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awkHelper subset helper function for use reading in large data, called in
pcv.sub.read

Description

subset helper function for use reading in large data, called in pcv.sub.read

Usage

awkHelper(inputFile, filters, awk = NULL)

Arguments

inputFile Path to csv file of plantCV output, should be provided internally in read.pcv

filters filtering conditions, see read.pcv for details. Format as list("trait in area, perime-
ter", "other contains stringToMatch")

awk Optional awk command to use instead.
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Details

awkHelper attempts to make awk commands from human readable input. Currently when filters
are supplied the input file has quotes removed by ‘sed‘ then is piped into awk, so an equivalent
command line statement may be: sed 's/\"//g' pcvrTest2.csv | awk -F ',' '{ if (NR==1 ||
$18=="area") { print } }'

Value

Returns a character string representing a unix style awk statement which is typically passed to pipe
or used as a connection in data.table::fread.

Examples

tryCatch(
{ # in case offline
link1 <- "https://gist.githubusercontent.com/seankross/"

link2 <- "a412dfbd88b3db70b74b/raw/5f23f993cd87c283ce766e7ac6b329ee7cc2e1d1/mtcars.csv"
file <- paste0(link1, link2)
awkHelper(file, list("gear in 4, 3"), awk = NULL)
awkHelper(file, "gear contains 3", awk = NULL)

# note that to be filtered the file has to exist on your local system, this example only shows
# the output of awkHelper, which would then be executed by read.pcv on a unix system
awkHelper(file, list("gear in 4, 3"), awk = "existing_command")

},
error = function(e) {

message(e)
}

)

barg Function to help fulfill elements of the Bayesian Analysis Reporting
Guidelines.

Description

The Bayesian Analysis Reporting Guidelines were put forward by Kruschke (https://www.nature.com/articles/s41562-
021-01177-7) to aide in reproducibility and documentation of Bayesian statistical analyses that are
sometimes unfamiliar to reviewers or scientists. The purpose of this function is to summarize good-
ness of fit metrics from one or more Bayesian models made by growthSS and fitGrowth. See details
for explanations of those metrics and the output.

Usage

barg(fit, ss = NULL, priors = NULL)
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Arguments

fit A conjugate object, brmsfit object, or a list of brmsfit objects in the case that you
split models to run on subsets of the data for computational simplicity.

ss The growthSS output used to specify the model. If fit is a list then this can
either be one growthSS list in which case the priors are assumed to be the same
for each model or it can be a list of the same length as fit. Note that the only
parts of this which are used are the call$start which is expected to be a call,
pcvrForm, and df list elements, so if you have a list of brmsfit objects and no ss
object you can specify a stand-in list. This can also be left NULL (the default)
and posterior predictive plots and prior predictive plots will not be made.

priors A list of priors similar to how they are specified in conjugate but named for the
distribution you plan to use, see details and examples.

Details

The majority of the Bayesian Analysis and Reporting Guidelines are geared towards statistical
methods that use MCMC or other numeric approximations. For those cases (here meaning brms
models fit by fitGrowth and growthSS) the output will contain:

• General: This includes chain number, length, and total divergent transitions per model. Diver-
gent transitions are a marker that the MCMC had something go wrong. Conceptually it may
be helpful to think about rolling a marble over a 3D curve then having the marble suddenly
jolt in an unexpected direction, something happened that suggests a problem/misunderstood
surface. In practice you want extremely few (ideally no) divergences. If you do have diver-
gences then consider specifying more control parameters (see brms::brm or examples for fit-
Growth). If the problem persists then the model may need to be simplified. For more informa-
tion on MCMC and divergence see the stan manual (https://mc-stan.org/docs/2_19/reference-
manual/divergent-transitions).

• ESS: ESS stands for Effective Sample Size and is a goodness of fit metric that approximates
the number of independent replicates that would equate to the same amount of information
as the (autocorrelated) MCMC iterations. ESS of 1000+ is often considered as a pretty stable
value, but more is better. Still, 100 per chain may be plenty depending on your applications
and the inference you wish to do. One of the benefits to using lots of chains and/or longer
chains is that you will get more complete information and that benefit will be shown by a
larger ESS. This is separated into "bulk" and "tail" to represent the middle and tails of the
posterior distribution, since those can sometimes have very different sampling behavior. A
summary and the total values are returned, with the summary being useful if several models
are included in a list for fit argument

• Rhat: Rhat is a measure of "chain mixture". It compares the between vs within chain values
to assess how well the chains mixed. If chains did not mix well then Rhat will be greater than
1, with 1.05 being a broadly agreed upon cutoff to signify a problem. Running longer chains
should result in lower Rhat values. The default in brms is to run 4 chains, partially to ensure
that there is a good chance to check that the chains mixed well via Rhat. A summary and the
total values are returned, with the summary being useful if several models are included in a
list for fit argument

• NEFF: NEFF is the NEFF ratio (Effective Sample Size over Total MCMC Sample Size).
Values greater than 0.5 are generally considered good, but there is a consensus that lower can
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be fine down to about 0.1. A summary and the total values are returned, with the summary
being useful if several models are included in a list for fit argument

• mcmcTrace: A plot of each model’s MCMC traces. Ideally these should be very mixed and
stationary. For more options for visualizing MCMC diagnostics see bayesplot::mcmc_trace.

• priorPredictive: A plot of data simulated from the prior using plotPrior. This should generate
data that is biologically plausible for your situation, but it will probably be much more variable
than your data. That is the effect of the mildly informative thick tailed lognormal priors. If
you specified non-default style priors then this currently will not work.

• posteriorPredictive: A plot of each model’s posterior predictive interval over time. This is
the same as plots returned from growthPlot and shows 1-99 coming to a mean yellow trend
line. These should encompass the overwhelming majority of your data and ideally match the
variance pattern that you see in your data. If parts of the predicted interval are biologically
impossible (area below 0, percentage about 100 model should be reconsidered.

For analytic solutions (ie, the conjugate class) there are fewer elements.

• priorSensitivity: Patchwork of prior sensitivity plots showing the distribution of posterior
probabilities, any interpretation changes from those tests, and the random priors that were
used. This is only returned if the priors argument is specified (see below).

• posteriorPredictive: Plot of posterior predictive distributions similar to that from a non-
longitudinal fitGrowth model fit with brms.

• Summary: The summary of the conjugate object.

Priors here are specified using a named list. For instance, to use 100 normal priors with means be-
tween 5 and 20 and standard deviations between 5 and 10 the prior argument would be list("rnorm"
= list("mean" = c(5, 20), "sd" = c(5, 10), "n" = 100))). The priors that are used in sensitiv-
ity analysis are drawn randomly from within the ranges specified by the provided list. If you are
unsure what random-generation function to use then check the conjugate docs where the distribu-
tions are listed for each method in the details section.

Value

A named list containing Rhat, ESS, NEFF, and Trace/Prior/Posterior Predictive plots. See details
for interpretation.

See Also

plotPrior for visual prior predictive checks.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group, sigma = "logistic",
df = simdf, start = list(
"A" = 130, "B" = 12, "C" = 3,
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"sigmaA" = 20, "sigmaB" = 10, "sigmaC" = 2
), type = "brms"

)
fit_test <- fitGrowth(ss,

iter = 600, cores = 1, chains = 1, backend = "cmdstanr",
sample_prior = "only" # only sampling from prior for speed

)
barg(fit_test, ss)
fit_2 <- fit_test
fit_list <- list(fit_test, fit_2)
x <- barg(fit_list, list(ss, ss))

x <- conjugate(
s1 = rnorm(10, 10, 1), s2 = rnorm(10, 13, 1.5), method = "t",
priors = list(

list(mu = 10, sd = 2),
list(mu = 10, sd = 2)

),
plot = FALSE, rope_range = c(-8, 8), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "unequal",
bayes_factor = c(50, 55)

)
b <- barg(x, priors = list("rnorm" = list("n" = 10, "mean" = c(5, 20), "sd" = c(5, 10))))

brmPlot Function to visualize brms models similar to those made using
growthSS outputs.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

brmPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
hierarchy_value = NULL,
vir_option = "plasma"

)
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Arguments

fit A brmsfit object, similar to those fit with growthSS outputs.

form A formula similar to that in growthSS inputs specifying the outcome, predictor,
and grouping structure of the data as outcome ~ predictor|individual/group.

df An optional dataframe to use in plotting observed growth curves on top of the
model.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for future
data if the available data has not reached some point (such as asymptotic size),
although prediction using splines outside of the observed range is not necessarily
reliable.

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

hierarchy_value

If a hierarchical model is being plotted, what value should the hierarchical pre-
dictor be? If left NULL (the default) the mean value is used. If this is >1L then
the x axis will use the hierarchical variable from the model at the mean of the
timeRange (mean of x values in the model if timeRange is not specified).

vir_option Viridis color scale to use for plotting credible intervals. Defaults to "plasma".

Value

Returns a ggplot showing a brms model’s credible intervals and optionally the individual growth
lines.

