
Discrete mathematics with R: introducing the

permutations package

Robin K. S. Hankin

Abstract

Here I introduce the permutations package, for manipulating and displaying permu-
tations of a finite set. I show how the package has been used to investigate the megaminx
puzzle, and exhibit an 82-turn superflip.

To cite the package in publications, use Hankin (2020).

Keywords: Permutations, megaminx, superflip.

1. Overview

Permutations of a finite set are important and interesting mathematical objects, having ap-
plications in combinatorics (Stanley 2011), group theory (Milne 2013), and various branches
of recreational mathematics (Averbach and Chein 2000).

Open-source computer software for working with permutations includes the GAP suite of
software, for which Sage is a popular front end (Joyner 2008). However, these systems are
designed for the pure mathematician with a focus on formal algebraic properties of specified
groups, such as homology and the identification of Sylow subgroups. The permutations

package is offered as an R-centric suite of software to carry out computational manipulation
of finite permutations.

2. The package in use

It is a common occurrence that a discrete set of objects is rearranged in some way. Mathe-
matically, this is described by a bijection from the set of objects to itself.

For example, consider bijections from the set [n] = {1, 2, 3, . . . , n} to itself. There are 9! =
362880 such bijections and as a specific example we will consider f : [9] −→ [9] defined by
the following diagram:



2 The permutations package

(

1 2 3 4 5 6 7 8 9
9 2 6 3 5 4 1 7 8

)

Thus f(1) = 9, f(2) = 2, and so on. The permutations package would represent f(·) by
specifying the images of 1, 2, . . . , 9 in sequence:

> library(permutations)

> f <- as.word(c(9, 2, 6, 3, 5, 4, 1, 7, 8))

> options(print_word_as_cycle = FALSE)

> f

1 2 3 4 5 6 7 8 9

[1] 9 . 6 3 . 4 1 7 8

The images of each set are shown below the set element which is itself indicated by curly
brackets. Elements which map to themselves, viz 2 and 5, are shown by the print method1 as
a dot; this makes complicated permutations easier to view as one is frequently not interested
in fixed elements.

In this example, f is known as a word: the R object specifies the images of the base set in
order. Function f(·) is invertible, being a bijection. Its inverse may be found by inspection:

(

1 2 3 4 5 6 7 8 9
7 2 4 6 5 3 8 9 1

)

The R idiom would be

> inverse(f)

1 2 3 4 5 6 7 8 9

[1] 7 . 4 6 . 3 8 9 1

(see how the fixed elements remain fixed). Permutation inverses are carried out using the
compact and efficient R idiom

> f[f] <- seq_along(f)

Such idiom is made possible by the fact that, in R, array indexing starts at one, not zero. If
we wish to determine, say, f(f(f(·))) = f3(·), then manipulating f in word form is computa-
tionally inefficient, and it is more convenient to represent f in cycle form:

(1987) (346)

which is a compact representation of the fact that 1
f

−→ 9
f

−→ 8
f

−→ 7
f

−→ 1 and 3
f

−→

4
f

−→ 6
f

−→ 3, the remaining elements mapping to themselves. Then it is clear that f3 is the
cycle (1789). The R idiom for this would be:

1By default the package print method coerces words to cycle form but here option print_word_as_cycle

is changed to show the permutation in word form.



Robin K. S. Hankin 3

> as.cycle(f)

[1] (1987)(364)

> f^3

[1] (1789)

In the package, a cycle is represented internally as a list of integers (the term used in the docu-
mentation is “cyclist”), while words are integer matrices; a discussion is given in cyclist.Rd.
The structure of a typical permutation in cycle form may be seen using the dput() function:

> dput(f)

structure(c(9L, 2L, 6L, 3L, 5L, 4L, 1L, 7L, 8L), dim = c(1L,

9L), class = c("permutation", "word"))

> dput(as.cycle(f))

structure(list(list(c(1L, 9L, 8L, 7L), c(3L, 6L, 4L))), class = c("permutation",

"cycle"))

Cycle form for permutation has a number of advantages, not least of which is efficient and
readable representation of permutations with only a small number of non-fixed elements.

