
Package ‘pliman’
November 6, 2024

Title Tools for Plant Image Analysis

Version 3.0.0

Description Tools for both single and batch image manipulation and
analysis (Olivoto, 2022 <doi:10.1111/2041-210X.13803>) and
phytopathometry (Olivoto et al., 2022 <doi:10.1007/S40858-021-00487-5>).
The tools can be used for the quantification of leaf area, object
counting, extraction of image indexes, shape measurement, object
landmark identification, and Elliptical Fourier Analysis of object
outlines (Claude (2008) <doi:10.1007/978-0-387-77789-4>). The package
also provides a comprehensive pipeline for generating shapefiles with
complex layouts and supports high-throughput phenotyping of RGB,
multispectral, and hyperspectral orthomosaics. This functionality
facilitates field phenotyping using UAV- or satellite-based imagery.

License GPL (>= 3)

URL https://nepem-ufsc.github.io/pliman/,

https://github.com/nepem-ufsc//pliman

BugReports https://github.com/nepem-ufsc//pliman/issues

Depends R (>= 4.1)

Imports doFuture, dplyr, exactextractr, foreach, future, methods,
purrr, Rcpp, sf, terra

Suggests BiocManager, curl, EBImage, fields, knitr, leafem (>= 0.2.0),
leaflet (>= 2.1.2), mapedit (>= 0.6.0), mapview (>= 2.11.0),
pak, rmarkdown, rstudioapi, tidyr

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.2

NeedsCompilation yes

Author Tiago Olivoto [aut, cre] (<https://orcid.org/0000-0002-0241-9636>)

1

https://doi.org/10.1111/2041-210X.13803
https://doi.org/10.1007/S40858-021-00487-5
https://doi.org/10.1007/978-0-387-77789-4
https://nepem-ufsc.github.io/pliman/
https://github.com/nepem-ufsc//pliman
https://github.com/nepem-ufsc//pliman/issues
https://orcid.org/0000-0002-0241-9636

2 Contents

Maintainer Tiago Olivoto <tiagoolivoto@gmail.com>

Repository CRAN

Date/Publication 2024-11-06 10:30:02 UTC

Contents
analyze_objects . 5
analyze_objects_minimal . 17
analyze_objects_shp . 23
apply_fun_to_imgs . 27
as_image . 29
calibrate . 29
contours . 30
custom_palette . 31
dist_transform . 32
efourier . 33
efourier_coefs . 34
efourier_error . 35
efourier_inv . 36
efourier_norm . 37
efourier_power . 38
efourier_shape . 40
ellipse . 41
get_pliman_viewer . 42
ggplot_color . 43
image_align . 43
image_alpha . 44
image_augment . 45
image_binary . 47
image_combine . 49
image_create . 50
image_expand . 51
image_index . 52
image_prepare . 55
image_segment . 56
image_segment_kmeans . 59
image_segment_manual . 61
image_segment_mask . 62
image_shp . 63
image_square . 65
image_thinning_guo_hall . 65
image_to_mat . 67
image_view . 68
landmarks . 69
landmarks_add . 70
landmarks_angle . 71
landmarks_dist . 72

Contents 3

landmarks_regradi . 73
leading_zeros . 74
make_brush . 75
make_mask . 76
measure_disease . 77
measure_disease_byl . 83
measure_disease_shp . 86
measure_injury . 88
mosaic_aggregate . 91
mosaic_analyze . 92
mosaic_analyze_iter . 98
mosaic_chm . 100
mosaic_chm_extract . 101
mosaic_chm_mask . 102
mosaic_crop . 103
mosaic_draw . 104
mosaic_epsg . 106
mosaic_extract . 107
mosaic_hist . 108
mosaic_index . 108
mosaic_index2 . 110
mosaic_input . 111
mosaic_interpolate . 113
mosaic_lonlat2epsg . 113
mosaic_plot . 114
mosaic_plot_rgb . 115
mosaic_prepare . 115
mosaic_project . 117
mosaic_resample . 118
mosaic_segment . 118
mosaic_segment_pick . 120
mosaic_to_pliman . 121
mosaic_to_rgb . 122
mosaic_vectorize . 123
mosaic_view . 125
object_edge . 127
object_export . 128
object_export_shp . 131
object_label . 133
object_map . 135
object_mark . 136
object_rgb . 137
object_split . 138
object_split_shp . 140
object_to_color . 141
otsu . 142
palettes . 143
pipe . 145

4 Contents

pixel_index . 146
pliman_images . 147
pliman_indexes_ican_compute . 148
pliman_viewer . 148
plot.image_shp . 149
plot_id . 150
plot_index . 151
plot_index_shp . 152
plot_lw . 154
poly_apex_base_angle . 155
poly_pcv . 156
poly_width_at . 157
prepare_to_shp . 159
random_color . 159
sad . 160
sentinel_to_tif . 161
separate_col . 162
set_pliman_viewer . 163
shapefile_build . 163
shapefile_edit . 166
shapefile_interpolate . 167
shapefile_measures . 168
shapefile_plot . 169
shapefile_surface . 169
summary_index . 170
utils_colorspace . 172
utils_dpi . 173
utils_file . 175
utils_image . 177
utils_indexes . 179
utils_measures . 179
utils_objects . 182
utils_pca . 185
utils_pick . 187
utils_polygon . 190
utils_polygon_plot . 195
utils_rows_cols . 197
utils_shapefile . 198
utils_shapes . 200
utils_stats . 202
utils_transform . 203
utils_wd . 209
watershed2 . 210

Index 212

analyze_objects 5

analyze_objects Analyzes objects in an image

Description

• analyze_objects() provides tools for counting and extracting object features (e.g., area,
perimeter, radius, pixel intensity) in an image. See more at the Details section.

• analyze_objects_iter() provides an iterative section to measure object features using an
object with a known area.

• plot.anal_obj() produces a histogram for the R, G, and B values when argument object_index
is used in the function analyze_objects().

Usage

analyze_objects(
img,
foreground = NULL,
background = NULL,
pick_palettes = FALSE,
segment_objects = TRUE,
viewer = get_pliman_viewer(),
reference = FALSE,
reference_area = NULL,
back_fore_index = "R/(G/B)",
fore_ref_index = "B-R",
reference_larger = FALSE,
reference_smaller = FALSE,
pattern = NULL,
parallel = FALSE,
workers = NULL,
watershed = TRUE,
veins = FALSE,
sigma_veins = 1,
ab_angles = FALSE,
ab_angles_percentiles = c(0.25, 0.75),
width_at = FALSE,
width_at_percentiles = c(0.05, 0.25, 0.5, 0.75, 0.95),
haralick = FALSE,
har_nbins = 32,
har_scales = 1,
har_band = 1,
pcv = FALSE,
pcv_niter = 100,
resize = FALSE,
trim = FALSE,
fill_hull = FALSE,

6 analyze_objects

erode = FALSE,
dilate = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
invert = FALSE,
object_size = "medium",
index = "NB",
r = 1,
g = 2,
b = 3,
re = 4,
nir = 5,
object_index = NULL,
pixel_level_index = FALSE,
return_mask = FALSE,
efourier = FALSE,
nharm = 10,
threshold = "Otsu",
k = 0.1,
windowsize = NULL,
tolerance = NULL,
extension = NULL,
lower_noise = 0.1,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,
lower_eccent = NULL,
upper_eccent = NULL,
lower_circ = NULL,
upper_circ = NULL,
randomize = TRUE,
nrows = 1000,
plot = TRUE,
show_original = TRUE,
show_chull = FALSE,
show_contour = TRUE,
contour_col = "red",
contour_size = 1,
show_lw = FALSE,
show_background = TRUE,
show_segmentation = FALSE,
col_foreground = NULL,
col_background = NULL,
marker = FALSE,
marker_col = NULL,
marker_size = NULL,

analyze_objects 7

save_image = FALSE,
prefix = "proc_",
dir_original = NULL,
dir_processed = NULL,
verbose = TRUE

)

S3 method for class 'anal_obj'
plot(
x,
which = "measure",
measure = "area",
type = c("density", "histogram"),
...

)

S3 method for class 'anal_obj_ls'
plot(
x,
which = "measure",
measure = "area",
type = c("density", "histogram"),
...

)

analyze_objects_iter(pattern, known_area, verbose = TRUE, ...)

Arguments

img The image to be analyzed.
foreground, background

A color palette for the foregrond and background, respectively (optional). If a
chacarceter is used (eg., foreground = "fore"), the function will search in the
current working directory a valid image named "fore".

pick_palettes Logical argument indicating wheater the user needs to pick up the color palettes
for foreground and background for the image. If TRUE pick_palette() will be
called internally so that the user can sample color points representing foreground
and background.

segment_objects

Segment objects in the image? Defaults to TRUE. In this case, objects are seg-
mented using the index defined in the index argument, and each object is ana-
lyzed individually. If segment_objects = FALSE is used, the objects are not seg-
mented and the entire image is analyzed. This is useful, for example, when an-
alyzing an image without background, where an object_index could be com-
puted for the entire image, like the index of a crop canopy.

viewer The viewer option. This option controls the type of viewer to use for interac-
tive plotting (eg., when pick_palettes = TRUE). If not provided, the value is
retrieved using get_pliman_viewer().

8 analyze_objects

reference Logical to indicate if a reference object is present in the image. This is useful
to adjust measures when images are not obtained with standard resolution (e.g.,
field images). See more in the details section.

reference_area The known area of the reference objects. The measures of all the objects in the
image will be corrected using the same unit of the area informed here.

back_fore_index

A character value to indicate the index to segment the foreground (objects and
reference) from the background. Defaults to "R/(G/B)". This index is opti-
mized to segment white backgrounds from green leaves and a blue reference
object.

fore_ref_index A character value to indicate the index to segment objects and the reference
object. It can be either an available index in pliman (see pliman_indexes() or
an own index computed with the R, G, and B bands. Defaults to "B-R". This
index is optimized to segment green leaves from a blue reference object after a
white background has been removed.

reference_larger, reference_smaller
Logical argument indicating when the larger/smaller object in the image must be
used as the reference object. This only is valid when reference is set to TRUE
and reference_area indicates the area of the reference object. IMPORTANT.
When reference_smaller is used, objects with an area smaller than 1% of the
mean of all the objects are ignored. This is used to remove possible noise in the
image such as dust. So, be sure the reference object has an area that will be not
removed by that cutpoint.

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. By default, the number of sections is
set up to 30% of available cores.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

veins Logical argument indicating whether vein features are computed. This will call
object_edge() and applies the Sobel-Feldman Operator to detect edges. The
result is the proportion of edges in relation to the entire area of the object(s) in
the image. Note that THIS WILL BE AN OPERATION ON AN IMAGE
LEVEL, NOT OBJECT!.

analyze_objects 9

sigma_veins Gaussian kernel standard deviation used in the gaussian blur in the edge detec-
tion algorithm

ab_angles Logical argument indicating whether apex and base angles should be computed.
Defaults to FALSE. If TRUE, poly_apex_base_angle() are called and the base
and apex angles are computed considering the 25th and 75th percentiles of the
object height. These percentiles can be changed with the argument ab_angles_percentiles.

ab_angles_percentiles

The percentiles indicating the heights of the object for which the angle should
be computed (from the apex and the bottom). Defaults to c(0.25, 0.75), which
means considering the 25th and 75th percentiles of the object height.

width_at Logical. If TRUE, the widths of the object at a given set of quantiles of the height
are computed.

width_at_percentiles

A vector of heights along the vertical axis of the object at which the width will be
computed. The default value is c(0.05, 0.25, 0.5, 0.75, 0.95), which means the
function will return the width at the 5th, 25th, 50th, 75th, and 95th percentiles
of the object’s height.

haralick Logical value indicating whether Haralick features are computed. Defaults to
FALSE.

har_nbins An integer indicating the number of bins using to compute the Haralick matrix.
Defaults to 32. See Details

har_scales A integer vector indicating the number of scales to use to compute the Haralick
features. See Details.

har_band The band to compute the Haralick features (1 = R, 2 = G, 3 = B). Defaults to 1.
Other allowed value is har_band = "GRAY".

pcv Computes the Perimeter Complexity Value? Defaults to FALSE.

pcv_niter An integer specifying the number of smoothing iterations for computing the
Perimeter Complexity Value. Defaults to 100.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value of
range 0-100 (proportion of the size of the original image).

trim Number of pixels removed from edges in the analysis. The edges of images
are often shaded, which can affect image analysis. The edges of images can be
removed by specifying the number of pixels. Defaults to FALSE (no trimmed
edges).

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

10 analyze_objects

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

object_index Defaults to FALSE. If an index is informed, the average value for each object
is returned. It can be the R, G, and B values or any operation involving them,
e.g., object_index = "R/B". In this case, it will return for each object in the
image, the average value of the R/B ratio. Use pliman_indexes_eq() to see
the equations of available indexes.

pixel_level_index

Return the indexes computed in object_index in the pixel level? Defaults to
FALSE to avoid returning large data.frames.

return_mask Returns the mask for the analyzed image? Defaults to FALSE.
efourier Logical argument indicating if Elliptical Fourier should be computed for each

object. This will call efourier() internally. It efourier = TRUE is used, both
standard and normalized Fourier coefficients are returned.

nharm An integer indicating the number of harmonics to use. Defaults to 10. For more
details see efourier().

threshold The theshold method to be used.
• By default (threshold = "Otsu"), a threshold value based on Otsu’s method

is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

analyze_objects 11

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

k a numeric in the range 0-1. when k is high, local threshold values tend to be
lower. when k is low, local threshold value tend to be higher.

windowsize windowsize controls the number of local neighborhood in adaptive thresholding.
By default it is set to 1/3 * minxy, where minxy is the minimum dimension of
the image (in pixels).

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

lower_noise To prevent noise from affecting the image analysis, objects with lesser than 10%
of the mean area of all objects are removed (lower_noise = 0.1). Increasing
this value will remove larger noises (such as dust points), but can remove desired
objects too. To define an explicit lower or upper size, use the lower_size and
upper_size arguments.

lower_size, upper_size
Lower and upper limits for size for the image analysis. Plant images often con-
tain dirt and dust. Upper limit is set to NULL, i.e., no upper limit used. One can
set a known area or use lower_size = 0 to select all objects (not advised). Ob-
jects that matches the size of a given range of sizes can be selected by setting up
the two arguments. For example, if lower_size = 120 and upper_size = 140,
objects with size greater than or equal 120 and less than or equal 140 will be
considered.

topn_lower, topn_upper
Select the top n objects based on its area. topn_lower selects the n elements
with the smallest area whereas topn_upper selects the n objects with the largest
area.

lower_eccent, upper_eccent, lower_circ, upper_circ
Lower and upper limit for object eccentricity/circularity for the image analysis.
Users may use these arguments to remove objects such as square papers for scale
(low eccentricity) or cut petioles (high eccentricity) from the images. Defaults
to NULL (i.e., no lower and upper limits).

randomize Randomize the lines before training the model?

nrows The number of lines to be used in training step. Defaults to 2000.

plot Show image after processing?

show_original Show the count objects in the original image?

show_chull Show the convex hull around the objects? Defaults to FALSE.

show_contour Show a contour line around the objects? Defaults to TRUE.

12 analyze_objects

contour_col, contour_size
The color and size for the contour line around objects. Defaults to contour_col
= "red" and contour_size = 1.

show_lw If TRUE, plots the length and width lines on each object calling plot_lw().
show_background

Show the background? Defaults to TRUE. A white background is shown by de-
fault when show_original = FALSE.

show_segmentation

Shows the object segmentation colored with random permutations. Defaults to
FALSE.

col_foreground, col_background
Foreground and background color after image processing. Defaults to NULL, in
which "black", and "white" are used, respectively.

marker, marker_col, marker_size
The type, color and size of the object marker. Defaults to NULL, which plots the
object id. Use marker = "point" to show a point in each object or marker =
FALSE to omit object marker.

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

prefix The prefix to be included in the processed images. Defaults to "proc_".
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

verbose If TRUE (default) a summary is shown in the console.

x An object of class anal_obj.

which Which to plot. Either ’measure’ (object measures) or ’index’ (object index).
Defaults to "measure".

measure The measure to plot. Defaults to "area".

type The type of plot. Either "hist" or "density". Partial matches are recognized.

... Depends on the function:

• For analyze_objects_iter(), further arguments passed on to analyze_objects().

known_area The known area of the template object.

Details

A binary image is first generated to segment the foreground and background. The argument index
is useful to choose a proper index to segment the image (see image_binary() for more details). It
is also possible to provide color palettes for background and foreground (arguments background
and foreground, respectively). When this is used, a general linear model (binomial family) fitted
to the RGB values to segment fore- and background.

analyze_objects 13

Then, the number of objects in the foreground is counted. By setting up arguments such as lower_size
and upper_size, it is possible to set a threshold for lower and upper sizes of the objects, respec-
tively. The argument object_size can be used to set up pre-defined values of tolerance and
extension depending on the image resolution. This will influence the watershed-based object seg-
mentation. Users can also tune up tolerance and extension explicitly for a better precision of
watershed segmentation.

If watershed = FALSE is used, all pixels for each connected set of foreground pixels in img are set to
a unique object. This is faster, especially for a large number of objects, but it is not able to segment
touching objects.

There are some ways to correct the measures based on a reference object. If a reference object with
a known area (reference_area) is used in the image and reference = TRUE is used, the measures
of the objects will be corrected, considering the unit of measure informed in reference_area.
There are two main ways to work with reference objects.

• The first, is to provide a reference object that has a contrasting color with both the background
and object of interest. In this case, the arguments back_fore_index and fore_ref_index
can be used to define an index to first segment the reference object and objects to be measured
from the background, then the reference object from objects to be measured.

• The second one is to use a reference object that has a similar color to the objects to be mea-
sured, but has a contrasting size. For example, if we are counting small brown grains, we can
use a brown reference template that has an area larger (says 3 times the area of the grains)
and then uses reference_larger = TRUE. With this, the larger object in the image will be
used as the reference object. This is particularly useful when images are captured with back-
ground light, such as the example 2. Some types: (i) It is suggested that the reference object
is not too much larger than the objects of interest (mainly when the watershed = TRUE). In
some cases, the reference object can be broken into several pieces due to the watershed algo-
rithm. (ii) Since the reference object will increase the mean area of the object, the argument
lower_noise can be increased. By default (lower_noise = 0.1) objects with lesser than 10%
of the mean area of all objects are removed. Since the mean area will be increased, increasing
lower_noise will remove dust and noises more reliably. The argument reference_smaller
can be used in the same way

By using pattern, it is possible to process several images with common pattern names that are
stored in the current working directory or in the subdirectory informed in dir_original. To speed
up the computation time, one can set parallel = TRUE.

analyze_objects_iter() can be used to process several images using an object with a known
area as a template. In this case, all the images in the current working directory that match the
pattern will be processed. For each image, the function will compute the features for the objects
and show the identification (id) of each object. The user only needs to inform which is the id of
the known object. Then, given the known_area, all the measures will be adjusted. In the end, a
data.frame with the adjusted measures will be returned. This is useful when the images are taken
at different heights. In such cases, the image resolution cannot be conserved. Consequently, the
measures cannot be adjusted using the argument dpi from get_measures(), since each image will
have a different resolution. NOTE: This will only work in an interactive section.

• Additional measures: By default, some measures are not computed, mainly due to computa-
tional efficiency when the user only needs simple measures such as area, length, and width.

14 analyze_objects

– If haralick = TRUE, The function computes 13 Haralick texture features for each object
based on a gray-level co-occurrence matrix (Haralick et al. 1979). Haralick features
depend on the configuration of the parameters har_nbins and har_scales. har_nbins
controls the number of bins used to compute the Haralick matrix. A smaller har_nbins
can give more accurate estimates of the correlation because the number of events per
bin is higher. While a higher value will give more sensitivity. har_scales controls the
number of scales used to compute the Haralick features. Since Haralick features compute
the correlation of intensities of neighboring pixels it is possible to identify textures with
different scales, e.g., a texture that is repeated every two pixels or 10 pixels. By default,
the Haralick features are computed with the R band. To chance this default, use the
argument har_band. For example, har_band = 2 will compute the features with the green
band. Additionaly, har_band = "GRAY" can be used. In this case, a grayscale (0.299 * R
+ 0.587 * G + 0.114 * B) is used.

– If efourier = TRUE is used, an Elliptical Fourier Analysis (Kuhl and Giardina, 1982) is
computed for each object contour using efourier().

– If veins = TRUE (experimental), vein features are computed. This will call object_edge()
and applies the Sobel-Feldman Operator to detect edges. The result is the proportion of
edges in relation to the entire area of the object(s) in the image. Note that THIS WILL
BE AN OPERATION ON AN IMAGE LEVEL, NOT an OBJECT LEVEL! So, If vein
features need to be computed for leaves, it is strongly suggested to use one leaf per image.

– If ab_angles = TRUE the apex and base angles of each object are computed with poly_apex_base_angle().
By default, the function computes the angle from the first pixel of the apex of the object to
the two pixels that slice the object at the 25th percentile of the object height (apex angle).
The base angle is computed in the same way but from the first base pixel.

– If width_at = TRUE, the width at the 5th, 25th, 50th, 75th, and 95th percentiles of the ob-
ject height are computed by default. These quantiles can be adjusted with the width_at_percentiles
argument.

Value

analyze_objects() returns a list with the following objects:

• results A data frame with the following variables for each object in the image:

– id: object identification.
– x,y: x and y coordinates for the center of mass of the object.
– area: area of the object (in pixels).
– area_ch: the area of the convex hull around object (in pixels).
– perimeter: perimeter (in pixels).
– radius_min, radius_mean, and radius_max: The minimum, mean, and maximum ra-

dius (in pixels), respectively.
– radius_sd: standard deviation of the mean radius (in pixels).
– diam_min, diam_mean, and diam_max: The minimum, mean, and maximum diameter (in

pixels), respectively.
– major_axis, minor_axis: elliptical fit for major and minor axes (in pixels).
– caliper: The longest distance between any two points on the margin of the object. See
poly_caliper() for more details

analyze_objects 15

– length, width The length and width of objects (in pixels). These measures are obtained
as the range of x and y coordinates after aligning each object with poly_align().

– radius_ratio: radius ratio given by radius_max / radius_min.
– theta: object angle (in radians).
– eccentricity: elliptical eccentricity computed using the ratio of the eigen values (inertia

axes of coordinates).
– form_factor (Wu et al., 2007): the difference between a leaf and a circle. It is defined

as 4*pi*A/P, where A is the area and P is the perimeter of the object.
– narrow_factor (Wu et al., 2007): Narrow factor (caliper / length).
– asp_ratio (Wu et al., 2007): Aspect ratio (length / width).
– rectangularity (Wu et al., 2007): The similarity between a leaf and a rectangle (length
* width/ area).

– pd_ratio (Wu et al., 2007): Ratio of perimeter to diameter (perimeter / caliper)
– plw_ratio (Wu et al., 2007): Perimeter ratio of length and width (perimeter / (length
+ width))

– solidity: object solidity given by area / area_ch.
– convexity: The convexity of the object computed using the ratio between the perimeter

of the convex hull and the perimeter of the polygon.
– elongation: The elongation of the object computed as 1 - width / length.
– circularity: The object circularity given by perimeter ^ 2 / area.
– circularity_haralick: The Haralick’s circularity (CH), computed as CH = m/sd, where
m and sd are the mean and standard deviations from each pixels of the perimeter to the
centroid of the object.

– circularity_norm: The normalized circularity (Cn), to be unity for a circle. This mea-
sure is computed as Cn = perimeter ^ 2 / 4*pi*area and is invariant under translation,
rotation, scaling transformations, and dimensionless.

– asm: The angular second-moment feature.
– con: The contrast feature
– cor: Correlation measures the linear dependency of gray levels of neighboring pixels.
– var: The variance of gray levels pixels.
– idm: The Inverse Difference Moment (IDM), i.e., the local homogeneity.
– sav: The Sum Average.
– sva: The Sum Variance.
– sen: Sum Entropy.
– dva: Difference Variance.
– den: Difference Entropy
– f12: Difference Variance.
– f13: The angular second-moment feature.

• statistics: A data frame with the summary statistics for the area of the objects.

• count: If pattern is used, shows the number of objects in each image.

• obj_rgb: If object_index is used, returns the R, G, and B values for each pixel of each
object.

• object_index: If object_index is used, returns the index computed for each object.

16 analyze_objects

• Elliptical Fourier Analysis: If efourier = TRUE is used, the following objects are returned.

– efourier: The Fourier coefficients. For more details see efourier().
– efourier_norm: The normalized Fourier coefficients. For more details see efourier_norm().
– efourier_error: The error between original data and reconstructed outline. For more

details see efourier_error().
– efourier_power: The spectrum of harmonic Fourier power. For more details see efourier_power().

• veins: If veins = TRUE is used, returns, for each image, the proportion of veins (in fact the
object edges) related to the total object(s)’ area.

• analyze_objects_iter() returns a data.frame containing the features described in the results
object of analyze_objects().

• plot.anal_obj() returns a trellis object containing the distribution of the pixels, option-
ally for each object when facet = TRUE is used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Gupta, S., Rosenthal, D. M., Stinchcombe, J. R., & Baucom, R. S. (2020). The remarkable mor-
phological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics,
environment, and G×E. New Phytologist, 225(5), 2183–2195. doi:10.1111/NPH.16286

Haralick, R.M., K. Shanmugam, and I. Dinstein. 1973. Textural Features for Image Classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(6): 610–621. doi:10.1109/
TSMC.1973.4309314

Kuhl, F. P., and Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer
Graphics and Image Processing 18, 236–258. doi: doi:10.1016/0146664X(82)90034X

Lee, Y., & Lim, W. (2017). Shoelace Formula: Connecting the Area of a Polygon and the Vector
Cross Product. The Mathematics Teacher, 110(8), 631–636. doi:10.5951/mathteacher.110.8.0631

Montero, R. S., Bribiesca, E., Santiago, R., & Bribiesca, E. (2009). State of the Art of Compactness
and Circularity Measures. International Mathematical Forum, 4(27), 1305–1335.

Chen, C.H., and P.S.P. Wang. 2005. Handbook of Pattern Recognition and Computer Vision. 3rd
ed. World Scientific.

Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y.-X., Chang, Y.-F., and Xiang, Q.-L. (2007). A Leaf
Recognition Algorithm for Plant Classification Using Probabilistic Neural Network. in 2007 IEEE
International Symposium on Signal Processing and Information Technology, 11–16. doi:10.1109/
ISSPIT.2007.4458016

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
obj <- analyze_objects(img)
obj$statistics

https://doi.org/10.1111/NPH.16286
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/0146-664X%2882%2990034-X
https://doi.org/10.5951/mathteacher.110.8.0631
https://doi.org/10.1109/ISSPIT.2007.4458016
https://doi.org/10.1109/ISSPIT.2007.4458016

analyze_objects_minimal 17

########################### Example 1 #########################
Enumerate the objects in the original image
Return the top-5 grains with the largest area
top <-
analyze_objects(img,

marker = "id",
topn_upper = 5)

top$results

#' ########################### Example 1 #########################
Correct the measures based on the area of the largest ob
ject
note that since the reference object

img <- image_pliman("flax_grains.jpg")
res <-

analyze_objects(img,
index = "GRAY",
marker = "point",
show_contour = FALSE,
reference = TRUE,
reference_area = 6,
reference_larger = TRUE,
lower_noise = 0.3)

}

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

img <- image_pliman("soy_green.jpg")
Segment the foreground (grains) using the normalized blue index (NB, default)
Shows the average value of the blue index in each object

rgb <-
analyze_objects(img,

marker = "id",
object_index = "B",
pixel_level_index = TRUE)

density of area
plot(rgb)

histogram of perimeter
plot(rgb, measure = "perimeter", type = "histogram") # or 'hist'

density of the blue (B) index
plot(rgb, which = "index")
}

18 analyze_objects_minimal

analyze_objects_minimal

Analyzes objects in an image

Description

A lighter option to analyze_objects()

Usage

analyze_objects_minimal(
img,
segment_objects = TRUE,
reference = FALSE,
reference_area = NULL,
back_fore_index = "R/(G/B)",
fore_ref_index = "B-R",
reference_larger = FALSE,
reference_smaller = FALSE,
pattern = NULL,
parallel = FALSE,
workers = NULL,
watershed = TRUE,
fill_hull = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
invert = FALSE,
object_size = "medium",
index = "NB",
r = 1,
g = 2,
b = 3,
re = 4,
nir = 5,
threshold = "Otsu",
tolerance = NULL,
extension = NULL,
lower_noise = 0.1,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,
lower_eccent = NULL,
upper_eccent = NULL,
lower_circ = NULL,

analyze_objects_minimal 19

upper_circ = NULL,
plot = TRUE,
show_original = TRUE,
show_contour = TRUE,
contour_col = "red",
contour_size = 1,
col_foreground = NULL,
col_background = NULL,
marker = FALSE,
marker_col = NULL,
marker_size = NULL,
save_image = FALSE,
prefix = "proc_",
dir_original = NULL,
dir_processed = NULL,
verbose = TRUE

)

S3 method for class 'anal_obj_minimal'
plot(
x,
which = "measure",
measure = "area",
type = c("density", "histogram"),
...

)

S3 method for class 'anal_obj_ls_minimal'
plot(
x,
which = "measure",
measure = "area",
type = c("density", "histogram"),
...

)

Arguments

img The image to be analyzed.
segment_objects

Segment objects in the image? Defaults to TRUE. In this case, objects are seg-
mented using the index defined in the index argument, and each object is ana-
lyzed individually. If segment_objects = FALSE is used, the objects are not seg-
mented and the entire image is analyzed. This is useful, for example, when an-
alyzing an image without background, where an object_index could be com-
puted for the entire image, like the index of a crop canopy.

reference Logical to indicate if a reference object is present in the image. This is useful
to adjust measures when images are not obtained with standard resolution (e.g.,

20 analyze_objects_minimal

field images). See more in the details section.

reference_area The known area of the reference objects. The measures of all the objects in the
image will be corrected using the same unit of the area informed here.

back_fore_index

A character value to indicate the index to segment the foreground (objects and
reference) from the background. Defaults to "R/(G/B)". This index is opti-
mized to segment white backgrounds from green leaves and a blue reference
object.

fore_ref_index A character value to indicate the index to segment objects and the reference
object. It can be either an available index in pliman (see pliman_indexes() or
an own index computed with the R, G, and B bands. Defaults to "B-R". This
index is optimized to segment green leaves from a blue reference object after a
white background has been removed.

reference_larger, reference_smaller
Logical argument indicating when the larger/smaller object in the image must be
used as the reference object. This only is valid when reference is set to TRUE
and reference_area indicates the area of the reference object. IMPORTANT.
When reference_smaller is used, objects with an area smaller than 1% of the
mean of all the objects are ignored. This is used to remove possible noise in the
image such as dust. So, be sure the reference object has an area that will be not
removed by that cutpoint.

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. By default, the number of sections is
set up to 30% of available cores.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

analyze_objects_minimal 21

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

threshold The theshold method to be used.

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

22 analyze_objects_minimal

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

lower_noise To prevent noise from affecting the image analysis, objects with lesser than 10%
of the mean area of all objects are removed (lower_noise = 0.1). Increasing
this value will remove larger noises (such as dust points), but can remove desired
objects too. To define an explicit lower or upper size, use the lower_size and
upper_size arguments.

lower_size, upper_size
Lower and upper limits for size for the image analysis. Plant images often con-
tain dirt and dust. Upper limit is set to NULL, i.e., no upper limit used. One can
set a known area or use lower_size = 0 to select all objects (not advised). Ob-
jects that matches the size of a given range of sizes can be selected by setting up
the two arguments. For example, if lower_size = 120 and upper_size = 140,
objects with size greater than or equal 120 and less than or equal 140 will be
considered.

topn_lower, topn_upper
Select the top n objects based on its area. topn_lower selects the n elements
with the smallest area whereas topn_upper selects the n objects with the largest
area.

lower_eccent, upper_eccent, lower_circ, upper_circ
Lower and upper limit for object eccentricity/circularity for the image analysis.
Users may use these arguments to remove objects such as square papers for scale
(low eccentricity) or cut petioles (high eccentricity) from the images. Defaults
to NULL (i.e., no lower and upper limits).

plot Show image after processing?
show_original Show the count objects in the original image?
show_contour Show a contour line around the objects? Defaults to TRUE.
contour_col, contour_size

The color and size for the contour line around objects. Defaults to contour_col
= "red" and contour_size = 1.

col_foreground, col_background
Foreground and background color after image processing. Defaults to NULL, in
which "black", and "white" are used, respectively.

marker, marker_col, marker_size
The type, color and size of the object marker. Defaults to NULL, which plots the
object id. Use marker = "point" to show a point in each object or marker =
FALSE to omit object marker.

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

prefix The prefix to be included in the processed images. Defaults to "proc_".
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

analyze_objects_shp 23

verbose If TRUE (default) a summary is shown in the console.

x An object of class anal_obj.

which Which to plot. Either ’measure’ (object measures) or ’index’ (object index).
Defaults to "measure".

measure The measure to plot. Defaults to "area".

type The type of plot. Either "hist" or "density". Partial matches are recognized.