Examples

simdf <- growthSim(
"logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group, sigma = "spline",
list("A" = 130, "B" = 10, "C" = 3),
df = simdf, type = "brms"

)
fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1)
growthPlot(fit = fit, form = y ~ time | group, groups = "a", df = ss$df)
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brmSurvPlot Function to visualize brms survival models specified using growthSS.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

brmSurvPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE

)

Arguments

fit A brmsfit object, similar to those fit with growthSS outputs.

form A formula similar to that in growthSS inputs specifying the outcome, predictor,
and grouping structure of the data as outcome ~ predictor|individual/group.

df An optional dataframe to use in plotting observed growth curves on top of the
model.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for future
data if the available data has not reached some point (such as asymptotic size),
although prediction using splines outside of the observed range is not necessarily
reliable.

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

Value

Returns a ggplot showing a brms model’s credible intervals and optionally the individual growth
lines.

Examples

set.seed(123)
df <- growthSim("exponential",

n = 20, t = 50,
params = list("A" = c(1, 1), "B" = c(0.15, 0.1))

)
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ss1 <- growthSS(
model = "survival weibull", form = y > 100 ~ time | id / group,
df = df, start = c(0, 5)

)
fit1 <- fitGrowth(ss1, iter = 600, cores = 2, chains = 2, backend = "cmdstanr")
brmSurvPlot(fit1, form = ss1$pcvrForm, df = ss1$df)

# note that using the cumulative hazard to calculate survival is likely to underestimate
# survival in these plots if events do not start immediately.
ss2 <- growthSS(

model = "survival binomial", form = y > 100 ~ time | id / group,
df = df, start = c(-4, 3)

)
fit2 <- fitGrowth(ss2, iter = 600, cores = 2, chains = 2, backend = "cmdstanr")
brmSurvPlot(fit2, form = ss2$pcvrForm, df = ss2$df)

brmViolin Function to visualize hypotheses tested on brms models similar to
those made using growthSS outputs.

Description

Function to visualize hypotheses tested on brms models similar to those made using growthSS
outputs.

Usage

brmViolin(fit, ss, hypothesis)

Arguments

fit A brmsfit object or a dataframe of draws. If you need to combine multiple
models then use combineDraws to merge their draws into a single dataframe for
testing.

ss A pcvrss object. The only component that is currently used is the pcvrForm.

hypothesis A hypothesis expressed as a character string in the style of that used by brms::hypothesis
and testGrowth. In the hypothesis "..." can be used to mean "all groups for this
parameter" so that the hypothesis "... / A_group1 > 1.05" would include all the
"A" coefficients for groups 1:N along the x axis, see examples. If a hypothesis
is using several parameters per group (second example) then math around those
parameters and any ellipses should be wrapped in parentheses. Note that cur-
rently the single hypothesis option (no ...) only supports hypotheses using two
parameters from the model at a time (ie, "groupA / groupB > 1.05" works but
"(groupA / groupB) - (groupC / groupD) > 1" does not).
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Value

Returns a ggplot showing a brms model’s posterior distributions as violins and filled by posterior
probability of some hypothesis.

Examples

set.seed(123)
simdf <- growthSim(

"logistic",
n = 20, t = 25,
params = list("A" = c(200, 180, 190, 160), "B" = c(13, 11, 10, 10), "C" = c(3, 3, 3.25, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group, sigma = "int",
list("A" = 130, "B" = 10, "C" = 3),
df = simdf, type = "brms"

)

fit <- fitGrowth(ss, backend = "cmdstanr", iter = 500, chains = 1, cores = 1)
brmViolin(fit, ss, ".../A_groupd > 1.05") # all groups used
brmViolin(fit, ss, "abs(1 - ((...)/(C_groupd - B_groupd))) > 0.05") # rather arbitrary
brmViolin(fit, ss, "abs(1 - ((...)/(C_groupa - B_groupd))) > 0.05") # totally arbitrary
brmViolin(fit, ss, "A_groupa/A_groupd > 1.05") # only these two groups

bw.outliers Remove outliers from bellwether data using cook’s distance

Description

Remove outliers from bellwether data using cook’s distance

Usage

bw.outliers(
df = NULL,
phenotype,
naTo0 = FALSE,
group = c(),
cutoff = 3,
outlierMethod = "cooks",
plotgroup = c("barcode", "rotation"),
plot = TRUE,
x = NULL,
traitCol = "trait",
valueCol = "value",
labelCol = "label",
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idCol = NULL,
ncp = NULL,
separate = NULL

)

Arguments

df Data frame to use. Can be in long or wide format.

phenotype Column to use to classify outliers. If this is length > 1 then it is taken as the
multi-value traits to use. See examples.

naTo0 Logical, should NA values to changed to 0.

group Grouping variables to find outliers as a character vector. This is typically time
and design variables (DAS, genotype, treatment, etc). These are used as predic-
tors for ‘phenotype‘ in a generalized linear model.

cutoff Cutoff for something being an "outlier" expressed as a multiplier on the mean of
Cooks Distance for this data. This defaults to 5, with higher values being more
conservative (removing less of the data).

outlierMethod Method to be used in detecting outliers. Currently "cooks" and "mahalanobis"
distances are supported, with "mahalanobis" only being supported for multi-
value traits.

plotgroup Grouping variables for drawing plots if plot=TRUE. Typically this is an identi-
fier for images of a plant over time and defaults to c(’barcode’,"rotation").

plot Logical, if TRUE then a list is returned with a ggplot and a dataframe.

x Optional specification for x axis variable if plot is true. If left NULL (the default)
then the first element of ‘group‘ is used.

traitCol Column with phenotype names, defaults to "trait". This should generally not
need to be changed from the default. If this and valueCol are present in col-
names(df) then the data is assumed to be in long format.

valueCol Column with phenotype values, defaults to "value". This should generally not
need to be changed from the default.

labelCol Column with phenotype labels for long data, defaults to "label". This should
generally not need to be changed from the default.

idCol Column(s) that identify individuals over time. Defaults to plotGroup.

ncp Optionally specify the number of principle components to be used for MV data
outlier detection with cooks distance. If left NULL (the default) then 3 will be
used.

separate Optionally separate the data by some variable to speed up the modeling step.
If you have a design variable with very many levels then it may be helpful to
separate by that variable. Note this will subset the data for each model so it will
change the outlier removal (generally to be more conservative).

Value

The input dataframe with outliers removed and optionally a plot (if a plot is returned then output is
a list).
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Examples

sv <- growthSim("logistic",
n = 5, t = 20,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
sv[130, ]$y <- 500
sv_res <- bw.outliers(

df = sv, phenotype = "y", naTo0 = FALSE, cutoff = 15,
group = c("time", "group"), outlierMethod = "cooks",
plotgroup = "id", plot = TRUE

)
sv_res$plot

tryCatch(
{ # in case offline
library(data.table)
mvw <- read.pcv(paste0(

"https://media.githubusercontent.com/media/joshqsumner/",
"pcvrTestData/main/pcv4-multi-value-traits.csv"

), mode = "wide", reader = "fread")
mvw$genotype <- substr(mvw$barcode, 3, 5)
mvw$genotype <- ifelse(mvw$genotype == "002", "B73",

ifelse(mvw$genotype == "003", "W605S",
ifelse(mvw$genotype == "004", "MM", "Mo17")

)
)
mvw$fertilizer <- substr(mvw$barcode, 8, 8)
mvw$fertilizer <- ifelse(mvw$fertilizer == "A", "100",

ifelse(mvw$fertilizer == "B", "50", "0")
)
mvw <- bw.time(mvw, timeCol = "timestamp", group = "barcode", plot = FALSE)

phenotypes <- which(grepl("hue_freq", colnames(mvw)))

mvw2 <- bw.outliers(
df = mvw, phenotype = phenotypes, naTo0 = FALSE, outlierMethod = "cooks",

group = c("DAS", "genotype", "fertilizer"), cutoff = 3, plotgroup = c("barcode", "rotation")
)

mvl <- read.pcv(paste0(
"https://media.githubusercontent.com/media/joshqsumner/",
"pcvrTestData/main/pcv4-multi-value-traits.csv"

), mode = "long")
mvl$genotype <- substr(mvl$barcode, 3, 5)
mvl$genotype <- ifelse(mvl$genotype == "002", "B73",

ifelse(mvl$genotype == "003", "W605S",
ifelse(mvl$genotype == "004", "MM", "Mo17")

)
)
mvl$fertilizer <- substr(mvl$barcode, 8, 8)
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mvl$fertilizer <- ifelse(mvl$fertilizer == "A", "100",
ifelse(mvl$fertilizer == "B", "50", "0")

)
mvl <- bw.time(mvl, timeCol = "timestamp", group = "barcode", plot = FALSE)

mvl2 <- bw.outliers(
df = mvl, phenotype = "hue_frequencies", naTo0 = FALSE, outlierMethod = "cooks",

group = c("DAS", "genotype", "fertilizer"), cutoff = 3, plotgroup = c("barcode", "rotation")
)

