Package ‘perms’

August 17, 2024
Type Package
Title Fast Permutation Computation
Version 1.14
Date 2024-08-17

Description Implements the algorithm of Christensen (2024) <doi:10.1214/22-
BA1353> for estimating marginal likelihoods via permutation counting.

License BSD_2_clause + file LICENSE
Copyright Yann Collet in xxhash.h and xxhash.c
Encoding UTF-8

RoxygenNote 7.3.1

Imports Rdpack

Depends foreach, doParallel, parallel
RdMacros Rdpack

NeedsCompilation yes

Author Per August Jarval Moen [cre, aut]
(<https://orcid.org/0009-0003-9990-8341>),
Dennis Christensen [aut] (<https://orcid.org/0000-0002-7540-7695>),
Yann Collet [cph]

Maintainer Per August Jarval Moen <pamoen@math.uio.no>
Repository CRAN
Date/Publication 2024-08-17 14:40:02 UTC

Contents

get_log ML e
get_log ML_bioassay o i e e e
get_log perms.
get_log_perms_bioassay e
Jog SUM_EXD . . o v v o e e e e e e e e e e e e e e e

Index

https://doi.org/10.1214/22-BA1353
https://doi.org/10.1214/22-BA1353
https://orcid.org/0009-0003-9990-8341
https://orcid.org/0000-0002-7540-7695

2 get_log ML

get_log ML get_log_ML

Description

Computes the log marginal likelihood of the data from the log permanents. Given the computed log
permanents log_perms, this function computes the log marginal likelihood using the formula (2.3)
in [1]. It is assumed that there are no repeated trials. If the data contain repeated trials, then the
appropriate log binomial factor must be added to the output of this function.

Usage
get_log_ML(log_perms, n, debug = FALSE)

Arguments
log_perms A vector length n containing the computed log permanents, where a zero per-
manent is indicated by a NA value.
n Sample size.
debug If TRUE, debug information is printed.
Value

The estimated log marginal likelihood. A NA value is returned if there are no non-zero numbers.

References

[1] Christensen, D (2024). Inference for Bayesian nonparametric models with binary response data
via permutation counting. Bayesian Analysis, DOI: 10.1214/22-BA1353.

Examples
library(perms)
set.seed(1996)
n =100
t = seq(@, 1, length.out=n)
y = c(rep(@, n/2), rep(1, n/2))
S = 200
X = matrix(runif(n*S),nrow = S, ncol = n)

log_perms = get_log_perms(X, t, y, debug = FALSE, parallel = FALSE, num_cores = NULL)

num_nonzero_perms = sum(!is.na(log_perms))
num_nonzero_perms

log ML = get_log_ML(log_perms, n, FALSE)
log_ML

get_log_ML_bioassay 3

get_log_ML_bioassay get_log_ML_bioassay

Description

Computes the log marginal likelihood of bioassay data from the log permanents. Given the com-
puted log permanents log_perms, this function computes the log marginal likelihood using the for-
mula (2.3) in [1]. It takes care of repeated trials by adding the appropriate log binomial factor.

Usage

get_log_ML_bioassay(log_perms, successes, trials, debug = FALSE)

Arguments
log_perms A vector length n containing the computed log permanents, where a zero per-
manent is indicated by a NA value.
successes A vector of length n contatining the number of successful trials at each level.
trials A vector of length n containing the number of trials at each level.
debug If TRUE, debug information is printed.
Value

The estimated log marginal likelihood. A NA value is returned if there are no non-zero numbers.

References

[1] Christensen, D (2024). Inference for Bayesian nonparametric models with binary response data
via permutation counting. Bayesian Analysis, DOI: 10.1214/22-BA1353.

Examples

Dirichlet toy model

library(perms)

set.seed(1996)

n = 500

num_trials = 10

levels = seq(-1, 1, length.out = num_trials)

trials = rep(n %/% num_trials, num_trials)
successes = c(10, 26, 10, 20, 20, 19, 29, 24, 31, 33)

S = 200
alpha = 1.0

get_X = function(S,n,alpha,seed){
set.seed(seed)
X = matrix(@, nrow = S, ncol = n)

for (s in 1:S) {
X[s,11 = rnorm(1)
for (i in 2:n) {
u = runif(1)
if(u < (alpha/(alpha+i-1))){
X[s,il = rnorm(1)
Yelse{
if(i==2){
X[s,i] = X[s, 1]
Yelse{
X[s,i] = sample(X[s, 1:(i-1)1,size=1)
}
}

}
return(X)

}

seed = 1996

X = get_X(S, n, alpha, seed)

log_perms = get_log_perms_bioassay(X, levels, successes, trials,
debug=FALSE,parallel = FALSE)

log_ml = get_log_ML_bioassay(log_perms, successes, trials)

proportion = sum(!is.na(log_perms)) / Sx100

proportion
log_ml

get_log_perms

get_log_perms get_log_perms

Description

Computes log permanents associated with simulated latent variables. Each row of the S x n matrix
X contains a random sample of size n from the data model. If there is only a single covariate, then
the observed data are represented as (t,y), where t is the observed values of the covariate and y is
the vector of indicator variables. If there are more covariates or the problem is phrased as binary
classification (see Section 5 in [1]), then t is an S x n matrix since the threshold values change in
each iteration. The function returns a vector of log permanents corresponding to each sample in X.