However, converting between word and cycle form is expensive in the package, and this
motivates much of the package design philosophy: objects are coerced from one form to the
other only when necessary. Some operations, such as permutation products, are easily carried
out in word form; some, such as integer powers of permutations, are more natural in cycle
form. Note that inversion is reasonably direct, the idiom for inverting a cyclist cyc being

> lapply(cyc, function(o) {

+ c(o[1], rev(o[-1]))

+ })

Permutations in cycle form are difficult to handle in R for two reasons. Firstly, cycles must be
well-formed, and this places strict specifications on the R objects: individual bracketed cycles
can contain no repeated elements, and must be pairwise disjoint. These conditions must be
verified before an object of class cycle may be created. Secondly, there are many equivalent
ways to represent the same permutation and the package includes substantial amount of code
to coerce cycle-form permutations into a canonical representation; an extended discussion is
given in cyclist.Rd.

2.1. Multiplication of permutations

Given f and another permutation g, we may combine f and g in two ways: we may perform f

first and then g, or alternatively g first and then f ; in general, these two products are different.



4 The permutations package

> g <- as.word(9:1)

> f * g

1 2 3 4 5 6 7 8 9

[1] . 8 4 7 . . 9 3 2

> g * f

1 2 3 4 5 6 7 8 9

[1] 8 7 1 . . 3 6 2 .

Word products use the natural R idiom

> f * g == g[f]

again depending directly on one-based indexing used by R. Note the confusing order of op-
erations: on the left hand side, f appears first and then g; on the right hand side the terms
appear in the opposite order, ultimately due to prefix notation combined with the syntac-
tic sugar of the extraction operator [(). An extended discussion of this issue is given in
as.function.permutation.Rd in the package; but the notation used here is partly moti-
vated by the preservation of associativity, in the sense that a*(b*c) == (a*b)*c for any
three permutations a,b,c.

One measure of the non-commutativity of f and g is the commutator, here defined as
f−1g−1fg:

> commutator(f, g)

1 2 3 4 5 6 7 8 9

[1] 4 3 6 7 . 9 8 1 2

Because working with permutations in cycle form is more natural and compact than word
form, the package allows control over the print method via options():

> options(print_word_as_cycle = TRUE)

> commutator(f, g)

[1] (1478)(2369)

[coerced from word form]

> commutator(g, f)

[1] (1874)(2963)

[coerced from word form]



Robin K. S. Hankin 5

2.2. The identity element

The permutation that leaves all elements fixed is known as the identity. Taking the product
of a permutation with its own inverse gives the identity, as does raising any permutation to
the power zero:

> f * inverse(f)

[1] ()

[coerced from word form]

The print method for cycles shows an empty pair of round brackets symbolising the fact that
this permutation does not move any elements.

The identity element is a special case in the package in several respects. Firstly, the identity
permutation is problematic when expressed in word form: it has no natural size (the size()

of a permutation is the cardinality of its ground set) apart from zero. In cycle form, the
identity is stored essentially as list(list()): the group-theoretic cycles are empty.

2.3. Conjugation and vectorization

The package is vectorized, and this allows the use of a range of natural R idiom. Suppose we
wish to consider the symmetry group of a tetrahedron known to be the even permutations of
a set of four elements:

> S4 <- allperms(4)

> A4 <- S4[is.even(S4)]

> A4

[1] () (234) (243) (12)(34) (123) (124) (132) (134)

[9] (13)(24) (142) (143) (14)(23)

[coerced from word form]

Note that it is the print method that coerces permutations to cycle form: the package does not
do so unless required, being a slow and memory-intensive process. Thus S4 is all permutations
of size 4, and A4 just the even permutations, known as the alternating group.

As a final illustration, we may calculate the conjugate2 of the even permutations shown above
with a cycle on five elements:

> A4^cyc_len(5)

[1] () (345) (354) (23)(45) (234) (235) (243) (245)

[9] (24)(35) (253) (254) (25)(34)

[coerced from word form]

2The conjugate of x and y, written x
y, is defined as y

−1
xy; the notation is motivated by the fact that x

z
y

z =
(xy)z and x

yx = (xy)z



6 The permutations package

See how the shape of the permutations is unaltered by the conjugation; documentation is a
at shape.Rd and conjugate.Rd.

3. The Megaminx

The megaminx is a dodecahedral puzzle with similar construction to the Rubik cube (Joyner
2008); see Figure 1. The puzzle has 50 movable pieces (compare 20 for the Rubik cube)
and 12 × 11 = 132 coloured stickers (“facets”). When considering the megaminx, it is natural
to consider permutations of the facets rather than the pieces, because the pieces may assume
multiple orientations.