},
error = function(e) {

message(e)
}

)

bw.time Time conversion and plotting for bellwether data

Description

Time conversion and plotting for bellwether data

Usage

bw.time(
df = NULL,
mode = c("DAS", "DAP", "DAE"),
plantingDelay = NULL,
phenotype = NULL,
cutoff = 1,
timeCol = "timestamp",
group = "Barcodes",
plot = TRUE,
format = "%Y-%m-%d %H:%M:%S",
traitCol = "trait",
valueCol = "value",
index = NULL,
digits = 0

)

Arguments

df Data frame to use, this can be in wide or long format.

mode One of "DAS", "DAP" or "DAE" (Days After Planting and Days After Emer-
gence). Defaults to adding all columns. Note that if timeCol is not numeric then
DAS is always returned.
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plantingDelay If ‘mode‘ includes "DAP" then ‘plantingDelay‘ is used to adjust "DAS"

phenotype If ‘mode‘ includes "DAE" then this is the phenotype used to classify emergence.

cutoff If ‘mode‘ includes "DAE" then this value is used to classify emergence. Defaults
to 1, meaning an image with a value of 1 or more for ‘phenotype‘ has "emerged".

timeCol Column of input time values, defaults to "timestamp". If this is not numeric then
it is assumed to be a timestamp in the format of the format argument.

group Grouping variables to specify unique plants as a character vector. This defaults
to "Barcodes". These taken together should identify a unique plant across time,
although often "angle" or "rotation" should be added.

plot Logical, should plots of the new time variables be printed?

format An R POSIXct format, defaults to lemnatech standard format. This is only used
if timeCol is not a numeric.

traitCol Column with phenotype names, defaults to "trait". This should generally not
need to be changed from the default. If this and valueCol are present in col-
names(df) then the data is assumed to be in long format.

valueCol Column with phenotype values, defaults to "value". This should generally not
need to be changed from the default.

index Optionally a time to use as the beginning of the experiment. This may be useful
if you have multiple datasets or you are adding data from bw.water and plants
were watered before being imaged or if you want to index days off of mid-
night. This defaults to NULL but will take any value coercible to POSIXct by
as.POSIXct(... , tz="UTC") such as "2020-01-01 18:30:00"

digits Number of digits to round DAS to if timeCol is not numeric, defaults to 0.

Value

The input dataframe with new numeric columns for different ways of describing time in the experi-
ment. If plot is TRUE then a ggplot is also returned as part of a list.

Examples

f <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/pcv4-single-value-traits.csv"
tryCatch(

{
sv <- read.pcv(

f,
mode = "wide", reader = "fread"

)
sv$genotype = substr(sv$barcode, 3, 5)
sv$genotype = ifelse(sv$genotype == "002", "B73",

ifelse(sv$genotype == "003", "W605S",
ifelse(sv$genotype == "004", "MM", "Mo17")

)
)
sv$fertilizer = substr(sv$barcode, 8, 8)
sv$fertilizer = ifelse(sv$fertilizer == "A", "100",

ifelse(sv$fertilizer == "B", "50", "0")
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)
sv <- bw.time(sv,

plantingDelay = 0, phenotype = "area_pixels", cutoff = 10,
timeCol = "timestamp", group = c("barcode", "rotation"), plot = FALSE

)

svl <- read.pcv(
f,
mode = "long", reader = "fread"

)
svl$genotype = substr(svl$barcode, 3, 5)
svl$genotype = ifelse(svl$genotype == "002", "B73",

ifelse(svl$genotype == "003", "W605S",
ifelse(svl$genotype == "004", "MM", "Mo17")

)
)
svl$fertilizer = substr(svl$barcode, 8, 8)
svl$fertilizer = ifelse(svl$fertilizer == "A", "100",

ifelse(svl$fertilizer == "B", "50", "0")
)
svl <- bw.time(svl,

plantingDelay = 0, phenotype = "area_pixels", cutoff = 10, timeCol = "timestamp",
group = c("barcode", "rotation"), plot = FALSE

)
},
error = function(e) {

message(e)
}

)

bw.water Read in lemnatech watering data from metadata.json files

Description

Read in lemnatech watering data from metadata.json files

Usage

bw.water(file = NULL, envKey = "environment")

Arguments

file Path to a json file of lemnatech metadata.

envKey Character string representing the json key for environment data. By default this
is set to "environment". Currently there are no situations where this makes sense
to change.
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Value

A data frame containing the bellwether watering data

Examples

tryCatch(
{
w <- bw.water("https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/metadata.json")
},
error = function(e) {

message(e)
}

)

checkGroups Helper function to check groups in data.

Description

Helper function to check groups in data.

Usage

checkGroups(df, group)

Arguments

df Data frame to use.

group Set of variables to use in grouping observations. These taken together should
identify a unique plant (or unique plant at a unique angle) across time.

Value

If there are duplicates in the grouping then this will return a message with code to start checking
the duplicates in your data.

Examples

df <- growthSim("linear",
n = 10, t = 10,
params = list("A" = c(2, 1.5))

)
checkGroups(df, c("time", "id", "group"))
df$time[12] <- 3
checkGroups(df, c("time", "id", "group"))
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combineDraws Combine Draws From brms Models

Description

Helper function for binding draws from several brms models to make a data.frame for use with
brms::hypothesis(). This will also check that the draws are comparable using basic model met-
rics.

Usage

combineDraws(..., message = TRUE)

Arguments

... Some number of brmsfit objects and/or dataframes of draws (should generally
be the same type of model fit to different data)

message Logical, should messages about possible problems be printed? Default is TRUE.
This will warn if models may not have converged, if there are different numbers
of draws in the objects, or if models have different formulations.

Value

Returns a dataframe of posterior draws.

Examples

# note that this example will fit several bayesian models and may run for several minutes.

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list(

"A" = c(200, 160, 220, 200, 140, 300),
"B" = c(13, 11, 10, 9, 16, 12),
"C" = c(3, 3.5, 3.2, 2.8, 3.3, 2.5)

)
)
ss_ab <- growthSS(

model = "logistic", form = y ~ time | id / group,
sigma = "logistic", df = simdf[simdf$group %in% c("a", "b"), ],
start = list(

"A" = 130, "B" = 12, "C" = 3,
"sigmaA" = 15, "sigmaB" = 10, "sigmaC" = 3

), type = "brms"
)

ss_cd <- growthSS(
model = "logistic", form = y ~ time | id / group,
sigma = "logistic", df = simdf[simdf$group %in% c("c", "d"), ],
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start = list(
"A" = 130, "B" = 12, "C" = 3,
"sigmaA" = 15, "sigmaB" = 10, "sigmaC" = 3

), type = "brms"
)

ss_ef <- growthSS(
model = "logistic", form = y ~ time | id / group,
sigma = "logistic", df = simdf[simdf$group %in% c("e", "f"), ],
start = list(

"A" = 130, "B" = 12, "C" = 3,
"sigmaA" = 15, "sigmaB" = 10, "sigmaC" = 3

), type = "brms"
)
ss_ef2 <- growthSS(

model = "gompertz", form = y ~ time | id / group,
sigma = "logistic", df = simdf[simdf$group %in% c("e", "f"), ],
start = list(

"A" = 130, "B" = 12, "C" = 3,
"sigmaA" = 15, "sigmaB" = 10, "sigmaC" = 3

), type = "brms"
)

fit_ab <- fitGrowth(ss_ab, chains = 1, cores = 1, iter = 1000)
fit_ab2 <- fitGrowth(ss_ab, chains = 1, cores = 1, iter = 1200)
fit_cd <- fitGrowth(ss_cd, chains = 1, cores = 1, iter = 1000)
fit_ef <- fitGrowth(ss_ef, chains = 1, cores = 1, iter = 1000)
fit_ef2 <- fitGrowth(ss_ef2, chains = 1, cores = 1, iter = 1000)

x <- combineDraws(fit_ab, fit_cd, fit_ef)
draws_ef <- as.data.frame(fit_ef)
draws_ef <- draws_ef[, grepl("^b_", colnames(draws_ef))]
x2 <- combineDraws(fit_ab2, fit_cd, draws_ef)
x3 <- combineDraws(fit_ab, fit_cd, fit_ef2)

conjugate Bayesian testing using conjugate priors and method of moments for
single or multi value traits.

Description

Function to perform bayesian tests and ROPE comparisons using single or multi value traits with
several distributions.