... Depends on the function:

• For analyze_objects_iter(), further arguments passed on to analyze_objects().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
obj <- analyze_objects(img)
obj$statistics

}

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

img <- image_pliman("soy_green.jpg")
Segment the foreground (grains) using the normalized blue index (NB, default)
Shows the average value of the blue index in each object

rgb <- analyze_objects_minimal(img)
density of area
plot(rgb)

histogram of area
plot(rgb, type = "histogram") # or 'hist'
}

analyze_objects_shp Analyzes objects using shapefiles

Description

Analyzes objects using shapefiles

24 analyze_objects_shp

Usage

analyze_objects_shp(
img,
nrow = 1,
ncol = 1,
buffer_x = 0,
buffer_y = 0,
prepare = FALSE,
segment_objects = TRUE,
viewer = get_pliman_viewer(),
index = "R",
r = 1,
g = 2,
b = 3,
re = 4,
nir = 5,
shapefile = NULL,
interactive = FALSE,
plot = FALSE,
parallel = FALSE,
workers = NULL,
watershed = TRUE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
object_size = "medium",
efourier = FALSE,
object_index = NULL,
veins = FALSE,
width_at = FALSE,
verbose = TRUE,
invert = FALSE,
...

)

Arguments

img An Image object

nrow, ncol The number of rows and columns to generate the shapefile when shapefile is
not declared. Defaults to 1.

buffer_x, buffer_y
Buffering factor for the width and height, respectively, of each individual shape’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the shape by 25%
on each side.

analyze_objects_shp 25

prepare Logical value indicating whether to prepare the image for analysis using image_prepare()
function. Defaults to FALSE. Set to TRUE to interactively align and crop the im-
age before processing.

segment_objects

Segment objects in the image? Defaults to TRUE. In this case, objects are seg-
mented using the index defined in the index argument, and each object is ana-
lyzed individually. If segment_objects = FALSE is used, the objects are not seg-
mented and the entire image is analyzed. This is useful, for example, when an-
alyzing an image without background, where an object_index could be com-
puted for the entire image, like the index of a crop canopy.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

shapefile (Optional) An object created with image_shp(). If NULL (default), both nrow
and ncol must be declared.

interactive If FALSE (default) the grid is created automatically based on the image dimen-
sion and number of nrow/columns. If interactive = TRUE, users must draw
points at the diagonal of the desired bounding box that will contain the grid.

plot Plots the processed images? Defaults to FALSE.

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. By default, the number of sections is
set up to 30% of available cores.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

26 analyze_objects_shp

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

object_size Argument to control control the watershed segmentation. See analyze_objects()
for more details.

efourier Logical argument indicating if Elliptical Fourier should be computed for each
object. This will call efourier() internally. It efourier = TRUE is used, both
standard and normalized Fourier coefficients are returned.

object_index Defaults to FALSE. If an index is informed, the average value for each object
is returned. It can be the R, G, and B values or any operation involving them,
e.g., object_index = "R/B". In this case, it will return for each object in the
image, the average value of the R/B ratio. Use pliman_indexes_eq() to see
the equations of available indexes.

veins Logical argument indicating whether vein features are computed. This will call
object_edge() and applies the Sobel-Feldman Operator to detect edges. The
result is the proportion of edges in relation to the entire area of the object(s) in
the image. Note that THIS WILL BE AN OPERATION ON AN IMAGE
LEVEL, NOT OBJECT!.

width_at Logical. If TRUE, the widths of the object at a given set of quantiles of the height
are computed.

verbose If TRUE (default) a summary is shown in the console.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

... Aditional arguments passed on to analyze_objects.

Details

The analyze_objects_shp function performs object analysis on an image and generates shapefiles
representing the analyzed objects. The function first prepares the image for analysis using the

apply_fun_to_imgs 27

image_prepare() function if the prepare argument is set to TRUE. If a shapefile object is provided,
the number of rows and columns for splitting the image is obtained from the shapefile. Otherwise,
the image is split into multiple sub-images based on the specified number of rows and columns
using the object_split_shp() function. The objects in each sub-image are analyzed using the
analyze_objects() function, and the results are stored in a list. If parallel processing is enabled,
the analysis is performed in parallel using multiple workers.

The output object provides access to various components of the analysis results, such as the analyzed
object coordinates and properties. Additionally, the shapefiles representing the analyzed objects are
included in the output object for further analysis or visualization.

Value

An object of class anal_obj. See more details in the Value section of analyze_objects().

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

Computes the DGCI index for each flax leaf
flax <- image_pliman("flax_leaves.jpg", plot =TRUE)
res <-

analyze_objects_shp(flax,
nrow = 3,
ncol = 5,
plot = FALSE,
object_index = "DGCI")

plot(flax)
plot(res$shapefiles)
plot_measures(res, measure = "DGCI")
}

apply_fun_to_imgs Apply a function to images

Description

Most of the functions in pliman can be applied to a list of images, but this can be not ideal to deal
with lots of images, mainly if they have a high resolution. For curiosity, a 6000 x 4000 image use
nearly 570 Megabytes of RAM. So, it would be impossible to deal with lots of images within R.
apply_fun_to_img() applies a function to images stored in a given directory as follows:

• Create a vector of image names that contain a given pattern of name.

• Import each image of such a list.

• Apply a function to the imported image.

• Export the mutated image to the computer.

28 apply_fun_to_imgs

If parallel is set to FALSE (default), the images are processed sequentially, which means that one
image needs to be imported, processed, and exported so that the other image can be processed. If
parallel is set to TRUE, the images are processed asynchronously (in parallel) in separate R sessions
(3) running in the background on the same machine. It may speed up the processing time when lots
of images need to be processed.

Usage

apply_fun_to_imgs(
pattern,
fun,
...,
dir_original = NULL,
dir_processed = NULL,
prefix = "",
suffix = "",
parallel = FALSE,
workers = 3,
verbose = TRUE

)

Arguments

pattern A pattern to match the images’ names.

fun A function to apply to the images.

... Arguments passed on to fun.
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL,
which means that the current working directory will be considered. The pro-
cessed image will overwrite the original image unless a prefix/suffix be used
or a subfolder is informed in dir_processed argument.

prefix, suffix A prefix and/or suffix to be included in the name of processed images. Defaults
to "".

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
(3 by default) running in the background on the same machine. It may speed up
the processing time, especially when pattern is used is informed.

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. Defaults to 3.

verbose Shows the progress in console? Defaults to TRUE.

Value

Nothing. The processed images are saved to the current working directory.

Examples

apply_fun_to_imgs("pattern", image_resize, rel_size = 50)

as_image 29

as_image Create an Image object

Description

This function is a simple wrapper around EBImage::Image().

Usage

as_image(data, ...)

Arguments

data A vector or array containing the pixel intensities of an image. If missing, the
default 1x1 zero-filled array is used.

... Additional arguments passed to EBImage::Image().

Value

An Image object.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <-
as_image(rnorm(150 * 150 * 3),

dim = c(150, 150, 3),
colormode = 'Color')

plot(img)
}

calibrate Calibrates distances of landmarks

Description

Calibrating the actual size is possible if any interlandmark distance on the image is known. cali-
brate() can be used to determine the size of a known distance (cm) on the graph. I invite users to
photograph the object together with a scale (e.g., ruler, micrometer...).

Usage

calibrate(img, viewer = get_pliman_viewer())

30 contours

Arguments

img An Image object

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

Value

A numeric (double) scalar value indicating the scale (in pixels per unit of known distance).

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if(isTRUE(interactive())){
library(pliman)
compute scale (dots per unit of known distance)
only works in an interactive section
objects_300dpi.jpg has a known resolution of 300 dpi
img <- image_pliman("objects_300dpi.jpg")
Larger square: 10 x 10 cm
1) Run the function calibrate()
2) Use the left mouse button to create a line in the larger square
3) Declare a known distance (10 cm)
4) See the computed scale (pixels per cm)
calibrate(img)

scale ~118
118 * 2.54 ~300 DPI
}

contours Contour outlines from five leaves

Description

A list of contour outlines from five leaves. It may be used as example in some functions such as
efourier()

custom_palette 31

Format

A list with five objects

• leaf_1

• leaf_2

• leaf_3

• leaf_4

• leaf_5

Each object is a data.frame with the coordinates for the outline perimeter

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

Personal data. The images were obtained in the Flavia data set downlodable at https://flavia.
sourceforge.net/

custom_palette Generate Custom Color Palette

Description

This function generates a custom color palette using the specified colors and number of colors.

Usage

custom_palette(
colors = c("yellow", "#53CC67", "#009B95", "#00588B", "#4B0055"),
n = 5

)

Arguments

colors A vector of colors to create the color palette. Default is c("steelblue", "salmon",
"forestgreen").

n The number of gradient colors in the color palette. Default is 100.

Value

A vector of colors representing the custom color palette.

https://flavia.sourceforge.net/
https://flavia.sourceforge.net/

32 dist_transform

Examples

Generate a custom color palette with default colors and 10 colors
custom_palette()

Generate a custom color palette with specified colors and 20 colors
custom_palette(colors = c("blue", "red"), n = 20)

example code
library(pliman)
custom_palette(n = 5)

dist_transform Distance map transform

Description

Computes the distance map transform of a binary image. The distance map is a matrix which
contains for each pixel the distance to its nearest background pixel.

Usage

dist_transform(binary)

Arguments

binary A binary image

Value

An Image object or an array, with pixels containing the distances to the nearest background points

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
binary <- image_binary(img, "B")[[1]]
wts <- dist_transform(binary)
range(wts)
}

efourier 33

efourier Elliptical Fourier Analysis

Description

Computes Elliptical Fourier Analysis of closed outlines based on x and y-coordinates coordinates.

Usage

efourier(x, nharm = 10, align = FALSE, center = FALSE, smooth_iter = 0)

Arguments

x A matrix, a data.frame a list of perimeter coordinates, often produced with
object_contour() or a vector of landmarks produced with landmarks() or
landmarks_regradi().

nharm An integer indicating the number of harmonics to use. Defaults to 10.

align Align the objects before computing Fourier analysis? Defaults to FALSE. If TRUE,
the object is first aligned along the major caliper with poly_align().

center Center the objects on the origin before computing Fourier analysis? Defaults to
FALSE. If TRUE, the object is first centered on the origin with poly_center().

smooth_iter The number of smoothing iterations to perform. This will smooth the perimeter
of the objects using poly_smooth().

Details

Adapted from Claude (2008). pp. 222-223.

Value

A list of class efourier with:

• the harmonic coefficients (an, bn, cn and dn)

• the estimates of the coordinates of the centroid of the configuration (a0 and c0).

• The number of rows (points) of the perimeter outline (nr).

• The number of harmonics used (nharm).

• The original coordinates (coords).

If x is a list of perimeter coordinates, a list of efourier objects will be returned as an object of
class iefourier_lst.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Kuhl, F. P., and Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer
Graphics and Image Processing 18, 236–258. doi: doi:10.1016/0146664X(82)90034X

https://doi.org/10.1016/0146-664X%2882%2990034-X

34 efourier_coefs

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
leaf1 <- contours[[4]]
plot_polygon(leaf1)

default options
10 harmonics (default)
without alignment

ef <- efourier(leaf1)
efourier_coefs(ef)

object is aligned along the major caliper with `poly_align()`
object is centered on the origin with `poly_center()`
using a list of object coordinates
ef2 <- efourier(contours, align = TRUE, center = TRUE)
efourier_coefs(ef2)

reconstruct the perimeter of the object
Use only the first one for simplicity
plot_polygon(contours[[1]] |> poly_align() |> poly_center())
efourier_inv(ef2[[1]]) |> plot_contour(col = "red", lwd = 4)
}

efourier_coefs Get Fourier coefficients

Description

Extracts the Fourier coefficients from objects computed with efourier() and efourier_norm()
returning a ’ready-to-analyze’ data frame.

Usage

efourier_coefs(x)

Arguments

x An object computed with efourier() or efourier_norm().

Value

A data.frame object

efourier_error 35

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

a list of objects
efourier(contours) |> efourier_coefs()

one object, normalized coefficients
efourier(contours[[4]]) |>

efourier_norm() |>
efourier_coefs()

}

efourier_error Erros between the original and reconstructed outline

Description

Computes the sum of squared distances between the original data and reconstructed outline. It
allows examining reconstructed outlines with the addition of successive contributing harmonics
indicated in the argument nharm.

Usage

efourier_error(
x,
nharm = NULL,
type = c("error", "outline", "deviations"),
plot = TRUE,
ncol = NULL,
nrow = NULL

)

Arguments

x An object computed with efourier().

nharm An integer or vector of integers indicating the number of harmonics to use. If
not specified the number of harmonics used in x is used.

type The type of plot to produce. By default, a line plot with the sum of squared
distances (y-axis) and the number of harmonics (x-axis) is produced. If type =
"outline" is used, a plot with the original polygon and the constructed outline
is produced. If type = "deviations" is used, a plot with the deviations from the
original outline and reconstructed outline (y-axis) and points along the outline
(x-axis) is produced.

plot A logical to inform if a plot should be produced. Defaults to TRUE.

ncol, nrow The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

36 efourier_inv

Value

A list with the objects:

• dev_points A list with the deviations (distances) from original and predicted outline for each
pixel of the outline.

• data.frame object with the minimum, maximum and average deviations (based on the outline
points).

If x is an object of class efourier_lst, a list will be returned.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
ef <-

contours[[1]] |>
efourier(nharm = 30)

efourier_error(ef)

efourier_error(ef,
nharm = 30,
type = "outline")

efourier_error(ef,
nharm = c(1, 4, 20),
type = "deviations")

}

efourier_inv Inverse Elliptical Fourier Analysis

Description

Performs an inverse elliptical Fourier transformation to construct a shape, given a list with Fourier
coefficients computed with efourier().

Usage

efourier_inv(x, nharm = NULL, a0 = NULL, c0 = NULL, npoints = 500)

Arguments

x An object of class efourier or efourier_lst computed with efourier().
nharm An integer indicating the number of harmonics to use. If not specified the num-

ber of harmonics used in x is used.
a0, c0 the estimates of the coordinates of the centroid of the configuration. If NULL (de-

fault), the generated coordinates will be centered on the position of the original
shape given by efourier().

npoints The number of interpolated points on the constructed outline. Defaults to 500.

efourier_norm 37

Details

Adapted from Claude (2008). pp. 223.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
plot_polygon(contours, aspect_ratio = 1)
without alignment
ef <- efourier(contours, nharm = 10, align = FALSE)
ief <- efourier_inv(ef)
plot_contour(ief, col = "red", lwd = 2)
}

efourier_norm Normalized Fourier coefficients

Description

The first harmonic defines an ellipse that best fits the outlines. One can use the parameters of the
first harmonic to “normalize” the data so that they can be invariant to size, rotation, and starting
position of the outline trace. This approach is referred to in the literature as the normalized elliptic
Fourier. efourier_norm() calculates a new set of Fourier coefficients An, Bn, Cn, Dn that one can
use for further multivariate analyses (Claude, 2008).

Usage

efourier_norm(x, start = FALSE)

Arguments

x An object computed with efourier().

start Logical value telling whether the position of the starting point has to be pre-
served or not.

Details

Adapted from Claude (2008). pp. 226.

38 efourier_power

Value

A list with the following components:

• A, B, C, D for harmonic coefficients.

• size the magnitude of the semi-major axis of the first fitting ellipse.

• theta angle, in radians, between the starting and the semi-major axis of the first fitting ellipse.

• psi orientation of the first fitting ellipse

• a0 and c0, harmonic coefficients.

• lnef the concatenation of coefficients.

• nharm the number of harmonics used.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
leaf1 <- contours[[4]]
plot_polygon(leaf1)

compute the Fourier coefficients
ef <- efourier(leaf1)
efourier_coefs(ef)

Normalized Fourier coefficients

efn <- efourier_norm(ef)
efourier_coefs(efn)
}

efourier_power Power in Fourier Analysis

Description

Computes an spectrum of harmonic Fourier power. The power is proportional to the harmonic
amplitude and can be considered as a measure of shape information. As the rank of harmonic
increases, the power decreases and adds less and less information. We can evaluate the number of
harmonics that we must select, so their cumulative power gathers 99% of the total cumulative power
(Claude, 2008).

efourier_power 39

Usage

efourier_power(
x,
first = TRUE,
thresh = c(0.8, 0.85, 0.9, 0.95, 0.99, 0.999),
plot = TRUE,
ncol = NULL,
nrow = NULL

)

Arguments

x An object of class efouriercomputed with efourier().

first Logical argument indicating whether to include the first harmonic for computing
the power. See Details.

thresh A numeric vector indicating the threshold power. The number of harmonics
needed for such thresholds will then be computed.

plot Logical argument indicating whether to produce a plot.

ncol, nrow The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

Details

Most of the shape "information" is contained in the first harmonic. This is not surprising because
this is the harmonic that best fits the outline, and the size of ellipses decreases as for explaining
successive residual variation. However, one may think that the first ellipse does not contain relevant
shape information, especially when differences one wants to investigate concern complex outlines.
By using first = FALSE it is possible to remove the first harmonic for this computation. When
working on a set of outlines, high-rank-harmonics can contain information that may allow groups
to be distinguished (Claude, 2008).

Adapted from Claude (2008). pp. 229.

Value

A list with the objects:

• cum_power, a data.frame object with the accumulated power depending on the number of
harmonics

• min_harm The minimum number of harmonics to achieve a given power.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

40 efourier_shape

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
pw <- efourier(contours) |> efourier_power()
}

efourier_shape Draw shapes based on Fourier coefficients

Description

Calculates a ’Fourier elliptical shape’ given Fourier coefficients

Usage

efourier_shape(
an = NULL,
bn = NULL,
cn = NULL,
dn = NULL,
n = 1,
nharm = NULL,
npoints = 150,
alpha = 4,
plot = TRUE

)

Arguments

an The an Fourier coefficients on which to calculate a shape.

bn The bn Fourier coefficients on which to calculate a shape.

cn The cn Fourier coefficients on which to calculate a shape.

dn The dn Fourier coefficients on which to calculate a shape.

n The number of shapes to generate. Defaults to 1. If more than one shape is used,
a list of coordinates is returned.

nharm The number of harmonics to use. It must be less than or equal to the length of
*_n coefficients.

npoints The number of points to calculate.

alpha The power coefficient associated with the (usually decreasing) amplitude of the
Fourier coefficients.

plot Logical indicating Whether to plot the shape. Defaults to ´TRUE‘

ellipse 41

Details

efourier_shape can be used by specifying nharm and alpha. The coefficients are then sampled
in an uniform distribution (−π;π) and this amplitude is then divided by harmonicrankalpha. If
alpha is lower than 1, consecutive coefficients will thus increase. See Claude (2008) pp.223 for the
maths behind inverse ellipitical Fourier

Adapted from Claude (2008). pp. 223.

Value

A list with components:

• x vector of x-coordrdinates

• y vector of y-coordrdinates.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
approximation of the third leaf's perimeter
4 harmonics
image_pliman("potato_leaves.jpg", plot = TRUE)

efourier_shape(an = c(-7.34, 1.81, -1.32, 0.50),
bn = c(-113.88, 21.90, -0.31, -6.14),
cn = c(-147.51, -20.89, 0.66, -14.06),
dn = c(-0.48, 2.36, -4.36, 3.03))

}

ellipse Confidence ellipse

Description

Produces a confidence ellipse that is an iso-contour of the Gaussian distribution, allowing to visu-
alize a 2D confidence interval.

Usage

ellipse(
x,
conf = 0.95,
np = 100,
plot = TRUE,
fill = "green",

42 get_pliman_viewer

alpha = 0.3,
random_fill = TRUE

)

Arguments

x A matrix, a data.frame or a list of perimeter coordinates, often produced
with object_contour().

conf The confidence level. Defaults to 0.95

np Number of sampled points on the ellipse.
plot Create a plot? Defaults to TRUE.
fill The color to fill the ellipse. Defaults to "green".
alpha The alpha value to define the opacity of ellipse. Defaults to 0.3

random_fill Fill multiple ellipses with random colors? Defaults to TRUE.

Value

A matrix with coordinates of points sampled on the ellipse.

Note

Borrowed from Claude (2008), pp. 85

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
ellipse(contours)
}

get_pliman_viewer Get the value of the pliman_viewer option

Description

Retrieves the current value of the pliman_viewer option used in the package.

Usage

get_pliman_viewer()

Value

The current value of the pliman_viewer option.

ggplot_color 43

ggplot_color ggplot2-like colors generation

Description

Generate ggplot2

Usage

ggplot_color(n = 1)

Arguments

n The number of colors. This works well for up to about eight colours, but after
that it becomes hard to tell the different colours apart.

Examples

library(pliman)
ggplot_color(n = 3)

image_align Aligns an Image object by hand

Description

image_align() rotate an image given a line of desired aligment along the y axis that corresponds
to the alignment of the objects (e.g., field plots). By default, the aligment will be to the vertical,
which means that if the drawed line have an angle < 90º parallel to the x axis, the rotation angle wil
be negative (anticlocwise rotation).

Usage

image_align(
img,
align = c("vertical", "horizontal"),
viewer = get_pliman_viewer(),
plot = TRUE

)

44 image_alpha

Arguments

img An Image object

align The desired alignment. Either "vertical" (default) or "horizontal".

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

plot Plots the aligned image? Defaults to TRUE.

Details

The image_align function aligns an image along the vertical or horizontal axis based on user-
selected points. The alignment can be performed in either the base plotting system or using the
mapview package for interactive visualization. If the viewer option is set to "base", the function
prompts the user to select two points on the image to define the alignment line. If the viewer option
is set to "mapview", the function opens an interactive map where the user can draw a polyline to
define the alignment line. The alignment angle is calculated based on the selected points, and the
image is rotated accordingly using the image_rotate function. The function returns the aligned
image object.

Value

The img aligned

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg", plot = TRUE)
aligned <- image_align(flax)
}

image_alpha Add Alpha Layer to an RGB Image

Description

This function adds an alpha (transparency) layer to an RGB image using the EBImage package. The
alpha layer can be specified as a single numeric value for uniform transparency or as a matrix/array
matching the dimensions of the image for varying transparency.

image_augment 45

Usage

image_alpha(img, mask)

Arguments

img An RGB image of class Image from the EBImage package. The image must be
in RGB format (color mode 2).

mask A numeric value or matrix/array specifying the alpha layer: * If mask is a single
numeric value, it sets a uniform transparency level (0 for fully transparent, 1 for
fully opaque). * If mask is a matrix or array, it must have the same dimensions
as the image channels, allowing for varying transparency.

Value

An Image object with an added alpha layer, maintaining the RGBA format.

Examples

if (interactive() && requireNamespace("EBImage")) {
Load the EBImage package
library(pliman)

Load a sample RGB image
img <- image_pliman("soybean_touch.jpg")

50% transparency
image_alpha(img, 0.5) |> plot()

transparent background
mask <- image_binary(img, "NB")[[1]]
img_tb <- image_alpha(img, mask)
plot(img_tb)

}

image_augment Augment Images

Description

This function takes an image and augments it by rotating it multiple times.

46 image_augment

Usage

image_augment(
img,
pattern = NULL,
times = 12,
type = "export",
dir_original = NULL,
dir_processed = NULL,
parallel = FALSE,
verbose = TRUE

)

Arguments

img An Image object.

pattern A regular expression pattern to select multiple images from a directory.

times The number of times to rotate the image.

type The type of output: "export" to save images or "return" to return a list of aug-
mented images.

dir_original The directory where original images are located.

dir_processed The directory where processed images will be saved.

parallel Whether to perform image augmentation in parallel.

verbose Whether to display progress messages.

Value

If type is "export," augmented images are saved. If type is "return," a list of augmented images is
returned.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf.jpg")
imgs <- image_augment(img, type = "return", times = 4)
image_combine(imgs)
}

image_binary 47

image_binary Creates a binary image

Description

Reduce a color, color near-infrared, or grayscale images to a binary image using a given color
channel (red, green blue) or even color indexes. The Otsu’s thresholding method (Otsu, 1979) is
used to automatically perform clustering-based image thresholding.

Usage

image_binary(
img,
index = "R",
r = 1,
g = 2,
b = 3,
re = 4,
nir = 5,
return_class = "ebimage",
threshold = c("Otsu", "adaptive"),
k = 0.1,
windowsize = NULL,
has_white_bg = FALSE,
resize = FALSE,
fill_hull = FALSE,
erode = FALSE,
dilate = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
invert = FALSE,
plot = TRUE,
nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

Arguments

img An image object.

index A character value (or a vector of characters) specifying the target mode for con-
version to binary image. See the available indexes with pliman_indexes() and
image_index() for more details.

48 image_binary

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

return_class The class of object to be returned. If "terra returns a SpatRaster object with
the number of layers equal to the number of indexes computed. If "ebimage"
(default) returns a list of Image objects, where each element is one index com-
puted.

threshold The theshold method to be used.
• By default (threshold = "Otsu"), a threshold value based on Otsu’s method

is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

k a numeric in the range 0-1. when k is high, local threshold values tend to be
lower. when k is low, local threshold value tend to be higher.

windowsize windowsize controls the number of local neighborhood in adaptive thresholding.
By default it is set to 1/3 * minxy, where minxy is the minimum dimension of
the image (in pixels).

has_white_bg Logical indicating whether a white background is present. If TRUE, pixels that
have R, G, and B values equals to 1 will be considered as NA. This may be useful
to compute an image index for objects that have, for example, a white back-
ground. In such cases, the background will not be considered for the threshold
computation.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value
as the percentage of desired resizing. For example, if resize = 30, the resized
image will have 30% of the size of original image.

fill_hull Fill holes in the objects? Defaults to FALSE.
erode, dilate, opening, closing, filter

Morphological operations (brush size)
• dilate puts the mask over every background pixel, and sets it to foreground

if any of the pixels covered by the mask is from the foreground.
• erode puts the mask over every foreground pixel, and sets it to background

if any of the pixels covered by the mask is from the background.
• opening performs an erosion followed by a dilation. This helps to remove

small objects while preserving the shape and size of larger objects.
• closing performs a dilatation followed by an erosion. This helps to fill

small holes while preserving the shape and size of larger objects.
• filter performs median filtering in the binary image. Provide a positive

integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

image_combine 49

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

invert Inverts the binary image, if desired.

plot Show image after processing?

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

Value

A list containing binary images. The length will depend on the number of indexes used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Otsu, N. 1979. Threshold selection method from gray-level histograms. IEEE Trans Syst Man
Cybern SMC-9(1): 62–66. doi:10.1109/tsmc.1979.4310076

Shafait, F., D. Keysers, and T.M. Breuel. 2008. Efficient implementation of local adaptive thresh-
olding techniques using integral images. Document Recognition and Retrieval XV. SPIE. p. 317–322
doi:10.1117/12.767755

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
image_binary(img, index = c("R, G"))
}

image_combine Combines images to a grid

Description

Combines several images to a grid

https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1117/12.767755

50 image_create

Usage

image_combine(
...,
labels = NULL,
nrow = NULL,
ncol = NULL,
col = "black",
verbose = TRUE

)

Arguments

... a comma-separated name of image objects or a list containing image objects.

labels A character vector with the same length of the number of objects in ... to
indicate the plot labels.

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

col The color for the plot labels. Defaults to col = "black".

verbose Shows the name of objects declared in ... or a numeric sequence if a list with
no names is provided. Set to FALSE to supress the text.

Value

A grid with the images in ...

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img1 <- image_pliman("sev_leaf.jpg")
img2 <- image_pliman("sev_leaf_nb.jpg")
image_combine(img1, img2)
}

image_create Create an Image object of a given color

Description

image_create() can be used to create an Image object with a desired color and size.

image_expand 51

Usage

image_create(color, width = 200, heigth = 200, plot = FALSE)

Arguments

color either a color name (as listed by grDevices::colors()), or a hexadecimal
string of the form "#rrggbb".

width, heigth The width and heigth of the image in pixel units.

plot Plots the image after creating it? Defaults to FALSE.

Value

An object of class Image.

Examples

if (interactive() && requireNamespace("EBImage")) {
image_create("red")
image_create("#009E73", width = 300, heigth = 100)
}

image_expand Expands an image

Description

Expands an image towards the left, top, right, or bottom by sampling pixels from the image edge.
Users can choose how many pixels (rows or columns) are sampled and how many pixels the expan-
sion will have.

Usage

image_expand(
img,
left = NULL,
top = NULL,
right = NULL,
bottom = NULL,
edge = NULL,
sample_left = 10,
sample_top = 10,
sample_right = 10,
sample_bottom = 10,
random = FALSE,
filter = NULL,
plot = TRUE

)

52 image_index

Arguments

img An Image object.
left, top, right, bottom

The number of pixels to expand in the left, top, right, and bottom directions,
respectively.

edge The number of pixels to expand in all directions. This can be used to avoid
calling all the above arguments

sample_left, sample_top, sample_right, sample_bottom
The number of pixels to sample from each side. Defaults to 20.

random Randomly sampling of the edge’s pixels? Defaults to FALSE.

filter Apply a median filter in the sampled pixels? Defaults to FALSE.

plot Plots the extended image? defaults to FALSE.

Value

An Image object

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
image_expand(img, left = 200)
image_expand(img, right = 150, bottom = 250, filter = 5)
}

image_index Image indexes

Description

image_index() Builds image indexes using Red, Green, Blue, Red-Edge, and NIR bands. See this
page for a detailed list of available indexes.

The S3 method plot() can be used to generate a raster or density plot of the index values computed
with image_index()

Usage

image_index(
img,
index = NULL,
r = 1,
g = 2,
b = 3,

https://nepem-ufsc.github.io/pliman/articles/indexes.html
https://nepem-ufsc.github.io/pliman/articles/indexes.html

image_index 53

re = 4,
nir = 5,
return_class = c("ebimage", "terra"),
resize = FALSE,
has_white_bg = FALSE,
plot = TRUE,
nrow = NULL,
ncol = NULL,
max_pixels = 1e+05,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
...

)

S3 method for class 'image_index'
plot(x, type = c("raster", "density"), nrow = NULL, ncol = NULL, ...)

Arguments

img An Image object. Multispectral mosaics can be converted to an Image object
using mosaic_as_ebimage().

index A character value (or a vector of characters) specifying the target mode for con-
version to a binary image. Use pliman_indexes() or the details section to
see the available indexes. Defaults to NULL (normalized Red, Green, and Blue).
You can also use "RGB" for RGB only, "NRGB" for normalized RGB, "MUL-
TISPECTRAL" for multispectral indices (provided NIR and RE bands are avail-
able) or "all" for all indexes. Users can also calculate their own index using the
band names, e.g., index = "R+B/G".

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

return_class The class of object to be returned. If "terra returns a SpatRaster object with
the number of layers equal to the number of indexes computed. If "ebimage"
(default) returns a list of Image objects, where each element is one index com-
puted.

resize Resize the image before processing? Defaults to resize = FALSE. Use resize
= 50, which resizes the image to 50% of the original size to speed up image
processing.

has_white_bg Logical indicating whether a white background is present. If TRUE, pixels that
have R, G, and B values equals to 1 will be considered as NA. This may be use-
ful to compute an image index for objects that have, for example, a white back-
ground. In such cases, the background will not be considered for the threshold
computation.

plot Show image after processing?

54 image_index

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

max_pixels integer > 0. Maximum number of cells to plot the index. If max_pixels <
npixels(img), downsampling is performed before plotting the index. Using a
large number of pixels may slow down the plotting time.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

... Additional arguments passed to plot_index() for customization.

x An object of class image_index.

type The type of plot. Use type = "raster" (default) to produce a raster plot show-
ing the intensity of the pixels for each image index or type = "density" to
produce a density plot with the pixels’ intensity.

Details

When type = "raster" (default), the function calls plot_index() to create a raster plot for each
index present in x. If type = "density", a for loop is used to create a density plot for each index.
Both types of plots can be arranged in a grid controlled by the ncol and nrow arguments.

Value

A list containing Grayscale images. The length will depend on the number of indexes used.

A NULL object

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. 1979. doi:10.1109/TSMC.1979.4310076

Karcher, D.E., and M.D. Richardson. 2003. Quantifying Turfgrass Color Using Digital Image
Analysis. Crop Science 43(3): 943–951. doi:10.2135/cropsci2003.9430

Bannari, A., D. Morin, F. Bonn, and A.R. Huete. 1995. A review of vegetation indices. Remote
Sensing Reviews 13(1–2): 95–120. doi:10.1080/02757259509532298

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
image_index(img, index = c("R, NR"))

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.2135/cropsci2003.9430
https://doi.org/10.1080/02757259509532298

image_prepare 55

}
if (interactive() && requireNamespace("EBImage")) {
Example for S3 method plot()
library(pliman)
img <- image_pliman("sev_leaf.jpg")
compute the index
ind <- image_index(img, index = c("R, G, B, NGRDI"), plot = FALSE)
plot(ind)

density plot
plot(ind, type = "density")
}

image_prepare Prepare an image

Description

This function aligns and crops the image using either base or mapview visualization. This is useful
to prepare the images to be analyzed with analyze_objects_shp()

Usage

image_prepare(
img,
viewer = get_pliman_viewer(),
downsample = NULL,
max_pixels = 1e+06

)

Arguments

img An optional Image object

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

max_pixels integer > 0. Maximum number of cells to use for the plot. If max_pixels <
npixels(img), regular sampling is used before plotting.

