Package 'phase12designs'

September 2, 2025

Type Package Title Comprehensive Tools for Running Model-Assisted Phase I/II Trial Simulations Version 0.3.1 Author Angela Cao [aut, cre], Haolun Shi [ctb] Maintainer Angela Cao <cao.t.angela@gmail.com> Description Provides a comprehensive set of tools to simulate, evaluate, and compare modelassisted designs for early-phase (Phase I/II) clinical trials, including: - BOIN12 (Bayesian optimal interval phase 1/11 trial design; Lin et al. (2020) <doi:10.1200/PO.20.00257>), - BOIN-ET (Takeda, K., Taguri, M., & Morita, S. (2018) <doi:10.1002/pst.1864>), - EffTox (Thall, P. F., & Cook, J. D. (2004) <doi:10.1111/j.0006-341X.2004.00218.x>), - Ji3+3 (Joint i3+3 design; Lin, X., & Ji, Y. (2020) <doi:10.1080/10543406.2020.1818250>), - PRINTE (probability intervals of toxicity and efficacy design; Lin, X., & Ji, Y. (2021) <doi:10.1177/0962280220977009>), - STEIN (simple toxicity and efficacy interval design; Lin, R., & Yin, G. (2017) <doi:10.1002/sim.7428>), - TEPI (toxicity and efficacy probability interval design; Li, D. H., Whitmore, J. B., Guo, W., & Ji, Y. (2017) < doi:10.1158/1078-0432.CCR-16-1125>), - uTPI (utility-based toxicity Probability interval design; Shi, H., Lin, R., & Lin, X. (2024) <doi:10.1002/sim.8922>). Includes flexible simulation parameters that allow researchers to efficiently compute operating characteristics under various fixed and random trial scenarios and export the results. License MIT + file LICENSE

Encoding UTF-8

Imports trialr, Iso

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.2.9000

NeedsCompilation no

2 decision_plot

Repository CRAN

Date/Publication 2025-09-02 06:30:02 UTC

Contents

deci	sion_plot	Decision map plot	
Index			30
	simulate_utpi		 34
	oc_utpi		 18
	oc_tepi		 16
	oc_stein		 14
	oc_pite		 12
	decision_plot		 2

Description

This function creates a decision plot containing customizable decision zones.

Usage

```
decision_plot(
  filename,
  filetype = c("png", "pdf", "svg"),
  xlab = "Toxicity Probability",
  ylab = "Efficacy Probability",
  x_breaks = c(0, 1),
  y_breaks = c(0, 1),
  x_labels = c(0, 1),
  x_labels = c(0, 1),
  zones = list(),
  legend_info = list(labels = NULL, colors = NULL),
  title = NULL,
  title_pos = c(0.05, 1.1),
```

decision_plot 3

```
legend_pos = c(0.3, 1.2),
grid_lines = TRUE,
plot_size = c(7, 7)
)
```

Arguments

filename	File path.
filetype	File type.
xlab	x-axis label. (Default is "Toxicity Probability")
ylab	y-axis label. (Default is "Efficacy Probability")
x_breaks	Numeric vector for x-axis major ticks. (Default is 'c(0, 1')
y_breaks	Numeric vector for y-axis major ticks. (Default is 'c(0, 1')
x_labels	Labels corresponding to x_breaks. (Default is $c(0, 1)$
y_labels	Labels corresponding to y_breaks. (Default is $c(0, 1)$
zones	A list of rectangular zones to draw, where each rectangle is a list with elements $xmin$, $xmax$, $ymin$, $ymax$, and $color$.
legend_info	A list with two elements: labels (character vector) and colors (character vector) for the legend.
title	Title of plot. (Default is 'NULL')
title_pos	A numeric vector (x, y) indicating the position of the title text.
legend_pos	A numeric vector (x, y) indicating the position of the legend.
grid_lines	Whether to include background grid lines. (Default is TRUE.)
plot_size	A numeric vector indicating width and height. (Default is $c(7, 7)$).

Value

No return value, called for side effects.

4 oc_boin12

oc_boin12

Compute operating characteristics using BOIN12

Description

oc_boin12() uses the BOIN12 design to compute operating charateristics of a user-specificed trial scenario. This design places significance on optimizing utility and the toxicity–efficacy trade-off.

