
LEGEND (COLOR KEY) OPTIONS

If TRUE, every kinship matrix get its own legend/color key (best for matrices
with very different scales), and each phylo tree has its own x-axis range. If
FALSE (default), a single legend/color key is shared by all kinship matrix panels,
and also every tree has the same x-axis range (different from the kinship range).

22

leg_title

leg_cex

leg_n

leg_mar

leg_width

leg_column

names

names_cex

names_line

names_las

labs

labs_cex

labs_las

labs_line

labs_sep

labs_1lwd

plot_popkin

The name of the variable that the kinship heatmap colors measure (default "Kin-
ship"), or a vector of such values if they vary per panel.

Scaling factor for leg_title (default 1), or a vector of such values if they vary
per panel.

The desired number of ticks in the kinship legend y-axis, and phylo x-axis (input
to pretty(), see that for more details), or a vector of such values if they vary
per panel.

Margin values for the kinship legend panel only, or a list of such values if
they vary per panel. A length-4 vector (in c(bottom, left, top, right) for-
mat that graphics: :par() 'mar’ expects) specifies the full margins, to which
mar_pad is added. Otherwise, the margins used in the last panel are preserved
with the exception that the left margin is set to mar_pad, and if leg_mar is
length-1, it is added to mar_pad to specify the right margin.

The width of the legend panel, relative to the width of a single main panel. This
value is passed to graphics: :layout() (ignored if layout_add = FALSE).

The column number in which to place the kinship legend (default NA is for last
column). Ignored if leg_per_panel = TRUE.

INDIVIDUAL LABEL OPTIONS

If TRUE, the column and row names are plotted in the kinship heatmap, or a
vector of such values if they vary per panel. (names has no effect on phylo
panels, whose tip labels are always plotted, or other panel types.)

Scaling factor for the column and row names of a kinship matrix, or the tip labels
of a phylo object, or a vector of such values if they vary per panel.

Line where kinship column and row names are placed, or a vector of such values
if they vary per panel. Has no effect on non-kinship panels.

Orientation of labels relative to axis. Default (2) makes labels perpendicular to
axis. Has no effect on non-kinship panels.

SUBPOPULATION LABEL OPTIONS

Subpopulation labels for individuals in kinship matrices. Use a matrix of labels
(individuals along rows, levels along columns) to show groupings at more than
one level (for a hierarchy or otherwise). If input is a vector or a matrix, the same
subpopulation labels are shown for every kinship matrix; the input must be a
list of such vectors or matrices if the labels vary per panel. Has no effect on
non-kinship panels.

A vector of label scaling factors for each level of labs, or a list of such vectors if
labels vary per panel.

A vector of label orientations (in format that graphics: :mtext() expects) for
each level of labs, or a list of such vectors if labels vary per panel.

A vector of lines where labels are placed (in format that graphics: :mtext()
expects) for each level of labs, or a list of such vectors if labels vary per panel.

A vector of logicals that specify whether lines separating the subpopulations are
drawn for each level of labs, or a list of such vectors if labels vary per panel.

A vector of line widths for the lines that divide subpopulations (if labs_sep =
TRUE) for each level of labs, or a list of such vectors if labels vary per panel.

plot_popkin
labs_col
labs_ticks

labs_text

labs_even

null_panel_data

weights

raster

sym

Details

23

A vector of colors for the lines that divide subpopulations (if Labs_sep = TRUE)
for each level of labs, or a list of such vectors if labels vary per panel.

A vector of logicals that specify whether ticks separating the subpopulations are
drawn for each level of labs, or a list of such vectors if labels vary per panel.

A vector of logicals that specify whether the subpopulation labels are shown for
each level of labs, or a list of such vectors if labels vary per panel. Useful for
including separating lines or ticks without text.

A vector of logicals that specify whether the subpopulations labels are drawn
with equal spacing for each level of labs, or a list of such vectors if labels vary
per panel. When TRUE, lines mapping the equally-spaced labels to the unequally-
spaced subsections of the heatmap are also drawn.

If FALSE (default), panels with NULL kinship matrices must not have titles or
other parameters set, and no panel letters are used in these cases. If TRUE, panels
with NULL kinship matrices must have titles and other parameters set. In the
latter case, these NULL panels also get panel letters. The difference is important
when checking that lengths of non-singleton parameters agree.