56 image_segment

Value

The alighed/cropped image for further visualization or analysis.

Examples

Example usage:
if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("mult_leaves.jpg")
image_prepare(img, viewer = "mapview")
}

image_segment Image segmentation

Description

• image_segment() reduces a color, color near-infrared, or grayscale images to a segmented
image using a given color channel (red, green blue) or even color indexes (See image_index()
for more details). The Otsu’s thresholding method (Otsu, 1979) is used to automatically per-
form clustering-based image thresholding.

• image_segment_iter() Provides an iterative image segmentation, returning the proportions
of segmented pixels.

Usage

image_segment(
img,
index = NULL,
r = 1,
g = 2,
b = 3,
re = 4,
nir = 5,
threshold = c("Otsu", "adaptive"),
k = 0.1,
windowsize = NULL,
col_background = NULL,
na_background = FALSE,
has_white_bg = FALSE,
fill_hull = FALSE,
erode = FALSE,
dilate = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
invert = FALSE,
plot = TRUE,

image_segment 57

nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

image_segment_iter(
img,
nseg = 2,
index = NULL,
invert = NULL,
threshold = NULL,
k = 0.1,
windowsize = NULL,
has_white_bg = FALSE,
plot = TRUE,
verbose = TRUE,
nrow = NULL,
ncol = NULL,
parallel = FALSE,
workers = NULL,
...

)

Arguments

img An image object or a list of image objects.

index • For image_segment(), a character value (or a vector of characters) spec-
ifying the target mode for conversion to binary image. See the available
indexes with pliman_indexes(). See image_index() for more details.

• For image_segment_iter() a character or a vector of characters with the
same length of nseg. It can be either an available index (described above)
or any operation involving the RGB values (e.g., "B/R+G").

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. Defaults to 1, 2, 3, 4, and 5, respectively. If a multispectral image is
provided (5 bands), check the order of bands, which are frequently presented in
the ’BGR’ format.

threshold The theshold method to be used.

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

58 image_segment

k a numeric in the range 0-1. when k is high, local threshold values tend to be
lower. when k is low, local threshold value tend to be higher.

windowsize windowsize controls the number of local neighborhood in adaptive thresholding.
By default it is set to 1/3 * minxy, where minxy is the minimum dimension of
the image (in pixels).

col_background The color of the segmented background. Defaults to NULL (white background).

na_background Consider the background as NA? Defaults to FALSE.

has_white_bg Logical indicating whether a white background is present. If TRUE, pixels that
have R, G, and B values equals to 1 will be considered as NA. This may be useful
to compute an image index for objects that have, for example, a white back-
ground. In such cases, the background will not be considered for the threshold
computation.

fill_hull Fill holes in the objects? Defaults to FALSE.
erode, dilate, opening, closing, filter

Morphological operations (brush size)
• dilate puts the mask over every background pixel, and sets it to foreground

if any of the pixels covered by the mask is from the foreground.
• erode puts the mask over every foreground pixel, and sets it to background

if any of the pixels covered by the mask is from the background.
• opening performs an erosion followed by a dilation. This helps to remove

small objects while preserving the shape and size of larger objects.
• closing performs a dilatation followed by an erosion. This helps to fill

small holes while preserving the shape and size of larger objects.
• filter performs median filtering in the binary image. Provide a positive

integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

invert Inverts the binary image, if desired. For image_segmentation_iter() use a
vector with the same length of nseg.

plot Show image after processing?

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

nseg The number of iterative segmentation steps to be performed.

... Additional arguments passed on to image_segment().

image_segment_kmeans 59

Value

• image_segment() returns list containing n objects where n is the number of indexes used.
Each objects contains:

– image an image with the RGB bands (layers) for the segmented object.
– mask A mask with logical values of 0 and 1 for the segmented image.

• image_segment_iter() returns a list with (1) a data frame with the proportion of pixels in
the segmented images and (2) the segmented images.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Nobuyuki Otsu, "A threshold selection method from gray-level histograms". IEEE Trans. Sys.,
Man., Cyber. 9 (1): 62-66. 1979. doi:10.1109/TSMC.1979.4310076

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg", plot = TRUE)
image_segment(img, index = c("R, G, B"))
}

image_segment_kmeans Image segmentation using k-means clustering

Description

Segments image objects using clustering by the k-means clustering algorithm

Usage

image_segment_kmeans(
img,
bands = 1:3,
nclasses = 2,
invert = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
fill_hull = FALSE,
plot = TRUE

)

https://doi.org/10.1109/TSMC.1979.4310076

60 image_segment_kmeans

Arguments

img An Image object.
bands A numeric integer/vector indicating the RGB band used in the segmentation.

Defaults to 1:3, i.e., all the RGB bands are used.
nclasses The number of desired classes after image segmentation.
invert Invert the segmentation? Defaults to FALSE. If TRUE the binary matrix is in-

verted.
erode, dilate, opening, closing, filter

Morphological operations (brush size)
• dilate puts the mask over every background pixel, and sets it to foreground

if any of the pixels covered by the mask is from the foreground.
• erode puts the mask over every foreground pixel, and sets it to background

if any of the pixels covered by the mask is from the background.
• opening performs an erosion followed by a dilation. This helps to remove

small objects while preserving the shape and size of larger objects.
• closing performs a dilatation followed by an erosion. This helps to fill

small holes while preserving the shape and size of larger objects.
• filter performs median filtering in the binary image. Provide a positive

integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

fill_hull Fill holes in the objects? Defaults to FALSE.
plot Plot the segmented image?

Value

A list with the following values:

• image The segmented image considering only two classes (foreground and background)
• clusters The class of each pixel. For example, if ncluster = 3, clusters will be a two-way

matrix with values ranging from 1 to 3. masks A list with the binary matrices showing the
segmentation.

References

Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm.
Applied Statistics, 28, 100–108. doi:10.2307/2346830

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("la_leaves.jpg", plot = TRUE)
seg <- image_segment_kmeans(img)
seg <- image_segment_kmeans(img, fill_hull = TRUE, invert = TRUE, filter = 10)
}

https://doi.org/10.2307/2346830

image_segment_manual 61

image_segment_manual Image segmentation by hand

Description

This R code is a function that allows the user to manually segment an image based on the parameters
provided. This only works in an interactive section.

Usage

image_segment_manual(
img,
shape = c("free", "circle", "rectangle"),
type = c("select", "remove"),
viewer = get_pliman_viewer(),
resize = TRUE,
edge = 5,
plot = TRUE

)

Arguments

img An Image object.

shape The type of shape to use. Defaults to "free". Other possible values are "circle"
and "rectangle". Partial matching is allowed.

type The type of segmentation. By default (type = "select") objects are selected.
Use type = "remove" to remove the selected area from the image.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

resize By default, the segmented object is resized to fill the original image size. Use
resize = FALSE to keep the segmented object in the original scale.

edge Number of pixels to add in the edge of the segmented object when resize =
TRUE. Defaults to 5.

plot Plot the segmented object? Defaults to TRUE.

Details

If the shape is "free", it allows the user to draw a perimeter to select/remove objects. If the shape is
"circle", it allows the user to click on the center and edge of the circle to define the desired area. If
the shape is "rectangle", it allows the user to select two points to define the area.

62 image_segment_mask

Value

A list with the segmented image and the mask used for segmentation.

Examples

if (interactive()) {
img <- image_pliman("la_leaves.jpg")
seg <- image_segment_manual(img)
plot(seg$mask)

}

image_segment_mask Segment an Image object using a brush mask

Description

It combines make_mask() and make_brush() to segment an Image object using a brush of desired
size, shape, and position.

Usage

image_segment_mask(
img,
size,
shape = "disc",
rel_pos_x = 0.5,
rel_pos_y = 0.5,
type = c("binary", "shadow"),
col_background = "white",
plot = TRUE,
...

)

Arguments

img A Image object

size A numeric containing the size of the brush in pixels. This should be an odd
number; even numbers are rounded to the next odd one.

shape A character vector indicating the shape of the brush. Can be "box", "disc",
"diamond", "Gaussian" or "line" Defaults to "disc".

rel_pos_x, rel_pos_y
A relative position to include the brush in the image. Defaults to 0.5. This means
that the brush will be centered in the original image. Smaller values move the
brush toward the left and top, respectively.

image_shp 63

type Defines the type of the mask. By default, a binary mask is applied. This results
in white pixels in the original image that matches the 0s pixels in the brush. If
type = "shadow" is used, a shadow mask is produced

col_background Background color after image segmentation. Defaults to "white".

plot Plots the generated mask? Defaults to TRUE.

... Further arguments passed on to EBImage::makeBrush().

Value

A color Image object

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("soybean_touch.jpg")
plot(img)
image_segment_mask(img, size = 601)
image_segment_mask(img,

size = 401,
shape = "diamond",
rel_pos_x = 0,
rel_pos_y = 0,
type = "shadow")

}

image_shp Construct a shape file from an image

Description

Creates a list of object coordinates given the desired number of nrow and columns. It starts by
selecting 4 points at the corners of objects of interest in the plot space. Then, given nrow and ncol,
a grid is drawn and the objects’ coordinates are returned.

Usage

image_shp(
img,
nrow = 1,
ncol = 1,
buffer_x = 0,
buffer_y = 0,
interactive = FALSE,
viewer = get_pliman_viewer(),
col_line = "red",
size_line = 2,
col_text = "red",

64 image_shp

size_text = 1,
plot = TRUE

)

Arguments

img An object of class Image

nrow The number of desired rows in the grid. Defaults to 1.

ncol The number of desired columns in the grid. Defaults to 1.

buffer_x, buffer_y
Buffering factor for the width and height, respectively, of each individual shape’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the shape by 25%
on each side.

interactive If FALSE (default) the grid is created automatically based on the image dimen-
sion and number of rows/columns. If interactive = TRUE, users must draw
points at the diagonal of the desired bounding box that will contain the grid.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

col_line, col_text
The color of the line/text in the grid. Defaults to "red".

size_line, size_text
The size of the line/text in the grid. Defaults to 2.5.

plot Plots the grid on the image? Defaults to TRUE.

Value

A list with row * col objects containing the plot coordinates.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg")
shape <- image_shp(flax, nrow = 3, ncol = 5)
}

image_square 65

image_square Squares an image

Description

Converts a rectangular image into a square image by expanding the rows/columns using image_expand().

Usage

image_square(img, plot = TRUE, ...)

Arguments

img An Image object.

plot Plots the extended image? defaults to FALSE.

... Further arguments passed on to image_expand().

Value

The modified Image object.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
dim(img)
square <- image_square(img)
dim(square)
}

image_thinning_guo_hall

Perform Guo-Hall thinning on a binary image or list of binary images

Description

This function performs the Guo-Hall thinning algorithm (Guo and Hall, 1989) on a binary image or
a list of binary images.

66 image_thinning_guo_hall

Usage

image_thinning_guo_hall(
img,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE,
...

)

Arguments

img The binary image or a list of binary images to be thinned. It can be either a
single binary image of class ’Image’ or a list of binary images.

parallel Logical, whether to perform thinning using multiple cores (parallel processing).
If TRUE, the function will use multiple cores for processing if available. Default
is FALSE.

workers Integer, the number of workers (cores) to use for parallel processing. If NULL
(default), it will use 40% of available cores.

verbose Logical, whether to display progress messages during parallel processing. De-
fault is TRUE.

plot Logical, whether to plot the thinned images. Default is FALSE.

... Additional arguments to be passed to image_binary() if img is not a binary
image.

Value

If img is a single binary image, the function returns the thinned binary image. If img is a list of
binary images, the function returns a list containing the thinned binary images.

References

Guo, Z., and R.W. Hall. 1989. Parallel thinning with two-subiteration algorithms. Commun. ACM
32(3): 359–373. doi:10.1145/62065.62074

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("potato_leaves.jpg", plot = TRUE)
image_thinning_guo_hall(img, index = "R", plot = TRUE)
}

https://doi.org/10.1145/62065.62074

image_to_mat 67

image_to_mat Convert an image to a data.frame

Description

Given an object image, converts it into a data frame where each row corresponds to the intensity
values of each pixel in the image.

Usage

image_to_mat(img, parallel = FALSE, workers = NULL, verbose = TRUE)

Arguments

img An image object.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

Value

A list containing three matrices (R, G, and B), and a data frame containing four columns: the name
of the image in image and the R, G, B values.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf.jpg")
dim(img)
mat <- image_to_mat(img)
dim(mat[[1]])
}

68 image_view

image_view Create an interactive map view of an image

Description

This function allows users to interactively edit and analyze an image using mapview and mapedit
packages.

Usage

image_view(
img,
object = NULL,
r = 1,
g = 2,
b = 3,
edit = FALSE,
alpha = 0.7,
attribute = "area",
title = "Edit the image",
show = c("rgb", "index"),
index = "B",
max_pixels = 1e+06,
downsample = NULL,
color_regions = custom_palette(),
quantiles = c(0, 1),
...

)

Arguments

img An Image object.

object (Optional). An object computed with analyze_objects(). If an object is in-
formed, an additional layer is added to the plot, showing the contour of the
analyzed objects, with a color gradient defined by attribute.

r, g, b The layer for the Red, Green and Blue band, respectively. Defaults to 1, 2, and
3.

edit If TRUE enable editing options using mapedit::editMap().

alpha The transparency level of the rectangles’ color (between 0 and 1).

attribute The name of the quantitative variable in the object_index to be used for color-
ing the rectangles.

title The title of the map view. Use to provide short orientations to the user.

show The display option for the map view. Options are "rgb" for RGB view and
"index" for index view.

index The index to use for the index view. Defaults to "B".

landmarks 69

max_pixels integer > 0. Maximum number of cells to use for the plot. If max_pixels <
npixels(img), regular sampling is used before plotting.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

color_regions The color palette for displaying index values. Default is custom_palette().

quantiles the upper and lower quantiles used for color stretching. Set to c(0, 1)

... Additional arguments to be passed to downsample_fun.

Value

An sf object, the same object returned by mapedit::editMap().

Examples

if (interactive() && requireNamespace("EBImage")) {
Example usage:
img <- image_pliman("sev_leaf.jpg")
image_view(img)
}

landmarks Create image landmarks

Description

An interactive section where the user will be able to click on the image to select landmarks manually
is open. With each mouse click, a point is drawn and an upward counter is shown in the console.
After n counts or after the user press Esc, the interactive process is interrupted and a data.frame
with the x and y coordinates for the landmarks is returned.

Usage

landmarks(
img,
n = Inf,
viewer = get_pliman_viewer(),
scale = NULL,
calibrate = FALSE

)

70 landmarks_add

Arguments

img An Image object.

n The number of landmarks to produce. Defaults to Inf. In this case, landmarks
are chosen up to the user press Esc.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

scale A known scale of the coordinate values. If NULL (default) scale = 1 is used.

calibrate A logical argument indicating whether a calibration step must be performed
before picking up the landmarks. If so, calibrate() is called internally. Users
must then select two points and indicate a known distance. A scale value will
internally be computed and used in the correction of the coordinates (from pixels
to the unit of the known distance).

Value

A data.frame with the x and y-coordinates from the landmarks.

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if(isTRUE(interactive())){
library(pliman)
img <- image_pliman("potato_leaves.jpg")
x <- landmarks(img)
}

landmarks_add Artificially inflates the number of landmarks

Description

Interpolates supplementary landmarks that correspond to the mean coordinates of two adjacent
landmarks.

Usage

landmarks_add(x, n = 3, smooth_iter = 0, plot = TRUE, nrow = NULL, ncol = NULL)

landmarks_angle 71

Arguments

x A matrix, a data.frame a list of perimeter coordinates, often produced with
object_contour(), landmarks(), or landmarks_regradi().

n The number of iterations. Defaults to 3.

smooth_iter The number of smoothing iterations to perform. This will smooth the perimeter
of the interpolated landmarks using poly_smooth().

plot Creates a plot? Defaults to TRUE.

ncol, nrow The number of rows or columns in the plot grid when a list is used in x.
Defaults to NULL, i.e., a square grid is produced.

Value

A Matrix of interpolated coordinates.

Examples

library(pliman)

equally spaced landmarks
plot_polygon(contours[[4]])
ldm <- landmarks_regradi(contours[[4]], plot = FALSE)
points(ldm$coords, pch = 16)
segments(mean(ldm$coords[,1]),

mean(ldm$coords[,2]),
ldm$coords[,1],
ldm$coords[,2])

ldm_add <- landmarks_add(ldm, plot = FALSE)
points(ldm_add, col = "red")
points(ldm$coords, pch = 16)

smoothed version
ldm_add_smo <- landmarks_add(ldm, plot = FALSE, smooth_iter = 10)
lines(ldm_add_smo, col = "blue", lwd = 3)

landmarks_angle Angles between landmarks

Description

Computes the angle from two interlandmark vectors using the difference of their arguments using
complex vectors (Claude, 2008).

Usage

landmarks_angle(x, unit = c("rad", "deg"))

72 landmarks_dist

Arguments

x An object computed with landmarks().

unit The unit of the angle. Defaults to radian (rad). Use unit = "deg" to return the
angles in degrees.

Value

A matrix with the angles for each landmark combination.

Note

Borrowed from Claude (2008), pp. 50

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if(isTRUE(interactive())){
library(pliman)
img <- image_pliman("potato_leaves.jpg")
x <- landmarks(img)
landmarks_angle(x)
}

landmarks_dist Distances between landmarks

Description

Computes the distance between two landmarks as the square root of the sum of the squared differ-
ences between each coordinate (Claude, 2008).

Usage

landmarks_dist(x)

Arguments

x An object computed with landmarks().

Value

A matrix with the distances for each landmark combination.

Note

Borrowed from Claude (2008), pp. 49

landmarks_regradi 73

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

if(isTRUE(interactive())){
library(pliman)
img <- image_pliman("potato_leaves.jpg")
x <- landmarks(img)
landmarks_dist(x)
}

landmarks_regradi Pseudolandmarks with equally spaced angles

Description

Select n landmarks that are spaced with a regular sequence of angles taken between the outline
coordinates and the centroid.

Usage

landmarks_regradi(
x,
n = 50,
close = TRUE,
plot = TRUE,
ncol = NULL,
nrow = NULL

)

Arguments

x A matrix, a data.frame a list of perimeter coordinates, often produced with
object_contour().

n Number of points to be sampled. Defaults to 50.

close Return a closed polygon? Defaults to TRUE.

plot Create a plot? Defaults to TRUE.

ncol, nrow The number of rows or columns in the plot grid when a list is used in x.
Defaults to NULL, i.e., a square grid is produced.

74 leading_zeros

Value

A list with the following objects:

• pixindices: Vector of radius indices.

• radii: Vector of sampled radii lengths.

• Xc: The centroid coordinate of x axis.

• Yc: The centroid coordinate of y axis.

• coords: Coordinates of sampled points arranged in a two-column matrix.

If x is a list, a list of objects described above is returned.

Note

Borrowed from Claude (2008), pp. 53

References

Claude, J. (2008) Morphometrics with R, Use R! series, Springer 316 pp.

Examples

library(pliman)
plot_polygon(contours[[1]])
ldm <- landmarks_regradi(contours)

leading_zeros Add leading zeros to a numeric sequence

Description

Add n leading zeros to a numeric sequence. This is useful to create a character vector to rename
files in a folder.

Usage

leading_zeros(x, n = 3)

Arguments

x A numeric vector or a list of numeric vectors.

n The number of leading zeros to add. Defaults to 3.

Value

A character vector or a list of character vectors.

make_brush 75

Examples

library(pliman)
leading_zeros(1:5)
leading_zeros(list(a = 1:3,

b = 1:5),
n = 2)

make_brush Makes a brush

Description

Generates brushes of various sizes and shapes that can be used as structuring elements. See
EBImage::makeBrush().

Usage

make_brush(size, shape = "disc", ...)

Arguments

size A numeric containing the size of the brush in pixels. This should be an odd
number; even numbers are rounded to the next odd one.

shape A character vector indicating the shape of the brush. Can be "box", "disc",
"diamond", "Gaussian" or "line" Defaults to "disc".

... Further arguments passed on to EBImage::makeBrush().

Value

A 2D matrix of 0s and 1s containing the desired brush.

Examples

if (interactive() && requireNamespace("EBImage")) {
make_brush(size = 51) |> image()
make_brush(size = 51, shape = "diamond") |> image()
}

76 make_mask

make_mask Makes a mask in an image

Description

Make a mask using an Image object and a brush.

Usage

make_mask(img, brush, rel_pos_x = 0.5, rel_pos_y = 0.5, plot = TRUE)

Arguments

img A Image object

brush An object created with make_brush()

rel_pos_x, rel_pos_y
A relative position to include the brush in the image. Defaults to 0.5. This means
that the brush will be centered in the original image. Smaller values move the
brush toward the left and top, respectively.

plot Plots the generated mask? Defaults to TRUE.

Details

It applies a brush to an Image, selecting the Image pixels that match the brush values equal to 1. The
position of the brush in the original image is controlled by the relative positions x (rel_pos_x) and
y (rel_pos_y) arguments. The size of the brush must be smaller or equal to the smaller dimension
of image.

Value

A binary image with 0s and 1s.

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("soybean_touch.jpg")
make_mask(img, brush = make_brush(size = 201))
make_mask(img,

brush = make_brush(size = 401, shape = "diamond"),
rel_pos_x = 0.1,
rel_pos_y = 0.8)

}

measure_disease 77

measure_disease Performs plant disease measurements

Description

• measure_disease() computes the percentage of symptomatic leaf area and (optionally) counts
and compute shapes (area, perimeter, radius, etc.) of lesions in a sample or entire leaf using
color palettes. See more at Details.

• measure_disease_iter() provides an iterative section for measure_disease(), where the
user picks up samples in the image to create the needed color palettes.

Usage

measure_disease(
img,
img_healthy = NULL,
img_symptoms = NULL,
img_background = NULL,
pattern = NULL,
opening = c(10, 0),
closing = c(0, 0),
filter = c(0, 0),
erode = c(0, 0),
dilate = c(0, 0),
parallel = FALSE,
workers = NULL,
resize = FALSE,
fill_hull = TRUE,
index_lb = NULL,
index_dh = "GLI",
has_white_bg = FALSE,
threshold = NULL,
invert = FALSE,
lower_noise = 0.1,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,
randomize = TRUE,
nsample = 3000,
watershed = FALSE,
lesion_size = "medium",
tolerance = NULL,
extension = NULL,
show_features = FALSE,
show_segmentation = FALSE,

78 measure_disease

plot = TRUE,
show_original = TRUE,
show_background = TRUE,
show_contour = TRUE,
contour_col = "white",
contour_size = 1,
col_leaf = NULL,
col_lesions = NULL,
col_background = NULL,
marker = FALSE,
marker_col = NULL,
marker_size = NULL,
save_image = FALSE,
prefix = "proc_",
name = NULL,
dir_original = NULL,
dir_processed = NULL,
verbose = TRUE

)

measure_disease_iter(
img,
has_background = TRUE,
r = 2,
viewer = get_pliman_viewer(),
opening = c(10, 0),
closing = c(0, 0),
filter = c(0, 0),
erode = c(0, 0),
dilate = c(0, 0),
show = "rgb",
index = "NGRDI",
...

)

Arguments

img The image to be analyzed.

img_healthy A color palette of healthy tissues.

img_symptoms A color palette of lesioned tissues.

img_background A color palette of the background (if exists). These arguments can be either
an Image object stored in the global environment or a character value. If a
chacarceter is used (eg., img_healthy = "leaf"), the function will search in the
current working directory a valid image that contains "leaf" in the name. Note
that if two images matches this pattern, an error will occour.

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images that the name matches the pattern (e.g., img1.-

measure_disease 79

, image1.-, im2.-) will be analyzed. Providing any number as pattern (e.g.,
pattern = "1") will select images that are named as 1.-, 2.-, and so on.

erode, dilate, opening, closing, filter
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time,
especially when pattern is used is informed. The number of sections is set up
to 30% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

resize Resize the image before processing? Defaults to FALSE. Use a numeric value of
range 0-100 (proportion of the size of the original image).

fill_hull Fill holes in the image? Defaults to TRUE. This is useful to fill holes in leaves,
e.g., those caused by insect attack, ensuring the hole area will be accounted for
the leaf, not background.

index_lb The index used to segment the foreground (e.g., leaf) from the background. If
not declared, the entire image area (pixels) will be considered in the computation
of the severity.

index_dh The index used to segment diseased from healthy tissues when img_healthy
and img_symptoms are not declared. Defaults to "GLI". See image_index()
for more details.

has_white_bg Logical indicating whether a white background is present. If TRUE, pixels that
have R, G, and B values equals to 1 will be considered as NA. This may be useful
to compute an image index for objects that have, for example, a white back-
ground. In such cases, the background will not be considered for the threshold
computation.

threshold By default (threshold = NULL), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively choose the threshold based on a raster plot

80 measure_disease

showing pixel intensity of the index. Must be a vector of length 2 to indicate the
threshold for index_lb and index_dh, respectively.

invert Inverts the binary image if desired. This is useful to process images with black
background. Defaults to FALSE.

lower_noise By default, lesions with lesser than 10% of the mean area of all lesions are
removed (lower_noise = 0.1). Increasing this value will remove larger lesions.
To define an explicit lower or upper size (in pixel unit), use the lower_size and
upper_size arguments.

lower_size Lower limit for size for the image analysis. Leaf images often contain dirt and
dust. To prevent dust from affecting the image analysis, the lower limit of an-
alyzed size is set to 0.1, i.e., objects with lesser than 10% of the mean of all
objects are removed. One can set a known area or use lower_limit = 0 to se-
lect all objects (not advised).

upper_size Upper limit for size for the image analysis. Defaults to NULL, i.e., no upper limit
used.

topn_lower, topn_upper
Select the top n lesions based on its area. topn_lower selects the n lesions with
the smallest area whereas topn_upper selects the n lesions with the largest area.

randomize Randomize the lines before training the model? Defaults to TRUE.

nsample The number of sample pixels to be used in training step. Defaults to 3000.

watershed If TRUE (Default) implements the Watershed Algorithm to segment lesions con-
nected by a fairly few pixels that could be considered as two distinct lesions.
If FALSE, lesions that are connected by any pixel are considered unique lesions.
For more details see EBImage::watershed().

lesion_size The size of the lesion. Used to automatically tune tolerance and extension
parameters. One of the following. "small" (2-5 mm in diameter, e.g, rust
pustules), "medium" (0.5-1.0 cm in diameter, e.g, wheat leaf spot), "large" (1-2
cm in diameter, and "elarge" (2-3 cm in diameter, e.g, target spot of soybean).

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest. Defaults to NULL,
i.e., starting values are set up according to the argument lesion_size.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Defaults to 20. Higher value smooths out small objects.

show_features If TRUE returnS the lesion features such as number, area, perimeter, and radius.
Defaults to FALSE.

show_segmentation

Shows the object segmentation colored with random permutations. Defaults to
TRUE.

plot Show image after processing? Defaults to TRUE.

show_original Show the symptoms in the original image?
show_background

Show the background? Defaults to TRUE. A white background is shown by de-
fault when show_original = FALSE.

measure_disease 81

show_contour Show a contour line around the lesions? Defaults to TRUE.
contour_col, contour_size

The color and size for the contour line around objects. Defaults to contour_col
= "white" and contour_size = 1.

col_leaf Leaf color after image processing. Defaults to "green"

col_lesions Symptoms color after image processing. Defaults to "red".

col_background Background color after image processing. Defaults to "NULL".
marker, marker_col, marker_size

The type, color and size of the object marker. Defaults to NULL, which shows
nothing. Use marker = "point" to show a point in each lesion or marker =
"*" where "*" is any variable name of the shape data frame returned by the
function.

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

prefix The prefix to be included in the processed images. Defaults to "proc_".

name The name of the image to save. Use this to overwrite the name of the image in
img.

dir_original, dir_processed
The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

verbose If TRUE (default) a summary is shown in the console.

has_background A logical indicating if the image has a background to be segmented before pro-
cessing.

r The radius of neighborhood pixels. Defaults to 2. A square is drawn indicating
the selected pixels.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

show The show option for the mapview viewer, either "rgb" or "index".

index The index to be shown when show = "rgb".

... Further parameters passed on to measure_disease().

Details

In measure_disease(), a general linear model (binomial family) fitted to the RGB values is used
to segment the lesions from the healthy leaf. If a pallet of background is provided, the function

82 measure_disease

takes care of the details to isolate it before computing the number and area of lesions. By using
pattern it is possible to process several images with common pattern names that are stored in the
current working directory or in the subdirectory informed in dir_original.

If img_healthy and img_symptoms are not declared, RGB-based phenotyping of foliar disease
severity is performed using the index informed in index_lb to first segment leaf from background
and index_dh to segment diseased from healthy tissues.

measure_disease_iter() only run in an interactive section. In this function, users will be able
to pick up samples of images to iteratively create the needed color palettes. This process calls
pick_palette() internally. If has_background is TRUE (default) the color palette for the back-
ground is first created. The sample of colors is performed in each left-button mouse click and
continues until the user press Esc. Then, a new sampling process is performed to sample the color
of healthy tissues and then diseased tissues. The generated palettes are then passed on to mea-
sure_disease(). All the arguments of such function can be passed using the ... (three dots).

When show_features = TRUE, the function computes a total of 36 lesion features (23 shape features
and 13 texture features). The Haralick texture features for each object based on a gray-level co-
occurrence matrix (Haralick et al. 1979). See more details in analyze_objects().

Value

• measure_disease() returns a list with the following objects:

– severity A data frame with the percentage of healthy and symptomatic areas.
– shape,statistics If show_features = TRUE is used, returns the shape (area, perimeter,

etc.) for each lesion and a summary statistic of the results.

• measure_disease_iter() returns a list with the following objects:

– results A list with the objects returned by measure_disease().
– leaf The color palettes for the healthy leaf.
– disease The color palettes for the diseased leaf.
– background The color palettes for the background.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf_nb.jpg")
healthy <- image_pliman("sev_healthy.jpg")
lesions <- image_pliman("sev_sympt.jpg")
image_combine(img, healthy, lesions, ncol = 3)

sev <-
measure_disease(img = img,

img_healthy = healthy,
img_symptoms = lesions,
lesion_size = "large",
plot = TRUE)

measure_disease_byl 83

an interactive section
measure_disease_iter(img)
}

measure_disease_byl Performs plant disease measurements by leaf

Description

Computes the percentage of symptomatic leaf area using color palettes or RGB indexes by each leaf
of an image. This allows, for example, processing replicates of the same treatment and obtaining
the results for each replication with a single image. To do that, leaf samples are first splitten with
object_split() and then, measure_disease() is applied to the list of leaves.

Usage

measure_disease_byl(
img,
index = "B",
index_lb = "B",
index_dh = "NGRDI",
lower_size = NULL,
watershed = TRUE,
invert = FALSE,
fill_hull = FALSE,
opening = c(10, 0),
closing = c(0, 0),
filter = c(0, 0),
erode = c(0, 0),
dilate = c(0, 0),
threshold = "Otsu",
extension = NULL,
tolerance = NULL,
object_size = "large",
img_healthy = NULL,
img_symptoms = NULL,
plot = TRUE,
save_image = FALSE,
dir_original = NULL,
dir_processed = NULL,
pattern = NULL,
parallel = FALSE,
workers = NULL,
show_features = FALSE,
verbose = TRUE,
...

)

84 measure_disease_byl

Arguments

img The image to be analyzed.

index A character value specifying the target mode for conversion to binary to segment
the leaves from background. Defaults to "B" (blue). See image_index() for
more details. Personalized indexes can be informed as, e.g., index = "R*G/B.

index_lb The index used to segment the foreground (e.g., leaf) from the background. If
not declared, the entire image area (pixels) will be considered in the computation
of the severity.

index_dh The index used to segment diseased from healthy tissues when img_healthy
and img_symptoms are not declared. Defaults to "GLI". See image_index()
for more details.

lower_size To prevent dust from affecting object segmentation, objects with lesser than 10%
of the mean of all objects are removed. . One can set a known area or use
lower_limit = 0 to select all objects (not advised).

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

threshold The theshold method to be used.

measure_disease_byl 85

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

img_healthy A color palette of healthy tissues.

img_symptoms A color palette of lesioned tissues.

plot Show image after processing?

save_image Save the image after processing? The image is saved in the current working
directory named as proc_* where * is the image name given in img.

dir_original, dir_processed
The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images that the name matches the pattern (e.g., img1.-
, image1.-, im2.-) will be analyzed. Providing any number as pattern (e.g.,
pattern = "1") will select images that are named as 1.-, 2.-, and so on.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time,
especially when pattern is used is informed. The number of sections is set up
to 30% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

show_features If TRUE returnS the lesion features such as number, area, perimeter, and radius.
Defaults to FALSE.

verbose If TRUE (default) a summary is shown in the console.

... Additional arguments passed on to measure_disease().