Usage

```
oc_boin12(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
 OBD = 0,
  psafe = 0.95,
 pfutility = 0.95,
 ntrial = 10000,
 utilitytype = 1,
 u1,
 u2,
 prob = NULL
)
```

ndose	Integer. Number of dose levels. (Required)
target_t	Numeric. Target toxicity probability. (Required)
lower_e	Numeric. Minimum acceptable efficacy probability. (Required)
ncohort	Integer. Number of cohorts. (Default is 10)
cohortsize	Integer. Size of a cohort. (Default is 3)
startdose	Integer. Starting dose level. (Default is 1)
OBD	Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario. (Default is 0)
	• If set to 0: Random OBD will be selected.
	• Other: Treat this argument as the true OBD.
psafe	Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility	Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
ntrial	Integer. Number of random trial replications. (Default is 10000)
utilitytype	Integer. Type of utility structure. (Default is 1)

oc_boin12 5

```
• If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
```

- If set to 2: Use (w11 = 1, w00 = 0)
- Other: Use user-specified values from u1 and u2.

u1 Numeric. Utility parameter w_11. (0-100)

u2 Numeric. Utility parameter w_00. (0-100)

Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list of the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

Value

prob

A list containing operating characteristics such as:

bd.sel OBD selection percentage

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

earlystop Percentage of early stopped trials

overdose Overdose patients percentage

poorall Poor allocation percentage

ov.sel Overdose selection percentage

```
oc_boin12(
  ndose = 5,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

oc_boinet

oc_boinet

Compute operating characteristics using BOINET

Description

oc_boinet() uses the BOINET design to compute operating charateristics of a user-specificed trial scenario. This design uses target toxicity and efficacy rates jointly to form the cutoff intervals within a decision map.

Usage

```
oc_boinet(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  psafe = 0.95,
  pfutility = 0.95,
  ntrial = 10000,
  utilitytype = 1,
  prob = NULL
)
```

ndose	Integer. Number of dose levels. (Required)
target_t	Numeric. Target toxicity probability. (Required)
lower_e	Numeric. Minimum acceptable efficacy probability. (Required)
ncohort	Integer. Number of cohorts. (Default is 10)
cohortsize	Integer. Size of a cohort. (Default is 3)
startdose	Integer. Starting dose level. (Default is 1)
OBD	Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario. (Default is 0)
	 If set to 0: Random OBD will be selected. Other: Treat this argument as the true OBD.
psafe	Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility	Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
ntrial	Integer. Number of random trial replications. (Default is 10000)
utilitytype	Integer. Type of utility structure. (Default is 1)
	• If set to 1: Use preset weights $(w11 = 0.6, w00 = 0.4)$

oc_boinet 7

• If set to 2: Use (w11 = 1, w00 = 0)

prob

Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list with the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2</pre>
```

Value

A list containing operating characteristics such as:

bd.sel OBD selection percentage

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

earlystop Percentage of early stopped trials

overdose Overdose patients percentage

poorall Poor allocation percentage

ov.sel Overdose selection percentage

```
oc_boinet(
  ndose = 5,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

8 oc_efftox

oc_efftox

Compute operating characteristics using EffTox

Description

oc_efftox() uses the EffTox design to compute operating charateristics of a user-specificed trial scenario. This design uses toxicity–efficacy trade-off contours.

Usage

```
oc_efftox(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  startdose = 1,
  OBD = 0,
  ntrial = 10000,
  utilitytype = 1,
  prob = NULL
)
```

ndose	Integer. Number of dose levels. (Required)
target_t	Numeric. Target toxicity probability. (Required)
lower_e	Numeric. Minimum acceptable efficacy probability. (Required)
ncohort	Integer. Number of cohorts. (Default is 10)
startdose	Integer. Starting dose level. (Default is 1)
OBD	Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario. (Default is 0)
	• If set to 0: Random OBD will be selected.
	• Other: Treat this argument as the true OBD.
ntrial	Integer. Number of random trial replications. (Default is 10000)
utilitytype	Integer. Type of utility structure. (Default is 1)
	 If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4) If set to 2: Use (w11 = 1, w00 = 0)
prob	Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list of the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).

oc_ji3p3

• mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

Value

A list containing operating characteristics such as:

bd.sel OBD selection percentage

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

earlystop Percentage of early stopped trials

overdose Overdose patients percentage

poorall Poor allocation percentage

ov.sel Overdose selection percentage

Examples

```
oc_efftox(
  ndose = 2,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 1,
)
```

oc_ji3p3

Compute operating characteristics using Ji3+3

Description

oc_ji3p3() uses the Ji3+3 design to compute operating charateristics of a user-specificed trial scenario. This design compares observed efficacy and toxicity with predefined target rates.

0c_ji3p3

Usage

```
oc_ji3p3(
  ndose,
  target_t,
  target_e,
  lower_e = 0.2,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  eps1 = 0.05,
  eps2 = 0.05,
  psafe = 0.95,
  pfutility = 0.95,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL
)
```

Arguments

ndose

