Package 'pesel'

October 17, 2023

Type Package

Title Automatic Estimation of Number of Principal Components in PCA

Version 0.7.5

Date 2023-08-14

Author Piotr Sobczyk, Julie Josse, Malgorzata Bogdan

Maintainer Piotr Sobczyk <pj.sobczyk@gmail.com>

Description Automatic estimation of number of principal components in PCA with PEnalized SEmiintegrated Likelihood (PESEL). See Piotr Sobczyk, Malgorzata Bogdan, Julie Josse ``Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood" (2017) <doi:10.1080/10618600.2017.1340302>.

License GPL-3

Encoding UTF-8

URL https://github.com/psobczyk/pesel

BugReports https://github.com/psobczyk/pesel/issues

Depends R (>= 3.1.3),

Imports stats, graphics

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Index

Date/Publication 2023-10-17 13:20:02 UTC

R topics documented:

pesel-package	•								•	 						•	 		2
pesel	•									 						•	 		3
pesel_heterogeneous										 							 		4
pesel_homogeneous .	•									 						•	 	•	5
																			6

1

pesel-package

Description

Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL).

Details

Version: 0.7.5

Author(s)

Piotr Sobczyk, Julie Josse, Malgorzata Bogdan

Maintainer: Piotr Sobczyk <pj.sobczyk@gmail.com>

References

Piotr Sobczyk, Malgorzata Bogdan, Julie Josse "Bayesian dimensionality reduction with PCA using penalized semi-integrated likelihood", Journal of Computational and Graphical Statistics 2017

Examples

```
# EXAMPLE 1 - noise
with(set.seed(23), pesel(matrix(rnorm(10000), ncol = 100), npc.min = 0))
# EXAMPLE 2 - fixed effects PCA model
sigma <- 0.5
k <- 5
n <- 100
numb.vars <- 10
# factors are drawn from normal distribution
factors <- replicate(k, rnorm(n, 0, 1))
# coefficients are drawn from uniform distribution
coeff <- replicate(numb.vars, rnorm(k, 0, 1))
SIGNAL <- scale(factors %*% coeff)
X <- SIGNAL + replicate(numb.vars, sigma * rnorm(n))
pesel(X)
```

pesel

Automatic estimation of number of principal components in PCA with PEnalized SEmi-integrated Likelihood (PESEL)

Description

Underlying assumption is that only small number of principal components, associated with largest singular values, is relevent, while the rest of them is noise. For a given numeric data set, function estimates the number of PCs according to penalized likelihood criterion. Function adjusts the model used to the case when number of variables is larger than the number of observations.

Usage

```
pesel(
    X,
    npc.min = 0,
    npc.max = 10,
    prior = NULL,
    scale = TRUE,
    method = c("heterogenous", "homogenous"),
    asymptotics = NULL
)
```

Arguments

Х	a data frame or a matrix contatining only continuous variables
npc.min	minimal number of principal components, for all the possible number of PCs between npc.min and npc.max criterion is computed
npc.max	maximal number of principal components, if greater than dimensions of X, $min(ncol(X), nrow(X))$ -1 is used, for all the possible number of PCs between npc.min and npc.max criterion is computed
prior	a numeric positive vector of length npc.max-ncp.min+1. Prior distribution on number of principal components. Defaults to uniform distibution
scale	a boolean, if TRUE (default value) then data is scaled before applying criterion
method	name of criterion to be used
asymptotics	a character, asymptotics ('n' or 'p') to be used. Default is NULL for which asymptotics is selected based on dimensions of X

Details

Please note that no categorical variables and missing values are allowed.

Value

number of components

Examples

```
# EXAMPLE 1 - noise
with(set.seed(23), pesel(matrix(rnorm(10000), ncol = 100), npc.min = 0))
# EXAMPLE 2 - fixed effects PCA model
sigma <- 0.5
k <- 5
n <- 100
numb.vars <- 10
# factors are drawn from normal distribution
factors <- replicate(k, rnorm(n, 0, 1))
# coefficients are drawn from uniform distribution
coeff <- replicate(numb.vars, rnorm(k, 0, 1))
SIGNAL <- scale(factors %+% coeff)
X <- SIGNAL + replicate(numb.vars, sigma * rnorm(n))
pesel(X)
```

pesel_heterogeneous	PEnalized SEmi-integrated Likelihood for heterogeneous singular val-
	ues and large number of variables

Description

Derived under assumption that number of variables tends to infinity while number of observations is limited.

Usage

```
pesel_heterogeneous(X, minK, maxK)
```

Arguments

Х	a matrix containing only continuous variables
minK	minimal number of principal components fitted
maxK	maximal number of principal components fitted

Value

numeric vector, PESEL criterion for each k in range [minK, maxK]

4

pesel_homogeneous

PEnalized SEmi-integrated Likelihood for homogeneous singular values and large number of variables

Description

Derived under assumption that number of variables tends to infinity while number of observations is limited.

Usage

pesel_homogeneous(X, minK, maxK)

Arguments

Х	a matrix containing only continuous variables
minK	minimal number of principal components fitted
maxK	maximal number of principal components fitted

Value

numeric vector, PESEL criterion for each k in range [minK, maxK]

Index

pesel, 3
pesel-package, 2
pesel_heterogeneous, 4
pesel_homogeneous, 5