A vector with weights for every individual, or a list of such vectors if they vary
per panel. The width of every individual in the kinship matrix becomes pro-
portional to their weight. Individuals with zero or negative weights are omitted.
Has no effect on non-kinship panels.

A logical equivalent to useRaster option in the image function used internally,
or a vector of such logicals if the choice varies per panel. If weights are non-
NULL in a given panel, raster = FALSE is forced (this is necessary to plot images
where columns and rows have variable width). If weights are NULL, the default
is raster = TRUE, but in this case the user may override (for example, so panels
are visually coherent when some use weights while others do not, as there are
small differences in rendering implementation for each value of raster). Note
that a multipanel figure with a list of weights sets raster = FALSE to all panels
by default, even if the weights were only applied to a subset of panels. Has no
effect on non-kinship panels.

If FALSE (default), plots non-symmetric (but square) kinship matrices without is-
sues. If TRUE, stops if any input kinship matrices (excluding phylo or function
objects) are not symmetric.

AXIS LABEL OPTIONS

Additional options passed to graphics: :image(). These are shared across kin-
ship panels. Have no effect on non-kinship panels.

plot_popkin plots the input kinship matrices as-is. For best results, a standard kinship matrix (such
as the output of popkin()) should have its diagonal rescaled to contain inbreeding coefficients using
inbr_diag() before plot_popkin is used.

This function permits the labeling of individuals (from row and column names when names = TRUE)
and of subpopulations (passed through 1abs). The difference is that the labels passed through labs
are assumed to be shared by many individuals, and lines (or other optional visual aids) are added to
demarcate these subgroups.

24 popkin

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix
subpops <- ¢(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

simple plot of the kinship matrix, marking the subpopulations only

note inbr_diag replaces the diagonal of kinship with inbreeding coefficients
(see vignette for more elaborate examples)

plot_popkin(inbr_diag(kinship), labs = subpops)

popkin Estimate kinship from a genotype matrix and subpopulation assign-
ments

Description

Given the biallelic genotypes of n individuals, this function returns the n-by-n kinship matrix such
that the kinship estimate between the most distant subpopulations is zero on average (this sets the
ancestral population to the most recent common ancestor population).

Usage

popkin(
X,
subpops = NULL,
n = NA,
loci_on_cols = FALSE,
mean_of_ratios = FALSE,
mem_factor = 0.7,
mem_lim = NA,
want_M = FALSE,
m_chunk_max = 1000

Arguments

X Genotype matrix, BEDMatrix object, or a function X(m) that returns the geno-
types of all individuals at m successive locus blocks each time it is called, and
NULL when no loci are left. If a regular matrix, X must have values only in c(@,

popkin

subpops

loci_on_cols

mean_of_ratios

mem_factor

mem_lim

want_M

m_chunk_max

Details

25

1, 2, NA), encoded to count the number of reference alleles at the locus, or NA
for missing data.

The length-n vector of subpopulation assignments for each individual. If NULL,
every individual is effectively treated as a different population.

Number of individuals (required only when X is a function, ignored otherwise).
If n is missing but subpops is not, n is taken to be the length of subpops.

If TRUE, X has loci on columns and individuals on rows; if FALSE (default), loci
are on rows and individuals on columns. Has no effect if X is a function. If
X is a BEDMatrix object, loci_on_cols is ignored (set automatically to TRUE
internally).

Chose how to weigh loci. If FALSE (default) loci have equal weights (in terms
of variance, rare variants contribute less than common variants; also called the
"ratio-of-means" version, this has known asymptotic behavior). If TRUE, rare
variant loci are upweighed (in terms of variance, contributions are approxi-
mately the same across variant frequencies; also called the "mean-of-ratios"
version, its asymptotic behavior is less well understood but performs better for
association testing).

Proportion of available memory to use loading and processing data. Ignored if
mem_lim is not NA.

Memory limit in GB, used to break up data into chunks for very large datasets.
Note memory usage is somewhat underestimated and is not controlled strictly.
Default in Linux is mem_factor times the free system memory, otherwise it is
1GB (Windows, OSX and other systems).

If TRUE, includes the matrix M of non-missing pair counts in the return value,
which are sample sizes that can be useful in modeling the variance of estimates.
Default FALSE is to return the relatedness matrix only.

Sets the maximum number of loci to process at the time. Actual number of loci
loaded may be lower if memory is limiting.

The subpopulation assignments are only used to estimate the baseline kinship (the zero value). If
the user wants to re-estimate the kinship matrix using different subpopulation labels, it suffices to
rescale it using rescale_popkin() (as opposed to starting from the genotypes again, which gives
the same answer but more slowly).