```
Numeric. Target toxicity probability. (Required)
target_t
                   Numeric. Target efficacy probability. (Required)
target_e
lower_e
                   Numeric. Minimum acceptable efficacy probability. (Required)
                   Integer. Number of cohorts. (Default is 10)
ncohort
cohortsize
                   Integer. Size of a cohort. (Default is 3)
startdose
                   Integer. Starting dose level. (Default is 1)
OBD
                   Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario.
                   (Default is 0)
                     • If set to 0: Random OBD will be selected.
                     • Other: Treat this argument as the true OBD.
eps1
                   Numerical. Width of the subrectangle.
                   Numerical. Width of the subreactangle.
eps2
psafe
                   Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility
                   Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
ntrial
                   Integer. Number of random trial replications. (Default is 10000)
utilitytype
                   Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
```

Integer. Number of dose levels. (Required)

oc_ji3p3

```
u1 Numeric. Utility parameter w_11. (0-100)
```

u2 Numeric. Utility parameter w_00. (0-100)

Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list of the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

Value

prob

A list containing operating characteristics such as:

```
bd.sel OBD selection percentage
```

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

earlystop Percentage of early stopped trials

overdose Overdose patients percentage

poorall Poor allocation percentage

ov.sel Overdose selection percentage

```
oc_ji3p3(
  ndose = 5,
  target_t = 0.3,
  target_e = 0.35,
  lower_e = 0.4,
  ntrial = 10,
)
```

12 oc_pite

oc_pite

Compute operating characteristics using PRINTE

Description

oc_pite() uses the PRINTE design to compute operating characteristics of a user-specificed trial scenario. This design maps toxicity and efficacy intervals onto a decision table, forming 16 equalarea regions.

Usage

```
oc_pite(
  ndose,
  target_t,
  target_e,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  eps1 = 0.05,
  eps2 = 0.05,
  psafe = 0.95,
  pfutility = 0.95,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL
)
```

```
ndose
                  Integer. Number of dose levels. (Required)
                  Numeric. Target toxicity probability. (Required)
target_t
target_e
                  Numeric. Target efficacy probability. (Required)
lower_e
                  Numeric. Minimum acceptable efficacy probability. (Required)
ncohort
                  Integer. Number of cohorts. (Default is 10)
cohortsize
                  Integer. Size of a cohort. (Default is 3)
startdose
                  Integer. Starting dose level. (Default is 1)
OBD
                  Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario.
                  (Default is 0)
```

- If set to 0: Random OBD will be selected.
- Other: Treat this argument as the true OBD.

oc_pite

Numerical. Width of the subrectangle. (Default is '0.05') eps1 Numerical. Width of the subreactangle. (Default is '0.05') eps2 Numeric. Early stopping cutoff for toxicity. (Default is 0.95) psafe pfutility Numeric. Early stopping cutoff for efficacy. (Default is 0.95) Integer. Number of random trial replications. (Default is 10000) ntrial utilitytype Integer. Type of utility structure. (Default is 1) • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4) • If set to 2: Use (w11 = 1, w00 = 0)• Other: Use user-specified values from u1 and u2. u1 Numeric. Utility parameter w_11. (0-100) u2 Numeric. Utility parameter w_00. (0-100) Fixed probability vectors. If not specified, a random scenario is used by deprob fault. Use this parameter to provide fixed probability vectors as a list with the

- following named elements:

 pE: Numeric vector of efficacy probabilities for each dose level.
 - pT: Numeric vector of toxicity probabilities for each dose level.
 - obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
 - mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

Value

A list containing operating characteristics such as:

bd.sel OBD selection percentage

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

earlystop Percentage of early stopped trials

overdose Overdose patients percentage

poorall Poor allocation percentage

ov.sel Overdose selection percentage

oc_stein

Examples

```
oc_pite(
  ndose = 5,
  target_t = 0.3,
  target_e = 0.35,
  lower_e = 0.4,
  ntrial = 10,
)
```

oc_stein

Compute operating characteristics using STEIN

Description

oc_stein() uses the STEIN design to compute operating charateristics of a user-specificed trial scenario. This design uses target toxicity and efficacy rates separately to form the cutoff intervals within a decision map.

Usage

```
oc_stein(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  psi1 = 0.2,
  psi2 = 0.6,
  psafe = 0.95,
  pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
 prob = NULL
)
```