86 measure_disease_shp

Value

• A list with the following objects:

– severity A data frame with the percentage of healthy and symptomatic areas for each
leaf in the image(s).

– shape,statistics If show_features = TRUE is used, returns the shape (area, perimeter,
etc.) for each lesion and a summary statistic of the results.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("mult_leaves.jpg", plot = TRUE)
sev <-
measure_disease_byl(img = img,

index_lb = "B",
index_dh = "NGRDI",
workers = 2)

sev$severity
}

measure_disease_shp Measure disease using shapefiles

Description

This function calls measure_disease() in each image polygon of a shapefile object generated with
image_shp() and bind the results into read-ready data frames.

Usage

measure_disease_shp(
img,
nrow = 1,
ncol = 1,
buffer_x = 0,
buffer_y = 0,
prepare = FALSE,
viewer = "mapview",
index_lb = "HUE2",
index_dh = "NGRDI",
pattern = NULL,
threshold = NULL,
invert = FALSE,
dir_original = NULL,
show_features = FALSE,

measure_disease_shp 87

interactive = FALSE,
plot = TRUE,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
...

)

Arguments

img The image to be analyzed. Either an image of class Image or a character string
containing the image name. In the last, the image will be searched in the root
directory. Declare dir_original to inform a subfolder that contains the images to
be processed.

nrow, ncol The number of rows and columns to generate the shapefile. Defaults to 1.
buffer_x, buffer_y

Buffering factor for the width and height, respectively, of each individual shape’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the shape by 25%
on each side.

prepare Logical value indicating whether to prepare the image for analysis using image_prepare()
function. This allows to align and crop the image before processing. Defaults to
FALSE.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

index_lb The index used to segment the foreground (e.g., leaf) from the background. If
not declared, the entire image area (pixels) will be considered in the computation
of the severity.

index_dh The index used to segment diseased from healthy tissues when img_healthy
and img_symptoms are not declared. Defaults to "GLI". See image_index()
for more details.

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images that the name matches the pattern (e.g., img1.-
, image1.-, im2.-) will be analyzed. Providing any number as pattern (e.g.,
pattern = "1") will select images that are named as 1.-, 2.-, and so on.

threshold By default (threshold = NULL), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively choose the threshold based on a raster plot
showing pixel intensity of the index. Must be a vector of length 2 to indicate the
threshold for index_lb and index_dh, respectively.

88 measure_injury

invert Inverts the binary image if desired. This is useful to process images with black
background. Defaults to FALSE.

dir_original The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current working
directory.

show_features If TRUE returnS the lesion features such as number, area, perimeter, and radius.
Defaults to FALSE.

interactive If FALSE (default) the grid is created automatically based on the image dimen-
sion and number of rows/columns. If interactive = TRUE, users must draw
points at the diagonal of the desired bounding box that will contain the grid.

plot Show image after processing? Defaults to TRUE.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time,
especially when pattern is used is informed. The number of sections is set up
to 30% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

... Aditional arguments passed on to measure_disease.

Value

An object of class plm_disease_byl. See more details in the Value section of measure_disease().

Examples

if (interactive() && requireNamespace("EBImage")) {
severity for the three leaflets (from left to right)
img <- image_pliman("mult_leaves.jpg", plot = TRUE)
sev <-
measure_disease_shp(img = img,

nrow = 1,
ncol = 3,
index_lb = "B",
index_dh = "NGRDI")

sev$severity
}

measure_injury Measures Injury in Images

Description

The measures_injury function calculates the percentage of injury in images by performing bi-
nary segmentation and identifying lesions. It processes either a single image or a batch of images
specified by a pattern in a directory.

measure_injury 89

Usage

measure_injury(
img = NULL,
pattern = NULL,
index = "GRAY",
threshold = "Otsu",
invert = FALSE,
opening = 5,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
plot = TRUE,
dir_original = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

Arguments

img The image to be analyzed.

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

threshold The theshold method to be used.

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using

90 measure_injury

back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

plot Show image after processing?

dir_original The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current working
directory.

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

workers A positive numeric scalar or a function specifying the number of parallel pro-
cesses that can be active at the same time. By default, the number of sections is
set up to 30% of available cores.

verbose If TRUE (default) a summary is shown in the console.

Details

The function processes each image by reading it, applying binary segmentation to detect lesions,
filling the segmented areas, calculating the injury percentage, and optionally saving the processed
image with highlighted lesions. In batch mode, it uses the provided pattern to identify images in the
specified directory and can utilize parallel processing for efficiency.

Value

A numeric value representing the injury percentage for a single image, or a data frame with injury
percentages for batch processing.

mosaic_aggregate 91

mosaic_aggregate SpatRaster aggregation

Description

Aggregate a SpatRaster to create a new SpatRaster with a lower resolution (larger cells), using the
GDAL’s gdal_translate utility https://gdal.org/programs/gdal_translate.html

Usage

mosaic_aggregate(mosaic, pct = 50, fun = "nearest", in_memory = TRUE)

Arguments

mosaic SpatRaster

pct The size as a fraction (percentage) of the input image size. Either a scalar (eg.,
50), or a length-two numeric vector. In the last, different percentage reduc-
tion/expansion can be used for columns, and rows, respectively.

fun The resampling function. Defaults to nearest, which applies the nearest neigh-
bor (simple sampling) resampler. Other accepted values are: ’average’, ’rms’,
’bilinear’, ’cubic’, ’cubicspline’, ’lanczos’, and ’mode’. See Details for a de-
tailed explanation.

in_memory Wheter to return an ’in-memory’ SpatRaster. If FALSE, the aggregated raster
will be returned as an ’in-disk’ object.

Value

SpatRaster

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
library(terra)
r <- rast()
values(r) <- 1:ncell(r)
r2 <- mosaic_aggregate(r, pct = 10)
opar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
mosaic_plot(r)
mosaic_plot(r2)
par(opar)
}

92 mosaic_analyze

mosaic_analyze Analyze a mosaic of remote sensing data

Description

This function analyzes a mosaic of remote sensing data (UVAs or satellite imagery), extracting
information from specified regions of interest (ROIs) defined in a shapefile or interactively drawn on
the mosaic. It allows counting and measuring individuals (eg., plants), computing canopy coverage,
and statistical summaries (eg., mean, coefficient of variation) for vegetation indices (eg, NDVI) at
a block, plot, individual levels or even extract the raw results at pixel level.

Usage

mosaic_analyze(
mosaic,
r = 3,
g = 2,
b = 1,
re = NA,
nir = NA,
swir = NA,
tir = NA,
crop_to_shape_ext = TRUE,
grid = TRUE,
nrow = 1,
ncol = 1,
plot_width = NULL,
plot_height = NULL,
layout = "lrtb",
indexes = NULL,
shapefile = NULL,
basemap = NULL,
build_shapefile = TRUE,
check_shapefile = TRUE,
buffer_edge = 1,
buffer_col = 0,
buffer_row = 0,
segment_plot = FALSE,
segment_individuals = FALSE,
segment_pick = FALSE,
mask = NULL,
dsm = NULL,
dsm_lower = 0.2,
dsm_upper = NULL,
dsm_window_size = c(5, 5),
simplify = FALSE,
map_individuals = FALSE,

mosaic_analyze 93

map_direction = c("horizontal", "vertical"),
watershed = TRUE,
tolerance = 1,
extension = 1,
include_if = "centroid",
plot_index = "GLI",
segment_index = NULL,
threshold = "Otsu",
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
lower_noise = 0.15,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL,
summarize_fun = "mean",
summarize_quantiles = NULL,
attribute = NULL,
invert = FALSE,
color_regions = rev(grDevices::terrain.colors(50)),
alpha = 1,
max_pixels = 2e+06,
downsample = NULL,
quantiles = c(0, 1),
plot = TRUE,
verbose = TRUE

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().
r, g, b, re, nir, swir, tir

The red, green, blue, red-edge, near-infrared, shortwave Infrared, and thermal
infrared bands of the image, respectively. By default, the function assumes a
BGR as input (b = 1, g = 2, r = 3). If a multispectral image is provided up to
seven bands can be used to compute built-in indexes. There are no limitation of
band numbers if the index is computed using the band name.

crop_to_shape_ext

Crop the mosaic to the extension of shapefile? Defaults to TRUE. This allows for
a faster index computation when the region of the built shapefile is much smaller
than the entire mosaic extension.

grid Logical, indicating whether to use a grid for segmentation (default: TRUE).

nrow Number of rows for the grid (default: 1).

ncol Number of columns for the grid (default: 1).

94 mosaic_analyze

plot_width, plot_height
The width and height of the plot shape (in the mosaic unit). It is mutually exclu-
siv with buffer_col and buffer_row.

layout Character: one of

• 'tblr' for top/bottom left/right orientation
• 'tbrl' for top/bottom right/left orientation
• 'btlr' for bottom/top left/right orientation
• 'btrl' for bottom/top right/left orientation
• 'lrtb' for left/right top/bottom orientation
• 'lrbt' for left/right bottom/top orientation
• 'rltb' for right/left top/bottom orientation
• 'rlbt' for right/left bottom/top orientation

indexes An optional SpatRaster object with the image indexes, computed with mosaic_index().

shapefile An optional shapefile containing regions of interest (ROIs) for analysis.

basemap An optional basemap generated with mosaic_view().
build_shapefile

Logical, indicating whether to interactively draw ROIs if the shapefile is NULL
(default: TRUE).

check_shapefile

Logical, indicating whether to validate the shapefile with an interactive map
view (default: TRUE). This enables live editing of the drawn shapefile by delet-
ing or changing the drawn grids.

buffer_edge Width of the buffer around the shapefile (default: 5).
buffer_col, buffer_row

Buffering factor for the columns and rows, respectively, of each individual plot’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the plot by 25% on
each side.

segment_plot Logical, indicating whether to segment plots (default: FALSE). If TRUE, the
segment_index will be computed, and pixels with values below the threshold
will be selected.

segment_individuals

Logical, indicating whether to segment individuals within plots (default: FALSE).
If TRUE, the segment_index will be computed, and pixels with values below the
threshold will be selected, and a watershed-based segmentation will be per-
formed.

segment_pick When segment_plot or segment_individuals are TRUE, segment_pick al-
lows segmenting background (eg., soil) and foreground (eg., plants) interactively
by picking samples from background and foreground using mosaic_segment_pick()

mask An optional mask (SpatRaster) to mask the mosaic.

dsm A SpatRaster object representing the digital surface model. Must be a single-
layer raster. If a DSM is informed, a mask will be derived from it using mosaic_chm_mask().

dsm_lower A numeric value specifying the lower height threshold. All heights greater than
this value are retained.

mosaic_analyze 95

dsm_upper An optional numeric value specifying the upper height threshold. If provided,
only heights between lower and upper are retained.

dsm_window_size

An integer (meters) specifying the window size (rows and columns, respec-
tively) for creating a DTM using a moving window. Default is c(5, 5).

simplify Removes vertices in polygons to form simpler shapes. The function implemen-
tation uses the Douglas–Peucker algorithm using sf::st_simplify() for sim-
plification.

map_individuals

If TRUE, the distance between objects within plots is computed. The distance
can be mapped either in the horizontal or vertical direction. The distances, co-
efficient of variation (CV), and mean of distances are then returned.

map_direction The direction for mapping individuals within plots. Should be one of "horizontal"
or "vertical" (default).

watershed If TRUE (default), performs watershed-based object detection. This will detect
objects even when they are touching one another. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
A higher value smooths out small objects.

include_if Character vector specifying the type of intersection. Defaults to "centroid" (in-
dividuals in which the centroid is included within the drawn plot will be in-
cluded in that plot). Other possible values include "covered", "overlap", and
"intersect". See Details for a detailed explanation of these intersecting con-
trols.

plot_index The index(es) to be computed for the drawn plots. Either a single vegetation
index (e.g., "GLAI"), a vector of indexes (e.g., c("GLAI", "NGRDI", "HUE")),
or a custom index based on the available bands (e.g., "(R-B)/(R+B)"). See
pliman_indexes() and image_index() for more details.

segment_index The index used for segmentation. The same rule as plot_index. Defaults to
NULL

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
provided, this value will be used as a threshold.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

96 mosaic_analyze

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

lower_noise To prevent noise from affecting the image analysis, objects with lesser than 10%
of the mean area of all objects are removed (lower_noise = 0.1). Increasing
this value will remove larger noises (such as dust points), but can remove desired
objects too. To define an explicit lower or upper size, use the lower_size and
upper_size arguments.

lower_size, upper_size
Lower and upper limits for size for the image analysis. Plant images often con-
tain dirt and dust. Upper limit is set to NULL, i.e., no upper limit used. One can
set a known area or use lower_size = 0 to select all objects (not advised). Ob-
jects that matches the size of a given range of sizes can be selected by setting up
the two arguments. For example, if lower_size = 120 and upper_size = 140,
objects with size greater than or equal 120 and less than or equal 140 will be
considered.

topn_lower, topn_upper
Select the top n objects based on its area. topn_lower selects the n elements
with the smallest area whereas topn_upper selects the n objects with the largest
area.

summarize_fun The function to compute summaries for the pixel values. Defaults to "mean,"
i.e., the mean value of the pixels (either at a plot- or individual-level) is returned.

summarize_quantiles

quantiles to be computed when ’quantile’ is on summarize_fun.

attribute The attribute to be shown at the plot when plot is TRUE. Defaults to the first
summary_fun and first segment_index.

invert Logical, indicating whether to invert the mask. Defaults to FALSE, i.e., pixels
with intensity greater than the threshold values are selected.

color_regions The color palette for regions (default: rev(grDevices::terrain.colors(50))).

alpha opacity of the fill color of the raster layer(s).

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

downsample Downsampling factor to reduce the number of pixels (default: NULL). In this
case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

quantiles the upper and lower quantiles used for color stretching.

plot Logical, indicating whether to generate plots (default: TRUE).

verbose Logical, indicating whether to display verbose output (default: TRUE).

mosaic_analyze 97

Details

Since multiple blocks can be analyzed, the length of arguments grid, nrow, ncol, buffer_edge,
, buffer_col, buffer_row, segment_plot, segment_i, ndividuals, includ_if, threshold,
segment_index, invert, filter, threshold, lower_size, upper_size, watershed, and lower_noise,
can be either an scalar (the same argument applied to all the drawn blocks), or a vector with the same
length as the number of drawn. In the last, each block can be analyzed with different arguments.

When segment_individuals = TRUE is enabled, individuals are included within each plot based
on the include_if argument. The default value ('centroid') includes an object in a given plot
if the centroid of that object is within the plot. This makes the inclusion mutually exclusive (i.e.,
an individual is included in only one plot). If 'covered' is selected, objects are included only if
their entire area is covered by the plot. On the other hand, selecting overlap is the complement
of covered; in other words, objects that overlap the plot boundary are included. Finally, when
intersect is chosen, objects that intersect the plot boundary are included. This makes the inclusion
ambiguous (i.e., an object can be included in more than one plot).

Value

A list containing the following objects:

• result_plot: The results at a plot level.

• result_plot_summ: The summary of results at a plot level. When segment_individuals =
TRUE, the number of individuals, canopy coverage, and mean values of some shape statistics
such as perimeter, length, width, and diameter are computed.

• result_individ: The results at an individual level.

• map_plot: An object of class mapview showing the plot-level results.

• map_individual: An object of class mapview showing the individual-level results.

• shapefile: The generated shapefile, with the drawn grids/blocks.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
url <- "https://github.com/TiagoOlivoto/images/raw/master/pliman/rice_field/rice_ex.tif"
mosaic <- mosaic_input(url)
Draw a polygon (top left, top right, bottom right, bottom left, top left)
include 8 rice lines and one column
res <-
mosaic_analyze(mosaic,

r = 1, g = 2, b = 3,
segment_individuals = TRUE, # segment the individuals
segment_index = "(G-B)/(G+B-R)",# index for segmentation
filter = 4,
nrow = 8,
map_individuals = TRUE)

map with individual results
res$map_indiv
}

98 mosaic_analyze_iter

mosaic_analyze_iter Analyze mosaics iteratively

Description

High-resolution mosaics can take a significant amount of time to analyze, especially when segment_individuals
= TRUE is used in mosaic_analyze(). This is because the function needs to create in-memory arrays
to segment individual using the watershed algorithm. This process utilizes a for-loop approach, iter-
atively analyzing each shape within the mosaic one at a time. To speed up processing, the function
crops the original mosaic to the extent of the current shape before analyzing it. This reduces the
resolution for that specific analysis, sacrificing some detail for faster processing.

Usage

mosaic_analyze_iter(
mosaic,
shapefile,
basemap = NULL,
r = 3,
g = 2,
b = 1,
re = NA,
nir = NA,
swir = NA,
tir = NA,
plot = TRUE,
verbose = TRUE,
max_pixels = 3e+06,
attribute = NULL,
summarize_fun = "mean",
segment_plot = FALSE,
segment_individuals = FALSE,
segment_index = "VARI",
plot_index = "VARI",
color_regions = rev(grDevices::terrain.colors(50)),
alpha = 0.75,
quantiles = c(0, 1),
...

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

shapefile An optional shapefile containing regions of interest (ROIs) for analysis.

basemap An optional basemap generated with mosaic_view().

mosaic_analyze_iter 99

r, g, b, re, nir, swir, tir
The red, green, blue, red-edge, near-infrared, shortwave Infrared, and thermal
infrared bands of the image, respectively. By default, the function assumes a
BGR as input (b = 1, g = 2, r = 3). If a multispectral image is provided up to
seven bands can be used to compute built-in indexes. There are no limitation of
band numbers if the index is computed using the band name.

plot Logical, indicating whether to generate plots (default: TRUE).

verbose Logical, indicating whether to display verbose output (default: TRUE).

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

attribute The attribute to be shown at the plot when plot is TRUE. Defaults to the first
summary_fun and first segment_index.

summarize_fun The function to compute summaries for the pixel values. Defaults to "mean,"
i.e., the mean value of the pixels (either at a plot- or individual-level) is returned.

segment_plot Logical, indicating whether to segment plots (default: FALSE). If TRUE, the
segment_index will be computed, and pixels with values below the threshold
will be selected.

segment_individuals

Logical, indicating whether to segment individuals within plots (default: FALSE).
If TRUE, the segment_index will be computed, and pixels with values below the
threshold will be selected, and a watershed-based segmentation will be per-
formed.

segment_index The index used for segmentation. The same rule as plot_index. Defaults to
NULL

plot_index The index(es) to be computed for the drawn plots. Either a single vegetation
index (e.g., "GLAI"), a vector of indexes (e.g., c("GLAI", "NGRDI", "HUE")),
or a custom index based on the available bands (e.g., "(R-B)/(R+B)"). See
pliman_indexes() and image_index() for more details.

color_regions The color palette for regions (default: rev(grDevices::terrain.colors(50))).

alpha opacity of the fill color of the raster layer(s).

quantiles the upper and lower quantiles used for color stretching.

... Further arguments passed on to mosaic_analyze()

Value

A list containing the following objects:

• result_plot: The results at a plot level.

• result_plot_summ: The summary of results at a plot level. When segment_individuals =
TRUE, the number of individuals, canopy coverage, and mean values of some shape statistics
such as perimeter, length, width, and diameter are computed.

• result_individ: The results at an individual level.

• map_plot: An object of class mapview showing the plot-level results.

• map_individual: An object of class mapview showing the individual-level results.

100 mosaic_chm

mosaic_chm Calculate Canopy Height Model and Volume

Description

This function calculates the canopy height model (CHM) and the volume for a given digital surface
model (DSM) raster layer. Optionally, a digital terrain model (DTM) can be provided or interpolated
using a set of points or a moving window.

Usage

mosaic_chm(
dsm,
dtm = NULL,
points = NULL,
interpolation = c("Tps", "Kriging"),
window_size = c(5, 5),
mask = NULL,
mask_soil = TRUE,
verbose = TRUE

)

Arguments

dsm A SpatRaster object representing the digital surface model. Must be a single-
layer raster.

dtm (optional) A SpatRaster object representing the digital terrain model. Must
be a single-layer raster. If not provided, it can be interpolated from points or
created using a moving window.

points (optional) An sf object representing sample points for DTM interpolation. If
provided, dtm will be interpolated using these points.

interpolation (optional) A character string specifying the interpolation method to use when
points are provided. Options are "Kriging" (default) or "Tps" (Thin Plate
Spline).

window_size An integer (meters) specifying the window size (rows and columns, respec-
tively) for creating a DTM using a moving window. Default is c(10, 10).

mask (optional) A SpatRaster object used to mask the CHM and volume results.
Default is NULL.

mask_soil Is mask representing a soil mask (eg., removing plants)? Default is TRUE.

verbose Return the progress messages. Default is TRUE.

mosaic_chm_extract 101

Details

The function first checks if the input dsm is a valid single-layer SpatRaster object. If dtm is not
provided, The function generates a Digital Terrain Model (DTM) from a Digital Surface Model
(DSM) by downsampling and smoothing the input raster data. It iterates over the DSM matrix in
windows of specified size, finds the minimum value within each window, and assigns these values
to a downsampled matrix. After downsampling, the function applies a mean filter to smooth the
matrix, enhancing the visual and analytical quality of the DTM. Afterwards, DTM is resampled
with the original DSM.

If both dsm and dtm are provided, the function ensures they have the same extent and number of
cells, resampling dtm if necessary. The CHM is then calculated as the difference between dsm
and dtm, and the volume is calculated by multiplying the CHM by the pixel size. The results are
optionally masked using the provided mask.

Value

A SpatRaster object with three layers: dtm (digital terrain model), height (canopy height model),
and volume.

mosaic_chm_extract Extract Canopy Height and Volume

Description

This function extracts canopy height and volume metrics for given plots within a specified shapefile.

Usage

mosaic_chm_extract(chm, shapefile)

Arguments

chm A list object containing the Canopy Height Model (CHM) generated by the
mosaic_chm() function.

shapefile An sf object representing the plot boundaries for which the metrics will be
extracted.

Details

The function uses the exactextractr package to extract canopy height and volume metrics from
the CHM. For each plot in the shapefile, the function computes various statistics on the canopy
height values (e.g., min, max, percentiles, mean, CV, entropy) and sums the volume values. If a
mask was applied in the CHM calculation, the covered area and plot area are also computed.

102 mosaic_chm_mask

Value

A sf object with extracted metrics including minimum, 10th percentile, median (50th percentile),
90th percentile, interquartile range (IQR), mean, maximum canopy height, coefficient of variation
(CV) of canopy height, canopy height entropy, total volume, covered area, plot area, and coverage
percentage. Centroid coordinates (x, y) of each plot are also included.

mosaic_chm_mask Apply a height mask to CHM data

Description

This function applies a height-based mask to a Canopy Height Model (CHM), focusing on areas
with heights above a specified lower threshold and, optionally, below an upper threshold.

Usage

mosaic_chm_mask(
dsm,
lower,
upper = NULL,
window_size = c(5, 5),
interpolation = "Tps"

)

Arguments

dsm A SpatRaster object representing the digital surface model. Must be a single-
layer raster.

lower A numeric value specifying the lower height threshold. All heights greater than
this value are retained.

upper An optional numeric value specifying the upper height threshold. If provided,
only heights between lower and upper are retained.

window_size An integer (meters) specifying the window size (rows and columns, respec-
tively) for creating a DTM using a moving window. Default is c(10, 10).

interpolation (optional) A character string specifying the interpolation method to use when
points are provided. Options are "Kriging" (default) or "Tps" (Thin Plate
Spline).

Details

The mosaic_chm function, used internally, generates the DTM from the DSM by downsampling and
smoothing raster data, applying a moving window to extract minimum values and then interpolating
the results. The CHM is computed as the height difference between the DSM and DTM. This
function calculates and applies a mask based on height thresholds.

mosaic_crop 103

Value

An SpatRaster object representing the masked CHM.

mosaic_crop Crop a mosaic

Description

Crop a SpatRaster object based on user-defined selection using an interactive map or plot.

Usage

mosaic_crop(
mosaic,
r = 3,
g = 2,
b = 1,
re = 4,
nir = 5,
shapefile = NULL,
buffer = 0,
show = c("rgb", "index"),
index = "R",
max_pixels = 5e+05,
downsample = NULL,
...

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().
r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-

tively. By default, the function assumes a BGR as input (b = 1, g = 2, r = 3). If a
multispectral image is provided up to seven bands can be used to compute built-
in indexes. There are no limitation of band numbers if the index is computed
using the band name.

shapefile An optional SpatVector, that can be created with shapefile_input().
buffer A buffering factor to be used when a shapefile is used to crop the mosaic.
show The display option for the map view. Options are "rgb" for RGB view and

"index" for index view.
index The index to use for the index view. Defaults to "B".
max_pixels Maximum number of pixels to render in the map or plot (default: 500000).
downsample Downsampling factor to reduce the number of pixels (default: NULL). In this

case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

... Additional arguments passed to mosaic_view().

104 mosaic_draw

Details

This function uses the mosaic_view function to display an interactive map or plot of the mosaic
raster, allowing users to draw a rectangle to select the cropping area. The selected area is then
cropped from the input mosaic and returned as a new SpatRaster object. If shapefile is declared,
the mosaic will be cropped to the extent of shapefile.

Value

A cropped version of mosaic based on the user-defined selection.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
Load a raster showing the elevation of Luxembourg
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))

Generate an interactive map using 'mapview' (works only in an interactive section)
cropped <- mosaic_crop(mosaic)
mosaic_view(cropped)
}

mosaic_draw Drawing Lines or Polygons with Raster Information

Description

Drawing Lines or Polygons with Raster Information

Usage

mosaic_draw(
mosaic,
r = 3,
g = 2,
b = 1,
re = 4,
nir = 5,
index = "NGRDI",
show = "rgb",
segment = FALSE,
viewer = c("mapview", "base"),
threshold = "Otsu",
invert = FALSE,
summarize_fun = NULL,
buffer = 2,
color_regions = rev(grDevices::terrain.colors(50)),

mosaic_draw 105

alpha = 1,
max_pixels = 1e+06,
downsample = NULL,
quantiles = c(0, 1),
plot = TRUE,
plot_layout = c(1, 2, 3, 3)

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. By default, the function assumes a BGR as input (b = 1, g = 2, r = 3). If a
multispectral image is provided up to seven bands can be used to compute built-
in indexes. There are no limitation of band numbers if the index is computed
using the band name.

index The index to use for the index view. Defaults to "B".

show The display option for the map view. Options are "rgb" for RGB view and
"index" for index view.

segment Should the raster object be segmented? If set to TRUE, pixels within each poly-
gon/rectangle will be segmented based on the threshold argument.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold.

invert Inverts the mask if desired. Defaults to FALSE.

summarize_fun An optional function or character vector. When summarize_fun = "mean", the
mean values of index are calculated within each object. For more details on
available functions, refer to exactextractr::exact_extract().

buffer Adds a buffer around the geometries of the SpatVector created. Note that the
distance unit of buffer will vary according to the CRS of mosaic.

color_regions The color palette for displaying index values. Defaults to rev(grDevices::terrain.colors(50)).

alpha opacity of the fill color of the raster layer(s).

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

downsample Downsampling factor to reduce the number of pixels (default: NULL). In this
case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

106 mosaic_epsg

quantiles the upper and lower quantiles used for color stretching.

plot Plots the draw line/rectangle? Defaults to TRUE.

plot_layout The de plot layout. Defaults to plot_layout = c(1, 2, 3, 3). Ie., the first row
has two plots, and the second row has one plot.

Details

The mosaic_draw function enables you to create mosaic drawings from remote sensing data and
compute vegetation indices.

• If a line is drawn using the "Draw Polyline" tool, the profile of index is displayed on the
y-axis along the line’s distance, represented in meter units. It is important to ensure that
the Coordinate Reference System (CRS) of mosaic has latitude/longitude units for accurate
distance representation.

• If a rectangle or polygon is drawn using the "Draw Rectangle" or "Draw Polygon" tools, the
index values are calculated for each object. By default, the raw data is returned. You can set
the summarize_fun to compute a summary statistic for each object.

Value

An invisible list containing the mosaic, draw_data, distance, distance_profile, geometry, and map.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
Load a raster showing the elevation of Luxembourg
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))

draw a polyline to see the elevation profile along the line
mosaic_draw(mosaic, buffer = 1500)
}

mosaic_epsg Determine EPSG Code for a Mosaic

Description

This function calculates the EPSG code for a given mosaic based on its geographic extent.

Usage

mosaic_epsg(mosaic)

Arguments

mosaic A raster object representing the mosaic for which the EPSG code is to be deter-
mined.

mosaic_extract 107

Details

The function calculates the centroid of the mosaic’s extent, determines the UTM zone based on the
centroid’s longitude, and identifies the hemisphere based on the centroid’s latitude. The EPSG code
is then constructed accordingly.

Value

A character string representing the EPSG code corresponding to the UTM zone and hemisphere of
the mosaic’s centroid. If the mosaic is not in the lon/lat coordinate system, a warning is issued.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
library(terra)

Create a sample mosaic
mosaic <- rast(nrow=10, ncol=10, xmin=-120, xmax=-60, ymin=30, ymax=60)

Get the EPSG code for the mosaic
mosaic_epsg(mosaic)
}

mosaic_extract Extract Values from a Raster Mosaic Using a Shapefile

Description

This function extracts values from a raster mosaic based on the regions defined in a shapefile using
exactextractr::exact_extract().

Usage

mosaic_extract(mosaic, shapefile, fun = "median", ...)

Arguments

mosaic A SpatRaster object representing the raster mosaic from which values will be
extracted.

shapefile A shapefile, which can be a SpatVector or an sf object, defining the regions of
interest for extraction.

fun A character string specifying the summary function to be used for extraction.
Default is "median".

... Additional arguments to be passed to exactextractr::exact_extract().

Value

A data frame containing the extracted values for each region defined in the shapefile.

108 mosaic_index

mosaic_hist A wrapper around terra::hist()

Description

Create a histogram of the values of a SpatRaster.

Usage

mosaic_hist(mosaic, layer, ...)

Arguments

mosaic SpatRaster

layer positive integer or character to indicate layer numbers (or names). If missing,
all layers are used

... Further arguments passed on to terra::hist().

Value

A NULL object

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
r <- mosaic_input(system.file("ex/elev.tif", package="terra"))
mosaic_hist(r)
}

mosaic_index Mosaic Index

Description

Compute or extract an index layer from a multi-band mosaic raster.

Usage

mosaic_index(
mosaic,
index = "R",
r = 3,
g = 2,
b = 1,
re = NA,

mosaic_index 109

nir = NA,
swir = NA,
tir = NA,
plot = TRUE,
in_memory = TRUE,
workers = 1

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

index A character value (or a vector of characters) specifying the target mode for con-
version to a binary image. Use pliman_indexes_rgb() and pliman_indexes_me()
to see the available RGB and multispectral indexes, respectively. Users can also
calculate their own index using R, G, B, RE, NIR, SWIR, and TIR bands
(eg., index = "R+B/G") or using the names of the mosaic’s layers (ex., "(band_1
+ band_2) / 2").

r, g, b, re, nir, swir, tir
The red, green, blue, red-edge, near-infrared, shortwave Infrared, and thermal
infrared bands of the image, respectively. By default, the function assumes a
BGR as input (b = 1, g = 2, r = 3). If a multispectral image is provided up to
seven bands can be used to compute built-in indexes. There are no limitation of
band numbers if the index is computed using the band name.

plot Plot the computed index? Defaults to TRUE.

in_memory Logical, indicating whether the indexes should be computed in memory. De-
faults to TRUE. In most cases, this is 2-3 times faster, but errors can occur if
mosaic is a large SpatRaster. If FALSE, raster algebra operations are performed
on temporary files.

workers numeric. The number of workers you want to use for parallel processing when
computing multiple indexes.

Details

This function computes or extracts an index layer from the input mosaic raster based on the specified
index name. If the index is not found in the package’s predefined index list (see image_index()
for more details), it attempts to compute the index using the specified band indices. The resulting
index layer is returned as an SpatRaster object.

Value

An index layer extracted/computed from the mosaic raster.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
names(mosaic)

110 mosaic_index2

elev2 <- mosaic_index(mosaic, "elevation * 5", plot = FALSE)
oldpar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))

mosaic_plot(mosaic)
mosaic_plot(elev2)

return the original parameters
par(oldpar)
}

mosaic_index2 Mosaic Index with GDAL

Description

Compute or extract an index layer from a multi-band mosaic raster using gdal_calc.py (https://gdal.org/programs/gdal_calc.html).
This requires a Python and GDAL installation.

Usage

mosaic_index2(
mosaic,
index = "B",
r = 3,
g = 2,
b = 1,
re = 4,
nir = 5,
plot = TRUE,
python = Sys.which("python.exe"),
gdal = Sys.which("gdal_calc.py")

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().
index A character value (or a vector of characters) specifying the target mode for con-

version to a binary image. Use pliman_indexes_rgb() and pliman_indexes_me()
to see the available RGB and multispectral indexes, respectively. Users can also
calculate their own index using R, G, B, RE, NIR, SWIR, and TIR bands
(eg., index = "R+B/G") or using the names of the mosaic’s layers (ex., "(band_1
+ band_2) / 2").