Value

If want_M = FALSE, returns the estimated n-by-n kinship matrix only. If X has names for the individ-
uals, they will be copied to the rows and columns of this kinship matrix. If want_M = TRUE, a named
list is returned, containing:

* kinship: the estimated n-by-n kinship matrix

* M: the n-by-n matrix of non-missing pair counts (see want_M option).

See Also

popkin_af() for coancestry estimation from allele frequency matrices.

26 popkin_A

Examples

Construct toy data
X <- matrix(

c(o, 1, 2,
1, 0, 1,
1, 0, 2),

nrow = 3,

byrow = TRUE

) # genotype matrix
subpops <- c¢(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

kinship <- popkin(X, subpops) # calculate kinship from genotypes and subpopulation labels

popkin_A Compute popkin’s A and M matrices from genotypes

Description

This function returns lower-level, intermediate calculations for the main popkin function. These
are not intended for most users, but rather for researchers studying the estimator.

Usage
popkin_A(
X,
n = NA,

loci_on_cols = FALSE,
mean_of_ratios = FALSE,
mem_factor = 0.7,
mem_lim = NA,
m_chunk_max = 1000

)
Arguments

X Genotype matrix, BEDMatrix object, or a function X(m) that returns the geno-
types of all individuals at m successive locus blocks each time it is called, and
NULL when no loci are left. If a regular matrix, X must have values only in c(@,
1, 2, NA), encoded to count the number of reference alleles at the locus, or NA
for missing data.

n Number of individuals (required only when X is a function, ignored otherwise).

If n is missing but subpops is not, n is taken to be the length of subpops.

popkin_A

loci_on_cols

mean_of_ratios

mem_factor

mem_lim

m_chunk_max

Value

27

If TRUE, X has loci on columns and individuals on rows; if FALSE (default), loci
are on rows and individuals on columns. Has no effect if X is a function. If
X is a BEDMatrix object, loci_on_cols is ignored (set automatically to TRUE
internally).

Chose how to weigh loci. If FALSE (default) loci have equal weights (in terms
of variance, rare variants contribute less than common variants; also called the
"ratio-of-means" version, this has known asymptotic behavior). If TRUE, rare
variant loci are upweighed (in terms of variance, contributions are approxi-
mately the same across variant frequencies; also called the "mean-of-ratios"
version, its asymptotic behavior is less well understood but performs better for
association testing).

Proportion of available memory to use loading and processing data. Ignored if
mem_lim is not NA.

Memory limit in GB, used to break up data into chunks for very large datasets.
Note memory usage is somewhat underestimated and is not controlled strictly.
Default in Linux is mem_factor times the free system memory, otherwise it is
1GB (Windows, OSX and other systems).

Sets the maximum number of loci to process at the time. Actual number of loci
loaded may be lower if memory is limiting.

A named list containing:

* A: n-by-n matrix, for individuals j and k, of average w_i = ((x_ij-1)* (x_ik-1) -
1) values across all loci i in X; if mean_of_ratios = FALSE, w_i =1, otherwise w_i =1/
(p_est_i * (1 -p_est_i)) where p_est_i is the reference allele frequency.

* M: n-by-n matrix of sample sizes (number of loci with non-missing individual j and k pairs,
used to normalize A)

See Also

The main popkin() function (a wrapper of this popkin_A function and popkin_A_min_subpops()
to estimate the minimum A value).

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow = 3, byrow = TRUE) # genotype matrix

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

obj <- popkin_A(X) # calculate A and M from genotypes

A <- obj$A
M <- obj$M

28

popkin_af

popkin_af

Estimate coancestry from an allele frequency matrix and subpopula-
tion assignments

Description

Given the individual-specific allele frequencies of n individuals, this function returns the n-by-n
coancestry matrix. This function is the analog of popkin() for allele frequencies rather than geno-
types, and as a consequence estimates coancestry instead of kinship. These coancestry estimates
are unbiased if the true allele frequencies are provided, but may be less accurate when the allele
frequencies themselves are estimated. This function is intended for cases where allele frequencies,
but not individual genotypes, are available; otherwise it is best to use the individual genotypes and
popkin(). An application of interest is the allele frequency matrices from admixture models, in
which case the columns correspond to subpopulations rather than individuals, and subpops = NULL
is an acceptable choice.