```
ndose Integer. Number of dose levels. (Required)
target_t Numeric. Target toxicity probability. (Required)
lower_e Numeric. Minimum acceptable efficacy probability. (Required)
ncohort Integer. Number of cohorts. (Default is 10)
cohortsize Integer. Size of a cohort. (Default is 3)
```

oc_stein 15

```
startdose
                   Integer. Starting dose level. (Default is 1)
OBD
                  Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario.
                  (Default is 0)
                     • If set to 0: Random OBD will be selected.
                     • Other: Treat this argument as the true OBD.
                  Numerical. Highest inefficacious efficacy probability.
psi1
                  Numerical. Lowest highly-promising efficacy probability.
psi2
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
ntrial
                   Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
u1
                  Numeric. Utility parameter w_11. (0-100)
                   Numeric. Utility parameter w 00. (0-100)
u2
                  Fixed probability vectors. If not specified, a random scenario is used by default.
prob
                  Use this parameter to provide fixed probability vectors as a list of the following
                  named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3.
                     mtd = 2
```

Value

A list containing operating characteristics such as:

```
bd.sel OBD selection percentage
od.sel Favorable dose selection percentage
bd.pts Average percentage of patients at the OBD
od.pts Average percentage of patients at the favorable doses
earlystop Percentage of early stopped trials
overdose Overdose patients percentage
poorall Poor allocation percentage
ov.sel Overdose selection percentage
```

16 oc_tepi

Examples

```
oc_stein(
  ndose = 5,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

oc_tepi

Compute operating characteristics using TEPI

Description

oc_tepi() uses the TEPI design to compute operating charateristics of a user-specificed trial scenario. This design maps toxicity and efficacy intervals onto a decision table, forming 16 regions.

Usage

```
oc_tepi(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  effint_1 = c(0, lower_e, lower_e + 0.2, lower_e + 0.4),
  effint_u = c(lower_e, lower_e + 0.2, lower_e + 0.4, 1),
  toxint_1 = c(0, 0.15, target_t, target_t + 0.05),
  toxint_u = c(0.15, target_t, target_t + 0.05, 1),
  psafe = 0.95,
  pfutility = 0.95,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL
)
```

```
ndose Integer. Number of dose levels. (Required)
target_t Numeric. Target toxicity probability. (Required)
lower_e Numeric. Minimum acceptable efficacy probability. (Required)
ncohort Integer. Number of cohorts. (Default is 10)
cohortsize Integer. Size of a cohort. (Default is 3)
```

oc_tepi

```
startdose
                  Integer. Starting dose level. (Default is 1)
OBD
                   Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario.
                   (Default is 0)
                     • If set to 0: Random OBD will be selected.
                     • Other: Treat this argument as the true OBD.
                  Lower efficacy bounds for dose assignment decision table. (Default is c(0,lower_e,lower_e+0.2,lower_e+0.2)
effint_1
effint_u
                  Lower efficacy bounds for dose assignment decision table. (Default is c(lower_e,lower_e+0.2,lower_e
                  Lower toxicity bounds for dose assignment decision table. (Default is c(0,0.15, target_t, target_t+0.15)
toxint_1
toxint_u
                  Lower toxicity bounds for dose assignment decision table. (Default is c(0.15, target_t, target_t+0.09)
psafe
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
u1
                  Numeric. Utility parameter w_11. (0-100)
                  Numeric. Utility parameter w_00. (0-100)
u2
prob
                  Fixed probability vectors. If not specified, a random scenario is used by default.
                  Use this parameter to provide fixed probability vectors as a list of the following
                   named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3,
```

Value

A list containing operating characteristics such as:

mtd = 2

bd.sel OBD selection percentage

od.sel Favorable dose selection percentage

bd.pts Average percentage of patients at the OBD

od.pts Average percentage of patients at the favorable doses

18 oc_utpi

```
earlystop Percentage of early stopped trialsoverdose Overdose patients percentagepoorall Poor allocation percentageov.sel Overdose selection percentage
```

Examples

```
oc_tepi(
  ndose = 5,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

oc_utpi

Compute operating characteristics using uTPI

Description

oc_utpi() uses the uTPI design to compute operating characteristics of a user-specificed trial scenario. This design places significance on optimizing utility using a quasi-binomial likelihood approach.

Usage

```
oc_utpi(
  ndose,
  target_t,
  lower_e,
  ncohort = 10,
  cohortsize = 3,
  startdose = 1,
  OBD = 0,
  psafe = 0.95,
 pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL
)
```

```
ndose Integer. Number of dose levels. (Required)
target_t Numeric. Target toxicity probability. (Required)
```

oc_utpi