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. By default, the function assumes a BGR as input (b = 1, g = 2, r = 3). If a
multispectral image is provided up to seven bands can be used to compute built-
in indexes. There are no limitation of band numbers if the index is computed
using the band name.

mosaic_input 111

plot Plot the computed index? Defaults to TRUE.

python The PATH for python.exe

gdal The PATH for gdal_calc.py

Value

An index layer extracted/computed from the mosaic raster.

Examples

if(interactive() & (Sys.which('python.exe') != '') & (Sys.which('gdal_calc.py') != '')){
library(pliman)
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
names(mosaic) <- "R"
elev2 <- mosaic_index2(mosaic, "R * 5", plot = FALSE)
oldpar <- par(no.readonly=TRUE)
mosaic_plot(mosaic)
mosaic_plot(elev2)
par(mfrow=c(1,2))
}

mosaic_input Create and Export mosaics

Description

Create and Export mosaics

Usage

mosaic_input(
mosaic,
mosaic_pattern = NULL,
info = TRUE,
check_16bits = FALSE,
check_datatype = FALSE,
...

)

mosaic_export(mosaic, filename, datatype = NULL, overwrite = FALSE, ...)

Arguments

mosaic • For mosaic_input(), a file path to the raster to imported, a matrix, array
or a list of SpatRaster objects.

• For mosaic_export(), an SpatRaster object.

mosaic_pattern A pattern name to import multiple mosaics into a list.

112 mosaic_input

info Print the mosaic informations (eg., CRS, extend). Defaults to TRUE

check_16bits Checks if mosaic has maximum value in the 16-bits format (65535), and replaces
it by NA. Defaults to FALSE.

check_datatype Logical. If TRUE, checks and suggests the appropriate data type based on the
raster values.

... Additional arguments passed to terra::rast() (mosaic_input()) or terra::writeRaster()
(mosaic_output())

filename character. The Output filename.

datatype The datatype. By default, the function will try to guess the data type that saves
more memory usage and file size. See terra::writeRaster() and terra::datatype()
for more details.

overwrite logical. If TRUE, filename is overwritten.

Details

• mosaic_input() is a simply wrapper around terra::rast(). It creates a SpatRaster object
from scratch, from a filename, or from another object.

• mosaic_export() is a simply wrapper around terra::writeRaster(). It write a SpatRaster
object to a file.

Value

• mosaic_input() returns an SpatRaster object.

• mosaic_export() do not return an object.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

create an SpatRaster object based on a matrix
x <- system.file("ex/logo.tif", package="terra")
rast <- mosaic_input(x)
mosaic_plot(rast)

create a temporary filename for the example
f <- file.path(tempdir(), "test.tif")
mosaic_export(rast, f, overwrite=TRUE)
list.files(tempdir())
}

mosaic_interpolate 113

mosaic_interpolate Mosaic interpolation

Description

Performs the interpolation of points from a raster object.

Usage

mosaic_interpolate(mosaic, points, method = c("bilinear", "loess", "idw"))

Arguments

mosaic An SpatRaster object

points An sf object with the points for x and y coordinates, usually obtained with
shapefile_build(). Alternatively, an external shapefile imported with shapefile_input()
containing the x and y coordinates can be used. The function will handle most
used shapefile formats (eg., .shp, .rds) and convert the imported shapefile to an
sf object.

method One of "bilinear" (default), "loess" (local regression) or "idw" (Inverse Distance
Weighting).

Value

An SpatRaster object with the same extend and crs from mosaic

mosaic_lonlat2epsg Project a Mosaic from Lon/Lat to EPSG-based CRS

Description

This function projects a given mosaic from the lon/lat coordinate system to an EPSG-based CRS
determined by the mosaic’s extent.

Usage

mosaic_lonlat2epsg(mosaic)

Arguments

mosaic A raster object representing the mosaic to be projected. The mosaic must be in
the lon/lat coordinate system.

114 mosaic_plot

Value

A raster object representing the projected mosaic. If the mosaic is not in the lon/lat coordinate
system, a warning is issued.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(terra)
library(pliman)

Create a sample mosaic
mosaic <- rast(nrow=10, ncol=10, xmin=-120, xmax=-60, ymin=30, ymax=60)

Project the mosaic to the appropriate UTM zone
mosaic_lonlat2epsg(mosaic)
}

mosaic_plot A wrapper around terra::plot()

Description

Plot the values of a SpatRaster

Usage

mosaic_plot(
mosaic,
col = custom_palette(c("red", "yellow", "forestgreen"), n = 200),
smooth = TRUE,
...

)

Arguments

mosaic SpatRaster

col character vector to specify the colors to use. Defaults to custom_palette(c("red",
"yellow", "forestgreen")).

smooth logical. If TRUE (default) the cell values are smoothed (only if a continuous
legend is used).

... Further arguments passed on to terra::plot().

Value

A NULL object

mosaic_plot_rgb 115

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
r <- mosaic_input(system.file("ex/elev.tif", package="terra"))
mosaic_plot(r)
}

mosaic_plot_rgb A wrapper around terra::plotRGB()

Description

Plot the RGB of a SpatRaster

Usage

mosaic_plot_rgb(mosaic, ...)

Arguments

mosaic SpatRaster

... Further arguments passed on to terra::plotRGB().

Value

A NULL object

mosaic_prepare Prepare a mosaic

Description

Prepare an SpatRaster object to be analyzed in pliman. This includes cropping the original mosaic,
aligning it, and cropping the aligned object. The resulting object is an object of class Image that
can be further analyzed.

Usage

mosaic_prepare(
mosaic,
r = 3,
g = 2,
b = 1,
re = 4,
nir = 5,

116 mosaic_prepare

crop_mosaic = TRUE,
align = TRUE,
crop_aligned = TRUE,
rescale = TRUE,
coef = 0,
viewer = "mapview",
max_pixels = 5e+05,
show = "rgb",
index = "R"

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. By default, the function assumes a BGR as input (b = 1, g = 2, r = 3). If a
multispectral image is provided up to seven bands can be used to compute built-
in indexes. There are no limitation of band numbers if the index is computed
using the band name.

crop_mosaic Logical, whether to crop the mosaic interactively before aligning it (default:
FALSE).

align Logical, whether to align the mosaic interactively (default: TRUE).

crop_aligned Logical, whether to crop the aligned mosaic interactively (default: TRUE).

rescale Rescale the final values? If TRUE the final values are rescaled so that the maxi-
mum value is 1.

coef An addition coefficient applied to the resulting object. This is useful to adjust
the brightness of the final image. Defaults to 0.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

show The display option for the map view. Options are "rgb" for RGB view and
"index" for index view.

index The index to use for the index view. Defaults to "B".

Value

A prepared object of class Image.

mosaic_project 117

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
mosaic_prepare(mosaic)
}

mosaic_project Project a Mosaic to a New Coordinate Reference System (CRS)

Description

This function projects a given mosaic to a specified CRS.

Usage

mosaic_project(mosaic, y, ...)

Arguments

mosaic A raster object representing the mosaic to be projected.

y The target CRS to which the mosaic should be projected. This can be specified
in various formats accepted by the terra::project() function.

... Additional arguments passed to the terra::project() function.

Value

A raster object representing the projected mosaic.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(terra)
library(pliman)

Create a sample mosaic
mosaic <- rast(nrow=10, ncol=10, xmin=-120, xmax=-60, ymin=30, ymax=60)
mosaic
Define target CRS (EPSG code for WGS 84 / UTM zone 33N)
target_crs <- "EPSG:32633"

Project the mosaic
projected_mosaic <- mosaic_project(mosaic, "EPSG:32633")
projected_mosaic
}

118 mosaic_segment

mosaic_resample A wrapper around terra::resample()

Description

Transfers values between SpatRaster objects that do not align (have a different origin and/or reso-
lution). See terra::resample() for more details

Usage

mosaic_resample(mosaic, y, ...)

Arguments

mosaic SpatRaster to be resampled

y SpatRaster with the geometry that x should be resampled to

... Further arguments passed on to terra::resample().

Value

SpatRaster

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
library(terra)
r <- rast(nrows=3, ncols=3, xmin=0, xmax=10, ymin=0, ymax=10)
values(r) <- 1:ncell(r)
s <- rast(nrows=25, ncols=30, xmin=1, xmax=11, ymin=-1, ymax=11)
x <- mosaic_resample(r, s, method="bilinear")
opar <- par(no.readonly =TRUE)
par(mfrow=c(1,2))
plot(r)
plot(x)
par(opar)
}

mosaic_segment Segment a mosaic

Description

Segment a SpatRaster using a computed image index. By default, values greater than threshold
are kept in the mask.

mosaic_segment 119

Usage

mosaic_segment(
mosaic,
index = "R",
r = 3,
g = 2,
b = 1,
re = NA,
nir = NA,
swir = NA,
tir = NA,
threshold = "Otsu",
invert = FALSE,
return = c("mosaic", "mask")

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

index A character value (or a vector of characters) specifying the target mode for con-
version to a binary image. Use pliman_indexes_rgb() and pliman_indexes_me()
to see the available RGB and multispectral indexes, respectively. Users can also
calculate their own index using R, G, B, RE, NIR, SWIR, and TIR bands
(eg., index = "R+B/G") or using the names of the mosaic’s layers (ex., "(band_1
+ band_2) / 2").

r, g, b, re, nir, swir, tir
The red, green, blue, red-edge, near-infrared, shortwave Infrared, and thermal
infrared bands of the image, respectively. By default, the function assumes a
BGR as input (b = 1, g = 2, r = 3). If a multispectral image is provided up to
seven bands can be used to compute built-in indexes. There are no limitation of
band numbers if the index is computed using the band name.

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method is
used to reduce the grayscale image to a binary image. If a numeric value is
provided, this value will be used as a threshold.

invert Logical, indicating whether to invert the mask. Defaults to FALSE, i.e., pixels
with intensity greater than the threshold values are selected.

return The output of the function. Either ’mosaic’ (the segmented mosaic), or ’mask’
(the binary mask).

Value

The segmented mosaic (SpatRaster object)

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

120 mosaic_segment_pick

mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
seg <-
mosaic_segment(mosaic,

index = "elevation",
threshold = 350)

mosaic_plot(seg)
}

mosaic_segment_pick Segments a mosaic interactively

Description

The function segments a mosaic using an interative process where the user picks samples from
background (eg., soil) and foreground (eg., plants).

Usage

mosaic_segment_pick(
mosaic,
basemap = NULL,
g = 2,
r = 3,
b = 1,
max_pixels = 2e+06,
downsample = NULL,
quantiles = c(0, 1),
return = c("mosaic", "mask")

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

basemap An optional mapview object.

r, g, b The layer for the Red, Green and Blue band, respectively. Defaults to 1, 2, and
3.

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

downsample Downsampling factor to reduce the number of pixels (default: NULL). In this
case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

quantiles the upper and lower quantiles used for color stretching.

return The output of the function. Either ’mosaic’ (the segmented mosaic), or ’mask’
(the binary mask).

mosaic_to_pliman 121

Value

An SpatRaster object with the segmented mosaic (if return = 'mosaic') or a mask (if return =
'mask').

Examples

if (interactive() && requireNamespace("EBImage")) {
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
seg <- mosaic_segment_pick(mosaic)
mosaic_plot(seg)

}

mosaic_to_pliman Mosaic to pliman

Description

Convert an SpatRaster object to a Image object with optional scaling.

Usage

mosaic_to_pliman(
mosaic,
r = 3,
g = 2,
b = 1,
re = 4,
nir = 5,
rescale = TRUE,
coef = 0

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

r, g, b, re, nir The red, green, blue, red-edge, and near-infrared bands of the image, respec-
tively. By default, the function assumes a BGR as input (b = 1, g = 2, r = 3). If a
multispectral image is provided up to seven bands can be used to compute built-
in indexes. There are no limitation of band numbers if the index is computed
using the band name.

rescale Rescale the final values? If TRUE the final values are rescaled so that the maxi-
mum value is 1.

coef An addition coefficient applied to the resulting object. This is useful to adjust
the brightness of the final image. Defaults to 0.

122 mosaic_to_rgb

Details

This function converts SpatRaster into an Image object, which can be used for image analysis in
pliman. Note that if a large SpatRaster is loaded, the resulting object may increase considerably
the memory usage.

Value

An Image object with the same number of layers as mosaic.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
Convert a mosaic raster to an Image object
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
pliman_image <- mosaic_to_pliman(mosaic)
plot(pliman_image)
}

mosaic_to_rgb Mosaic to RGB

Description

Convert an SpatRaster to a three-band RGB image of class Image.

Usage

mosaic_to_rgb(mosaic, r = 3, g = 2, b = 1, coef = 0, plot = TRUE)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

r, g, b The red, green, blue bands.

coef An addition coefficient applied to the resulting object. This is useful to adjust
the brightness of the final image. Defaults to 0.

plot Logical, whether to display the resulting RGB image (default: TRUE).

Details

This function converts SpatRaster that contains the RGB bands into a three-band RGB image
using pliman (EBImage). It allows you to specify the band indices for the red, green, and blue
channels, as well as apply a scaling coefficient to the final image. By default, the resulting RGB
image is displayed, but this behavior can be controlled using the plot parameter.

mosaic_vectorize 123

Value

A three-band RGB image represented as a pliman (EBImage) object.

Examples

if (interactive() && requireNamespace("EBImage")) {

library(pliman)
Convert a mosaic raster to an RGB image and display it
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))

Convert a mosaic raster to an RGB image without displaying it
rgb_image <- mosaic_to_rgb(c(mosaic * 2, mosaic - 0.3, mosaic * 0.8))
plot(rgb_image)
}

mosaic_vectorize Vectorize a SpatRaster mask to an sf object

Description

Converts a raster mask into a vectorized sf object, with various options for morphological opera-
tions and filtering.

Usage

mosaic_vectorize(
mask,
aggregate = NULL,
watershed = TRUE,
tolerance = 1,
extension = 1,
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
fill_hull = FALSE,
lower_size = NULL,
upper_size = NULL,
topn_lower = NULL,
topn_upper = NULL

)

124 mosaic_vectorize

Arguments

mask An optional mask (SpatRaster) to mask the mosaic.
aggregate The size as a fraction (percentage) of the input image size. Either a scalar (eg.,

50), or a length-two numeric vector. In the last, different percentage reduc-
tion/expansion can be used for columns, and rows, respectively.

watershed If TRUE (default), performs watershed-based object detection. This will detect
objects even when they are touching one another. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
A higher value smooths out small objects.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

fill_hull Fill holes in the binary image? Defaults to FALSE.
lower_size, upper_size

Lower and upper limits for size for the image analysis. Plant images often con-
tain dirt and dust. Upper limit is set to NULL, i.e., no upper limit used. One can
set a known area or use lower_size = 0 to select all objects (not advised). Ob-
jects that matches the size of a given range of sizes can be selected by setting up
the two arguments. For example, if lower_size = 120 and upper_size = 140,
objects with size greater than or equal 120 and less than or equal 140 will be
considered.

topn_lower, topn_upper
Select the top n objects based on its area. topn_lower selects the n elements
with the smallest area whereas topn_upper selects the n objects with the largest
area.

Value

An sf object containing vectorized features from the raster mask, with added area measurements.

mosaic_view 125

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
mask <- image_pliman("mask.tif")
shp <- mosaic_vectorize(mask, watershed = FALSE)
mosaic_plot(mask)
shapefile_plot(shp, add = TRUE, lwd = 3)
}

mosaic_view Mosaic View

Description

Mosaic View

Usage

mosaic_view(
mosaic,
r = 3,
g = 2,
b = 1,
edit = FALSE,
title = "",
shapefile = NULL,
attribute = NULL,
viewer = c("mapview", "base"),
show = c("rgb", "index"),
index = "B",
max_pixels = 1e+06,
downsample = NULL,
downsample_fun = "nearest",
alpha = 1,
quantiles = c(0, 1),
color_regions = custom_palette(c("red", "yellow", "forestgreen")),
axes = FALSE,
...

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

r, g, b The layer for the Red, Green and Blue band, respectively. Defaults to 1, 2, and
3.

126 mosaic_view

edit If TRUE enable editing options using mapedit::editMap().

title A title for the generated map or plot (default: "").

shapefile An optional shapefile of class sf to be plotted over the mosaic. It can be, for
example, a plot-level result returned by mosaic_analyze().

attribute The attribute name(s) or column number(s) in shapefile table of the column(s)
to be rendered.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

show The display option for the map view. Options are "rgb" for RGB view and
"index" for index view.

index The index to use for the index view. Defaults to "B".

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

downsample Downsampling factor to reduce the number of pixels (default: NULL). In this
case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

downsample_fun The resampling function. Defaults to nearest. See further details in mosaic_aggregate().

alpha opacity of the fill color of the raster layer(s).

quantiles the upper and lower quantiles used for color stretching.

color_regions The color palette for displaying index values. Default is custom_palette().

axes logical. Draw axes? Defaults to FALSE.

... Additional arguments passed on to terra::plot() when viewer = "base".

Details

The function can generate either an interactive map using the ’mapview’ package or a static plot
using the ’base’ package, depending on the viewer and show parameters. If show = "index" is used,
the function first computes an image index that can be either an RGB-based index or a multispectral
index, if a multispectral mosaic is provided.

Value

An sf object, the same object returned by mapedit::editMap().

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
Load a raster showing the elevation of Luxembourg

object_edge 127

mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))

Generate an interactive map using 'mapview'
mosaic_view(mosaic)

Generate a static plot using 'base'
mosaic_view(mosaic, viewer = "base")
}

object_edge Object edges

Description

Applies the Sobel-Feldman Operator to detect edges. The operator is based on convolving the image
with a small, separable, and integer-valued filter in the horizontal and vertical directions.

Usage

object_edge(img, sigma = 1, threshold = "Otsu", thinning = FALSE, plot = TRUE)

Arguments

img An image or a list of images of class Image.

sigma Gaussian kernel standard deviation used in the gaussian blur.

threshold The theshold method to be used. If threshold = "Otsu" (default), a threshold
value based on Otsu’s method is used to reduce the grayscale image to a binary
image. If any non-numeric value different than "Otsu" is used, an iterative
section will allow you to choose the threshold based on a raster plot showing
pixel intensity of the index. Alternatively, provide a numeric value to be used as
the threshold value.

thinning Logical value indicating whether a thinning procedure should be applied to the
detected edges. See image_skeleton()

plot Logical value indicating whether a plot should be created

Value

A binary version of image.

References

Sobel, I., and G. Feldman. 1973. A 3×3 isotropic gradient operator for image processing. Pattern
Classification and Scene Analysis: 271–272.

128 object_export

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf_nb.jpg", plot = TRUE)
object_edge(img)
}

object_export Export multiple objects from an image to multiple images

Description

Givin an image with multiple objects, object_export() will split the objects into a list of objects
using object_split() and then export them to multiple images into the current working directory
(or a subfolder). Batch processing is performed by declaring a file name pattern that matches the
images within the working directory.

Usage

object_export(
img,
pattern = NULL,
dir_original = NULL,
dir_processed = NULL,
format = ".jpg",
squarize = FALSE,
augment = FALSE,
times = 12,
index = "NB",
lower_size = NULL,
watershed = FALSE,
invert = FALSE,
fill_hull = FALSE,
opening = 3,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
threshold = "Otsu",
extension = NULL,
tolerance = NULL,
object_size = "medium",
edge = 20,
remove_bg = FALSE,
parallel = FALSE,
verbose = TRUE

)

object_export 129

Arguments

img The image to be analyzed.

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported and pro-
cessed. Providing any number as pattern (e.g., pattern = "1") will select im-
ages that are named as 1.-, 2.-, and so on. An error will be returned if the pattern
matches any file that is not supported (e.g., img1.pdf).

dir_original The directory containing the original images. Defaults to NULL. It can be either
a full path, e.g., "C:/Desktop/imgs", or a subfolder within the current working
directory, e.g., "/imgs".

dir_processed Optional character string indicating a subfolder within the current working di-
rectory to save the image(s). If the folder doesn’t exist, it will be created.

format The format of image to be exported.

squarize Squarizes the image before the exportation? If TRUE, image_square() will be
called internally.

augment A logical indicating if exported objects should be augmented using image_augment().
Defaults to FALSE.

times The number of times to rotate the image.

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

lower_size Plant images often contain dirt and dust. To prevent dust from affecting the
image analysis, objects with lesser than 10% of the mean of all objects are re-
moved. Set lower_limit = 0 to keep all the objects.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

130 object_export

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

threshold The theshold method to be used.

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

edge The number of pixels to be added in the edge of the segmented object. Defaults
to 5.

remove_bg If TRUE, the pixels that are not part of objects are converted to white.

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

verbose If TRUE (default) a summary is shown in the console.

Value

A NULL object.

object_export_shp 131

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("potato_leaves.jpg")
object_export(img,

remove_bg = TRUE)
}

object_export_shp Export multiple objects from an image to multiple images

Description

Givin an image with multiple objects, object_export_shp() will split the objects into a list of
objects using object_split_shp() and then export them to multiple images into the current work-
ing directory (or a subfolder). Batch processing is performed by declaring a file name pattern that
matches the images within the working directory.

Usage

object_export_shp(
img,
pattern = NULL,
dir_original = NULL,
dir_processed = NULL,
format = ".jpg",
subfolder = NULL,
squarize = FALSE,
nrow = 1,
ncol = 1,
buffer_x = 0,
buffer_y = 0,
interactive = FALSE,
parallel = FALSE,
verbose = TRUE,
viewer = get_pliman_viewer()

)

Arguments

img An object of class Image

pattern A pattern of file name used to identify images to be processed. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported and pro-
cessed. Providing any number as pattern (e.g., pattern = "1") will select im-
ages that are named as 1.-, 2.-, and so on. An error will be returned if the pattern
matches any file that is not supported (e.g., img1.pdf).

132 object_export_shp

dir_original The directory containing the original images. Defaults to NULL. It can be either
a full path, e.g., "C:/Desktop/imgs", or a subfolder within the current working
directory, e.g., "/imgs".

dir_processed Optional character string indicating a subfolder within the current working di-
rectory to save the image(s). If the folder doesn’t exist, it will be created.

format The format of image to be exported.

subfolder Optional character string indicating a subfolder within the current working di-
rectory to save the image(s). If the folder doesn’t exist, it will be created.

squarize Squarizes the image before the exportation? If TRUE, image_square() will be
called internally.

nrow The number of desired rows in the grid. Defaults to 1.

ncol The number of desired columns in the grid. Defaults to 1.
buffer_x, buffer_y

Buffering factor for the width and height, respectively, of each individual shape’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the shape by 25%
on each side.

interactive If FALSE (default) the grid is created automatically based on the image dimen-
sion and number of rows/columns. If interactive = TRUE, users must draw
points at the diagonal of the desired bounding box that will contain the grid.

parallel If TRUE processes the images asynchronously (in parallel) in separate R sessions
running in the background on the same machine. It may speed up the processing
time, especially when pattern is used is informed. When object_index is
informed, multiple sections will be used to extract the RGB values for each
object in the image. This may significantly speed up processing time when an
image has lots of objects (say >1000).

verbose If TRUE (default) a summary is shown in the console.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

Value

A NULL object.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg", plot = TRUE)
object_export_shp(flax)

object_label 133

}

object_label Labels objects

Description

All pixels for each connected set of foreground (non-zero) pixels in x are set to an unique increasing
integer, starting from 1. Hence, max(x) gives the number of connected objects in x. This is a
wrapper to EBImage::bwlabel or EBImage::watershed (if watershed = TRUE).

Usage

object_label(
img,
index = "B",
invert = FALSE,
fill_hull = FALSE,
threshold = "Otsu",
k = 0.1,
windowsize = NULL,
opening = FALSE,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
watershed = FALSE,
tolerance = NULL,
extension = NULL,
object_size = "medium",
plot = TRUE,
ncol = NULL,
nrow = NULL,
verbose = TRUE

)

Arguments

img An image object.

index A character value (or a vector of characters) specifying the target mode for con-
version to binary image. See the available indexes with pliman_indexes() and
image_index() for more details.

invert Inverts the binary image, if desired.

fill_hull Fill holes in the objects? Defaults to FALSE.

threshold The theshold method to be used.

134 object_label

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

k a numeric in the range 0-1. when k is high, local threshold values tend to be
lower. when k is low, local threshold value tend to be higher.

windowsize windowsize controls the number of local neighborhood in adaptive thresholding.
By default it is set to 1/3 * minxy, where minxy is the minimum dimension of
the image (in pixels).

erode, dilate, opening, closing, filter
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

plot Show image after processing?

object_map 135

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

verbose If TRUE (default) a summary is shown in the console.

Value

A list with the same length of img containing the labeled objects.

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("soybean_touch.jpg")
segment the objects using the "B" (blue) band.
object_label(img, index = "B")
object_label(img, index = "B", watershed = TRUE)
}

object_map Map Object Distances

Description

Computes distances between objects in an anal_obj object and returns a list of distances, coeffi-
cient of variation (CV), and means.

Usage

object_map(object, by_column = "img", direction = c("horizontal", "vertical"))

Arguments

object An anal_obj object computed with analyze_objects_shp().

by_column The column name in the object’s results data frame to group objects by. Default
is "img".

direction The direction of mapping. Should be one of "horizontal" or "vertical". Default
is "horizontal".

Value

A list with the following components:

distances A list of distances between objects grouped by unique values in the specified
column/row.

cvs A vector of coefficient of variation (CV) values for each column/row.

means A vector of mean distances for each column/row.

136 object_mark

See Also

analyze_objects_shp

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg", plot =TRUE)
res <-

analyze_objects_shp(flax,
nrow = 3,
ncol = 1,
watershed = FALSE,
index = "R/(G/B)",
plot = FALSE)

plot(res$final_image_mask)
plot(res$shapefiles)

distance from each leave within each row
result <- object_map(res)
result$distances
result$cvs
result$means
}

object_mark Mark Object Points

Description

Marks the coordinates of objects in an anal_obj object on a plot.

Usage

object_mark(object, col = "white")

Arguments

object An anal_obj object computed with analyze_objects_shp() or analyze_objects_shp().

col The color of the marked points. Default is "white".

See Also

analyze_objects_shp

object_rgb 137

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg", plot =TRUE)
res <-

analyze_objects(flax,
watershed = FALSE,
index = "R/(G/B)",
plot = FALSE)

object_mark(res)
}

object_rgb Extract red, green and blue values from objects

Description

Given an image and a matrix of labels that identify each object, the function extracts the red, green,
and blue values from each object.

Usage

object_rgb(img, labels)

Arguments

img An Image object

labels A mask containing the labels for each object. This can be obtained with EBImage::bwlabel()
or EBImage::watershed()

Value

A data.frame with n rows (number of pixels for all the objects) and the following columns:

• id: the object id;

• R: the value for the red band;

• G: the value for the blue band;

• B: the value for the green band;

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
segment the objects using the "B" (blue) band (default)

labs <- object_label(img, watershed = TRUE)
rgb <- object_rgb(img, labs[[1]])

138 object_split

head(rgb)
}

object_split Splits objects from an image into multiple images

Description

Using threshold-based segmentation, objects are first isolated from background. Then, a new image
is created for each single object. A list of images is returned.

Usage

object_split(
img,
index = "NB",
lower_size = NULL,
watershed = TRUE,
invert = FALSE,
fill_hull = FALSE,
opening = 3,
closing = FALSE,
filter = FALSE,
erode = FALSE,
dilate = FALSE,
threshold = "Otsu",
extension = NULL,
tolerance = NULL,
object_size = "medium",
edge = 3,
remove_bg = FALSE,
plot = TRUE,
verbose = TRUE,
...

)

Arguments

img The image to be analyzed.

index A character value specifying the target mode for conversion to binary image
when foreground and background are not declared. Defaults to "NB" (normal-
ized blue). See image_index() for more details. User can also calculate your
own index using the bands names, e.g. index = "R+B/G"

lower_size Plant images often contain dirt and dust. To prevent dust from affecting the
image analysis, objects with lesser than 10% of the mean of all objects are re-
moved. Set lower_limit = 0 to keep all the objects.

object_split 139

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each
connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

invert Inverts the binary image if desired. This is useful to process images with a black
background. Defaults to FALSE. If reference = TRUE is use, invert can be
declared as a logical vector of length 2 (eg., invert = c(FALSE, TRUE). In
this case, the segmentation of objects and reference from the foreground using
back_fore_index is performed using the default (not inverted), and the seg-
mentation of objects from the reference is performed by inverting the selection
(selecting pixels higher than the threshold).

fill_hull Fill holes in the binary image? Defaults to FALSE. This is useful to fill holes in
objects that have portions with a color similar to the background. IMPORTANT:
Objects touching each other can be combined into one single object, which may
underestimate the number of objects in an image.

opening, closing, filter, erode, dilate
Morphological operations (brush size)

• dilate puts the mask over every background pixel, and sets it to foreground
if any of the pixels covered by the mask is from the foreground.

• erode puts the mask over every foreground pixel, and sets it to background
if any of the pixels covered by the mask is from the background.

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

threshold The theshold method to be used.

• By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value
is informed, this value will be used as a threshold.

• If threshold = "adaptive", adaptive thresholding (Shafait et al. 2008) is
used, and will depend on the k and windowsize arguments.

• If any non-numeric value different than "Otsu" and "adaptive" is used,
an iterative section will allow you to choose the threshold based on a raster
plot showing pixel intensity of the index.

extension Radius of the neighborhood in pixels for the detection of neighboring objects.
Higher value smooths out small objects.

tolerance The minimum height of the object in the units of image intensity between its
highest point (seed) and the point where it contacts another object (checked for
every contact pixel). If the height is smaller than the tolerance, the object will
be combined with one of its neighbors, which is the highest.

140 object_split_shp

object_size The size of the object. Used to automatically set up tolerance and extension
parameters. One of the following. "small" (e.g, wheat grains), "medium"
(e.g, soybean grains), "large"(e.g, peanut grains), and "elarge" (e.g, soybean
pods)‘.

edge The number of pixels to be added in the edge of the segmented object. Defaults
to 5.

remove_bg If TRUE, the pixels that are not part of objects are converted to white.
plot Show image after processing?
verbose If TRUE (default) a summary is shown in the console.
... Additional arguments passed on to image_combine()

Value

A list of objects of class Image.

See Also

analyze_objects(), image_binary()

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("la_leaves.jpg", plot = TRUE)
imgs <- object_split(img) # set to NULL to use 50% of the cores
}

object_split_shp Splits image objects based on a shape file

Description

Here, image_shp() is used to create a shape file based on the desired number of rows and columns.
Then, using the object coordinates, a list of Image objects is created.

Usage

object_split_shp(
img,
nrow = 1,
ncol = 1,
buffer_x = 0,
buffer_y = 0,
interactive = FALSE,
viewer = get_pliman_viewer(),
only_shp = FALSE,
...

)

object_to_color 141

Arguments

img An object of class Image

nrow The number of desired rows in the grid. Defaults to 1.

ncol The number of desired columns in the grid. Defaults to 1.
buffer_x, buffer_y

Buffering factor for the width and height, respectively, of each individual shape’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the shape by 25%
on each side.

interactive If FALSE (default) the grid is created automatically based on the image dimen-
sion and number of rows/columns. If interactive = TRUE, users must draw
points at the diagonal of the desired bounding box that will contain the grid.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

only_shp If TRUE returns only the shapefiles with the coordinates for each image. If FALSE
(default) returns the splitted image according to nrow and ncol arguments.

... Other arguments passed on to image_shp()

Value

A list of Image objects

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg", plot = TRUE)
objects <- object_split_shp(flax, nrow = 3, ncol = 5)
image_combine(objects$imgs)
}

object_to_color Apply color to image objects

Description

The function applies the color informed in the argument color to segmented objects in the image.
The segmentation is performed using image indexes. Use image_index() to identify the better
candidate index to segment objects.

142 otsu

Usage

object_to_color(img, index = "NB", color = "blue", plot = TRUE, ...)

Arguments

img An image object.

index A character value (or a vector of characters) specifying the target mode for con-
version to binary image. See the available indexes with pliman_indexes() and
image_index() for more details.

color The color to apply in the image objects. Defaults to "blue".

plot Plots the modified image? Defaults to TRUE.

... Additional arguments passed on to image_binary().

Value

An object of class Image

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("la_leaves.jpg")
img2 <- object_to_color(img, index = "G-R")
image_combine(img, img2)
}

otsu Calculate Otsu’s threshold

Description

Given a numeric vector with the pixel’s intensities, returns the threshold value based on Otsu’s
method, which minimizes the combined intra-class variance

Usage

otsu(values)

Arguments

values A numeric vector with the pixel values.

Value

A double (threshold value).

palettes 143

References

Otsu, N. 1979. Threshold selection method from gray-level histograms. IEEE Trans Syst Man
Cybern SMC-9(1): 62–66. doi: doi:10.1109/tsmc.1979.4310076

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("soybean_touch.jpg")
thresh <- otsu(img@.Data[,,3])
plot(img[,,3] < thresh)
}

palettes Create image palettes

Description

image_palette() creates image palettes by applying the k-means algorithm to the RGB values.