Usage

conjugate(
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s1 = NULL,
s2 = NULL,
method = c("t", "gaussian", "beta", "binomial", "lognormal", "lognormal2", "poisson",
"negbin", "vonmises", "vonmises2", "uniform", "pareto", "gamma", "bernoulli",
"exponential", "bivariate_uniform", "bivariate_gaussian", "bivariate_lognormal"),
priors = NULL,
plot = NULL,
rope_range = NULL,
rope_ci = 0.89,
cred.int.level = 0.89,
hypothesis = "equal",
bayes_factor = NULL,
support = NULL

)

Arguments

s1 A data.frame or matrix of multi value traits or a vector of single value traits. If
a multi value trait is used then column names should include a number repre-
senting the "bin". Alternatively for distributions other than "binomial" (which
requires list data with "successes" and "trials" as numeric vectors in the list, see
examples) this can be a formula specifying outcome ~ group where group has
exactly 2 levels. If using wide MV trait data then the formula should specify
column positions ~ grouping such as 1:180 ~ group. This sample is shown in
red if plotted.

s2 An optional second sample, or if s1 is a formula then this should be a dataframe.
This sample is shown in blue if plotted.

method The distribution/method to use. Currently "t", "gaussian", "beta", "binomial",
"lognormal", "lognormal2", "poisson", "negbin" (negative binomial), "uniform",
"pareto", "gamma", "bernoulli", "exponential", "vonmises", and "vonmises2"
are supported. The count (binomial, poisson and negative binomial), bernoulli,
exponential, and pareto distributions are only implemented for single value traits
due to their updating and/or the nature of the input data. The "t" and "gaussian"
methods both use a T distribution with "t" testing for a difference of means and
"gaussian" testing for a difference in the distributions (similar to a Z test). Both
Von Mises options are for use with circular data (for instance hue values when
the circular quality of the data is relevant). Note that non-circular distributions
can be compared to each other. This should only be done with caution and
may not be supported in all downstream functions. There are also 3 bivariate
conjugate priors that are supported for use with single value data. Those are
"bivariate_uniform", "bivariate_gaussian" and "bivariate_lognormal".

priors Prior distributions described as a list of lists. If this is a single list then it will
be duplicated for the second sample, which is generally a good idea if both
samples use the same distribution (method). Elements in the inner lists should
be named for the parameter they represent (see examples). These names vary
by method (see details). By default this is NULL and weak priors (generally
jeffrey’s priors) are used. The posterior part of output can also be recycled as
a new prior if Bayesian updating is appropriate for your use.
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plot deprecated, use plot method instead.

rope_range Optional vector specifying a region of practical equivalence. This interval is
considered practically equivalent to no effect. Kruschke (2018) suggests c(-0.1,
0.1) as a broadly reasonable ROPE for standardized parameters. That range
could also be rescaled by a standard deviation/magnitude for non-standardized
parameters, but ultimately this should be informed by your setting and scientific
question. See Kruschke (2018) for details on ROPE and other Bayesian meth-
ods to aide decision-making doi:10.1177/2515245918771304 and doi:10.1037/
a0029146.

rope_ci The credible interval probability to use for ROPE. Defaults to 0.89.

cred.int.level The credible interval probability to use in computing HDI for samples, defaults
to 0.89.

hypothesis Direction of a hypothesis if two samples are provided. Options are "unequal",
"equal", "greater", and "lesser", read as "sample1 greater than sample2".

bayes_factor Optional point or interval to evaluate bayes factors on. Note that this generally
only makes sense to use if you have informative priors where the change in odds
between prior and posterior is meaningful about the data. If this is non-NULL
then columns of bayes factors are added to the summary output. Note these are
only implemented for univariate distributions.

support Deprecated

Details

Prior distributions default to be weakly informative and in some cases you may wish to change
them.

• "t", "gaussian", and "lognormal": priors = list(mu = 0, sd = 10), where mu is the mean
and sd is standard deviation. For the lognormal method these describe the normal distribution
of the mean parameter for lognormal data and are on the log scale.

• "beta", "bernoulli", and "binomial": priors = list(a = 0.5, b = 0.5), where a and b
are shape parameters of the beta distribution. Note that for the binomial distribution this is
used as the prior for success probability P, which is assumed to be beta distributed as in a
beta-binomial distribution.

• "lognormal2": priors = list(a = 1, b = 1) , where a and b are the shape and scale param-
eters of the gamma distribution of lognormal data’s precision parameter (using the alternative
mu, precision parameterization).

• "gamma": priors = list(shape = 0.5, scale = 0.5, known_shape = 1), where shape
and scale are the respective parameters of the gamma distributed rate (inverse of scale) pa-
rameter of gamma distributed data.

• "poisson" and "exponential": priors = list(a = 0.5,b = 0.5), where a and b are shape
parameters of the gamma distribution.

• "negbin": priors = list(r = 10, a = 0.5, b = 0.5), where r is the r parameter of the neg-
ative binomial distribution (representing the number of successes required) and where a and
b are shape parameters of the beta distribution. Note that the r value is not updated. The
conjugate beta prior is only valid when r is fixed and known, which is a limitation for this
method.

https://doi.org/10.1177/2515245918771304
https://doi.org/10.1037/a0029146
https://doi.org/10.1037/a0029146
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• "uniform": list(scale = 0.5, location = 0.5), where scale is the scale parameter of the
pareto distributed upper boundary and location is the location parameter of the pareto dis-
tributed upper boundary. Note that different sources will use different terminology for these
parameters. These names were chosen for consistency with the extraDistr implementation
of the pareto distribution. On Wikipedia the parameters are called shape and scale, corre-
sponding to extraDistr’s scale and location respectively, which can be confusing. Note that the
lower boundary of the uniform is assumed to be 0.

• "pareto": list(a = 1, b = 1, known_location = min(data)), where a and b are the shape
and scale parameters of the gamma distribution of the pareto distribution’s scale parameter.
In this case location is assumed to be constant and known, which is less of a limitation than
knowing r for the negative binomial method since location will generally be right around/just
under the minimum of the sample data. Note that the pareto method is only implemented cur-
rently for single value traits since one of the statistics needed to update the gamma distribution
here is the product of the data and we do not currently have a method to calculate a similar
sufficient statistic from multi value traits.

• "vonmises": list(mu = 0, kappa = 0.5, boundary = c(-pi, pi), known_kappa = 1, n =
1), where mu is the direction of the circular distribution (the mean), kappa is the precision of
the mean, boundary is a vector including the two values that are the where the circular data
"wraps" around the circle, known_kappa is the fixed value of precision for the total distribu-
tion, and n is the number of prior observations. This Von Mises option updates the conjugate
prior for the mean direction, which is itself Von-Mises distributed. This in some ways is anal-
ogous to the T method, but assuming a fixed variance when the mean is updated. Note that
due to how the rescaling works larger circular boundaries can be slow to plot.

• "vonmises2": priors = list(mu = 0, kappa = 0.5, boundary = c(-pi, pi), n = 1), where
mu and kappa are mean direction and precision of the von mises distribution, boundary is a
vector including the two values that are the where the circular data "wraps" around the circle,
and n is the number of prior observations. This Von-Mises implementation does not assume
constant variance and instead uses MLE to estimate kappa from the data and updates the kappa
prior as a weighted average of the data and the prior. The mu parameter is then updated per
Von-Mises conjugacy.

• "bivariate_uniform": list(location_l = 1, location_u = 2, scale = 1), where scale is
the shared scale parameter of the pareto distributed upper and lower boundaries and location
l and u are the location parameters for the Lower (l) and Upper (u) boundaries of the uniform
distribution. Note this uses the same terminology for the pareto distribution’s parameters as
the "uniform" method.

• "bivariate_gaussian" and "bivariate_lognormal": list(mu = 0, sd = 10, a = 1, b = 1),
where mu and sd are the mean and standard deviation of the Normal distribution of the data’s
mean and a and b are the shape and scale of the gamma distribution on precision. Note
that internally this uses the Mu and Precision parameterization of the normal distribution and
those are the parameters shown in the plot and tested, but priors use Mu and SD for the normal
distribution of the mean.

Value

A conjugate-class object with slots including:

• summary: A data frame containing HDI/HDE values for each sample and the ROPE as well as
posterior probability of the hypothesis and ROPE test (if specified). The HDE is the "Highest
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Density Estimate" of the posterior, that is the tallest part of the probability density function.
The HDI is the Highest Density Interval, which is an interval that contains X% of the posterior
distribution, so cred.int.level = 0.8 corresponds to an HDI that includes 80 percent of the
posterior probability. Bayes factors are calculated as posterior/prior for each sample.

• posterior: A list of updated parameters in the same format as the prior for the given method.
If desired this does allow for Bayesian updating.

• prior: The prior in a list with the same format as the posterior.

• plot: A ggplot showing the distribution of samples and optionally the distribution of differ-
ences/ROPE.

• plot_parameters: Parameters used in making a plot of the data. Contains support range and
posterior recoded to use a density function.

• data: Data from s1 and s2 arguments.

• call: The function call.