```
Numeric. Minimum acceptable efficacy probability. (Required)
lower_e
ncohort
                  Integer. Number of cohorts. (Default is 10)
cohortsize
                  Integer. Size of a cohort. (Default is 3)
startdose
                   Integer. Starting dose level. (Default is 1)
OBD
                   Integer. True index of the Optimal Biological Dose (OBD) for the trial scenario.
                   (Default is 0)
                     • If set to 0: Random OBD will be selected.
                     • Other: Treat this argument as the true OBD.
psafe
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.95)
                  Integer. Number of random trial replications. (Default is 10000)
ntrial
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
u1
                  Numeric. Utility parameter w_11. (0-100)
                  Numeric. Utility parameter w_00. (0-100)
u2
                  Fixed probability vectors. If not specified, a random scenario is used by de-
prob
                  fault. Use this parameter to provide fixed probability vectors as a list with the
                  following named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3,
                     mtd = 2
```

Value

A list containing operating characteristics such as:

```
bd.sel OBD selection percentage
od.sel Favorable dose selection percentage
bd.pts Average percentage of patients at the OBD
od.pts Average percentage of patients at the favorable doses
earlystop Percentage of early stopped trials
overdose Overdose patients percentage
poorall Poor allocation percentage
ov.sel Overdose selection percentage
```

20 simulate_boin12

Examples

```
oc_utpi(
  ndose = 5,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

simulate_boin12

Simulate operating characteristics using BOIN12.

Description

This function runs simulations of the BOIN12 design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_boin12(
 ndose,
  ssizerange,
  target_t,
  lower_e,
  cohortsize = 3,
  startdose = 1,
  psafe = 0.95,
 pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "boin12_simulations",
  save_file = "boin12_simulation.csv"
)
```

ndose	Integer. Number of dose levels. (Required)
ssizerange	Integer vector. Range of number of cohorts to simulate. (Required)
target_t	Numeric. Target toxicity probability. (Required)
lower_e	Numeric. Minimum acceptable efficacy probability. (Required)
cohortsize	Integer. Size of a cohort. (Default is 3)
startdose	Integer. Starting dose level. (Default is 1)

simulate_boin12 21

```
Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
pfutility
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
u1
                  Numeric. Utility parameter w_11. (0-100)
                  Numeric. Utility parameter w_00. (0-100)
u2
prob
                  Fixed probability vectors. If not specified, a random scenario is used by de-
                  fault. Use this parameter to provide fixed probability vectors as a list with the
                  following named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3,
                     mtd = 2
save_dir
                  Directory to save output folders. Default is tempdir().
save_folder
                  Folder name. (Default is "boin12_simulations")
save_file
                  File name. (Default is "boin12 simulation.csv")
```

Value

No return value, called for side effects

```
prob <- list(
   pE = c(0.4, 0.5, 0.6),
   pT = c(0.1, 0.2, 0.3),
   obd = 2,
   mtd = 2
)
simulate_boin12(
   ndose = 3,
   ssizerange = c(3, 5),
   target_t = 0.3,</pre>
```

22 simulate_boinet

```
lower_e = 0.2,
ntrial = 10,
prob = prob,
)
```

simulate_boinet

Simulate operating characteristics using BOINET

Description

This function runs simulations of the BOINET design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_boinet(
 ndose,
  ssizerange,
  target_t,
  lower_e,
  cohortsize = 3,
  startdose = 1,
  psafe = 0.95,
  pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "boinet_simulations",
  save_file = "boinet_simulation.csv"
)
```

```
ndose
                   Integer. Number of dose levels. (Required)
ssizerange
                  Integer vector. Range of number of cohorts to simulate. (Required)
                  Numeric. Target toxicity probability. (Required)
target_t
                  Numeric. Minimum acceptable efficacy probability. (Required)
lower_e
cohortsize
                  Integer. Size of a cohort. (Default is 3)
startdose
                  Integer. Starting dose level. (Default is 1)
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
pfutility
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
                  Integer. Type of utility structure. (Default is 1)
utilitytype
```

simulate_boinet 23

- If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
- If set to 2: Use (w11 = 1, w00 = 0)

prob

Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list of the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

save_dir

Directory to save output folders. Default is tempdir().

save_folder

Folder name. (Default is "boin12_simulations")

save_file

File name. (Default is "boin12_simulation.csv")

Value

No return value, called for side effects

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)
simulate_boinet(
  ndose = 5,
  ssizerange = 1:2,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
  prob = prob,
)</pre>
```

24 simulate_efftox

simulate_efftox

Simulate operating characteristics using EffTox

Description

This function runs simulations of the EffTox design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_efftox(
  ndose,
  ssizerange,
  target_t,
  lower_e,
  startdose = 1,
  ntrial = 10000,
  utilitytype = 1,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "efftox_simulations",
  save_file = "efftox_simulation.csv"
)
```