NULL,

9.7,

Usage
popkin_af(
P’
subpops =
loci_on_cols = FALSE,
mem_factor =
mem_lim = NA,

want_M = FALSE,
m_chunk_max = 1000

Arguments

P
subpops
loci_on_cols
mem_factor

mem_lim

want_M

m_chunk_max

m-by-n matrix of individual-specific allele frequencies, which should have values
between [@, 1] (range is not strictly required) or NA for missing data.

The length-n vector of subpopulation assignments for each individual. If NULL,
every individual is effectively treated as a different population.

If TRUE, P has loci on columns and individuals on rows; if FALSE (default), loci
are on rows and individuals on columns.

Proportion of available memory to use loading and processing data. Ignored if
mem_lim is not NA.

Memory limit in GB, used to break up data into chunks for very large datasets.
Note memory usage is somewhat underestimated and is not controlled strictly.
Default in Linux is mem_factor times the free system memory, otherwise it is
1GB (Windows, OSX and other systems).

If TRUE, includes the matrix M of non-missing pair counts in the return value,
which are sample sizes that can be useful in modeling the variance of estimates.
Default FALSE is to return the relatedness matrix only.

Sets the maximum number of loci to process at the time. Actual number of loci
loaded may be lower if memory is limiting.

popkin_A_min_subpops 29

Value

If want_M = FALSE, returns the estimated n-by-n coancestry matrix only. If P has names for the
individuals, they will be copied to the rows and columns of this coancestry matrix. If want_M=
TRUE, a named list is returned, containing:

* coancestry: the estimated n-by-n coancestry matrix

* M: the n-by-n matrix of non-missing pair counts (see want_M option).

See Also

popkin() for kinship estimation from genotype matrices.

Examples

a matrix of random uniform allele frequencies
(unstructured, unlike real data)
P <- matrix(runif(9), nrow = 3)

coancestry <- popkin_af(P)

popkin_A_min_subpops Estimate the minimum expected value of a matrix A using subpopula-
tions

Description

This function averages the values of a square matrix A between every subpopulation pair and returns
the minimum of these averages. If no subpopulation partition is provided, the function returns the
minimum value of A excluding the diagonal, to agree when the code treats each individual as a
subpopulation. The return value can be used to adjust an A matrix to yield the kinship matrix.

Usage

popkin_A_min_subpops(A, subpops = NULL)

Arguments
A A symmetric n-by-n matrix with values between every individual pair, including
self comparisons.
subpops A length-n vector of subpopulation assignments for each individual. If missing,
every individual is treated as a different subpopulation.
Value

The minimum of the average between-subpopulation A values, which estimates the minimum ex-
pected value of A

30 pwist

See Also

popkin_A() to generate the A matrix usually inputted into this function (popkin_A_min_subpops).
popkin() is the wrapper function around both of these.

avg_kinship_subpops() for the full matrix of mean kinship values between subpopulations.

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- ¢(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

calculate A from genotypes
A <- popkin_A(X)$A

the recommended form using appropriate subpopulation labels
A_min_est <- popkin_A_min_subpops(A, subpops)

this recovers the popkin estimate
kinship <= 1 - A / A_min_est
stopifnot(kinship == popkin(X, subpops))

a simple default for exploratory analysis, equals min(A) for correctly-calculated A
A_min_est <- popkin_A_min_subpops(A)
stopifnot(A_min_est == min(A))

pwfst Estimate the individual-level pairwise FST matrix

Description

This function construct the individual-level pairwise FST matrix implied by the input kinship ma-
trix. If the input is the true kinship matrix, the return value corresponds to the true pairwise FST
matrix. On the other hand, if the input is the estimated kinship returned by popkin(), the same
code results in the return value being the pairwise FST estimates described in our paper. In all cases
the diagonal of the pairwise FST matrix is zero by definition.

Usage
pwfst(kinship)

Arguments

kinship The n-by-n kinship matrix

rescale_popkin 31

Value

The n-by-n pairwise FST matrix

Examples

Construct toy data
X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix
subpops <- c¢(1,1,2) # subpopulation assignments for individuals

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

estimate the kinship matrix from the genotypes "X"!
kinship <- popkin(X, subpops) # calculate kinship from X and optional subpop labels

lastly, compute pairwise FST matrix from the kinship matrix
pwF <- pwfst(kinship)

rescale_popkin Rescale kinship matrix to set a given kinship value to zero.