Usage

image_palette(
img,
pattern = NULL,
npal = 5,
proportional = TRUE,
colorspace = c("rgb", "hsb"),
remove_bg = FALSE,
index = "B",
plot = TRUE,
save_image = FALSE,
prefix = "proc_",
dir_original = NULL,
dir_processed = NULL,
return_pal = FALSE,
parallel = FALSE,
workers = NULL,
verbose = TRUE

)

Arguments

img An image object.

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.

https://doi.org/10.1109/tsmc.1979.4310076

144 palettes

Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

npal The number of color palettes.
proportional Creates a joint palette with proportional size equal to the number of pixels in the

image? Defaults to TRUE.
colorspace The color space to produce the clusters. Defaults to rgb. If hsb, the color space

is first converted from RGB > HSB before k-means algorithm be applied.
remove_bg Remove background from the color palette? Defaults to FALSE.
index An image index used to remove the background, passed to image_binary().
plot Plot the generated palette? Defaults to TRUE.
save_image Save the image after processing? The image is saved in the current working

directory named as proc_* where * is the image name given in img.
prefix The prefix to be included in the processed images. Defaults to "proc_".
dir_original, dir_processed

The directory containing the original and processed images. Defaults to NULL.
In this case, the function will search for the image img in the current work-
ing directory. After processing, when save_image = TRUE, the processed im-
age will be also saved in such a directory. It can be either a full path, e.g.,
"C:/Desktop/imgs", or a subfolder within the current working directory, e.g.,
"/imgs".

return_pal Return the color palette image? Defaults to FALSE.
parallel If TRUE processes the images asynchronously (in parallel) in separate R ses-

sions running in the background on the same machine.
workers A positive numeric scalar or a function specifying the number of parallel pro-

cesses that can be active at the same time. By default, the number of sections is
set up to 30% of available cores.

verbose If TRUE (default) a summary is shown in the console.

Value

image_palette() returns a list with two elements:

• palette_list A list with npal color palettes of class Image.
• joint An object of class Image with the color palettes
• proportions The proportion of the entire image corresponding to each color in the palette
• rgbs The average RGB value for each palette

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf.jpg")
pal <- image_palette(img, npal = 5)
}

pipe 145

pipe Forward-pipe operator

Description

Pipe an object forward into a function or call expression.

Usage

lhs %>% rhs

Arguments

lhs The result you are piping.

rhs Where you are piping the result to.

Author(s)

Nathan Eastwood <nathan.eastwood@icloud.com> and Antoine Fabri <antoine.fabri@gmail.com>.
The code was obtained from poorman package at https://github.com/nathaneastwood/poorman/
blob/master/R/pipe.R

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

Basic use:
iris %>% head()

use to apply several functions to an image
img <- image_pliman("la_leaves.jpg")

img %>%
image_resize(50) %>% # resize to 50% of the original size
object_isolate(id = 1) %>% # isolate object 1
image_filter() %>% # apply a median filter
plot() # plot

}

https://github.com/nathaneastwood/poorman/blob/master/R/pipe.R
https://github.com/nathaneastwood/poorman/blob/master/R/pipe.R

146 pixel_index

pixel_index Get the pixel indices for a given row of a binary image

Description

This function finds the first row in the bin matrix that has a value greater than 0 (TRUE). It then
calculates the minimum, median, and maximum values for the pixels in that row and creates an array
containing the row index, the minimum pixel index, the median pixel index, and the maximum pixel
index.

Usage

pixel_index(bin, row = NULL, direction = "updown")

Arguments

bin A logical matrix representing a binary image

row An optional row index. If not provided, the function selects the first non-zero
row.

direction The direction for row selection when row is not provided. If set to "updown",
the function starts scanning from the top of the image towards the bottom. If set
to "downup", the function starts scanning from the bottom towards the top.

Value

A numeric vector containing the row index, the minimum pixel index, the median pixel index, and
the maximum pixel index.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
leaf <- image_pliman("sev_leaf.jpg")
bin <- image_binary(leaf, "NB")[[1]]

first row with leaf (17)
pixel_index(bin)

index at the row 100
pixel_index(bin, row = 100)

plot(leaf)
points(x = 248, y = 17, pch = 16, col = "red", cex = 2)
points(x = 163, y = 100, pch = 16, col = "red", cex = 2)
points(x = 333, y = 100, pch = 16, col = "red", cex = 2)
}

pliman_images 147

pliman_images Sample images

Description

Sample images installed with the pliman package

Format
*.jpg format

• flax_leaves.jpg Flax leaves in a white background

• flax_grains.jpg Flax grains with background light.

• la_back.jpg A cyan palette representing the background of images la_pattern, la_leaves, and
soybean_touch.

• la_leaf.jpg A sample of the leaves in la_leaves

• la_leaves.jpg Tree leaves with a sample of known area.

• mult_leaves.jpg Three soybean leaflets with soybean rust symptoms.

• objects_300dpi.jpg An image with 300 dpi resolution.

• potato_leaves.jpg Three potato leaves, which were gathered from Gupta et al. (2020).

• sev_leaf.jpg A soybean leaf with a blue background.

• sev_leaf_nb.jpg A soybean leaf without background.

• sev_back.jpg A blue palette representing the background of sev_leaf.

• sev_healthy.jpg Healthy area of sev_leaf.

• sev_sympt.jpg The symptomatic area sev_leaf.

• shadow.jpg A shaded leaf, useful to test adaptive thresholding

• soy_green.jpg Soybean grains with a white background.

• soybean_grain.jpg A sample palette of the grains in soy_green.

• soybean_touch.jpg Soybean grains with a cyan background touching one each other.

• field_mosaic.jpg An UVA image from a soybean field.

*.tif format

The following .tif files are provided as sample data, representing a slice from a large orthomosaic
with soybean plots in the vegetative stage. These files were kindly provided by Arthur Bernardeli.

• ortho.tif: An orthomosaic with soybean plots (5 rows and 3 columns).

• dsm.tif: A digital surface model (DSM) for the soybean plots.

• dtm.tif: A digital terrain model (DTM) for the area.

• mask.tif: A mask that represents the soybean plants.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

148 pliman_viewer

Source

Personal data, Gupta et al. (2020).

References

Gupta, S., Rosenthal, D. M., Stinchcombe, J. R., & Baucom, R. S. (2020). The remarkable mor-
phological diversity of leaf shape in sweet potato (Ipomoea batatas): the influence of genetics,
environment, and G×E. New Phytologist, 225(5), 2183–2195. doi:10.1111/NPH.16286

pliman_indexes_ican_compute

List Computable Indexes Based on Available Bands

Description

This function reads index equations from a CSV file included in the pliman package, determines
which bands are used in each index equation, and checks which indexes can be computed based on
the provided available bands.

Usage

pliman_indexes_ican_compute(available)

Arguments

available A character vector of available bands (e.g., c("R", "G")).

Value

A data frame of indexes that can be computed with the available bands.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
available_bands <- c("R", "G")
computable_indexes <- pliman_indexes_ican_compute(available_bands)
print(computable_indexes)
}

pliman_viewer Global option for controlling the viewer in pliman package

Description

Users can set the value of this option using options("pliman_viewer", value). The default
value is "base". Use "mapview" to allow image to be plotted/edited using the R packages mapview
and mapedit

https://doi.org/10.1111/NPH.16286

plot.image_shp 149

plot.image_shp S3 method plot for image_shp objects

Description

Draws the bounding boxes for each object computed with image_shp().

Usage

S3 method for class 'image_shp'
plot(
x,
img = NULL,
col_line = "black",
size_line = 2,
col_text = "black",
size_text = 0.75,
...

)

Arguments

x An object computed with image_shp().

img The image that was used to compute the shapefile (optional)
col_line, col_text

The color of the line/text in the grid. Defaults to "red".
size_line, size_text

The size of the line/text in the grid. Defaults to 2.5.

... Currently not used.

Value

A NULL object

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
flax <- image_pliman("flax_leaves.jpg")
shape <- image_shp(flax, nrow = 3, ncol = 5)

grid on the existing image
plot(flax)
plot(shape)
}

150 plot_id

plot_id Generate plot IDs with different layouts

Description

Based on a shapefile, number of columns and rows, generate plot IDs with different layouts.

Usage

plot_id(
shapefile,
nrow,
ncol,
layout = c("tblr", "tbrl", "btlr", "btrl", "lrtb", "lrbt", "rltb", "rlbt"),
plot_prefix = "P",
serpentine = FALSE

)

Arguments

shapefile An object computed with shapefile_build()

nrow The number of columns

ncol The number of rows

layout Character: one of

• 'tblr' for top/bottom left/right orientation
• 'tbrl' for top/bottom right/left orientation
• 'btlr' for bottom/top left/right orientation
• 'btrl' for bottom/top right/left orientation
• 'lrtb' for left/right top/bottom orientation
• 'lrbt' for left/right bottom/top orientation
• 'rltb' for right/left top/bottom orientation
• 'rlbt' for right/left bottom/top orientation

plot_prefix The plot_id prefix. Defaults to 'P'.

serpentine Create a serpentine-based layout? Defaults to FALSE.

Value

A vector of plot IDs with specified layout

plot_index 151

plot_index Plot an image index

Description

Plot an image index

Usage

plot_index(
img = NULL,
object = NULL,
index = NULL,
remove_bg = TRUE,
viewer = get_pliman_viewer(),
all_layers = TRUE,
layer = 1,
max_pixels = 1e+06,
downsample = NULL,
downsample_fun = NULL,
color_regions = custom_palette(n = 100),
ncol = NULL,
nrow = NULL,
aspect_ratio = NA

)

Arguments

img An optional Image object or an object computed with image_index(). If object
is provided, then the input image is obtained internally.

object An object computed with analyze_objects() using the argument return_mask
= TRUE.

index The index to plot. Defaults to the index computed from the object if provided.
Otherwise, the B index is computed. See image_index() for more details.

remove_bg Logical value indicating whether to remove the background when object is
provided. Defaults to TRUE.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

all_layers Render all layers when img is an object computed with image_index() and
viewer = "mapview"?.

152 plot_index_shp

layer The layer to plot when img is an object computed with image_index() and
viewer = "mapview". Defaults to the first layer (first index computed).

max_pixels integer > 0. Maximum number of cells to plot the index. If max_pixels <
npixels(img), downsampling is performed before plotting the index. Using a
large number of pixels may slow down the plotting time.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

downsample_fun function; if given, downsampling will apply downsample_fun`` to each of the
the subtiles.

color_regions The color palette for displaying index values. Default is custom_palette().

nrow, ncol The number of rows or columns in the plot grid. Defaults to NULL, i.e., a square
grid is produced.

aspect_ratio Numeric, giving the aspect ratio y/x. Defaults to NA. See graphics::plot.window()
for more details.

Value

None

Examples

if (interactive() && requireNamespace("EBImage")) {
Example usage:
library(pliman)
img <- image_pliman("sev_leaf.jpg")
plot_index(img, index = c("R", "G"))
}

plot_index_shp Plot rectangles colored by a quantitative attribute and overlay on an
RGB image

Description

This function plots rectangles on top of an RGB image, where each rectangle is colored based on a
quantitative variable. The quantitative variable is specified in the attribute argument and should
be present in the object_index of the object computed using analyze_objects_shp(). The
rectangles are colored using a color scale.

plot_index_shp 153

Usage

plot_index_shp(
object,
attribute = "coverage",
r = 1,
g = 2,
b = 3,
color = c("red", "yellow", "darkgreen"),
viewer = c("mapview", "base"),
max_pixels = 5e+05,
downsample = NULL,
downsample_fun = NULL,
alpha = 0.7,
legend.position = "bottom",
na.color = "gray",
classes = 6,
round = 3,
horiz = TRUE

)

Arguments

object An object computed with analyze_objects_shp().

attribute The name of the quantitative variable in the object_index to be used for color-
ing the rectangles.

r, g, b The layer for the Red, Green and Blue band, respectively. Defaults to 1, 2, and
3.

color A vector of two colors to be used for the color scale.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

max_pixels integer > 0. Maximum number of cells to plot the index. If max_pixels <
npixels(img), downsampling is performed before plotting the index. Using a
large number of pixels may slow down the plotting time.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

downsample_fun function; if given, downsampling will apply downsample_fun`` to each of the
the subtiles.

alpha The transparency level of the rectangles’ color (between 0 and 1).

154 plot_lw

legend.position

The position of the color legend, either "bottom" or "right".
na.color The color to be used for rectangles with missing values in the quantitative vari-

able.
classes The number of classes in the color scale.
round The number of decimal places to round the legend values.
horiz Logical, whether the legend should be horizontal (TRUE) or vertical (FALSE).

Value

The function plots rectangles colored by the specified quantitative variable on top of the RGB image
and shows the continuous color legend outside the plot.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

Computes the DGCI index for each flax leaf
flax <- image_pliman("flax_leaves.jpg", plot =TRUE)
res <-

analyze_objects_shp(flax,
buffer_x = 0.1,
buffer_y = 0.02,
nrow = 3,
ncol = 5,
plot = FALSE,
object_index = "DGCI")

plot_index_shp(res, attribute = "DGCI")
}

plot_lw Plot length and width lines on objects

Description

This function plots the length and width lines given an object computed with analyze_objects().
The function does not call plot.new, so it must be called after an image is plotted. This can be
done either using, e.g., plot(img), or analyze_objects(..., plot = TRUE).

Usage

plot_lw(
object,
col_length = "red",
col_width = "green",
lwd_length = 2,
lwd_width = 2

)

poly_apex_base_angle 155

Arguments

object An object computed with analyze_objects().

col_length The color of the length line. Default is "red".

col_width The color of the width line. Default is "green".

lwd_length The line width of the length line. Default is 2.

lwd_width The line width of the width line. Default is 2.

Details

This function takes an object computed with analyze_objects() and plots the length and width
lines of each object onto an image. The length and width lines are calculated based on the position
and orientation of the object, and are plotted using the specified colors and line widths.

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("flax_leaves.jpg")
res <- analyze_objects(img, watershed = FALSE, show_contour = FALSE)
plot_lw(res)
}

poly_apex_base_angle Calculate the apex and base angles of an object

Description

This function calculates the apex and base angles of an object. It takes as input a matrix of coordi-
nates and returns the apex angle, base angle, and the coordinates of the apex and base as a list. The
angles are computed after the object is aligned in the vertical axis with poly_align().

Usage

poly_apex_base_angle(
x,
percentiles = c(0.25, 0.75),
invert = FALSE,
plot = TRUE

)

Arguments

x A matrix of coordinates representing the contour of the object, often obtained
with object_contour().

percentiles A numeric vector of two percentiles between 0 and 1 indicating the height of
the points from the top to the bottom. The function calculates the apex angle
between the two percentiles and the base angle between the lowest point and the
highest point.

156 poly_pcv

invert If TRUE, aligns the object along the horizontal axis.

plot Plots the polygon with the points? Defaults to TRUE.

Value

A list containing the apex angle, base angle, apex coordinates, and base coordinates.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
a matrix of coordinates
angls <- poly_apex_base_angle(contours[[2]])
angls

or a list of coordinates
poly_apex_base_angle(contours)
}

poly_pcv Compute Perimeter Complexity Value (PCV)

Description

This function calculates the Perimeter Complexity Value (PCV) for a given set of coordinates rep-
resenting a contour. The PCV measures the variation of distances between the original coordinates
and the smoothed coordinates relative to the perimeter length of the original contour. See more in
details section.

Usage

poly_pcv(x, niter = 100)

Arguments

x A matrix or a list of matrices representing the coordinates of the polygon(s).

niter An integer specifying the number of smoothing iterations. See poly_smooth()
for more details.

Details

The PCV is computed using the following formula:

PCV =
sum(dists)× sd(dists)

perim

where dists represents the distances between corresponding points in the original and smoothed
coordinates, and perim is the perimeter length of the smoothed contour.

poly_width_at 157

The PCV is computed by first smoothing the input contour using a specified number of iterations.
The smoothed contour is then used to compute the distances between corresponding points in the
original and smoothed coordinates. These distances reflect the variations in the contour shape after
smoothing. The sum of these distances represents the overall magnitude of the variations. Next, the
sum of distances is multiplied by the standard deviation of the distances to capture the dispersion or
spread of the variations. Finally, this value is divided by the perimeter length of the original contour
to provide a relative measure of complexity. Therefore, the PCV provides a relative measure of
complexity by considering both the magnitude and spread of the variations in the contour shape
after smoothing.

Value

The PCV value(s) computed for the contour(s).

If x is a matrix, returns the complexity value of the polygon’s perimeter. If x is a list of matrices,
returns a numeric vector of complexity values for each polygon.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
set.seed(20)
shp <- efourier_shape(npoints = 1000)
poly_pcv(shp)

increase the complexity of the outline
shp2 <- poly_jitter(shp, noise_x = 20, noise_y = 250, plot = TRUE)

smo <- poly_smooth(shp2, niter = 100, plot = FALSE)
plot_contour(smo, col = "red")
poly_pcv(shp2)
}

poly_width_at Width at a given height

Description

The function computes the polygonal convex hull of the points in x and then returns the number of
points that lie below a specified set of heights along the vertical axis of the convex hull.

Usage

poly_width_at(
x,
at = c(0.05, 0.25, 0.5, 0.75, 0.95),
unify = FALSE,
plot = FALSE

)

158 poly_width_at

Arguments

x A vector containing two-dimensional data points (often produced with object_contour).

at A vector of heights along the vertical axis of the convex hull at which to count
the number of points below. The default value is c(0.05, 0.25, 0.5, 0.75,
0.95), which means the function will return the number of points below the
5th, 25th, 50th, 75th, and 95th percentiles of the convex hull. If at = "heights"
is used, the function returns the width for each point of the object length.

unify A logical value indicating whether to use the unified convex hull calculation
method. If unify = TRUE, coordinates in x will be first bound before computing
the convex hull.

plot A logical value that specifies whether the widths should be plotted.

Details

The convex hull computed from x is aligned along the major axis and then converted to a binary
image. For each height in the at vector, the function computes the corresponding row number in
the binary image (i.e., the row number that corresponds to the specified height along the vertical
axis of the convex hull) and sums the values in that row to obtain the number of points that lie
below the specified height. If the convex hull contains multiple polygons and unify = FALSE, the
function loops over each polygon and returns a list of the number of points below the specified
heights for each polygon. If the convex hull contains only one polygon or multiple polygons and
unify = TRUE, the function returns a vector of the number of points below the specified heights for
that single polygon.

Value

A vector with the widths of the convex hull at the specified heights or a list of vectors with the
widths of each component.

Examples

if (interactive() && requireNamespace("EBImage")) {
cont <- contours[[2]]
plot_polygon(cont |> conv_hull() |> poly_align())
width below 5th, 25th, 50th, 75th, and 95th percentiles of the length
wd <- poly_width_at(cont)
wd

width along the height
poly_width_at(cont, at = "height", plot = TRUE)

}

prepare_to_shp 159

prepare_to_shp Prepare images to analyze_objects_shp()

Description

It is a simple wrapper around image_align() and image_crop(). In this case, only the option
viewer = "base" is used. To use viewer = "mapview", please, use such functions separately.

Usage

prepare_to_shp(img, align = "vertical")

Arguments

img A Image object

align The desired alignment. Either "vertical" (default) or "horizontal".

Value

An aligned and cropped Image object.

Examples

if (interactive() && requireNamespace("EBImage")) {
img <- image_pliman("flax_leaves.jpg")
prepare_to_shp(img)
}

random_color Random built-in color names

Description

Randomly chooses single or multiple built-in color names which R knows about. See more at
grDevices::colors()

Usage

random_color(n = 1, distinct = FALSE)

Arguments

n The number of color names. Defaults to 1.

distinct Logical indicating if the colors returned should all be distinct. Defaults to FALSE.

160 sad

Value

A character vector of color names

Examples

library(pliman)
random_color(n = 3)

sad Produces Santandard Area Diagrams

Description

Given an object computed with measure_disease() or measure_disease_byl() a Standard Area
Diagram (SAD) with n images are returned with the respective severity values.

Usage

sad(
object,
n,
show_original = FALSE,
show_contour = FALSE,
nrow = NULL,
ncol = NULL,
...

)

Arguments

object An object computed with measure_disease() or measure_disease_byl().
n The number of leaves in the Standard Area Diagram.
show_original Show original images? Defaults to FALSE, i.e., a mask is returned.
show_contour Show original images? Defaults to FALSE, i.e., a mask is returned.
nrow, ncol The number of rows and columns in the plot. See [image_combine())]

[image_combine())]: R:image_combine())
... Other arguments passed on to measure_disease().

Details

The leaves with the smallest and highest severity will always be in the SAD. If n = 1, the leaf with
the smallest severity will be returned. The others are sampled sequentially to achieve the n images
after severity has been ordered in an ascending order. For example, if there are 30 leaves and n is
set to 3, the leaves sampled will be the 1st, 15th, and 30th with the smallest severity values.

The SAD can be only computed if an image pattern name is used in argument pattern of measure_disease().
If the images are saved, the n images will be retrevied from dir_processed directory. Otherwise,
the severity will be computed again to generate the images.

sentinel_to_tif 161

Value

A data frame with the severity values for the n sampled leaves. A plot with the standard area
diagram can be saved by wrapping sad() with png().

References

Del Ponte EM, Pethybridge SJ, Bock CH, et al (2017) Standard area diagrams for aiding severity
estimation: Scientometrics, pathosystems, and methodological trends in the last 25 years. Phy-
topathology 107:1161–1174. doi:10.1094/PHYTO02170069FI

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
sev <-
measure_disease(pattern = "sev_leaf",

img_healthy = "sev_healthy",
img_symptoms = "sev_sympt",
img_background = "sev_back",
plot = FALSE,
save_image = TRUE,
show_original = FALSE,
dir_original = image_pliman(),
dir_processed = tempdir())

sad(sev, n = 2)
}

sentinel_to_tif Convert Sentinel data to GeoTIFF format

Description

This function converts Sentinel satellite data files to GeoTIFF format.

Usage

sentinel_to_tif(layers = NULL, path = ".", destination, spat_res = 10)

Arguments

layers (character) Vector of file paths to Sentinel data files. If NULL, the function
searches for files in the specified path with names containing "B".

path (character) Directory path where Sentinel data files are located. Default is the
current directory.

destination (character) File path for the output GeoTIFF file.

spat_res (numeric) Spatial resolution of the output GeoTIFF file. Default is 10 meters.

https://doi.org/10.1094/PHYTO-02-17-0069-FI

162 separate_col

Details

The function converts Sentinel satellite data files to GeoTIFF format using GDAL utilities. It builds
a virtual raster file (VRT) from the input files and then translates it to GeoTIFF format. Compression
is applied to the output GeoTIFF file using DEFLATE method.

separate_col Turns a single character column into multiple columns.

Description

Given either a regular expression or a vector of character positions, separate_col() turns a single
character column into multiple columns.

Usage

separate_col(.data, col, into, sep = "[^[:alnum:]]+")

Arguments

.data A data frame

col Column name

into Names of new variables to create as character vector

sep The separator between columns. By default, a regular expression that matches
any sequence of non-alphanumeric values.

Value

A mutated .data

Examples

library(pliman)
df <- data.frame(x = paste0("TRAT_", 1:5),

y = 1:5)
df
separate_col(df, x, into = c("TRAT", "REP"))

set_pliman_viewer 163

set_pliman_viewer Set the value of the pliman_viewer option

Description

Sets the value of the pliman_viewer option used in the package.

Usage

set_pliman_viewer(value)

Arguments

value The value to be set for the pliman_viewer option.

shapefile_build Build a shapefile from a mosaic raster

Description

This function takes a mosaic raster to create a shapefile containing polygons for the specified re-
gions. Users can drawn Areas of Interest (AOIs) that can be either a polygon with n sides, or a grid,
defined by nrow, and ncol arguments.

Usage

shapefile_build(
mosaic,
basemap = NULL,
controlpoints = NULL,
r = 3,
g = 2,
b = 1,
crop_to_shape_ext = TRUE,
grid = TRUE,
nrow = 1,
ncol = 1,
plot_width = NULL,
plot_height = NULL,
layout = "lrtb",
serpentine = TRUE,
build_shapefile = TRUE,
check_shapefile = FALSE,
sf_to_polygon = FALSE,
buffer_edge = 1,

164 shapefile_build

buffer_col = 0,
buffer_row = 0,
as_sf = TRUE,
verbose = TRUE,
max_pixels = 1e+06,
downsample = NULL,
quantiles = c(0, 1)

)

Arguments

mosaic A mosaic of class SpatRaster, generally imported with mosaic_input().

basemap An optional mapview object.

controlpoints An sf object created with mapedit::editMap(), containing the polygon that
defines the region of interest to be analyzed.

r, g, b The layer for the Red, Green and Blue band, respectively. Defaults to 1, 2, and
3.

crop_to_shape_ext

Crop the mosaic to the extension of shapefile? Defaults to TRUE. This allows for
a faster index computation when the region of the built shapefile is much smaller
than the entire mosaic extension.

grid Logical, indicating whether to use a grid for segmentation (default: TRUE).

nrow Number of rows for the grid (default: 1).

ncol Number of columns for the grid (default: 1).
plot_width, plot_height

The width and height of the plot shape (in the mosaic unit). It is mutually exclu-
siv with buffer_col and buffer_row.

layout Character: one of

• 'tblr' for top/bottom left/right orientation
• 'tbrl' for top/bottom right/left orientation
• 'btlr' for bottom/top left/right orientation
• 'btrl' for bottom/top right/left orientation
• 'lrtb' for left/right top/bottom orientation
• 'lrbt' for left/right bottom/top orientation
• 'rltb' for right/left top/bottom orientation
• 'rlbt' for right/left bottom/top orientation

serpentine Create a serpentine-based layout? Defaults to FALSE.
build_shapefile

Logical, indicating whether to interactively draw ROIs if the shapefile is NULL
(default: TRUE).

check_shapefile

Logical, indicating whether to validate the shapefile with an interactive map
view (default: TRUE). This enables live editing of the drawn shapefile by delet-
ing or changing the drawn grids.

shapefile_build 165

sf_to_polygon Convert sf geometry like POINTS and LINES to POLYGONS? Defaults to
FALSE. Using TRUE allows using POINTS to extract values from a raster using
exactextractr::exact_extract().

buffer_edge Width of the buffer around the shapefile (default: 5).
buffer_col, buffer_row

Buffering factor for the columns and rows, respectively, of each individual plot’s
side. A value between 0 and 0.5 where 0 means no buffering and 0.5 means
complete buffering (default: 0). A value of 0.25 will buffer the plot by 25% on
each side.

as_sf Logical value indicating whether to convert the imported shapefile to an sf ob-
ject (default is TRUE).

verbose Logical, indicating whether to display verbose output (default: TRUE).

max_pixels Maximum number of pixels to render in the map or plot (default: 500000).

downsample Downsampling factor to reduce the number of pixels (default: NULL). In this
case, if the number of pixels in the image (width x height) is greater than
max_pixels a downsampling factor will be automatically chosen so that the
number of plotted pixels approximates the max_pixels.

quantiles the upper and lower quantiles used for color stretching.

Details

Since multiple blocks can be created, the length of arguments grid, nrow, ncol, buffer_edge,
buffer_col, and buffer_row can be either an scalar (the same argument applied to all the drawn
blocks), or a vector with the same length as the number of drawn blocks. In the last, shapefiles in
each block can be created with different dimensions.

Value

A list with the built shapefile. Each element is an sf object with the coordinates of the drawn
polygons.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
mosaic <- mosaic_input(system.file("ex/elev.tif", package="terra"))
shps <-

shapefile_build(mosaic,
nrow = 6,
ncol = 3,
buffer_row = -0.05,
buffer_col = -0.25,
check_shapefile = FALSE,

build_shapefile = FALSE) ## Use TRUE to interactively build the plots
mosaic_plot(mosaic)
shapefile_plot(shps[[1]], add = TRUE)
}

166 shapefile_edit

shapefile_edit Edit Features in a Shapefile

Description

This function allows you to interactively edit features in a shapefile using the mapedit package.

Usage

shapefile_edit(
shapefile,
mosaic = NULL,
basemap = NULL,
r = 3,
g = 2,
b = 1,
max_pixels = 3e+06

)

Arguments

shapefile A shapefile (sf object) that can be created with shapefile_input().

mosaic Optionally, a mosaic (SpatRaster) to be displayed as a background.

basemap An optional mapview object.

r Red band index for RGB display (default is 3).

g Green band index for RGB display (default is 2).

b Blue band index for RGB display (default is 1).

max_pixels Maximum number of pixels for down-sampling the mosaic (default is 3e6).

Value

A modified shapefile with user-edited features.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
shp <- shapefile_input(system.file("ex/lux.shp", package="terra"))
edited <- shapefile_edit(shp)
}

shapefile_interpolate 167

shapefile_interpolate Interpolate values at specific points based on coordinates and a target
variable

Description

This function interpolates values at specified points using x, y coordinates and a target variable from
a shapefile. It supports "Kriging" and "Tps" interpolation methods.

Usage

shapefile_interpolate(
shapefile,
z,
x = "x",
y = "y",
interpolation = c("Kriging", "Tps"),
verbose = FALSE

)

Arguments

shapefile An sf object containing the x, y, and target variable (z) columns. It is highly
recommended to use shapefile_measures() to obtain this data.

z A string specifying the name of the column in the shapefile that contains the
target variable to be interpolated.

x A string specifying the name of the column containing x-coordinates. Default is
’x’.

y A string specifying the name of the column containing y-coordinates. Default is
’y’.

interpolation A character vector specifying the interpolation method. Options are "Kriging"
or "Tps".

verbose Logical; if TRUE, progress messages will be displayed.

Value

A vector of interpolated values at the specified points.

168 shapefile_measures

shapefile_measures Extract geometric measures from a shapefile object

Description

shapefile_measures() calculates key geometric measures such as the number of points, area,
perimeter, width, height, and centroid coordinates for a given shapefile (polygon) object.

Usage

shapefile_measures(shapefile)

Arguments

shapefile An sf object representing the shapefile. It should contain polygonal geometries
for which the measures will be calculated.

Details

This function processes a single or multi-polygon sf object and computes geometric properties. It
calculates distances between points, extracts the centroid coordinates, and computes the area and
perimeter of the polygons. The width and height are derived from sequential distances between
points.

Value

A modified sf object with added columns for:

• xcoord: The x-coordinate of the centroid.

• ycoord: The y-coordinate of the centroid.

• area: The area of the polygon (in square units).

• perimeter: The perimeter of the polygon (in linear units).

• width: The calculated width based on sequential distances between points.

• height: The calculated height based on sequential distances between points.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)

path_shp <- paste0(image_pliman(), "/soy_shape.rds")
shp <- shapefile_input(path_shp)
shapefile_measures(shp)
}

shapefile_plot 169

shapefile_plot A wrapper around terra::plot()

Description

Plot the values of a SpatVector

Usage

shapefile_plot(shapefile, ...)

Arguments

shapefile An SpatVector of sf object.
... Further arguments passed on to terra::plot().

Value

A NULL object

Examples

if(interactive()){
library(pliman)
r <- shapefile_input(system.file("ex/lux.shp", package="terra"))
shapefile_plot(r)
}

shapefile_surface Generate a spatial surface plot based on interpolated values

Description

This function creates a surface plot from an interpolated spatial model, with options to customize
plot appearance, grid resolution, and color palette.

Usage

shapefile_surface(
model,
curve = TRUE,
nx = 300,
ny = 300,
xlab = "Longitude (UTM)",
ylab = "Latitude (UTM)",
col = custom_palette(c("darkred", "yellow", "forestgreen"), n = 100),
...

)

170 summary_index

Arguments

model An interpolated spatial object (e.g., from shapefile_interpolate()) contain-
ing the data for plotting.

curve Logical; if TRUE, a contour plot is generated (type = "C"), otherwise an image
plot (type = "I"). Default is TRUE.

nx Integer; the number of grid cells in the x-direction. Default is 300.

ny Integer; the number of grid cells in the y-direction. Default is 300.

xlab Character; label for the x-axis. Default is "Longitude (UTM)".

ylab Character; label for the y-axis. Default is "Latitude (UTM)".

col A color palette function for the surface plot. Default is a custom palette from
dark red to yellow to forest green.

... Additional parameters to pass to fields::surface.

Value

A surface plot showing spatially interpolated data.

summary_index Summary an object index

Description

If more than one index is available, the function performs a Principal Component Analysis and
produces a plot showing the contribution of the indexes to the PC1 (see pca()). If an index is
declared in index and a cut point in cut_point, the number and proportion of objects with mean
value of index bellow and above cut_point are returned. Additionaly, the number and proportion
of pixels bellow and above the cutpoint is shown for each object (id).

Usage

summary_index(
object,
index = NULL,
cut_point = NULL,
select_higher = FALSE,
plot = TRUE,
type = "var",
...

)

summary_index 171

Arguments

object An object computed with analyze_objects().

index The index desired, e.g., "B". Note that these value must match the index(es)
used in the argument object_index of analyze_objects().

cut_point The cut point.

select_higher If FALSE (default) selects the objects with index smaller than the cut_point.
Use select_higher = TRUE to select the objects with index higher than cut_point.

plot Shows the contribution plot when more than one index is available? Defaults to
TRUE.

type The type of plot to produce. Defaults to "var". See more at get_biplot().