Arguments

ndose Integer. Number of dose levels. (**Required**) Integer vector. Range of number of cohorts to simulate. (Required) ssizerange Numeric. Target toxicity probability. (Required) target_t lower_e Numeric. Minimum acceptable efficacy probability. (**Required**) startdose Integer. Starting dose level. (Default is 1) ntrial Integer. Number of random trial replications. (Default is 10000) utilitytype Integer. Type of utility structure. (Default is 1) • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)• If set to 2: Use (w11 = 1, w00 = 0)prob Fixed probability vectors. If not specified, a random scenario is used by default.

Use this parameter to provide fixed probability vectors as a list of the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

simulate_ji3p3 25

For example:

```
prob <- list(
    pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
    pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
    obd = 3,
    mtd = 2
)

save_dir    Directory to save output folders. Default is tempdir().
save_folder    Folder name. (Default is "boin12_simulations")
save_file    File name. (Default is "boin12_simulation.csv")</pre>
```

Value

No return value, called for side effects

Examples

```
prob <- list(
   pE = c(0.4, 0.5),
   pT = c(0.1, 0.2),
   obd = 2,
   mtd = 2
)
simulate_efftox(
   ndose = 2,
   ssizerange = 1,
   target_t = 0.3,
   lower_e = 0.4,
   ntrial = 2,
   prob = prob,
)</pre>
```

simulate_ji3p3

Simulate operating characteristics using Ji3+3

Description

This function runs simulations of the Ji3+3 design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

26 simulate_ji3p3

Usage

```
simulate_ji3p3(
  ndose,
  ssizerange,
  target_t,
  target_e,
  lower_e,
  cohortsize = 3,
  startdose = 1,
  eps1 = 0.05,
  eps2 = 0.05,
  psafe = 0.95,
  pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "ji3p3_simulations",
  save_file = "ji3p3_simulation.csv"
)
```

```
ndose
                  Integer. Number of dose levels. (Required)
                  Integer vector. Range of number of cohorts to simulate. (Required)
ssizerange
                  Numeric. Target toxicity probability. (Required)
target_t
                  Numeric. Target efficacy probability. (Required)
target_e
lower_e
                  Numeric. Minimum acceptable efficacy probability. (Required)
cohortsize
                  Integer. Size of a cohort. (Default is 3)
startdose
                  Integer. Starting dose level. (Default is 1)
eps1
                  Numerical. Width of the subrectangle. (Default is '0.05')
                  Numerical. Width of the subreactangle. (Default is '0.05')
eps2
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
pfutility
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
                  Integer. Type of utility structure. (Default is 1)
utilitytype
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
                  Numeric. Utility parameter w_11. (0-100)
u1
                  Numeric. Utility parameter w_00. (0-100)
u2
```

simulate_ji3p3 27

prob

Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list of the following named elements: Use this parameter to provide fixed probability vectors as a list with the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
    pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
    pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
    obd = 3,
    mtd = 2
)

save_dir    Directory to save output folders. Default is tempdir().
save_folder    Folder name. (Default is "boin12_simulations")
save_file    File name. (Default is "boin12_simulation.csv")</pre>
```

Value

No return value, called for side effects

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)
simulate_ji3p3(
  ndose = 5,
  ssizerange = 1:2,
  target_t = 0.3,
  target_e = 0.5,
  lower_e = 0.4,
  ntrial = 10,
  prob = prob,
)</pre>
```

28 simulate_pite

simulate_pite

Simulate operating characteristics using PRINTE

Description

This function runs simulations of the PRINTE design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_pite(
 ndose,
 ssizerange,
  target_t,
  target_e,
 lower_e,
  cohortsize = 3,
  startdose = 1,
  eps1 = 0.05,
 eps2 = 0.05,
 psafe = 0.95,
 pfutility = 0.9,
 ntrial = 10000,
 utilitytype = 1,
 u1,
 u2,
 prob = NULL,
 save_dir = tempdir(),
 save_folder = "pite_simulations",
  save_file = "pite_simulation.csv"
)
```

ndose	Integer. Number of dose levels. (Required)
ssizerange	Integer vector. Range of number of cohorts to simulate. (Required)
target_t	Numeric. Target toxicity probability. (Required)
target_e	Numeric. Target efficacy probability. (Required)
lower_e	Numeric. Minimum acceptable efficacy probability. (Required)
cohortsize	Integer. Size of a cohort. (Default is 3)
startdose	Integer. Starting dose level. (Default is 1)
eps1	Numerical. Width of the subrectangle.
eps2	Numerical. Width of the subreactangle.

simulate_pite 29