See Also

[barg() for additional reporting]

Examples

mv_ln <- mvSim(
dists = list(
rlnorm = list(meanlog = log(130), sdlog = log(1.2)),
rlnorm = list(meanlog = log(100), sdlog = log(1.3))

),
n_samples = 30

)

# lognormal mv
ln_mv_ex <- conjugate(

s1 = mv_ln[1:30, -1], s2 = mv_ln[31:60, -1], method = "lognormal",
priors = list(mu = 5, sd = 2),
rope_range = c(-40, 40), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal", support = NULL

)

# lognormal sv
ln_sv_ex <- conjugate(

s1 = rlnorm(100, log(130), log(1.3)), s2 = rlnorm(100, log(100), log(1.6)),
method = "lognormal",
priors = list(mu = 5, sd = 2),
rope_range = NULL, rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal", support = NULL

)

# Z test mv example

mv_gauss <- mvSim(
dists = list(

rnorm = list(mean = 50, sd = 10),
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rnorm = list(mean = 60, sd = 12)
),
n_samples = 30

)

gauss_mv_ex <- conjugate(
s1 = mv_gauss[1:30, -1], s2 = mv_gauss[31:60, -1], method = "gaussian",
priors = list(mu = 30, sd = 10),
rope_range = c(-25, 25), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal", support = NULL

)

# T test sv example with two different priors

gaussianMeans_sv_ex <- conjugate(
s1 = rnorm(10, 50, 10), s2 = rnorm(10, 60, 12), method = "t",
priors = list(list(mu = 40, sd = 10), list(mu = 45, sd = 8)),
rope_range = c(-5, 8), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal", support = NULL

)

# beta mv example

set.seed(123)
mv_beta <- mvSim(

dists = list(
rbeta = list(shape1 = 5, shape2 = 8),
rbeta = list(shape1 = 10, shape2 = 10)

),
n_samples = c(30, 20)

)

beta_mv_ex <- conjugate(
s1 = mv_beta[1:30, -1], s2 = mv_beta[31:50, -1], method = "beta",
priors = list(a = 0.5, b = 0.5),
rope_range = c(-0.1, 0.1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal",
bayes_factor = 0.5 # note this may not be reasonable with these priors

)

# beta sv example

beta_sv_ex <- conjugate(
s1 = rbeta(20, 5, 5), s2 = rbeta(20, 8, 5), method = "beta",
priors = list(a = 0.5, b = 0.5),
rope_range = c(-0.1, 0.1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal",
bayes_factor = c(0.5, 0.75) # note this may not be reasonable with these priors

)

# binomial sv example
# note that specifying trials = 20 would also work
# and the number of trials will be recycled to the length of successes
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binomial_sv_ex <- conjugate(
s1 = list(successes = c(15, 14, 16, 11), trials = c(20, 20, 20, 20)),
s2 = list(successes = c(7, 8, 10, 5), trials = c(20, 20, 20, 20)), method = "binomial",
priors = list(a = 0.5, b = 0.5),
rope_range = c(-0.1, 0.1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal"

)

# poisson sv example

poisson_sv_ex <- conjugate(
s1 = rpois(20, 10), s2 = rpois(20, 8), method = "poisson",
priors = list(a = 0.5, b = 0.5),
rope_range = c(-1, 1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal"

)

# negative binomial sv example
# knowing r (required number of successes) is an important caveat for this method.
# in the current implementation we suggest using the poisson method for data such as leaf counts

negbin_sv_ex <- conjugate(
s1 = rnbinom(20, 10, 0.5), s2 = rnbinom(20, 10, 0.25), method = "negbin",
priors = list(r = 10, a = 0.5, b = 0.5),
rope_range = c(-1, 1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal"

)

# von mises mv example

mv_gauss <- mvSim(
dists = list(
rnorm = list(mean = 50, sd = 10),
rnorm = list(mean = 60, sd = 12)

),
n_samples = c(30, 40)

)
vm1_ex <- conjugate(

s1 = mv_gauss[1:30, -1],
s2 = mv_gauss[31:70, -1],
method = "vonmises",
priors = list(mu = 45, kappa = 1, boundary = c(0, 180), known_kappa = 1, n = 1),
rope_range = c(-1, 1), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal"

)

# von mises 2 sv example
vm2_ex <- conjugate(

s1 = brms::rvon_mises(10, 2, 2),
s2 = brms::rvon_mises(15, 3, 3),
method = "vonmises2",
priors = list(mu = 0, kappa = 0.5, boundary = c(-pi, pi), n = 1),
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cred.int.level = 0.95
)

conjugate-class Class conjugate for output from the pcvr::conjugate function.

Description

Comparisons made by the conjugate function return objects of this class containing parameters of
the prior and posterior distributions, hypothesis tests, ROPE tests, Bayes Factors, and plots of the
posterior.

Details

See methods(class = "conjugate") for an overview of available methods.

Slots

summary Summary data frame of results

posterior Posterior distribution as a list of named lists

prior Prior distribution as a list of named lists

plot Optionally a plot of the distributions and their differences

data The data from s1 and s2 arguments to conjugate.

call Matched call to conjugate.

See Also

conjugate

cumulativePheno Reduce phenotypes in longitudinal data to cumulative sums of pheno-
types.

Description

Often in bellwether experiments we are curious about the effect of some treatment vs control. For
certain routes in analysing the data this requires considering phenotypes as relative differences
compared to a control.
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Usage

cumulativePheno(
df,
phenotypes = NULL,
group = "barcode",
timeCol = "DAS",
traitCol = "trait",
valueCol = "value"

)

Arguments

df Dataframe to use, this can be in long or wide format.

phenotypes A character vector of column names for the phenotypes that should be compared
against control.

group A character vector of column names that identify groups in the data. Defaults to
"barcode". These groups will be calibrated separately, with the exception of the
group that identifies a control within the greater hierarchy.

timeCol Column name to use for time data.

traitCol Column with phenotype names, defaults to "trait". This should generally not
need to be changed from the default. If this and valueCol are present in col-
names(df) then the data is assumed to be in long format.

valueCol Column with phenotype values, defaults to "value". This should generally not
need to be changed from the default.

Value

A dataframe with cumulative sum columns added for specified phenotypes

Examples

f <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/pcv4-single-value-traits.csv"
tryCatch(

{
sv <- read.pcv(

f,
reader = "fread"

)
sv$genotype <- substr(sv$barcode, 3, 5)
sv$genotype <- ifelse(sv$genotype == "002", "B73",

ifelse(sv$genotype == "003", "W605S",
ifelse(sv$genotype == "004", "MM", "Mo17")

)
)
sv$fertilizer <- substr(sv$barcode, 8, 8)
sv$fertilizer <- ifelse(sv$fertilizer == "A", "100",

ifelse(sv$fertilizer == "B", "50", "0")
)
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sv <- bw.time(sv,
plantingDelay = 0, phenotype = "area_pixels", cutoff = 10,
timeCol = "timestamp", group = c("barcode", "rotation"), plot = TRUE

)$data
sv <- bw.outliers(sv,

phenotype = "area_pixels", group = c("DAS", "genotype", "fertilizer"),
plotgroup = c("barcode", "rotation")

)$data
phenotypes <- colnames(sv)[19:35]
phenoForm <- paste0("cbind(", paste0(phenotypes, collapse = ", "), ")")
groupForm <- "DAS+DAP+barcode+genotype+fertilizer"
form <- as.formula(paste0(phenoForm, "~", groupForm))
sv <- aggregate(form, data = sv, mean, na.rm = TRUE)
pixels_per_cmsq <- 42.5^2 # pixel per cm^2
sv$area_cm2 <- sv$area_pixels / pixels_per_cmsq
sv$height_cm <- sv$height_pixels / 42.5
df <- sv
phenotypes <- c("area_cm2", "height_cm")
group <- c("barcode")
timeCol <- "DAS"
df <- cumulativePheno(df, phenotypes, group, timeCol)

sv_l <- read.pcv(
f,
mode = "long", reader = "fread"

)
sv_l$genotype <- substr(sv_l$barcode, 3, 5)
sv_l$genotype <- ifelse(sv_l$genotype == "002", "B73",

ifelse(sv_l$genotype == "003", "W605S",
ifelse(sv_l$genotype == "004", "MM", "Mo17")

)
)
sv_l$fertilizer <- substr(sv_l$barcode, 8, 8)
sv_l$fertilizer <- ifelse(sv_l$fertilizer == "A", "100",

ifelse(sv_l$fertilizer == "B", "50", "0")
)
sv_l <- bw.time(sv_l,

plantingDelay = 0, phenotype = "area_pixels", cutoff = 10,
timeCol = "timestamp", group = c("barcode", "rotation")

)$data
sv_l <- cumulativePheno(sv_l,

phenotypes = c("area_pixels", "height_pixels"),
group = c("barcode", "rotation"), timeCol = "DAS"

)
},
error = function(e) {

message(e)
}

)
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distributionPlot Function for plotting iterations of posterior distributions

Description

Function for plotting iterations of posterior distributions

Usage

distributionPlot(
fits,
form,
df,
priors = NULL,
params = NULL,
maxTime = NULL,
patch = TRUE

)

Arguments

fits A list of brmsfit objects following the same data over time. Currently check-
pointing is not supported.

form A formula describing the growth model similar to growthSS and brmPlot such
as: outcome ~ predictor |individual/group

df data used to fit models (this is used to plot each subject’s trend line).

priors a named list of samples from the prior distributions for each parameter in params.
This is only used if sample_prior=FALSE in the brmsfit object. If left NULL
then no prior is included.

params a vector of parameters to include distribution plots of. Defaults to NULL which
will use all parameters from the top level model.

maxTime Optional parameter to designate a max time not observed in the models so far

patch Logical, should a patchwork plot be returned or should lists of ggplots be re-
turned?