Description

If you already have a population kinship matrix, and you desire to estimate the kinship matrix in
a subset of the individuals, you could do it the slow way (reestimating starting from the genotypes
of the subset of individuals) or you can do it the fast way: first subset the kinship matrix to only
contain the individuals of interest, then use this function to rescale this kinship matrix so that the
minimum kinship is zero. This rescaling is required when subsetting results in a more recent Most
Recent Common Ancestor (MRCA) population compared to the original dataset (for example, if the
original data had individuals from across the world but the subset only contains individuals from a
single continent).

Usage

rescale_popkin(kinship, subpops = NULL, min_kinship = NA)

Arguments
kinship An n-by-n kinship matrix.
subpops The length-n vector of subpopulation assignments for each individual.

min_kinship A scalar kinship value to define the new zero kinship.

32 validate_kinship

Details

This function rescales the input kinship matrix so that the value min_kinship in the original
kinship matrix becomes zero, using the formula kinship_rescaled = (kinship - min_kinship
)/ (1 -min_kinship). This is equivalent to changing the ancestral population of the data. If
subpopulation labels subpops are provided (recommended), they are used to estimate min_kinship
using the function popkin_A_min_subpops(), which is the recommended way to set the MRCA
population correctly. If both subpops and min_kinship are provided, only min_kinship is used.
If both subpops and min_kinship are omitted, the function sets min_kinship =min(kinship).

Value

The rescaled n-by-n kinship matrix, with the desired level of relatedness set to zero.

Examples

Construct toy data

X <- matrix(c(0,1,2,1,0,1,1,0,2), nrow=3, byrow=TRUE) # genotype matrix

subpops <- ¢(1,1,2) # subpopulation assignments for individuals

subpops2 <- 1:3 # alternate labels treat every individual as a different subpop

NOTE: for BED-formatted input, use BEDMatrix!

"file" is path to BED file (excluding .bed extension)
library(BEDMatrix)

X <- BEDMatrix(file) # load genotype matrix object

suppose we first estimate kinship without subpopulations, which will be more biased
kinship <- popkin(X) # calculate kinship from genotypes, WITHOUT subpops
then we visualize this matrix, figure out a reasonable subpopulation partition

now we can adjust the kinship matrix!

kinship2 <- rescale_popkin(kinship, subpops)

prev is faster but otherwise equivalent to re-estimating kinship from scratch with subpops:
kinship2 <- popkin(X, subpops)

can also manually set the level of relatedness min_kinship we want to be zero:
min_kinship <- min(kinship) # a naive choice for example
kinship2 <- rescale_popkin(kinship, min_kinship = min_kinship)

lastly, omiting both subpops and min_kinship sets the minimum value in kinship to zero
kinship3 <- rescale_popkin(kinship2)

equivalent to both of:

kinship3 <- popkin(X)

kinship3 <- rescale_popkin(kinship2, min_kinship = min(kinship))

validate_kinship Validate a kinship matrix

validate_kinship 33

Description

Tests that the input is a valid kinship matrix (a numeric, square, and optionally symmetric R matrix).
Intended for matrices to plot and for other uses, including biased estimates, so there is flexibility as
to what constitutes a valid kinship matrix. Throws errors if the input is not as above. Can instead
return TRUE/FALSE if logical = TRUE.

Usage

validate_kinship(kinship, sym = TRUE, name = "kinship"”, logical = FALSE)

Arguments
kinship The kinship matrix to validate.
sym If TRUE (default), the matrix is required to be symmetric. Otherwise this partic-
ular test is skipped.
name Default "kinship". Change to desired variable name for more informative error
messages (i.e. "A" when used to validate the A matrix inside popkin_A_min_subpops).
logical If FALSE (default), function stops with an error message if the input is not a
kinship matrix. If TRUE, function instead returns TRUE if the input passed all
tests (appears to be a valid kinship matrix) or FALSE otherwise.
Details

True kinship matrices have values strictly between 0 and 1, and diagonal values strictly between 0.5
and 1. However, estimated matrices may contain values slightly out of range. For greater flexibility,
this function does not check for out-of-range values.

Value

If logical = FALSE (default), nothing. If logical = TRUE, returns TRUE if the input is a valid kin-
ship matrix, FALSE otherwise.