```
Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
pfutility
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
u1
                  Numeric. Utility parameter w_11. (0-100)
                  Numeric. Utility parameter w_00. (0-100)
u2
prob
                  Fixed probability vectors. If not specified, a random scenario is used by de-
                  fault. Use this parameter to provide fixed probability vectors as a list with the
                  following named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3,
                     mtd = 2
save_dir
                  Directory to save output folders. Default is tempdir().
save_folder
                  Folder name. (Default is "boin12_simulations")
save_file
                  File name. (Default is "boin12 simulation.csv")
```

Value

No return value, called for side effects

```
prob <- list(
   pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
   pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
   obd = 3,
   mtd = 2
)
simulate_pite(
   ndose = 5,
   ssizerange = 1:2,
   target_t = 0.3,</pre>
```

30 simulate_stein

```
target_e = 0.5,
lower_e = 0.4,
ntrial = 10,
prob = prob,
)
```

simulate_stein

Simulate operating characteristics using STEIN

Description

This function runs simulations of the STEIN design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_stein(
  ndose,
  ssizerange,
  target_t,
  lower_e,
  cohortsize = 3,
  startdose = 1,
 psi1 = 0.2,
 psi2 = 0.6,
  psafe = 0.95,
 pfutility = 0.9,
 ntrial = 10000,
  utilitytype = 1,
 u1,
  u2,
 prob = NULL,
  save_dir = tempdir(),
 save_folder = "stein_simulations",
  save_file = "stein_simulation.csv"
)
```

```
ndose Integer. Number of dose levels. (Required)
ssizerange Integer vector. Range of number of cohorts to simulate. (Required)
target_t Numeric. Target toxicity probability. (Required)
lower_e Numeric. Minimum acceptable efficacy probability. (Required)
cohortsize Integer. Size of a cohort. (Default is 3)
startdose Integer. Starting dose level. (Default is 1)
```

simulate_stein 31

```
Numerical. Highest inefficacious efficacy probability.
psi1
                  Numerical. Lowest highly-promising efficacy probability.
psi2
psafe
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
                  Integer. Number of random trial replications. (Default is 10000)
ntrial
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
                  Numeric. Utility parameter w_11. (0-100)
u1
u2
                  Numeric. Utility parameter w_00. (0-100)
prob
                  Fixed probability vectors. If not specified, a random scenario is used by de-
                  fault. Use this parameter to provide fixed probability vectors as a list with the
                  following named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3,
                     mtd = 2
save_dir
                  Directory to save output folders. Default is tempdir().
save_folder
                  Folder name. (Default is "boin12_simulations")
save_file
                  File name. (Default is "boin12_simulation.csv")
```

Value

No return value, called for side effects

```
simulate_stein(
  ndose = 5,
  ssizerange = 1:2,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

32 simulate_tepi

simulate_tepi

Simulate operating characteristics using TEPI

Description

This function runs simulations of the TEPI design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_tepi(
  ndose,
  ssizerange,
  target_t,
  lower_e,
  cohortsize = 3,
  startdose = 1,
  effint_1 = c(0, lower_e, lower_e + 0.2, lower_e + 0.4),
  effint_u = c(lower_e, lower_e + 0.2, lower_e + 0.4, 1),
  toxint_1 = c(0, 0.15, target_t, target_t + 0.05),
  toxint_u = c(0.15, target_t, target_t + 0.05, 1),
  psafe = 0.95,
  pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "tepi_simulations",
  save_file = "tepi2_simulation.csv"
)
```

```
ndose
                  Integer. Number of dose levels. (Required)
ssizerange
                  Integer vector. Range of number of cohorts to simulate. (Required)
target_t
                  Numeric. Target toxicity probability. (Required)
                  Numeric. Minimum acceptable efficacy probability. (Required)
lower_e
cohortsize
                  Integer. Size of a cohort. (Default is 3)
startdose
                  Integer. Starting dose level. (Default is 1)
                  Lower efficacy bounds for dose assignment decision table. (Default is c(0,lower_e,lower_e+0.2,lower_e+0.2)
effint_l
                  Lower efficacy bounds for dose assignment decision table. (Default is c(lower_e,lower_e+0.2,lower_e
effint_u
                  Lower toxicity bounds for dose assignment decision table. (Default is c(0,0.15, target_t, target_t+0.15)
toxint_1
```