Value

A ggplot or a list of ggplots (depending on patch).

Examples

f <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/brmsFits.rdata"
tryCatch(

{
print(load(url(f)))
library(brms)
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library(ggplot2)
library(patchwork)
fits <- list(fit_3, fit_15)
form <- y~time | id / group
priors <- list(

"phi1" = rlnorm(2000, log(130), 0.25),
"phi2" = rlnorm(2000, log(12), 0.25),
"phi3" = rlnorm(2000, log(3), 0.25)

)
params <- c("A", "B", "C")
d <- simdf
maxTime <- NULL
patch <- TRUE
from3to25 <- list(

fit_3, fit_5, fit_7, fit_9, fit_11,
fit_13, fit_15, fit_17, fit_19, fit_21, fit_23, fit_25

)
distributionPlot(

fits = from3to25, form = y ~ time | id / group,
params = params, d = d, priors = priors, patch = FALSE

)
distributionPlot(

fits = from3to25, form = y ~ time | id / group,
params = params, d = d, patch = FALSE

)
},
error = function(e) {

message(e)
}

)

## End(Not run)

fitGrowth Ease of use wrapper function for fitting various growth models speci-
fied by growthSS

Description

Ease of use wrapper function for fitting various growth models specified by growthSS

Usage

fitGrowth(ss, ...)

Arguments

ss A list generated by growthSS.
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... Additional arguments passed to model fitting functions determined by ss$type.
For type = "nlme" these are passed to nlme::nlmeControl, not nlme::nlme.
Additional arguments are documented in fitGrowthbrms, fitGrowthnlme, fit-
Growthnls, fitGrowthnlrq, fitGrowthmgcvgam, fitGrowthsurvreg, fitGrowthflex-
surv.

Value

A fit model from the selected type.

See Also

growthPlot for model visualization, testGrowth for hypothesis testing, barg for Bayesian model
reporting metrics.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | group,
df = simdf, type = "nls"

)
fitGrowth(ss)
ss <- growthSS(

model = "gam", form = y ~ time | group,
df = simdf, type = "nls"

)
fitGrowth(ss)

fitGrowthbrms Ease of use brms wrapper function for fitting growth models specified
by growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthbrms(
ss,
iter = 2000,
cores = getOption("mc.cores", 1),
chains = 4,
prior = NULL,
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backend = "cmdstanr",
silent = 0,
...

)

fitGrowthbrmsgam(
ss,
iter = 2000,
cores = getOption("mc.cores", 1),
chains = 4,
prior = NULL,
backend = "cmdstanr",
silent = 0,
...

)

Arguments

ss A list generated by growthSS.

iter A number of iterations to sample for each chain. By default half this length is
taken as warm-up for the MCMC algorithm. This defaults to 2000.

cores A number of cores to run in parallel. This defaults to 1 if the "mc.cores" option
is not set. Generally this is specified as one core per chain so that the model is
fit in parallel.

chains A number of markov chains to use, this defaults to 4.

prior A brmsprior object if growthSS did not have priors specified. If left NULL (the
default) and ss does not contain priors then a warning is issued but the model
will still attempt to fit.

backend A backend for brms to use Stan through. This defaults to use "cmdstanr".

silent Passed to brms::brm to control verbosity. This defaults to 0, the most verbose
option so that messages and progress are printed. With changes to cmdstanr
and brms this may be removed, but the option will be available through ....
Note that this is likely to print lots of messages during warmup iterations as the
MCMC gets started.

... Additional arguments passed to brms::brm.

Value

A brmsfit object, see ?`brmsfit-class` for details.



fitGrowthflexsurv 33

fitGrowthflexsurv Ease of use wrapper function for fitting growth models specified by
growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthflexsurv(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to flexsurv::flexsurvreg.

Value

A survreg object.

fitGrowthlm Ease of use lm wrapper function for fitting growth models specified by
mvSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthlm(ss, ...)

Arguments

ss A list generated by mvSS.

... Additional arguments passed to stats::lm.

Value

An lm object, see ?lm for details.
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fitGrowthmgcvgam Ease of use mgcv wrapper function for fitting gams specified by
growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthmgcvgam(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to mgcv::gam.

Value

An gam object, see ?gam for details.

fitGrowthnlme Ease of use nlme wrapper function for fitting growth models specified
by growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnlme(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to nlme::nlmeControl.

Value

An nlme object, see ?nlme for details.
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fitGrowthnlmegam Ease of use lme wrapper function for fitting gams specified by
growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnlmegam(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to nlme::lmeControl.

Value

An lme object, see ?lme for details.

fitGrowthnlrq Ease of use nlrq wrapper function for fitting growth models specified
by growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnlrq(ss, cores = getOption("mc.cores", 1), ...)

Arguments

ss A list generated by growthSS.

cores Optionally specify how many cores to run in parallel if ss$taus is >1L. Defaults
to 1 if mc.cores option is not set globally.

... Additional arguments passed to quantreg::nlrq.

Value

An nlrqModel object if tau is length of 1 or a list of such models for multiple taus, see ?quantreg::nlrq
or ?nls::nlsModel for details.
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fitGrowthnlrqgam Ease of use rq wrapper function for fitting gams specified by growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnlrqgam(ss, cores = getOption("mc.cores", 1), ...)

Arguments

ss A list generated by growthSS.

cores number of cores to run in parallel

... Additional arguments passed to quantreg::rq.

Value

An rq object, see ?rq for details.

fitGrowthnls Ease of use nls wrapper function for fitting growth models specified by
growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnls(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to stats::nls.

Value

An nls object, see ?nls for details.
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fitGrowthnlsgam Ease of use lm wrapper function for fitting gams specified by growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthnlsgam(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to stats::lm.

Value

An lm object, see ?lm for details.

fitGrowthrq Ease of use rq wrapper function for fitting models specified by mvSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthrq(ss, cores = getOption("mc.cores", 1), ...)

Arguments

ss A list generated by mvSS.

cores number of cores to run in parallel

... Additional arguments passed to quantreg::rq.

Value

An rq object, see ?rq for details.
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fitGrowthsurvreg Ease of use wrapper function for fitting growth models specified by
growthSS

Description

Helper function generally called from fitGrowth.

Usage

fitGrowthsurvreg(ss, ...)

Arguments

ss A list generated by growthSS.

... Additional arguments passed to survival::survreg.

Value

A survreg object.

flexsurvregPlot Function to visualize flexsurv::flexsurvreg models fit by
fitGrowth.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

flexsurvregPlot(
fit,
form,
groups = NULL,
df = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)
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Arguments

fit A model fit returned by fitGrowth with type="nls".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. If the individual and group are
specified then the observed growth lines are plotted.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for nls models.

timeRange Ignored, included for compatibility with other plotting functions.

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an survival model’s survival function.

Examples

df <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "survival weibull", form = y > 100 ~ time | id / group,
df = df, type = "flexsurv"

)
fit <- fitGrowth(ss)
flexsurvregPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a")
flexsurvregPlot(fit,

form = ss$pcvrForm, df = ss$df,
facetGroups = FALSE, groupFill = TRUE

)

frem Variance partitioning using Full Random Effects Models

Description

Variance partitioning for phenotypes (over time) using fully random effects models
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Usage

frem(
df,
des,
phenotypes,
timeCol = NULL,
cor = TRUE,
returnData = FALSE,
combine = TRUE,
markSingular = FALSE,
time = NULL,
time_format = "%Y-%m-%d",
...

)

Arguments

df Dataframe containing phenotypes and design variables, optionally over time.

des Design variables to partition variance for as a character vector.

phenotypes Phenotype column names (data is assumed to be in wide format) as a character
vector.

timeCol A column of the data that denotes time for longitudinal experiments. If left
NULL (the default) then all data is assumed to be from one timepoint.

cor Logical, should a correlation plot be made? Defaults to TRUE.

returnData Logical, should the used to make plots be returned? Defaults to FALSE.

combine Logical, should plots be combined with patchwork? Defaults to TRUE, which
works well when there is a single timepoint being used.

markSingular Logical, should singular fits be marked in the variance explained plot? This is
FALSE by default but it is good practice to check with TRUE in some situations.
If TRUE this will add white markings to the plot where models had singular fits,
which is the most common problem with this type of model.

time If the data contains multiple timepoints then which should be used? This can
be left NULL which will use the maximum time if timeCol is specified. If a
single number is provided then that time value will be used. Multiple numbers
will include those timepoints. The string "all" will include all timepoints.

time_format Format for non-integer time, passed to strptime, defaults to "%Y-%m-%d".

... Additional arguments passed to lme4::lmer.