... Further arguments passed on to get_biplot().

Value

A list with the following elements:

• ids The identification of selected objects.

• between_id A data frame with the following columns

– n The number of objects.
– nsel The number of selected objects.
– prop The proportion of objects selected.
– mean_index_sel, and mean_index_nsel The mean value of index for the selected and

non-selected objects, respectively.

• within_id A data frame with the following columns

– id The object identification
– n_less The number of pixels with values lesser than or equal to cut_point.
– n_greater The number of pixels with values greater than cut_point.
– less_ratio The proportion of pixels with values lesser than or equal to cut_point.
– greater_ratio The proportion of pixels with values greater than cut_point.

• pca_res An object computed with pca()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
soy <- image_pliman("soy_green.jpg")
anal <- analyze_objects(soy, object_index = "G", pixel_level_index = TRUE)
plot_measures(anal, measure = "G")

summary_index(anal, index = "G", cut_point = 0.5)
}

172 utils_colorspace

utils_colorspace Convert between colour spaces

Description

• rgb_to_srgb() Transforms colors from RGB space (red/green/blue) to Standard Red Green
Blue (sRGB), using a gamma correction of 2.2. The function performs the conversion by
applying a gamma correction to the input RGB values (raising them to the power of 2.2) and
then transforming them using a specific transformation matrix. The result is clamped to the
range 0-1 to ensure valid sRGB values.

• rgb_to_hsb() Transforms colors from RGB space (red/green/blue) to HSB space (hue/saturation/brightness).
The HSB values are calculated as follows (see https://www.rapidtables.com/convert/color/rgb-
to-hsv.html for more details).

– Hue: The hue is determined based on the maximum value among R, G, and B, and it
ranges from 0 to 360 degrees.

– Saturation: Saturation is calculated as the difference between the maximum and minimum
channel values, expressed as a percentage.

– Brightness: Brightness is equal to the maximum channel value, expressed as a percentage.

• rgb_to_lab() Transforms colors from RGB space (red/green/blue) to CIE-LAB space, using
the sRGB values. See grDevices::convertColor() for more details.

Usage

rgb_to_hsb(object)

rgb_to_srgb(object)

rgb_to_lab(object)

Arguments

object An Image object, an object computed with analyze_objects() with a valid
object_index argument, or a data.frame/matrix. For the last, a three-column
data (R, G, and B, respectively) is required.

Value

A data frame with the columns of the converted color space

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

See the detailed formulas here

https://www.example.com

utils_dpi 173

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf.jpg")
rgb_to_lab(img)

analyze the object and convert the pixels
anal <- analyze_objects(img, object_index = "B", pixel_level_index = TRUE)
rgb_to_lab(anal)
}

utils_dpi Utilities for image resolution

Description

Provides useful conversions between size (cm), number of pixels (px) and dots per inch (dpi).

• dpi_to_cm() converts a known dpi value to centimeters.
• cm_to_dpi() converts a known centimeter values to dpi.
• pixels_to_cm() converts the number of pixels to centimeters, given a known resolution (dpi).
• cm_to_pixels() converts a distance (cm) to number of pixels, given a known resolution (dpi).
• distance() Computes the distance between two points in an image based on the Pythagorean

theorem.
• dpi() An interactive function to compute the image resolution given a known distance in-

formed by the user. See more information in the Details section.
• npixels() returns the number of pixels of an image.

Usage

dpi_to_cm(dpi)

cm_to_dpi(cm)

pixels_to_cm(px, dpi)

cm_to_pixels(cm, dpi)

npixels(img)

dpi(img, viewer = get_pliman_viewer(), downsample = NULL, max_pixels = 1e+06)

distance(
img,
viewer = get_pliman_viewer(),
downsample = NULL,
max_pixels = 1e+06

)

174 utils_dpi

Arguments

dpi The image resolution in dots per inch.

cm The size in centimeters.

px The number of pixels.

img An image object.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

max_pixels integer > 0. Maximum number of cells to use for the plot. If max_pixels <
npixels(img), regular sampling is used before plotting.

Details

dpi() only run in an interactive section. To compute the image resolution (dpi) the user must use
the left button mouse to create a line of known distance. This can be done, for example, using a
template with known distance in the image (e.g., la_leaves.jpg).

Value

• dpi_to_cm(), cm_to_dpi(), pixels_to_cm(), and cm_to_pixels() return a numeric value
or a vector of numeric values if the input data is a vector.

• dpi() returns the computed dpi (dots per inch) given the known distance informed in the plot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(pliman)
Convert dots per inch to centimeter
dpi_to_cm(c(1, 2, 3))

Convert centimeters to dots per inch
cm_to_dpi(c(1, 2, 3))

Convert centimeters to number of pixels with resolution of 96 dpi.
cm_to_pixels(c(1, 2, 3), 96)

Convert number of pixels to cm with resolution of 96 dpi.

utils_file 175

pixels_to_cm(c(1, 2, 3), 96)

if(isTRUE(interactive())){
compute the dpi (dots per inch) resolution
only works in an interactive section
objects_300dpi.jpg has a known resolution of 300 dpi
img <- image_pliman("objects_300dpi.jpg")
Higher square: 10 x 10 cm
1) Run the function dpi()
2) Use the left mouse button to create a line in the higher square
3) Declare a known distance (10 cm)
4) See the computed dpi
dpi(img)

img2 <- image_pliman("la_leaves.jpg")
square leaf sample (2 x 2 cm)
dpi(img2)
}

utils_file Utilities for file manipulation

Description

• file_extension() Get the extension of a file.

• file_name() Get the name of a file.

• file_dir() Get or directory of a file

• manipulate_files() Manipulate files in a directory with options to rename (insert prefix or
suffix) and save the new files to the same or other provided directory.

• pliman_indexes() Get the indexes available in pliman.

• pliman_indexes_eq() Get the equation of the indexes available in pliman.

Usage

file_extension(file)

file_name(file)

file_dir(file)

manipulate_files(
pattern,
dir = NULL,
prefix = NULL,
name = NULL,
suffix = NULL,

176 utils_file

extension = NULL,
sep = "",
save_to = NULL,
overwrite = FALSE,
remove_original = FALSE,
verbose = TRUE

)

Arguments

file The file name.

pattern A file name pattern.

dir The working directory containing the files to be manipulated. Defaults to the
current working directory.

prefix, suffix A prefix or suffix to be added in the new file names. Defaults to NULL (no prefix
or suffix).

name The name of the new files. Defaults to NULL (original names). name can be
either a single value or a character vector of the same length as the number of
files manipulated. If one value is informed, a sequential vector of names will be
created as "name_1", "name_2", and so on.

extension The new extension of the file. If not declared (default), the original extensions
will be used.

sep An optional separator. Defaults to "".

save_to The directory to save the new files. Defaults to the current working directory. If
the file name of a file is not changed, nothing will occur. If save_to refers to
a subfolder in the current working directory, the files will be saved to the given
folder. In case of the folder doesn’t exist, it will be created. By default, the files
will not be overwritten. Set overwrite = TRUE to overwrite the files.

overwrite Overwrite the files? Defaults to FALSE.
remove_original

Remove original files after manipulation? defaults to FALSE. If TRUE the files in
pattern will be removed.

verbose If FALSE, the code is run silently.

Value

• file_extension(), file_name(), and file_dir() return a character string.

• manipulate_files() No return value. If verbose == TRUE, a message is printed indicating
which operation succeeded (or not) for each of the files attempted.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
get file name, directory and extension
file <- "E:/my_folder/my_subfolder/image1.png"

utils_image 177

file_dir(file)
file_name(file)
file_extension(file)

manipulate files
dir <- tempdir()
list.files(dir)
file.create(paste0(dir, "/test.txt"))
list.files(dir)
manipulate_files("test",

dir = paste0(dir, "\\"),
prefix = "chang_",
save_to = paste0(dir, "\\"),
overwrite = TRUE)

list.files(dir)
}

utils_image Import and export images

Description

Import images from files and URLs and write images to files, possibly with batch processing.

Usage

image_import(
img,
...,
which = 1,
pattern = NULL,
path = NULL,
resize = FALSE,
plot = FALSE,
nrow = NULL,
ncol = NULL

)

image_export(img, name, prefix = "", extension = NULL, subfolder = NULL, ...)

image_input(img, ...)

image_pliman(img, plot = FALSE)

Arguments

img • For image_import(), a character vector of file names or URLs.
• For image_input(), a character vector of file names or URLs or an array

containing the pixel intensities of an image.

178 utils_image

• For image_export(), an Image object, an array or a list of images.
• For image_pliman(), a charactere value specifying the image example.

See ?pliman_images for more details.

... • For image_import() alternative arguments passed to the corresponding
functions from the jpeg, png, and tiff packages.

• For image_input() further arguments passed on to EBImage::Image().

which logical scalar or integer vector to indicate which image are imported if a TIFF
files is informed. Defaults to 1 (the first image is returned).

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

path A character vector of full path names; the default corresponds to the working
directory, getwd(). It will overwrite (if given) the path informed in image argu-
ment.

resize Resize the image after importation? Defaults to FALSE. Use a numeric value of
range 0-100 (proportion of the size of the original image).

plot Plots the image after importing? Defaults to FALSE.

nrow, ncol Passed on to image_combine(). The number of rows and columns to use in the
composite image when plot = TRUE.

name An string specifying the name of the image. It can be either a character with the
image name (e.g., "img1") or name and extension (e.g., "img1.jpg"). If none file
extension is provided, the image will be saved as a *.jpg file.

prefix A prefix to include in the image name when exporting a list of images. Defaults
to "", i.e., no prefix.

extension When image is a list, extension can be used to define the extension of exported
files. This will overwrite the file extensions given in image.

subfolder Optional character string indicating a subfolder within the current working di-
rectory to save the image(s). If the folder doesn’t exist, it will be created.

Value

• image_import() returns a new Image object.

• image_export() returns an invisible vector of file names.

• image_pliman() returns a new Image object with the example image required. If an empty
call is used, the path to the tmp_images directory installed with the package is returned.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

utils_indexes 179

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
folder <- image_pliman()
full_path <- paste0(folder, "/sev_leaf.jpg")
(path <- file_dir(full_path))
(file <- basename(full_path))
image_import(img = full_path)
image_import(img = file, path = path)
}

utils_indexes Utilities for image indexes

Description

• pliman_indexes(): Get all the available indexes in pliman.

• pliman_indexes_rgb(): Get all the RGB-based available indexes in pliman.

• pliman_indexes_me(): Get all the multispectral available indexes in pliman.

• pliman_indexes_eq(): Get the equations of the available indexes.

Usage

pliman_indexes()

pliman_indexes_eq()

pliman_indexes_rgb()

pliman_indexes_me()

utils_measures Utilities for object measures

Description

• get_measures() computes object measures (area, perimeter, radius) by using either a known
resolution (dpi) or an object with known measurements.

• plot_measures() draws the object measures given in an object to the current plot. The object
identification ("id") is drawn by default.

180 utils_measures

Usage

get_measures(
object,
measure = NULL,
id = NULL,
dpi = NULL,
sep = "_|-",
verbose = TRUE,
digits = 5

)

plot_measures(
object,
measure = "id",
id = NULL,
hjust = NULL,
vjust = NULL,
digits = 2,
size = 0.9,
col = "white",
...

)

Arguments

object An object computed with analyze_objects().

measure For plot_measures(), a character string; for get_measures(), a two-sided
formula, e.g., measure = area ~ 100 indicating the known value of object id.
The right-hand side is the known value and the left-hand side can be one of the
following.

• area The known area of the object.
• perimeter The known perimeter of the object.
• radius_mean The known radius of the object.
• radius_min The known minimum radius of the object. If the object is

a square, then the radius_min of such object will be L/2 where L is the
length of the square side.

• radius_max The known maximum radius of the object. If the object is a
square, then the radius_max of such object according to the Pythagorean
theorem will be L x sqrt(2) / 2 where L is the length of the square side.

id An object in the image to indicate a known value.

dpi A known resolution of the image in DPI (dots per inch).

sep Regular expression to manage file names. The function combines in the merge
object the object measures (sum of area and mean of all the other measures) of
all images that share the same filename prefix, defined as the part of the filename
preceding the first hyphen (-) or underscore (_) (no hyphen or underscore is
required). For example, the measures of images named L1-1.jpeg, L1-2.jpeg,

utils_measures 181

and L1-3.jpeg would be combined into a single image information (L1). This
feature allows the user to treat multiple images as belonging to a single sample,
if desired. Defaults to sep = "_|-".

verbose If FALSE, runs the code silently.

digits The number of significant figures. Defaults to 2.

hjust, vjust A numeric value to adjust the labels horizontally and vertically. Positive values
will move labels to right (hjust) and top (vjust). Negative values will move the
labels to left and bottom, respectively.

size The size of the text. Defaults to 0.9.

col The color of the text. Defaults to "white".

... Further arguments passed on to graphics::text().

Value

• For get_measures(), if measure is informed, the pixel values will be corrected by the value
of the known object, given in the unit of the right-hand side of meae. If dpi is informed, then
all the measures will be adjusted to the knosurwn dpi.

• If applied to an object of class anal_obj, returns a data frame with the object id and the
(corrected) measures.

– If applied to an object of class anal_obj_ls, returns a list of class measures_ls, with
two objects: (i) results, a data frame containing the identification of each image (img)
and object within each image (id); and (ii) summary a data frame containing the values for
each image. If more than one object is detected in a given image, the number of objects
(n), total area (area_sum), mean area (area_mean) and the standard deviation of the area
(area_sd) will be computed. For the other measures (perimeter and radius), the mean
values are presented.

• plot_measures() returns a NULL object, drawing the text according to the x and y coordinates
of the objects in object.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("objects_300dpi.jpg")
plot(img)
Image with four objects with a known resolution of 300 dpi
Higher square: 10 x 10 cm
Lower square: 5 x 5 cm
Rectangle: 4 x 2 cm
Circle: 3 cm in diameter

Count the objects using the blue band to segment the image

182 utils_objects

results <-
analyze_objects(img,

index = "B",
lower_noise = 0.1)

plot_measures(results, measure = "id")

Get object measures by declaring the known resolution in dots per inch
(measures <- get_measures(results, dpi = 300))

Calculated diagonal of the object 1
10 * sqrt(2) = 14.14

Observed diagonal of the object 1
measures[1, "radius_max"] * 2

Get object measures by declaring the known area of object 1
get_measures(results,

id = 1,
area ~ 100)

}

utils_objects Utilities for working with image objects

Description

• object_id() get the object identification in an image.

• object_coord() get the object coordinates and (optionally) draw a bounding rectangle around
multiple objects in an image.

• object_contour() returns the coordinates (x and y) for the contours of each object in the
image.

• object_isolate() isolates an object from an image.

Usage

object_coord(
img,
id = NULL,
index = "NB",
watershed = TRUE,
invert = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
fill_hull = FALSE,

utils_objects 183

threshold = "Otsu",
edge = 2,
extension = NULL,
tolerance = NULL,
object_size = "medium",
parallel = FALSE,
workers = NULL,
plot = TRUE

)

object_contour(
img,
pattern = NULL,
dir_original = NULL,
center = FALSE,
index = "NB",
invert = FALSE,
opening = FALSE,
closing = FALSE,
filter = FALSE,
fill_hull = FALSE,
threshold = "Otsu",
watershed = TRUE,
extension = NULL,
tolerance = NULL,
object_size = "medium",
parallel = FALSE,
workers = NULL,
plot = TRUE,
verbose = TRUE

)

object_isolate(img, id = NULL, parallel = FALSE, workers = NULL, ...)

object_id(img, parallel = FALSE, workers = NULL, ...)

Arguments

img An image of class Image or a list of Image objects.

id • For object_coord(), a vector (or scalar) of object id to compute the
bounding rectangle. Object ids can be obtained with object_id(). Set
id = "all" to compute the coordinates for all objects in the image. If id =
NULL (default) a bounding rectangle is drawn including all the objects.

• For object_isolate(), a scalar that identifies the object to be extracted.

index The index to produce a binary image used to compute bounding rectangle coor-
dinates. See image_binary() for more details.

watershed If TRUE (default) performs watershed-based object detection. This will detect
objects even when they are touching one other. If FALSE, all pixels for each

184 utils_objects

connected set of foreground pixels are set to a unique object. This is faster but
is not able to segment touching objects.

invert Inverts the binary image, if desired. Defaults to FALSE.
opening, closing, filter

Morphological operations (brush size)
• opening performs an erosion followed by a dilation. This helps to remove

small objects while preserving the shape and size of larger objects.
• closing performs a dilatation followed by an erosion. This helps to fill

small holes while preserving the shape and size of larger objects.
• filter performs median filtering in the binary image. Provide a positive

integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

fill_hull Fill holes in the objects? Defaults to FALSE.

threshold By default (threshold = "Otsu"), a threshold value based on Otsu’s method
is used to reduce the grayscale image to a binary image. If a numeric value is
informed, this value will be used as a threshold. Inform any non-numeric value
different than "Otsu" to iteratively chosen the threshold based on a raster plot
showing pixel intensity of the index.

edge The number of pixels in the edge of the bounding rectangle. Defaults to 2.
extension, tolerance, object_size

Controls the watershed segmentation of objects in the image. See analyze_objects()
for more details.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 50% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

plot Shows the image with bounding rectangles? Defaults to TRUE.

pattern A pattern of file name used to identify images to be imported. For example,
if pattern = "im" all images in the current working directory that the name
matches the pattern (e.g., img1.-, image1.-, im2.-) will be imported as a list.
Providing any number as pattern (e.g., pattern = "1") will select images that
are named as 1.-, 2.-, and so on. An error will be returned if the pattern matches
any file that is not supported (e.g., img1.pdf).

dir_original The directory containing the original images. Defaults to NULL, which means
that the current working directory will be considered.

center If TRUE returns the object contours centered on the origin.

verbose If TRUE (default) a summary is shown in the console.

... • For object_isolate(), further arguments passed on to object_coord().
• For object_id(), further arguments passed on to analyze_objects().

utils_pca 185

Value

• object_id() An image of class "Image" containing the object’s identification.

• object_coord() A list with the coordinates for the bounding rectangles. If id = "all" or a
numeric vector, a list with a vector of coordinates is returned.

• object_isolate() An image of class "Image" containing the isolated object.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("la_leaves.jpg")
Get the object's (leaves) identification
object_id(img)

Get the coordinates and draw a bounding rectangle around leaves 1 and 3
object_coord(img, id = c(1, 3))

Isolate leaf 3
isolated <- object_isolate(img, id = 3)
plot(isolated)

}

utils_pca Utilities for Principal Component Axis analysis

Description

• pca() Computes a Principal Component Analysis. It wrappers stats::prcomp(), but returns
more results such as data, scores, contributions and quality of measurements for individuals
and variables.

• get_biplot(): Produces a biplot for an object computed with pca().

• plot.pca(): Produces several types of plots, depending on the type and which arguments.

– type = "var" Produces a barplot with the contribution (which = "contrib"), qualitity of
adjustment which = "cos2", and a scatter plot with coordinates (which = "coord") for
the variables.

– type = "ind" Produces a barplot with the contribution (which = "contrib"), qualitity of
adjustment which = "cos2", and a scatter plot with coordinates (which = "coord") for
the individuals.

– type = "biplot" Produces a biplot.

186 utils_pca

Usage

pca(x, scale = TRUE)

get_biplot(
x,
axes = c(1, 2),
show = c("both"),
show_ind_id = TRUE,
show_unit_circle = TRUE,
expand = NULL

)

S3 method for class 'pca'
plot(x, type = "var", which = "contrib", axis = 1, ...)

Arguments

x • For pca(), a numeric or complex matrix (or data frame) which provides the
data for the principal components analysis.

• For plot.pca() and get_biplot(), an object computed with pca().

scale A logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. Defaults to TRUE.

axes The principal component axes to plot. Defaults to axes = c(1, 2), i.e., the first
and second interaction principal component axis.

show Which to show in the biplot. Defaults to "both" (both variables and individuals).
One can also use "var", or "ind".

show_ind_id Shows the labels for individuals? Defaults to TRUE.
show_unit_circle

Shows the unit variance circle? Defaults to TRUE.

expand An expansion factor to apply when plotting the second set of points relative to
the first. This can be used to tweak the scaling of the two sets to a physically
comparable scale. Setting to TRUE will automatically compute the expansion
factor. Alternatively, a numeric value can be informed.

type One of "var" (to plot variables), "ind" (to plot individuals), or "biplot" to
create a biplot.

which Which measure to plot. Either which = "contribution" (default), which =
"cos2" (quality of representation), or which = "coord" (coordinates)

axis The axist to plot the contribution/cos2. Defaults to 1.

... Further arguments passed on to get_biplot() when type = "biplot". Other-
wise, When which = "coord", further arguments passed on to get_biplot().
When which = "contrib", or which = "cos2" further arguments passed on to
graphics::barplot().

utils_pick 187

Value

• pca() returns a list including:

– data: The raw data used to compute the PCA.
– variances: Variances (eigenvalues), and proportion of explained variance for each com-

ponent.
– center,scale: the centering and scaling used.
– ind,var A list with the following objects for individuals/variables, respectively.
– coord: coordinates for the individuals/variables (loadings * the component standard de-

viations)
– cos2: cos2 for the individuals/variables (coord^2)
– contrib: The contribution (in percentage) of a variable to a given principal component:

(cos2 * 100) / (total cos2 of the component)

• plot.pca() returns a list with the coordinates used.

• get_biplot() returns a NULL object

Examples

library(pliman)
pc <- pca(mtcars[1:10 ,1:6])
plot(pc)
plot(pc, type = "ind")
plot(pc, type = "var", which = "coord")
plot(pc, type = "ind", which = "coord")
plot(pc, type = "biplot")

utils_pick Utilities for picking up points in an image

Description

• pick_count() opens an interactive section where the user will be able to click in the image to
count objects (points) manually. In each mouse click, a point is drawn and an upward counter
is shown in the console. After n counts or after the user press Esc, the interactive process is
terminated and the number of counts is returned.

• pick_coord() Picks coordinates from the image

• pick_palette() creates an image palette by picking up color point(s) from the image.

• pick_rgb() Picks up the RGB values from selected point(s) in the image.

Usage

pick_count(
img,
n = Inf,
col = "red",

188 utils_pick

viewer = get_pliman_viewer(),
size = 0.8,
plot = TRUE,
verbose = TRUE

)

pick_coords(
img,
n = Inf,
col = "red",
viewer = get_pliman_viewer(),
size = 0.8,
verbose = TRUE

)

pick_rgb(
img,
n = Inf,
col = "red",
viewer = get_pliman_viewer(),
size = 0.8,
plot = TRUE,
verbose = TRUE

)

pick_palette(
img,
n = Inf,
r = 1,
shape = "box",
viewer = get_pliman_viewer(),
show = "rgb",
title = "Pick colors in the image",
index = "B",
random = TRUE,
width = 100,
height = 100,
col = "red",
size = 0.8,
plot = TRUE,
palette = TRUE,
verbose = TRUE

)

Arguments

img An Image object.

n The number of points of the pick_* function. Defaults to Inf. This means that

utils_pick 189

picking will run until the user press Esc.

col, size The color and size for the marker point.

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

plot Call a new plot(img) before processing? Defaults to TRUE.

verbose If TRUE (default) shows a counter in the console.

r The radius of neighborhood pixels. Defaults to 1.

shape A character vector indicating the shape of the brush around the selected pixel. It
can be "box", "disc", "diamond", "Gaussian" or "line". Defaults to "box".
In this case, if 'r = 1', all the 8 surrounding pixels are sampled. Setting to
"disc" and increasing the radius (r) will select surrounding pixels towards the
format of a sphere around the selected pixel.

show How to plot in mapview viewer, either 'rgb or 'index'.

title The title of the map view when vieweris used.

index The index to use for the index view. Defaults to ’B’.

random Randomize the selected pixels? Defaults to TRUE.

width, height The width and height of the generated palette. Defaults to 100 for both, i.e., a
square image of 100 x 100.

palette Plot the generated palette? Defaults to TRUE.

Value

• pick_count() returns data.frame with the x and y coordinates of the selected point(x).

• pick_rgb() returns a data.frame with the R, G, and B values of the selected point(s).

• pick_palette() returns an object of class Image.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")

start a counting process
pick_count(img)

190 utils_polygon

get rgb from point(s)
pick_rgb(img)

create a palette from point(s)
pick_palette(img)
}

utils_polygon Utilities for Polygons

Description

Several useful functions for analyzing polygons. All of them are based on a set of coordinate points
that describe the edge of the object(s). If a list of polygons is provided, it loops through the list and
computes what is needed for each element of the list.

• Polygon measures

– conv_hull() Computes the convex hull of a set of points.
– conv_hull_unified() Computes the convex hull of a set of points. Compared to conv_hull(),
conv_hull_unified() binds (unifies) the coordinates when x is a list of coordinates.

– poly_area() Computes the area of a polygon given by the vertices in the vectors x and
y using the Shoelace formula, as follows (Lee and Lim, 2017):

A =
1

2

∣∣∣∣∣
n∑

i=1

(xiyi+1 − xi+1yi)

∣∣∣∣∣
where x and y are the coordinates that form the corners of a polygon, and n is the number
of coordinates.

– poly_angles() Calculates the internal angles of the polygon using the law of cosines.
– poly_lw() Returns the length and width of a polygon based on its alignment to the y-axis

(with poly_align()). The length is defined as the range along the x-axis, and the width is
defined as the range on the y-axis.

• poly_mass() Computes the center of mass (centroid) of a polygon given by the vertices in
the vectors x and y using the following formulas:

Cx =
1

6A

n∑
i=1

(xi + xi+1)(xiyi+1 − xi+1yi)

Cy =
1

6A

n∑
i=1

(yi + yi+1)(xiyi+1 − xi+1yi)

where C_x and C_y are the coordinates of the center of mass, A is the area of the polygon computed
by the Shoelace formula, x and y are the coordinates that form the corners of the polygon, and n is
the number of coordinates.

utils_polygon 191

• poly_solidity() Computes the solidity of a shape as the ratio of the shape area and the
convex hull area.

• Perimeter measures

– poly_slide() Slides the coordinates of a polygon given by the vertices in the vectors x
and y so that the id-th point becomes the first one.

– poly_distpts() Computes the Euclidean distance between every point of a polygon
given by the vertices in the vectors x and y.

– poly_centdist() Computes the Euclidean distance between every point on the perime-
ter and the centroid of the object.

– poly_centdist_mass() Computes the Euclidean distance between every point on the
perimeter and the center of mass of the object.

– poly_perimeter() Computes the perimeter of a polygon given by the vertices in the
vectors x and y.

– poly_caliper() Computes the caliper (also called the Feret’s diameter) of a polygon
given by the vertices in the vectors x and y.

• Circularity measures (Montero et al. 2009).

– poly_circularity() computes the circularity (C), also called shape compactness or
roundness measure, of an object. It is given by C = P^2 / A, where P is the perimeter and
A is the area of the object.

– poly_circularity_norm() computes the normalized circularity (Cn), which is unity
for a circle. This measure is invariant under translation, rotation, scaling transformations,
and is dimensionless. It is given by: Cn = P^2 / 4*pi*A.

– poly_circularity_haralick() computes Haralick’s circularity (CH). The method is
based on computing all Euclidean distances from the object centroid to each boundary
pixel. With this set of distances, the mean (m) and the standard deviation (sd) are com-
puted. These statistical parameters are used to calculate the circularity, CH, of a shape as
CH = m/sd.

– poly_convexity() computes the convexity of a shape using the ratio between the perime-
ter of the convex hull and the perimeter of the polygon.

– poly_eccentricity() computes the eccentricity of a shape using the ratio of the eigen-
values (inertia axes of coordinates).

– poly_elongation() computes the elongation of a shape as 1 - width / length.

• Utilities for polygons

– poly_check() Checks a set of coordinate points and returns a matrix with x and y
columns.

– poly_is_closed() Returns a logical value indicating if a polygon is closed.
– poly_close() and poly_unclose() close and unclose a polygon, respectively.
– poly_rotate() Rotates the polygon coordinates by an angle (0-360 degrees) in the coun-

terclockwise direction.
– poly_flip_x(), poly_flip_y() flip shapes along the x-axis and y-axis, respectively.
– poly_align() Aligns the coordinates along their longer axis using the var-cov matrix

and eigen values.
– poly_center() Centers the coordinates on the origin.
– poly_sample() Samples n coordinates from existing points. Defaults to 50.

192 utils_polygon

– poly_sample_prop() Samples a proportion of coordinates from existing points. De-
faults to 0.1.

– poly_spline() Interpolates the polygon contour.
– poly_smooth() Smooths the polygon contour using a simple moving average.
– poly_jitter() Adds a small amount of noise to a set of point coordinates. See base::jitter()

for more details.

• poly_measures() Is a wrapper around the poly_*() functions.

Usage

poly_check(x)

poly_is_closed(x)

poly_close(x)

poly_unclose(x)

poly_angles(x)

poly_limits(x)

conv_hull(x)

conv_hull_unified(x)

poly_area(x)

poly_slide(x, fp = 1)

poly_distpts(x)

poly_centdist(x)

poly_centdist_mass(x)

poly_perimeter(x)

poly_rotate(x, angle, plot = TRUE)

poly_align(x, plot = TRUE)

poly_center(x, plot = TRUE)

poly_lw(x)

poly_eccentricity(x)

utils_polygon 193

poly_convexity(x)

poly_caliper(x)

poly_elongation(x)

poly_solidity(x)

poly_flip_y(x)

poly_flip_x(x)

poly_sample(x, n = 50)

poly_sample_prop(x, prop = 0.1)

poly_jitter(x, noise_x = 1, noise_y = 1, plot = TRUE)

poly_circularity(x)

poly_circularity_norm(x)

poly_circularity_haralick(x)

poly_mass(x)

poly_spline(x, vertices = 100, k = 2)

poly_smooth(x, niter = 10, n = NULL, prop = NULL, plot = TRUE)

poly_measures(x)

Arguments

x A 2-column matrix with the x and y coordinates. If x is a list of vector coor-
dinates, the function will be applied to each element using base::lapply() or
base::sapply().

fp The ID of the point that will become the new first point. Defaults to 1.

angle The angle (0-360) to rotate the object.

plot Should the object be plotted? Defaults to TRUE.

n, prop The number and proportion of coordinates to sample from the perimeter coor-
dinates. In poly_smooth(), these arguments can be used to sample points from
the object’s perimeter before smoothing.

noise_x, noise_y
A numeric factor to define the noise added to the x and y axes, respectively. See
base::jitter() for more details.

vertices The number of spline vertices to create.

194 utils_polygon

k The number of points to wrap around the ends to obtain a smooth periodic spline.

niter An integer indicating the number of smoothing iterations.

Value

• conv_hull() and poly_spline() returns a matrix with x and y coordinates for the convex
hull/smooth line in clockwise order. If x is a list, a list of points is returned.

• poly_area() returns a double, or a numeric vector if x is a list of vector points.

• poly_mass() returns a data.frame containing the coordinates for the center of mass, as well
as for the maximum and minimum distance from contour to the center of mass.

• poly_slides(), poly_distpts(), poly_spline(), poly_close(), poly_unclose(), poly_rotate(),
poly_jitter(), poly_sample(), poly_sample_prop(), and poly_measures returns a data.frame.

• poly_perimeter(), poly_lw(), poly_eccentricity(), poly_convexity(), poly_caliper(),
poly_elongation(), poly_circularity_norm(), poly_circularity_haralick() returns
a double.

References

Lee, Y., & Lim, W. (2017). Shoelace Formula: Connecting the Area of a Polygon and the Vector
Cross Product. The Mathematics Teacher, 110(8), 631–636. doi:10.5951/mathteacher.110.8.0631

Montero, R. S., Bribiesca, E., Santiago, R., & Bribiesca, E. (2009). State of the Art of Compactness
and Circularity Measures. International Mathematical Forum, 4(27), 1305–1335.

Chen, C.H., and P.S.P. Wang. 2005. Handbook of Pattern Recognition and Computer Vision. 3rd
ed. World Scientific.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
A 2 x 2 square
df <- draw_square(side = 2)

square area
poly_area(df)

polygon perimeter
poly_perimeter(df)

center of mass of the square
cm <- poly_mass(df)
plot_mass(cm)

The convex hull will be the vertices of the square
(conv_square <- conv_hull(df) |> poly_close())
plot_contour(conv_square,

col = "blue",
lwd = 6)

poly_area(conv_square)

https://doi.org/10.5951/mathteacher.110.8.0631

utils_polygon_plot 195

################### Example with a polygon ##################
x <- c(0, 1, 2, 3, 5, 2, -1, 0, 0)
y <- c(5, 6.5, 7, 3, 1, 1, 0, 2, 5)
df_poly <- cbind(x, y)

area of the polygon
plot_polygon(df_poly, fill = "red")
poly_area(df_poly)

perimeter of the polygon
poly_perimeter(df_poly)

center of mass of polygon
cm <- poly_mass(df_poly)
plot_mass(cm, col = "blue")

vertices of the convex hull
(conv_poly <- conv_hull(df_poly))

area of the convex hull
poly_area(conv_poly)

plot_polygon(conv_poly,
fill = "red",
alpha = 0.2,
add = TRUE)

############ example of circularity measures ################
tri <- draw_circle(n = 200, plot = FALSE)
plot_polygon(tri, aspect_ratio = 1)
poly_circularity_norm(tri)

set.seed(1)
tri2 <-

draw_circle(n = 200, plot = FALSE) |>
poly_jitter(noise_x = 100, noise_y = 100, plot = FALSE)

plot_polygon(tri2, aspect_ratio = 1)
poly_circularity_norm(tri2)
}

utils_polygon_plot Utilities for plotting polygons

Description

• plot_contour() Plot contour lines.