(a) Megaminx in start position (b) The superflip

Figure 1: The megaminx

The permutations package may be used to manipulate the megaminx by assigning each facet
a number from 1-129 (see Figure 2) and using the megaminx object supplied with the package:

> data(megaminx)

> megaminx

White

(10,12,14,16,18)(11,13,15,17,19)(21,33,45,57,69)(22,34,46,58,60)(23,35,47,59,61)

Purple

(15,67,91,81,35)(16,68,92,82,36)(17,69,93,83,37)(20,22,24,26,28)(21,23,25,27,29)

DarkYellow

(17,29,89,79,47)(18,20,80,70,48)(19,21,81,71,49)(30,32,34,36,38)(31,33,35,37,39)

DarkBlue

(10,32,78,118,50)(11,33,79,119,51)(19,31,77,117,59)(40,42,44,46,48)(41,43,45,47,49)

Red

(11,43,115,105,61)(12,44,116,106,62)(13,45,117,107,63)(50,52,54,56,58)(51,53,55,57,59)

DarkGreen

(13,55,103,93,23)(14,56,104,94,24)(15,57,105,95,25)(60,62,64,66,68)(61,63,65,67,69)

LightGreen

(30,88,120,110,40)(31,89,121,111,41)(39,87,129,119,49)(70,72,74,76,78)(71,73,75,77,79)



Robin K. S. Hankin 7

Orange

(27,99,121,71,37)(28,90,122,72,38)(29,91,123,73,39)(80,82,84,86,88)(81,83,85,87,89)

LightBlue

(25,65,101,123,83)(26,66,102,124,84)(27,67,103,125,85)(90,92,94,96,98)(91,93,95,97,99)

LightYellow

(53,113,125,95,63)(54,114,126,96,64)(55,115,127,97,65)(100,102,104,106,108)(101,103,105,107,109)

Pink

(41,75,127,107,51)(42,76,128,108,52)(43,77,129,109,53)(110,112,114,116,118)(111,113,115,117,119)

Grey

(73,85,97,109,111)(74,86,98,100,112)(75,87,99,101,113)(120,122,124,126,128)(121,123,125,127,129)

Object megaminx is a 12-element (named) vector of permutations, with elements correspond-
ing to one “click”, that is, a 72◦ clockwise rotation of each face. In practice, it is easier to use
abbreviated names for the face turns (“W” for white, “Pu” for purple, and so on).

The package may be used to investigate the effect of consecutive turns on the coloured faces.
For example,

> a <- Pu / W * DY^-2 / Pu / DY

creates permutation a which is the result of turning the purple face one click, then the white
face one click counterclockwise, then the dark yellow face two clicks anticlockwise, and so on.
The effect of permutation a is shown in cycle form by the print method:

> a

(10,80,48,20,60,58,46,38,32,36,14,12)(11,81,19,89,35,13)(17,57,45,37,33,71)(18,34)(21,61,59,29,47,39)(27,79)(28,70)(30,82)(31,83)(49,91)

[coerced from word form]

Thus facet 10 moves to position 80, facet 80 moves to position 48, and so on. The order of
permutation x is defined as the lowest nonzero integer n for which xn is the identity:

> permorder(a)

Purple

12

showing that a^12 returns the megaminx to start. This suggests that repeating a by a
divisor of 12 would produce a pleasing pattern and indeed executing this sequence 6 times
gives

> a^6

Purple

(10,46)(12,58)(14,60)(20,36)(32,48)(38,80)



8 The permutations package

showing that this has a particularly parsimonious effect.

3.1. The Superflip

One particularly pleasing pattern on the megaminx is the superflip, shown in Figure 1b. In
this pattern, each edge piece is in its correct position but flipped over. There is an equivalent
on the Rubik cube which is of considerable theoretical interest Rokicki et al. (2013): the centre
of the cube group is known to contain only the superflip and the identity Joyner (2008).