Value

Returns either a plot (if returnData=FALSE) or a list with a plot and data/a list of dataframes (de-
pending on returnData and cor).
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Examples

library(data.table)
set.seed(456)
df <- data.frame(

genotype = rep(c("g1", "g2"), each = 10),
treatment = rep(c("C", "T"), times = 10),
time = rep(c(1:5), times = 2),
date_time = rep(paste0("2024-08-", 21:25), times = 2),
pheno1 = rnorm(20, 10, 1),
pheno2 = sort(rnorm(20, 5, 1)),
pheno3 = sort(runif(20))

)
out <- frem(df, des = "genotype", phenotypes = c("pheno1", "pheno2", "pheno3"), returnData = TRUE)
lapply(out, class)
frem(df,

des = c("genotype", "treatment"), phenotypes = c("pheno1", "pheno2", "pheno3"),
cor = FALSE

)
frem(df,

des = "genotype", phenotypes = c("pheno1", "pheno2", "pheno3"),
combine = FALSE, timeCol = "time", time = "all"

)
frem(df,

des = "genotype", phenotypes = c("pheno1", "pheno2", "pheno3"),
combine = TRUE, timeCol = "time", time = 1

)
frem(df,

des = "genotype", phenotypes = c("pheno1", "pheno2", "pheno3"),
cor = FALSE, timeCol = "time", time = 3:5, markSingular = TRUE

)
df[df$time == 3, "genotype"] <- "g1"
frem(df,

des = "genotype", phenotypes = c("pheno1", "pheno2", "pheno3"),
cor = FALSE, timeCol = "date_time", time = "all", markSingular = TRUE

)

gam_diff Helper function for visualizing differences in GAMs fit with
mgcv::gam

Description

Note that using GAMs will be less useful than fitting parameterized models as supported by growthSS
and fitGrowth for common applications in plant phenotyping.
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Usage

gam_diff(
model,
newdata = NULL,
g1,
g2,
byVar = NULL,
smoothVar = NULL,
cis = seq(0.05, 0.95, 0.05),
unconditional = TRUE,
plot = TRUE

)

Arguments

model A model fit with smooth terms by mgcv::gam

newdata A data.frame of new data to use to make predictions. If this is left NULL (the
default) then an attempt is made to make newdata using the first smooth term in
the formula. See examples for guidance on making appropriate newdata

g1 A character string for the level of byVar to use as the first group to compare, if
plot=TRUE then this will be shown in blue.

g2 The second group to compare (comparison will be g1 - g2). If plot=TRUE then
this will be shown in red.

byVar Categorical variable name used to separate splines as a string.

smoothVar The variable that splines were used on. This will often be a time variable.

cis Confidence interval levels, can be multiple. For example, 0.95 would return
Q_0.025 and Q_0.975 columns, and c(0.9, 0.95) would return Q_0.025, Q_0.05,
Q_0.95, and Q_0.975 columns. Defaults to seq(0.05, 0.95, 0.05)

unconditional Logical, should unconditional variance-covariance be used in calculating stan-
dard errors. Defaults to TRUE.

plot Logical, should a plot of the difference be returned? Defaults to TRUE.

Value

A dataframe or a list containing a ggplot and a dataframe

Examples

ex <- pcvr::growthSim("logistic",
n = 20, t = 25,
params = list(

"A" = c(200, 160),
"B" = c(13, 11),
"C" = c(3, 3.5)

)
)
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m <- mgcv::gam(y ~ group + s(time, by = factor(group)), data = ex)

support <- expand.grid(
time = seq(min(ex$time), max(ex$time), length = 400),
group = factor(unique(ex$group))

)

out <- gam_diff(
model = m, newdata = support, g1 = "a", g2 = "b",
byVar = "group", smoothVar = "time", plot = TRUE

)
dim(out$data)
out$plot
out2 <- gam_diff(

model = m, g1 = "a", g2 = "b", byVar = NULL, smoothVar = NULL, plot = TRUE
)

growthPlot Function to visualize models made by fitGrowth.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function.

Usage

growthPlot(
fit,
form,
groups = NULL,
df = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = !facetGroups,
hierarchy_value = NULL

)

Arguments

fit A model fit object (or a list of nlrq models) as returned by fitGrowth.

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. Generally this is given directly
from the growthSS output (ss$pcvrForm). If the formula does not include both
individuals and groups then lines from the data will not be plotted which may be
best if your data does not specify unique individuals and your model does not
include autocorrelation.
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groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

df A dataframe to use in plotting observed growth curves on top of the model and
for making predictions.

timeRange An optional range of times to use. This can be used to view predictions for
future data if the available data has not reached some point (such as asymptotic
size).

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to the opposite of facetGroups.
If TRUE then viridis colormaps are used in the order c(’plasma’, ’mako’, ’viridis’,
’inferno’, ’cividis’, ’magma’, ’turbo’, ’rocket’). Alternatively this can be given
as a vector of viridis colormap names to use in a different order than above. Note
that for brms models this is ignored except if used to specify a different viridis
color map to use.

hierarchy_value

If a hierarchical model is being plotted, what value should the hierarchical pre-
dictor be? If left NULL (the default) the mean value is used. If this is >1L then
the x axis will use the hierarchical variable from the model at the mean of the
timeRange (mean of x values in the model if timeRange is not specified).

Value

Returns a ggplot showing a brms model’s credible intervals and optionally the individual growth
lines.

See Also

growthSS and fitGrowth for making compatible models, testGrowth for hypothesis testing on com-
patible models.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group,
df = simdf, type = "nls"

)
fit <- fitGrowth(ss)
growthPlot(fit, form = ss$pcvrForm, df = ss$df)
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growthSim Growth data simulating function

Description

growthSim can be used to help pick reasonable parameters for common growth models to use in
prior distributions or to simulate data for example models/plots.

Usage

growthSim(
model = c("logistic", "gompertz", "double logistic", "double gompertz",
"monomolecular", "exponential", "linear", "power law", "frechet", "weibull",
"gumbel", "logarithmic", "bragg", "lorentz", "beta"),

n = 20,
t = 25,
params = list(),
D = 0

)

Arguments

model One of "logistic", "gompertz", "weibull", "frechet", "gumbel", "monomolecu-
lar", "exponential", "linear", "power law", "logarithmic", "bragg", "double lo-
gistic", or "double gompertz". Alternatively this can be a pseudo formula to
generate data from a segmented growth curve by specifying "model1 + model2",
see examples and growthSS. Decay can be specified by including "decay" as
part of the model such as "logistic decay" or "linear + linear decay". Count data
can be specified with the "count: " prefix, similar to using "poisson: model"
in growthSS. Similarly intercepts can be added with the "int_" prefix, in which
case an "I" parameter should be specified. While "gam" models are supported
by growthSS they are not simulated by this function.

n Number of individuals to simulate over time per each group in params

t Max time (assumed to start at 1) to simulate growth to as an integer.

params A list of numeric parameters. A, B, C notation is used in the order that pa-
rameters appear in the formula (see examples). Number of groups is inferred
from the length of these vectors of parameters. In the case of the "double" mod-
els there are also A2, B2, and C2 terms. Changepoints should be specified as
"changePointX" or "fixedChangePointX" as in growthSS.

D If decay is being simulated then this is the starting point for decay. This defaults
to 0.

Details

The params argument requires some understanding of how each growth model is parameterized.
Examples of each are below should help, as will the examples.
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• Logistic: ‘A / (1 + exp( (B-x)/C) )‘ Where A is the asymptote, B is the inflection point, C is
the growth rate.

• Gompertz: ‘A * exp(-B * exp(-C*x))‘ Where A is the asymptote, B is the inflection point, C
is the growth rate.

• Weibull: ‘A * (1-exp(-(x/C)^B))‘ Where A is the asymptote, B is the weibull shape parameter,
C is the weibull scale parameter.

• Frechet: ‘A * exp(-((x-0)/C)^(-B))‘ Where A is the asymptote, B is the frechet shape param-
eter, C is the frechet scale parameter. Note that the location parameter (conventionally m) is 0
in these models for simplicity but is still included in the formula.

• Gumbel: ‘A * exp(-exp(-(x-B)/C))‘ Where A is the asymptote, B is the inflection point (loca-
tion), C is the growth rate (scale).

• Double Logistic: ‘A / (1+exp((B-x)/C)) + ((A2-A) /(1+exp((B2-x)/C2)))‘ Where A is the
asymptote, B is the inflection point, C is the growth rate, A2 is the second asymptote, B2 is
the second inflection point, and C2 is the second growth rate.

• Double Gompertz: ‘A * exp(-B * exp(-C*x)) + ((A2-A) * exp(-B2 * exp(-C2*(x-B))))‘
Where A is the asymptote, B is the inflection point, C is the growth rate, A2 is the second
asymptote, B2 is the second inflection point, and C2 is the second growth rate.

• Monomolecular: ‘A-A * exp(-B * x)‘ Where A is the asymptote and B is the growth rate.

• Exponential: ‘A * exp(B * x)‘ Where A is the scale parameter and B is the growth rate.