• plot_polygon() Plots a polygon describing the objects.

196 utils_polygon_plot

• plot_mass() Plots the center of mass along with maximum and minimum radius.

• plot_ellipse() Plots an ellipse that fits the major and minor axis for each object.

Usage

plot_contour(x, id = NULL, col = "black", lwd = 1, ...)

plot_polygon(
x,
fill = "gray",
random_fill = TRUE,
points = FALSE,
merge = TRUE,
border = "black",
alpha = 1,
add = FALSE,
nrow = NULL,
ncol = NULL,
aspect_ratio = 1,
show_id = TRUE,
xlim = NULL,
ylim = NULL,
...

)

plot_mass(x, id = NULL, col = "black", cex = 1, lwd = 1)

plot_ellipse(object, id = NULL, col = "black", lwd = 1)

Arguments

x A 2-column matrix with the x and y coordinates.

id The object identification (numeric) to plot the contour/ellipse. By default (id =
NULL), the contour is plotted to all objects.

col, lwd, cex The color, width of the lines, and size of point, respectively.

... • For plot_contour() and plot_ellipse() further arguments passed on to
graphics::lines().

• For plot_mass(), further arguments passed on to graphics::points().
• For plot_polygon(), further arguments passed on to graphics::polygon().

fill, border, alpha
The color to fill the polygon, the color of the polygon’s border, and the alpha
transparency (1 opaque, 0 transparent).

random_fill Fill multiple objects with random colors? Defaults to TRUE.

points Plot the points? Defaults to FALSE.

merge Merge multiple objects into a single plot? Defaults to TRUE. If FALSE, a single
call plot() will be used for each objects. Use nrow and ncol to control the
number of rows and columns of the window.

utils_rows_cols 197

add Add the current plot to a previous one? Defaults to FALSE.

nrow, ncol The number of rows and columns to use in the composite image. Defaults to
NULL, i.e., a square grid is produced.

aspect_ratio The x/y aspect ratio. Defaults to 1. This will set up the window so that one
data unit in the y direction is equal to one data unit in the x direction. Set
aspect_ratio = NULL to fit the object to the window size.

show_id Shows the object id? Defaults to TRUE.

xlim, ylim A numeric vector of length 2 (min; max) indicating the range of x and y-axes.

object An object computed with analyze_objects().

Value

a NULL object.

Examples

plot_polygon(contours)
plot_contour(contours[[1]], id = 6, col = "red", lwd = 3)

utils_rows_cols Utilities for handling with rows and columns

Description

• columns_to_rownames(): Move a column of .data to its row names.

• rownames_to_column(): Move the row names of .data to a new column.

• remove_rownames(): Remove the row names of .data.

• round_cols() Rounds the values of all numeric variables to the specified number of decimal
places (default 2).

Usage

column_to_rownames(.data, var = "rowname")

rownames_to_column(.data, var = "rowname")

remove_rownames(.data)

round_cols(.data, digits = 2)

Arguments

.data A data frame

var Name of column to use for rownames.

digits The number of significant figures. Defaults to 2.

198 utils_shapefile

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
iris2 <- iris |> rownames_to_column()
head(iris2)
iris2$rowname <- paste0("r", iris2$rowname)
iris2 |> column_to_rownames("rowname") |> head()
}

utils_shapefile Import/export shapefiles.

Description

• shapefile_input() creates or imports a shapefile and optionally converts it to an sf object.
It can also cast POLYGON or MULTIPOLYGON geometries to MULTILINESTRING if required.

• shapefile_export() exports an object (sf or SpatVector) to a file.

• shapefile_view() is a simple wrapper around mapview() to plot a shapefile.

Usage

shapefile_input(
shapefile,
info = TRUE,
as_sf = TRUE,
multilinestring = FALSE,
...

)

shapefile_export(shapefile, filename, ...)

shapefile_view(
shapefile,
attribute = NULL,
type = c("shape", "centroid"),
color_regions = custom_palette(c("red", "yellow", "forestgreen")),
...

)

utils_shapefile 199

Arguments

shapefile For shapefile_input(), character (filename), or an object that can be coerced
to a SpatVector, such as an sf (simple features) object. See terra::vect() for
more details.

For shapefile_export(), a SpatVector or an sf object to be exported as a
shapefile.

info Logical value indicating whether to print information about the imported shape-
file (default is TRUE).

as_sf Logical value indicating whether to convert the imported shapefile to an sf ob-
ject (default is TRUE).

multilinestring

Logical value indicating whether to cast polygon geometries to MULTILINESTRING
geometries (default is FALSE).

... Additional arguments to be passed to terra::vect() (shapefile_input()),
terra::writeVector() (shapefile_export()) or mapview::mapview() (shapefile_view()).

filename The path to the output shapefile.

attribute The attribute to be shown in the color key. It must be a variable present in
shapefile.

type A character string specifying whether to visualize the shapefile as "shape" or
as "centroid". Partial matching is allowed. If set to "centroid", the function
will convert the shapefile’s geometry to centroids before displaying. Defaults to
"shape".

color_regions The color palette to represent attribute.

Value

• shapefile_input() returns an object of class sf (default) representing the imported shape-
file.

• shapefile_export() returns a NULL object.

• shapefile_view() returns an object of class mapview.

Examples

if(interactive()){
library(pliman)
shp <- system.file("ex/lux.shp", package="terra")
shp_file <- shapefile_input(shp, as_sf = FALSE)
shapefile_view(shp_file)
}

200 utils_shapes

utils_shapes Utilities for drawing coordinates of known shapes

Description

The functions computes the coordinates of common shapes such as squares triangles, rectangles
and circles.

• draw_circle() Draws a perfect circle with a desired radius.

• draw_square() Draws a square with a desired side.

• draw_rectangle() Draws a rectangle given two desired sides.

• draw_trian_equi() Draws an equilateral triangle with a desired side.

• draw_trian_rect() Draws a triangle rectangle given two cathetus.

• draw_n_tagon() Draws polygons with n sides

Usage

draw_circle(radius = 1, n = 1000, plot = TRUE)

draw_square(side = 2, plot = TRUE)

draw_rectangle(side1 = 2, side2 = 3, plot = TRUE)

draw_trian_equi(side = 2, plot = TRUE)

draw_trian_rect(cat1 = 1, cat2 = 2, plot = TRUE)

draw_n_tagon(n, plot = TRUE)

Arguments

radius The radius of the circle. Defaults to 1.

n The number of sides in the n-tagon.

plot Plots the result? Defaults to TRUE.

side The side of the square/equilateral triangle. Defaults to 2.

side1, side2 The first and second sides of the rectangle. Defaults to 2 and 3, respectively.

cat1, cat2 The first and second cathetus of the right triangle. Defaults to 1, and 2, respec-
tively.

Value

A data frame with the x and y coordinates

utils_shapes 201

Examples

########## An example of a circle ##########
library(pliman)
radius <- 3
circ <- draw_circle(radius = radius)

area
pi * radius ^ 2
poly_area(circ)

perimeter
2 * pi * radius
poly_perimeter(circ)

############ An example of a square ############
side <- 2
(square <- draw_square(side = side))

area
side ^ 2
poly_area(square)

perimeter
side * 4
poly_perimeter(square)

############ An example of a rectangle ############
side1 <- 2
side2 <- 3
(rect <- draw_rectangle())

area
poly_area(rect)

perimeter
poly_perimeter(rect)
########### An example of an equilateral triangle #########
side <- 1 # defaults
(trig <- draw_trian_equi(side = side))

area (b*h / 2)
height of the triangle
(h <- (side * sqrt(3)) / 2)
side * h / 2

poly_area(trig)

perimeter (side * 3)
poly_perimeter(trig)

########### An example of a rectangle triangle ##########
cat1 <- 2

202 utils_stats

cat2 <- 3
(df <- draw_trian_rect(cat1, cat2))
area
(cat1 * cat2) / 2
poly_area(df)

perimeter
cat1 + cat2 + sqrt(cat1^2 + cat2^2)
poly_perimeter(df)
############ An creating shapes with n sides ############
side <- 2
(square <- draw_square(side = side))

area
side ^ 2
poly_area(square)

perimeter
side * 4
poly_perimeter(square)

utils_stats These functions applies common statistics to a list of objects, returning
a numeric vector.

Description

These functions applies common statistics to a list of objects, returning a numeric vector.

Usage

mean_list(x, ...)

sd_list(x, ...)

max_list(x, ...)

min_list(x, ...)

Arguments

x A data.frame or matrix with numeric values.

... Further arguments passed on to the R base function (e.g, mean(), sd(), etc.)

Value

A numeric vector.

utils_transform 203

Examples

mean_list(list(a = 1:10, b = 2:20))

utils_transform Spatial transformations

Description

Performs image rotation and reflection

• image autocrop() Crops automatically an image to the area of objects.

• image_crop() Crops an image to the desired area.

• image_trim() Remove pixels from the edges of an image (20 by default).

• image_dimension() Gives the dimension (width and height) of an image.

• image_rotate() Rotates the image clockwise by the given angle.

• image_horizontal() Converts (if needed) an image to a horizontal image.

• image_vertical() Converts (if needed) an image to a vertical image.

• image_hreflect() Performs horizontal reflection of the image.

• image_vreflect() Performs vertical reflection of the image.

• image_resize() Resize the image. See more at EBImage::resize().

• image_contrast() Improve contrast locally by performing adaptive histogram equalization.
See more at EBImage::clahe().

• image_dilate() Performs image dilatation. See more at EBImage::dilate().

• image_erode() Performs image erosion. See more at EBImage::erode().

• image_opening() Performs an erosion followed by a dilation. See more at EBImage::opening().

• image_closing() Performs a dilation followed by an erosion. See more at EBImage::closing().

• image_filter() Performs median filtering in constant time. See more at EBImage::medianFilter().

• image_blur() Performs blurring filter of images. See more at EBImage::gblur().

• image_skeleton() Performs image skeletonization.

Usage

image_autocrop(
img,
index = "NB",
edge = 5,
opening = 5,
closing = FALSE,
filter = FALSE,
parallel = FALSE,
workers = NULL,
verbose = TRUE,

204 utils_transform

plot = FALSE
)

image_crop(
img,
width = NULL,
height = NULL,
viewer = get_pliman_viewer(),
downsample = NULL,
max_pixels = 1e+06,
show = "rgb",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_dimension(img, parallel = FALSE, workers = NULL, verbose = TRUE)

image_rotate(
img,
angle,
bg_col = "white",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = TRUE

)

image_horizontal(
img,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_vertical(
img,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_hreflect(
img,
parallel = FALSE,

utils_transform 205

workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_vreflect(
img,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_resize(
img,
rel_size = 100,
width,
height,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_trim(
img,
edge = NULL,
top = NULL,
bottom = NULL,
left = NULL,
right = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_dilate(
img,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

206 utils_transform

image_erode(
img,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_opening(
img,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_closing(
img,
kern = NULL,
size = NULL,
shape = "disc",
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_skeleton(
img,
kern = NULL,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE,
...

)

image_thinning(
img,
niter = 3,
parallel = FALSE,
workers = NULL,

utils_transform 207

verbose = TRUE,
plot = FALSE,
...

)

image_filter(
img,
size = 2,
cache = 512,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_blur(
img,
sigma = 3,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

image_contrast(
img,
parallel = FALSE,
workers = NULL,
verbose = TRUE,
plot = FALSE

)

Arguments

img An image or a list of images of class Image.
index The index to segment the image. See image_index() for more details. Defaults

to "NB" (normalized blue).
edge • for image_autocrop() the number of pixels in the edge of the cropped

image. If edge = 0 the image will be cropped to create a bounding rectangle
(x and y coordinates) around the image objects.

• for image_trim(), the number of pixels removed from the edges. By de-
fault, 20 pixels are removed from all the edges.

opening, closing, filter
Morphological operations (brush size)

• opening performs an erosion followed by a dilation. This helps to remove
small objects while preserving the shape and size of larger objects.

• closing performs a dilatation followed by an erosion. This helps to fill
small holes while preserving the shape and size of larger objects.

208 utils_transform

• filter performs median filtering in the binary image. Provide a positive
integer > 1 to indicate the size of the median filtering. Higher values are
more efficient to remove noise in the background but can dramatically im-
pact the perimeter of objects, mainly for irregular perimeters such as leaves
with serrated edges.

Hierarchically, the operations are performed as opening > closing > filter. The
value declared in each argument will define the brush size.

parallel Processes the images asynchronously (in parallel) in separate R sessions running
in the background on the same machine. It may speed up the processing time
when image is a list. The number of sections is set up to 70% of available cores.

workers A positive numeric scalar or a function specifying the maximum number of
parallel processes that can be active at the same time.

verbose If TRUE (default) a summary is shown in the console.

plot If TRUE plots the modified image. Defaults to FALSE.

width, height • For image_resize() the Width and height of the resized image. These
arguments can be missing. In this case, the image is resized according to
the relative size informed in rel_size.

• For image_crop() a numeric vector indicating the pixel range (x and y,
respectively) that will be maintained in the cropped image, e.g., width =
100:200

viewer The viewer option. If not provided, the value is retrieved using get_pliman_viewer().
This option controls the type of viewer to use for interactive plotting. The avail-
able options are "base" and "mapview". If set to "base", the base R graph-
ics system is used for interactive plotting. If set to "mapview", the mapview
package is used. To set this argument globally for all functions in the package,
you can use the set_pliman_viewer() function. For example, you can run
set_pliman_viewer("mapview") to set the viewer option to "mapview" for all
functions.

downsample integer; for each dimension the number of pixels/lines/bands etc that will be
skipped; Defaults to NULL, which will find the best downsampling factor to ap-
proximate the max_pixels value.

max_pixels integer > 0. Maximum number of cells to use for the plot. If max_pixels <
npixels(img), regular sampling is used before plotting.

show How to plot in mapview viewer, either "rgb" or "index".

angle The rotation angle in degrees.

bg_col Color used to fill the background pixels, defaults to "white".

rel_size The relative size of the resized image. Defaults to 100. For example, setting
rel_size = 50 to an image of width 1280 x 720, the new image will have a
size of 640 x 360.

top, bottom, left, right
The number of pixels removed from top, bottom, left, and right when using
image_trim().

kern An Image object or an array, containing the structuring element. Defaults to a
brushe generated with EBImage::makeBrush().

utils_wd 209

size • For image_filter() is the median filter radius (integer). Defaults to 3.
• For image_dilate() and image_erode() is an odd number containing the

size of the brush in pixels. Even numbers are rounded to the next odd one.
The default depends on the image resolution and is computed as the image
resolution (megapixels) times 20.

shape A character vector indicating the shape of the brush. Can be box, disc, diamond,
Gaussian or line. Default is disc.

... Additional arguments passed on to image_binary().
niter The number of iterations to perform in the thinning procedure. Defaults to 3.

Set to NULL to iterate until the binary image is no longer changing.
cache The the L2 cache size of the system CPU in kB (integer). Defaults to 512.
sigma A numeric denoting the standard deviation of the Gaussian filter used for blur-

ring. Defaults to 3.

Value

• image_skeleton() returns a binary Image object.
• All other functions returns a modified version of image depending on the image_*() function

used.
• If image is a list, a list of the same length will be returned.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("sev_leaf.jpg")
plot(img)
img <- image_resize(img, 50)
img1 <- image_rotate(img, 45)
img2 <- image_hreflect(img)
img3 <- image_vreflect(img)
img4 <- image_vertical(img)
image_combine(img1, img2, img3, img4)
}

utils_wd Set and get the Working Directory quicky

Description

• get_wd_here() gets the working directory to the path of the current script.
• set_wd_here() sets the working directory to the path of the current script.
• open_wd_here() Open the File Explorer at the directory path of the current script.
• open_wd() Open the File Explorer at the current working directory.

210 watershed2

Usage

set_wd_here(path = NULL)

get_wd_here(path = NULL)

open_wd_here(path = get_wd_here())

open_wd(path = getwd())

Arguments

path Path components below the project root. Defaults to NULL. This means that the
directory will be set to the path of the file. If the path doesn’t exist, the user will
be asked if he wants to create such a folder.

Value

• get_wd_here() returns a full-path directory name.

• get_wd_here() returns a message showing the current working directory.

• open_wd_here() Opens the File Explorer of the path returned by get_wd_here().

Examples

if (interactive() && requireNamespace("EBImage")) {
get_wd_here()
set_wd_here()
open_wd_here()
}

watershed2 Alternative watershed algorithm

Description

This is a basic watershed algorithm that can be used as a faster alternative to EBImage::watershed().
I strongly suggest using this only with round objects, since it doesn’t consider both ’extension’ and
’tolerance’ arguments of EBImage::watershed().

Usage

watershed2(binary, dist_thresh = 0.75, plot = TRUE)

Arguments

binary A binary image

dist_thresh The distance threshold to create the

plot If TRUE (default) plots the labeled objects

watershed2 211

Value

The labelled version of binary.

Examples

if (interactive() && requireNamespace("EBImage")) {
library(pliman)
img <- image_pliman("soybean_touch.jpg")
binary <- image_binary(img, "B")[[1]]
wts <- watershed2(binary)
range(wts)
}

Index

∗ data
contours, 30

∗ images
pliman_images, 147

%>% (pipe), 145

analyze_objects, 5, 26
analyze_objects(), 5, 12, 16, 18, 23, 26, 27,

68, 82, 140, 151, 154, 155, 171, 180,
184, 197

analyze_objects_iter (analyze_objects),
5

analyze_objects_iter(), 5, 12, 13, 23
analyze_objects_minimal, 17
analyze_objects_shp, 23, 136
analyze_objects_shp(), 55, 152, 153
apply_fun_to_imgs, 27
as_image, 29

base::jitter(), 192, 193
base::lapply(), 193
base::sapply(), 193

calibrate, 29
calibrate(), 70
cm_to_dpi (utils_dpi), 173
cm_to_dpi(), 173, 174
cm_to_pixels (utils_dpi), 173
cm_to_pixels(), 173, 174
column_to_rownames (utils_rows_cols),

197
contours, 30
conv_hull (utils_polygon), 190
conv_hull_unified (utils_polygon), 190
custom_palette, 31
custom_palette(), 69, 126, 152

dist_transform, 32
distance (utils_dpi), 173
distance(), 173

dpi (utils_dpi), 173
dpi(), 173, 174
dpi_to_cm (utils_dpi), 173
dpi_to_cm(), 173, 174
draw_circle (utils_shapes), 200
draw_n_tagon (utils_shapes), 200
draw_rectangle (utils_shapes), 200
draw_square (utils_shapes), 200
draw_trian_equi (utils_shapes), 200
draw_trian_rect (utils_shapes), 200

EBImage::bwlabel, 133
EBImage::bwlabel(), 137
EBImage::clahe(), 203
EBImage::closing(), 203
EBImage::dilate(), 203
EBImage::erode(), 203
EBImage::gblur(), 203
EBImage::Image(), 29, 178
EBImage::makeBrush(), 63, 75, 208
EBImage::medianFilter(), 203
EBImage::opening(), 203
EBImage::resize(), 203
EBImage::watershed, 133
EBImage::watershed(), 80, 137, 210
efourier, 33
efourier(), 10, 14, 16, 26, 30, 34–37, 39
efourier_coefs, 34
efourier_error, 35
efourier_error(), 16
efourier_inv, 36
efourier_norm, 37
efourier_norm(), 16, 34, 37
efourier_power, 38
efourier_power(), 16
efourier_shape, 40
ellipse, 41
exactextractr::exact_extract(), 105,

107

212

INDEX 213

file_dir (utils_file), 175
file_extension (utils_file), 175
file_name (utils_file), 175

get_biplot (utils_pca), 185
get_biplot(), 171, 186
get_measures (utils_measures), 179
get_measures(), 13
get_pliman_viewer, 42
get_pliman_viewer(), 7, 25, 30, 44, 55, 61,

64, 70, 81, 87, 105, 116, 126, 132,
141, 151, 153, 174, 189, 208

get_wd_here (utils_wd), 209
get_wd_here(), 209, 210
getwd(), 178
ggplot_color, 43
graphics::barplot(), 186
graphics::lines(), 196
graphics::plot.window(), 152
graphics::points(), 196
graphics::polygon(), 196
graphics::text(), 181
grDevices::colors(), 51, 159
grDevices::convertColor(), 172

image_align, 43
image_align(), 43, 159
image_alpha, 44
image_augment, 45
image_augment(), 129
image_autocrop (utils_transform), 203
image_autocrop(), 207
image_binary, 47
image_binary(), 12, 66, 140, 142, 144, 183,

209
image_blur (utils_transform), 203
image_closing (utils_transform), 203
image_combine, 49
image_combine(), 140, 178
image_contrast (utils_transform), 203
image_create, 50
image_crop (utils_transform), 203
image_crop(), 159
image_dilate (utils_transform), 203
image_dimension (utils_transform), 203
image_erode (utils_transform), 203
image_expand, 51
image_expand(), 65
image_export (utils_image), 177

image_filter (utils_transform), 203
image_horizontal (utils_transform), 203
image_hreflect (utils_transform), 203
image_import (utils_image), 177
image_index, 52
image_index(), 10, 21, 25, 47, 56, 57, 79, 84,

87, 89, 95, 99, 109, 129, 133, 138,
141, 142, 151, 152, 207

image_input (utils_image), 177
image_opening (utils_transform), 203
image_palette (palettes), 143
image_pliman (utils_image), 177
image_prepare, 55
image_prepare(), 25, 27, 87
image_resize (utils_transform), 203
image_rotate (utils_transform), 203
image_segment, 56
image_segment_iter (image_segment), 56
image_segment_kmeans, 59
image_segment_manual, 61
image_segment_mask, 62
image_shp, 63
image_shp(), 25, 86, 140, 141, 149
image_skeleton (utils_transform), 203
image_skeleton(), 127
image_square, 65
image_square(), 129, 132
image_thinning (utils_transform), 203
image_thinning_guo_hall, 65
image_to_mat, 67
image_trim (utils_transform), 203
image_trim(), 207, 208
image_vertical (utils_transform), 203
image_view, 68
image_vreflect (utils_transform), 203

landmarks, 69
landmarks(), 33, 71, 72
landmarks_add, 70
landmarks_angle, 71
landmarks_dist, 72
landmarks_regradi, 73
landmarks_regradi(), 33, 71
leading_zeros, 74

make_brush, 75
make_brush(), 62
make_mask, 76
make_mask(), 62

214 INDEX

manipulate_files (utils_file), 175
mapedit::editMap(), 68, 69, 126, 164
mapview::mapview(), 199
max_list (utils_stats), 202
mean_list (utils_stats), 202
measure_disease, 77, 88
measure_disease(), 83, 85, 86, 88, 160
measure_disease_byl, 83
measure_disease_byl(), 160
measure_disease_iter (measure_disease),

77
measure_disease_shp, 86
measure_injury, 88
min_list (utils_stats), 202
mosaic_aggregate, 91
mosaic_aggregate(), 126
mosaic_analyze, 92
mosaic_analyze(), 99, 126
mosaic_analyze_iter, 98
mosaic_chm, 100
mosaic_chm(), 101
mosaic_chm_extract, 101
mosaic_chm_mask, 102
mosaic_chm_mask(), 94
mosaic_crop, 103
mosaic_draw, 104
mosaic_epsg, 106
mosaic_export (mosaic_input), 111
mosaic_extract, 107
mosaic_hist, 108
mosaic_index, 108
mosaic_index(), 94
mosaic_index2, 110
mosaic_input, 111
mosaic_input(), 93, 98, 103, 105, 109, 110,

116, 119–122, 125, 164
mosaic_interpolate, 113
mosaic_lonlat2epsg, 113
mosaic_plot, 114
mosaic_plot_rgb, 115
mosaic_prepare, 115
mosaic_project, 117
mosaic_resample, 118
mosaic_segment, 118
mosaic_segment_pick, 120
mosaic_segment_pick(), 94
mosaic_to_pliman, 121
mosaic_to_rgb, 122

mosaic_vectorize, 123
mosaic_view, 125
mosaic_view(), 94, 98, 103

npixels (utils_dpi), 173
npixels(), 173

object_contour, 158
object_contour (utils_objects), 182
object_contour(), 33, 42, 71, 73, 155
object_coord (utils_objects), 182
object_coord(), 184
object_edge, 127
object_edge(), 8, 14, 26
object_export, 128
object_export_shp, 131
object_id (utils_objects), 182
object_id(), 183
object_isolate (utils_objects), 182
object_label, 133
object_map, 135
object_mark, 136
object_rgb, 137
object_split, 138
object_split(), 83, 128
object_split_shp, 140
object_split_shp(), 27, 131
object_to_color, 141
open_wd (utils_wd), 209
open_wd(), 209
open_wd_here (utils_wd), 209
open_wd_here(), 209, 210
otsu, 142

palettes, 143
pca (utils_pca), 185
pca(), 170, 171
pick_coords (utils_pick), 187
pick_count (utils_pick), 187
pick_palette (utils_pick), 187
pick_palette(), 7, 82
pick_rgb (utils_pick), 187
pipe, 145
pixel_index, 146
pixels_to_cm (utils_dpi), 173
pixels_to_cm(), 173, 174
pliman_images, 147
pliman_indexes (utils_indexes), 179

INDEX 215

pliman_indexes(), 8, 20, 47, 53, 57, 95, 99,
133, 142

pliman_indexes_eq (utils_indexes), 179
pliman_indexes_eq(), 10, 26
pliman_indexes_ican_compute, 148
pliman_indexes_me (utils_indexes), 179
pliman_indexes_me(), 109, 110, 119
pliman_indexes_rgb (utils_indexes), 179
pliman_indexes_rgb(), 109, 110, 119
pliman_viewer, 148
plot.anal_obj (analyze_objects), 5
plot.anal_obj(), 5
plot.anal_obj_ls (analyze_objects), 5
plot.anal_obj_ls_minimal

(analyze_objects_minimal), 18
plot.anal_obj_minimal

(analyze_objects_minimal), 18
plot.image_index (image_index), 52
plot.image_shp, 149
plot.pca (utils_pca), 185
plot_contour (utils_polygon_plot), 195
plot_ellipse (utils_polygon_plot), 195
plot_id, 150
plot_index, 151
plot_index(), 54
plot_index_shp, 152
plot_lw, 154
plot_lw(), 12
plot_mass (utils_polygon_plot), 195
plot_measures (utils_measures), 179
plot_polygon (utils_polygon_plot), 195
png(), 161
poly_align (utils_polygon), 190
poly_align(), 15, 33
poly_angles (utils_polygon), 190
poly_apex_base_angle, 155
poly_apex_base_angle(), 14
poly_area (utils_polygon), 190
poly_caliper (utils_polygon), 190
poly_caliper(), 14
poly_centdist (utils_polygon), 190
poly_centdist_mass (utils_polygon), 190
poly_center (utils_polygon), 190
poly_center(), 33
poly_check (utils_polygon), 190
poly_circularity (utils_polygon), 190
poly_circularity_haralick

(utils_polygon), 190

poly_circularity_norm (utils_polygon),
190

poly_close (utils_polygon), 190
poly_convexity (utils_polygon), 190
poly_distpts (utils_polygon), 190
poly_eccentricity (utils_polygon), 190
poly_elongation (utils_polygon), 190
poly_flip_x (utils_polygon), 190
poly_flip_y (utils_polygon), 190
poly_is_closed (utils_polygon), 190
poly_jitter (utils_polygon), 190
poly_limits (utils_polygon), 190
poly_lw (utils_polygon), 190
poly_mass (utils_polygon), 190
poly_measures (utils_polygon), 190
poly_pcv, 156
poly_perimeter (utils_polygon), 190
poly_rotate (utils_polygon), 190
poly_sample (utils_polygon), 190
poly_sample_prop (utils_polygon), 190
poly_slide (utils_polygon), 190
poly_smooth (utils_polygon), 190
poly_smooth(), 33, 71, 156
poly_solidity (utils_polygon), 190
poly_spline (utils_polygon), 190
poly_unclose (utils_polygon), 190
poly_width_at, 157
prepare_to_shp, 159

random_color, 159
remove_rownames (utils_rows_cols), 197
rgb_to_hsb (utils_colorspace), 172
rgb_to_lab (utils_colorspace), 172
rgb_to_srgb (utils_colorspace), 172
round_cols (utils_rows_cols), 197
rownames_to_column (utils_rows_cols),

197

sad, 160
sad(), 161
sd_list (utils_stats), 202
sentinel_to_tif, 161
separate_col, 162
set_pliman_viewer, 163
set_pliman_viewer(), 25, 30, 44, 55, 61, 64,

70, 81, 87, 105, 116, 126, 132, 141,
151, 153, 174, 189, 208

set_wd_here (utils_wd), 209
set_wd_here(), 209

216 INDEX

sf::st_simplify(), 95
shapefile_build, 163
shapefile_build(), 113, 150
shapefile_edit, 166
shapefile_export (utils_shapefile), 198
shapefile_input (utils_shapefile), 198
shapefile_input(), 103, 113, 166
shapefile_interpolate, 167
shapefile_measures, 168
shapefile_plot, 169
shapefile_surface, 169
shapefile_view (utils_shapefile), 198
stats::prcomp(), 185
summary_index, 170

terra::datatype(), 112
terra::hist(), 108
terra::plot(), 114, 126, 169
terra::plotRGB(), 115
terra::project(), 117
terra::rast(), 112
terra::resample(), 118
terra::vect(), 199
terra::writeRaster(), 112
terra::writeVector(), 199

utils_colorspace, 172
utils_dpi, 173
utils_file, 175
utils_image, 177
utils_indexes, 179
utils_measures, 179
utils_objects, 182
utils_pca, 185
utils_pick, 187
utils_polygon, 190
utils_polygon_plot, 195
utils_rows_cols, 197
utils_shapefile, 198
utils_shapes, 200
utils_stats, 202
utils_transform, 203
utils_wd, 209

watershed2, 210

	analyze_objects
	analyze_objects_minimal
	analyze_objects_shp
	apply_fun_to_imgs
	as_image
	calibrate
	contours
	custom_palette
	dist_transform
	efourier
	efourier_coefs
	efourier_error
	efourier_inv
	efourier_norm
	efourier_power
	efourier_shape
	ellipse
	get_pliman_viewer
	ggplot_color
	image_align
	image_alpha
	image_augment
	image_binary
	image_combine
	image_create
	image_expand
	image_index
	image_prepare
	image_segment
	image_segment_kmeans
	image_segment_manual
	image_segment_mask
	image_shp
	image_square
	image_thinning_guo_hall
	image_to_mat
	image_view
	landmarks
	landmarks_add
	landmarks_angle
	landmarks_dist
	landmarks_regradi
	leading_zeros
	make_brush
	make_mask
	measure_disease
	measure_disease_byl
	measure_disease_shp
	measure_injury
	mosaic_aggregate
	mosaic_analyze
	mosaic_analyze_iter
	mosaic_chm
	mosaic_chm_extract
	mosaic_chm_mask
	mosaic_crop
	mosaic_draw
	mosaic_epsg
	mosaic_extract
	mosaic_hist
	mosaic_index
	mosaic_index2
	mosaic_input
	mosaic_interpolate
	mosaic_lonlat2epsg
	mosaic_plot
	mosaic_plot_rgb
	mosaic_prepare
	mosaic_project
	mosaic_resample
	mosaic_segment
	mosaic_segment_pick
	mosaic_to_pliman
	mosaic_to_rgb
	mosaic_vectorize
	mosaic_view
	object_edge
	object_export
	object_export_shp
	object_label
	object_map
	object_mark
	object_rgb
	object_split
	object_split_shp
	object_to_color
	otsu
	palettes
	pipe
	pixel_index
	pliman_images
	pliman_indexes_ican_compute
	pliman_viewer
	plot.image_shp
	plot_id
	plot_index
	plot_index_shp
	plot_lw
	poly_apex_base_angle
	poly_pcv
	poly_width_at
	prepare_to_shp
	random_color
	sad
	sentinel_to_tif
	separate_col
	set_pliman_viewer
	shapefile_build
	shapefile_edit
	shapefile_interpolate
	shapefile_measures
	shapefile_plot
	shapefile_surface
	summary_index
	utils_colorspace
	utils_dpi
	utils_file
	utils_image
	utils_indexes
	utils_measures
	utils_objects
	utils_pca
	utils_pick
	utils_polygon
	utils_polygon_plot
	utils_rows_cols
	utils_shapefile
	utils_shapes
	utils_stats
	utils_transform
	utils_wd
	watershed2
	Index