One challenging task is to accomplish the superflip in the minimum number of turns. Clark
(2012) argues that a lower bound for the turning number is 24 and offers an 83-turn sequence:

> X <- W / Pu * W * Pu^2 / DY^2

> Y <- LG^(-1) / DB * LB * DG

> Z <- Gy^(-2) * LB / LG / Pi / LY

> superflip83 <- (X^6)^Y + Z^9 # superflip (Jeremy Clark)

(note the use of binary “+” showing that sequences (X^6)^Y and Z^9 commute). It is intu-
itively clear that the superflip commutes past any sequence of operations, and is thus in the
center of the megaminx group. Computational group theoretic software such as GAP can be
used to show that the megaminx center comprises only the superflip and the identity.

That the superflip is in the center may be verified directly in R using the permutations

package:

> jj <- permprod(sample(megaminx, 30, replace = TRUE))

> stopifnot(jj * superflip83 == superflip83 * jj)

The permutations package may be used to search systematically for a superflip with fewer
moves than Clark’s 83 turns, and a slight improvement is possible. The following sequence,
which required an extensive computer search, exhibits an 82-turn superflip:

> superflip82 <-

+ LB^-1 * Gy^-1 * LB^-1 * O^3 * Gy * LY^2 * Gy^2 *

+ LY^3 * Gy^3 * LY^3 / LB * Gy^2 *

+ ((Pu^-1 * W^2 * DY * DB * R)^9)^(O^3 * LB^3 / LG) *

+ Gy^2 / LB * O^3 * Gy * LY^2 * Gy^2 * LY^3 * Gy^3 *

+ LY^3 / LB / Gy / LB *

+ O^3 * Gy * LY^2 * Gy^2 * LY^3 * Gy^3 * LY^3

> stopifnot(superflip82 == superflip83)

References

Averbach B, Chein O (2000). Problem solving through recreational mathematics. Dover.

Clark J (2012). “TwistyPuzzles.com topic - Megaminx Superflip.” URL https://

twistypuzzles.com/~sandy/forum/viewtopic.php?f=8&t=24479.

https://twistypuzzles.com/~sandy/forum/viewtopic.php?f=8&t=24479
https://twistypuzzles.com/~sandy/forum/viewtopic.php?f=8&t=24479


Robin K. S. Hankin 9

GAP (2016). GAP – Groups, Algorithms, and Programming, Version 4.8.6. The GAP Group.
URL https://www.gap-system.org.

Hankin RKS (2020). “Introducing the permutations R package.” SoftwareX, 11. doi:10.

1016/j.softx.2020.100453.

Joyner D (2008). Adventures in Group Theory. John Hopkins Press.

Milne JS (2013). “Group Theory (v3.13).” Available at www.jmilne.org/math/.

Rokicki T, et al. (2013). “The diameter of the Rubik’s cube group is twenty.” SIAM journal
of discrete mathematics, 27, 1082–1105.

Sage (2017). SageMath, the Sage Mathematics Software System (Version 7.5.1). The Sage
Developers. URL https://www.sagemath.org.

Stanley RP (2011). Enumerative Combinatorics, volume I. Cambridge University Press.

Affiliation:

Robin K. S. Hankin
University of Stirling
Scotland
E-mail: hankin.robin@gmail.com

https://www.gap-system.org
https://doi.org/10.1016/j.softx.2020.100453
https://doi.org/10.1016/j.softx.2020.100453
www.jmilne.org/math/
https://www.sagemath.org
mailto:hankin.robin@gmail.com


10 The permutations package

1
2

3

0 4

5

6

7

8

9

4

1
2

3

0 4

5

6

7

8

9

5

1
2

3

0 4

5

6

7

8

9

6

1
2

3

0 4

5

6

7

8

9

2

1
2

3

0 4

5

6

7

8

9

3

1

2

3

4

5

6

7

8

9

0

1

1

2

3

4

5

6

7

8

9

0

8

1

2

3

4

5

6

7

8

9

0

9

1

2

3

4

5

6

7

8

9

0

10

1

2

3

4

5

6

7

8

9

0

11

1

2

3

4

5

6

7

8

9

0

7 1
2

3

0 4

5

6

7

8

9

12

Figure 2: Megaminx net showing the facet numbering scheme. In each pentagonal face, the
facet number is given by ten times the central large number, and the unit is given by the
small figure. Thus the top left facet is number 41 and the bottom right facet is 105


	Overview
	The package in use
	Multiplication of permutations
	The identity element
	Conjugation and vectorization

	The Megaminx
	The Superflip