simulate_tepi 33

```
Lower toxicity bounds for dose assignment decision table. (Default is c(0.15, target_t, target_t+0.09)
toxint_u
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
                     • Other: Use user-specified values from u1 and u2.
                  Numeric. Utility parameter w_11. (0-100)
u1
u2
                  Numeric. Utility parameter w_00. (0-100)
prob
                  Fixed probability vectors. If not specified, a random scenario is used by de-
                  fault. Use this parameter to provide fixed probability vectors as a list with the
                  following named elements:
                     • pE: Numeric vector of efficacy probabilities for each dose level.
                     • pT: Numeric vector of toxicity probabilities for each dose level.
                     • obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
                     • mtd: Integer indicating the index of the true Maximum Tolerated Dose
                       (MTD).
                  For example:
                  prob <- list(</pre>
                     pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
                     pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
                     obd = 3.
                     mtd = 2
                  )
save_dir
                  Directory to save output folders. Default is tempdir().
save_folder
                  Folder name. (Default is "boin12_simulations")
save_file
                  File name. (Default is "boin12_simulation.csv")
```

Value

No return value, called for side effects

```
simulate_tepi(
  ndose = 5,
  ssizerange = 1:2,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

34 simulate_utpi

simulate_utpi

Simulate operating characteristics using uTPI

Description

This function runs simulations of the uTPI design by evaluating operating characteristics over a range of cohort sizes. For each dose level within the user-specified range, it performs multiple trials and saves the results to a corresponding file.

Usage

```
simulate_utpi(
  ndose,
  ssizerange,
  target_t,
  lower_e,
  cohortsize = 3,
  startdose = 1,
  psafe = 0.95,
  pfutility = 0.9,
  ntrial = 10000,
  utilitytype = 1,
  u1,
  u2,
  prob = NULL,
  save_dir = tempdir(),
  save_folder = "utpi_simulations",
  save_file = "utpi_simulation.csv"
)
```

```
ndose
                   Integer. Number of dose levels. (Required)
                   Integer vector. Range of number of cohorts to simulate. (Required)
ssizerange
                   Numeric. Target toxicity probability. (Required)
target_t
                  Numeric. Minimum acceptable efficacy probability. (Required)
lower_e
cohortsize
                   Integer. Size of a cohort. (Default is 3)
startdose
                   Integer. Starting dose level. (Default is 1)
                  Numeric. Early stopping cutoff for toxicity. (Default is 0.95)
psafe
pfutility
                  Numeric. Early stopping cutoff for efficacy. (Default is 0.90)
ntrial
                  Integer. Number of random trial replications. (Default is 10000)
utilitytype
                  Integer. Type of utility structure. (Default is 1)
                     • If set to 1: Use preset weights (w11 = 0.6, w00 = 0.4)
                     • If set to 2: Use (w11 = 1, w00 = 0)
```

simulate_utpi 35

• Other: Use user-specified values from u1 and u2.

Numeric. Utility parameter w_11. (0-100)

u2 Numeric. Utility parameter w_00. (0-100)

prob Fixed probability vectors. If not specified, a random scenario is used by default. Use this parameter to provide fixed probability vectors as a list with the following named elements:

- pE: Numeric vector of efficacy probabilities for each dose level.
- pT: Numeric vector of toxicity probabilities for each dose level.
- obd: Integer indicating the index of the true Optimal Biological Dose (OBD).
- mtd: Integer indicating the index of the true Maximum Tolerated Dose (MTD).

For example:

```
prob <- list(
  pE = c(0.4, 0.5, 0.6, 0.6, 0.6),
  pT = c(0.1, 0.2, 0.3, 0.4, 0.4),
  obd = 3,
  mtd = 2
)</pre>
```

save_dir Directory to save output folders. Default is tempdir().

save_folder Folder name. (Default is "boin12_simulations")
save_file File name. (Default is "boin12_simulation.csv")

Value

u1

No return value, called for side effects

```
simulate_utpi(
  ndose = 5,
  ssizerange = 1:2,
  target_t = 0.3,
  lower_e = 0.4,
  ntrial = 10,
)
```

Index

```
decision\_plot, 2
oc_boin12, 4
oc\_boinet, 6
oc_efftox, 8
oc_ji3p3,9
oc_pite, 12
oc\_stein, 14
oc_tepi, 16
oc\_utpi, 18
simulate\_boin12, 20
\verb|simulate_boinet|, 22|
simulate_efftox, 24
simulate_ji3p3, 25
simulate_pite, 28
simulate\_stein, 30
simulate\_tepi, 32
simulate\_utpi, 34
```