Examples

this is a valid (positive) example
kinship <- matrix(c(@.5, @, @, 0.6), nrow=2)
this will run without errors or warnings
validate_kinship(kinship)

negative examples

dies if input is missing
try(validate_kinship())

and if input is not a matrix
try(validate_kinship(1:5))

and for non-numeric matrices
char_mat <- matrix(c('a', 'b', 'c', 'd'), nrow=2)

34

weights_subpops

try(validate_kinship(char_mat))

and non-square matrices
non_kinship <- matrix(1:2, nrow=2)
try(validate_kinship(non_kinship))

and non-symmetric matrices

non_kinship <- matrix(1:4, nrow=2)

try(validate_kinship(non_kinship))

but example passes if we drop symmetry requirement this way
validate_kinship(non_kinship, sym = FALSE)

instead of stopping, can get a logical value
this returns FALSE
validate_kinship(non_kinship, logical = TRUE)

weights_subpops Get weights for individuals that balance subpopulations

Description

This function returns positive weights that sum to one for individuals using subpopulation labels,
such that every subpopulation receives equal weight. In particular, if there are K subpopulations,
then the sum of weights for every individuals of a given subpopulation will equal 1 / K. The weight
of every individual is thus inversely proportional to the number of individuals in its subpopulation.
If the optional sub-subpopulation labels are also provided, then each sub-subpopulation within a
given subpopulation is also weighted equally.

Usage

weights_subpops (subpops, subsubpops = NULL)

Arguments

subpops The length-n vector of subpopulation assignments for each individual.

subsubpops The optional length-n vector of sub-subpopulation assignments for each indi-
vidual. Each sub-subpopulation must belong to a single subpopulation (a nested
hierarchy) or an error is produced.

Value

The length-n vector of weights for each individual.

weights_subpops

Examples

if every individual has a different subpopulation, weights are uniform:
subpops <- 1:10

weights <- weights_subpops(subpops)

stopifnot(all(weights == rep.int(1/10, 10)))

subpopulations can be strings too

subpops <- c('a', 'b', 'c")

weights <- weights_subpops(subpops)

stopifnot(all(weights == rep.int(1/3, 3)))

if there are two subpopulations

and the first has twice as many individuals as the second

then the individuals in this first subpopulation weight half as much
as the ones in the second subpopulation

subpops <- c(1, 1, 2)

weights <- weights_subpops(subpops)

stopifnot(all(weights == c(1/4, 1/4, 1/2)))

2-level hierarchy example

subpops <- c(1, 1, 1, 2, 2)

subsubpops <- c('a', 'b', 'b', 'c', 'd")

weights <- weights_subpops(subpops, subsubpops)
stopifnot(all(weights == c(1/4, 1/8, 1/8, 1/4, 1/4)))

Index

_PACKAGE (popkin-package), 2

admix_label_cols, 3
admix_label_cols(), 5, 17
admix_order_cols, 5
admix_order_cols(),4, 17
ape: :plot.phylo(), 18, 20
avg_kinship_subpops, 6
avg_kinship_subpops(), 30

bnpsd: :coanc_to_kinship(), 10

fst,7
fst(), 2

graphics: :barplot(), 17
graphics::image(), 23
graphics::layout(), 16, 21, 22
graphics: :mtext(), 16, 17, 21, 22
graphics::par(), 16, 20, 22

hgdp_subset, 8

inbr, 9

inbr(),2,7,10
inbr_diag, 10
inbr_diag(), 2,6, 7,9, 23

mean_kinship, 11
n_eff, 12

plot_admix, 14
plot_admix(), 4, 5
plot_phylo, 18
plot_phylo(), 20
plot_popkin, 19
plot_popkin(), 2, 14, 16, 18
popkin, 24
popkin(), 2, 7, 23, 27-30
popkin-package, 2

36

popkin_A, 26

popkin_A(), 30
popkin_A_min_subpops, 29
popkin_A_min_subpops(), 27, 32
popkin_af, 28
popkin_af(), 2, 25
pretty(), 18, 22

pwfst, 30

pwfst(), 2

rescale_popkin, 31
rescale_popkin(), 2, 25

validate_kinship, 32

weights_subpops, 34
weights_subpops(), 2

	popkin-package
	admix_label_cols
	admix_order_cols
	avg_kinship_subpops
	fst
	hgdp_subset
	inbr
	inbr_diag
	mean_kinship
	n_eff
	plot_admix
	plot_phylo
	plot_popkin
	popkin
	popkin_A
	popkin_af
	popkin_A_min_subpops
	pwfst
	rescale_popkin
	validate_kinship
	weights_subpops
	Index