Usage

get_log_perms(X, tt, y, debug = FALSE, parallel = TRUE, num_cores

NULL)

get_log_perms_bioassay 5

Arguments

X

tt

y
debug
parallel

num_cores

Value

A matrix of dimension S x n, in which each row contains a sample from the data
model.

Either: A vector of length n containing the observed values of the covariate, Or:
A matrix of dimension S x n (if there are several covariates).

A vector of length n indicating whether x_i<=t_i for each i in the observed data.
If TRUE, debug information is printed.
If TRUE, computation is run on several cores

(Optional) Specifies the number of cores to use if parallel = TRUE

Vector of log permanents,each element associated to the corresponding row in X. A zero valued
permanent is indicated by a NA value.

References

[1] Christensen, D (2024). Inference for Bayesian nonparametric models with binary response data
via permutation counting. Bayesian Analysis, DOI: 10.1214/22-BA1353.

Examples

library(perms)
set.seed(1996)

= 100

= 200

X W< + >
1

log_perms

= seq(@, 1, length.out=n)
c(rep(@, n/2), rep(1, n/2))

= matrix(runif(n*S),nrow = S, ncol = n)

get_log_perms(X, t, y, debug = FALSE, parallel = FALSE, num_cores = NULL)

num_nonzero_perms = sum(!is.na(log_perms))

num_nonzero_perms

log ML = get_log_ML(log_perms, n, FALSE)

log ML

get_log_perms_bioassay

get_log_perms_bioassay

Description

get_log_perms_bioassay

Computes log permanents associated with simulated latent variables X with bioassay data. Each
row of the matrix X contains a random sample of size n from the data model. The observed data are
represented as (levels, successes, trials), where levels are the different levels at which trials were
conducted, successes is the vector of the number of successes per level, and trials is the vector of
the total number of trials per level. The function returns a vector of log permanents corresponding
to each sample. Note that n must be equal to the sum of the entries of trials.

Usage

get_log_perms_bioassay(

X,
levels,

successes,

trials,

debug = FALSE,
parallel = TRUE,

num_cores

Arguments

X

levels
successes
trials
debug
parallel

num_cores

Value

NULL

A matrix of dimension S x n, in which each row contains a sample from the data
model.

A vector containing the levels at which trials were conducted.

A vector containing the number of successful trials at each level.
A vector containing the number of trials at each level.

If TRUE, debug information is printed.

If TRUE, computation is run on several cores

(Optional) Specifies the number of cores to use if parallel = TRUE

Vector of log permanents, each element associated to the corresponding row in X. A zero valued
permanent is indicated by a NA value.

References

[1] Christensen, D (2024). Inference for Bayesian nonparametric models with binary response data
via permutation counting. Bayesian Analysis, DOI: 10.1214/22-BA1353.

Examples

Dirichlet toy model

library(perms)
set.seed(1996)

n = 500
num_trials

log_sum_exp 7

levels = seq(-1, 1, length.out = num_trials)

trials = rep(n %/% num_trials, num_trials)
successes = c(10, 26, 10, 20, 20, 19, 29, 24, 31, 33)

S = 200
alpha = 1.0

get_X = function(S,n,alpha,seed){
set.seed(seed)
X = matrix(@, nrow = S, ncol = n)
for (s in 1:S) {
X[s,1]1 = rnorm(1)
for (i in 2:n) {
u = runif(1)
if(u < (alpha/(alpha+i-1))){
X[s,il = rnorm(1)
Yelse{
if(i==2){
X[s,i] = X[s,1]
Yelse{
X[s,i] = sample(X[s, 1:(i-1)1,size=1)
}
}

}
return(X)

3

seed = 1996

X = get_X(S, n, alpha, seed)

log_perms = get_log_perms_bioassay(X, levels, successes, trials,
debug=FALSE,parallel = FALSE)

proportion = sum(!is.na(log_perms)) / Sx100

proportion

log_sum_exp log_sum_exp

Description
Computes the log sum exp of a vector. Given input array = [x_1, ..., X_n], returns x_* + log(exp(x_1
- X_®) + ... + exp(x_n - x_*)), where x_* = max(x_1, ... x_n). Ignores entries with NA value.
Usage

log_sum_exp(x)

8 log_sum_exp

Arguments

X Input vector.

Value

The log-sum-exp of the entries of the input vector.

Examples

library(perms)
x =¢(1,2,3,-1,-1,1)
log_sum_exp(x)

Index

get_log ML, 2
get_log_ML_bioassay, 3
get_log_perms, 4
get_log_perms_bioassay, 5

log_sum_exp, 7

	get_log_ML
	get_log_ML_bioassay
	get_log_perms
	get_log_perms_bioassay
	log_sum_exp
	Index