• Linear: ‘A * x‘ Where A is the growth rate.

• Logarithmic: ‘A * log(x)‘ Where A is the growth rate.

• Power Law: ‘A * x ^ (B)‘ Where A is the scale parameter and B is the growth rate.

• Bragg: ‘A * exp(-B * (x - C) ^ 2)‘ This models minima and maxima as a dose-response curve
where A is the max response, B is the "precision" or slope at inflection, and C is the x position
of the max response.

• Lorentz: ‘A / (1 + B * (x - C) ^ 2)‘ This models minima and maxima as a dose-response curve
where A is the max response, B is the "precision" or slope at inflection, and C is the x position
of the max response. Generally Bragg is preferred to Lorentz for dose-response curves.

• Beta: ‘A * (((x - D) / (C - D)) * ((E - x) / (E - C)) ^ ((E - C) / (C - D))) ^ B‘ This models minima
and maxima as a dose-response curve where A is the Maximum Value, B is a shape/concavity
exponent similar to the sum of alpha and beta in a Beta distribution, C is the position of
maximum value, D is the minimum position where distribution > 0, E is the maximum position
where distribution > 0. This is a difficult model to fit but can model non-symmetric dose-
response relationships which may sometimes be worth the extra effort.

Note that for these distributions parameters generally do not exist in a vacuum. Changing one will
make the others look different in the resulting data. The examples are a good place to start if you
are unsure what parameters to use.

Value

Returns a dataframe of example growth data following the input parameters.



growthSim 47

Examples

library(ggplot2)
simdf <- growthSim("logistic",

n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Logistic")

simdf <- growthSim("gompertz",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(0.2, 0.25))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Gompertz")

simdf <- growthSim("weibull",
n = 20, t = 25,
params = list("A" = c(100, 100), "B" = c(1, 0.75), "C" = c(2, 3))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "weibull")

simdf <- growthSim("frechet",
n = 20, t = 25,
params = list("A" = c(100, 110), "B" = c(2, 1.5), "C" = c(5, 2))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "frechet")

simdf <- growthSim("gumbel",
n = 20, t = 25,
list("A" = c(120, 140), "B" = c(6, 5), "C" = c(4, 3))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "gumbel")

simdf <- growthSim("double logistic",
n = 20, t = 70,
params = list(
"A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5),
"A2" = c(400, 300), "B2" = c(35, 40), "C2" = c(3.25, 2.75)

)
)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Double Logistic")
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simdf <- growthSim("double gompertz",
n = 20, t = 100,
params = list(
"A" = c(180, 140), "B" = c(13, 11), "C" = c(0.2, 0.2),
"A2" = c(400, 300), "B2" = c(50, 50), "C2" = c(0.1, 0.1)

)
)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Double Gompertz")

simdf <- growthSim("monomolecular",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(0.08, 0.1))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Monomolecular")

simdf <- growthSim("exponential",
n = 20, t = 25,
params = list("A" = c(15, 20), "B" = c(0.095, 0.095))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Exponential")

simdf <- growthSim("linear",
n = 20, t = 25,
params = list("A" = c(1.1, 0.95))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Linear")

simdf <- growthSim("int_linear",
n = 20, t = 25,
params = list("A" = c(1.1, 0.95), I = c(100, 120))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Linear with Intercept")

simdf <- growthSim("logarithmic",
n = 20, t = 25,
params = list("A" = c(2, 1.7))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Logarithmic")

simdf <- growthSim("power law",
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n = 20, t = 25,
params = list("A" = c(16, 11), "B" = c(0.75, 0.7))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "Power Law")

simdf <- growthSim("bragg",
n = 20, t = 100,
list("A" = c(10, 15), "B" = c(0.01, 0.02), "C" = c(50, 60))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "bragg")

# simulating models from segmented growth models

simdf <- growthSim(
model = "linear + linear", n = 20, t = 25,
params = list("linear1A" = c(16, 11), "linear2A" = c(0.75, 0.7), "changePoint1" = c(11, 14))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "linear + linear")

simdf <- growthSim(
model = "linear + linear decay", n = 20, t = 25,
params = list("linear1A" = c(16, 11), "linear2A" = c(3, 2), "changePoint1" = c(11, 14))

)
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "linear + linear decay")

simdf <- growthSim(
model = "linear + linear + logistic", n = 20, t = 50,
params = list(

"linear1A" = c(16, 11), "linear2A" = c(3, 4), # linear slopes, very intuitive
"changePoint1" = c(11, 14), "changePoint2" = c(10, 12),
# changepoint1 is standard, changepoint2 happens relative to changepoint 1
"logistic3A" = c(200, 210), "logistic3B" = c(20, 25), "logistic3C" = c(3, 3)

)
)
# similar to changepoint2, the asymptote and inflection point are relative to the starting
# point of the logistic growth component. This is different than the model output
# if you were to fit a curve to this model using `growthSS`.
ggplot(simdf, aes(time, y, group = interaction(group, id))) +

geom_line(aes(color = group)) +
labs(title = "linear + linear + logistic")

growthSS Ease of use growth model helper function.
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Description

Output from this should be passed to fitGrowth to fit the specified model.

Usage

growthSS(
model,
form,
sigma = NULL,
df,
start = NULL,
pars = NULL,
type = "brms",
tau = 0.5,
hierarchy = NULL

)

Arguments

model The name of a model as a character string. Supported options are c("logistic",
"gompertz", "weibull", "frechet", "gumbel", "monomolecular", "exponential",
"linear", "power law", "bragg", "lorentz", "beta", "double logistic", "double
gompertz", "gam", "int"), with "int" representing an intercept only model which
is only used in brms (and is expected to only be used in threshold models or to
model homoskedasticity). Note that the dose response curves (bragg, lorentz,
and beta) may be difficult to fit using the nlme backend but should work well
using other options. See growthSim for examples of each type of single pa-
rameterized growth curve ("gam" is not supported in growthSim). You can also
specify decay models by including the "decay" keyword with the model name.
Note that using "decay" is only necessary for the brms backend since otherwise
the priors are strictly positive. In brms models the entire formula is negated for
decay models so that lognormal priors can still be used when at least some co-
efficients would be negative. Additionally, the "int_" prefix may be added to a
model name to specify that an intercept should be included. By default these
models are assumed to have intercepts at 0, which is often fine. If you include
an intercept in a brms model then you would specify the prior as you would for
an "A", "B", or "C" parameter but as "I". By default growthSS will make stu-
dent T priors for intercept parameters in the same way that it will for estimated
changepoints (see below). With type="brms" you can also specify segmented
models by combining model names with a plus sign such as "linear + linear".
In a segmented model the names for parameters do not follow the normal "A",
"B", "C" notation, instead they are named for the type of model, the position in
the formula, then for the parameter of that model. There will also be parameters
to represent the time when growth switches from one model to another called
either "changepointX" or "fixedChangePointX". All "changePointX" terms are
estimated as parameters of the model. "fixedChangePointX" parameters are not
estimated and are kept as the numeric value given in the priors, this is useful if
your experiment has an intervention at a set time which you expect to change the
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growth process acutely. For the "linear + linear" example this would yield pa-
rameters "linear1A", "changePoint1" (or "fixedChangePoint1"), and "linear2A".
A "linear + gompertz" model would have "linear1A", "changePoint1", "gom-
pertz2A", "gompertz2B", and "gompertz2C" for parameters. Note that double
sigmoid models are not supported as parts of segmented models and gams can
currently only be included as the last part of a segmented model. When us-
ing a changepoint model it may be worth using segments that are simpler to fit
(gompertz instead of EVD options, for instance). Currently "homo" and "int"
are treated the same and "spline" and "gam" are interchangeable. Time-to-event
models can be specified using the "survival" keyword, see details for an expla-
nation of the changes that entails. Similarly, using the brms backend response
distributions (see brms::brmsfamily) can be specified in the model as "family:
model" so that a model of logistic increasing counts may be written as model =
"poisson: logistic".

form A formula describing the model. The left hand side should only be the outcome
variable (phenotype), and a cutoff if you are making a survival model (see de-
tails). The right hand side needs at least the x variable (which should be numeric
and is typically time). Grouping is also described in this formula using roughly
lme4 style syntax,with formulas like y~time|individual/group to show that
predictors should vary by group and autocorrelation between individual:group
interactions should be modeled. Note that autocorrelation is only modeled with
the "brms" backend in this way. "nlme" requires random effects and correlations
to use the same grouping, so autocorrelation using the "nlme" backend works at
the group level, so will slightly underestimate the autocorrelation at the individ-
ual level. If group has only one level or is not included then it will be ignored
in formulas for growth and variance (this may be the case if you split data be-
fore fitting models to be able to run more smaller models each more quickly).
To include multiple grouping variables they should be separated with "+" as in
y~time|individual/groupingVariable1 + groupingVariable2. For some
backends multiple grouping variables will be combined into a single factor of
their interaction. Hierarchical models can be specified for the brms backend as
y~time+other_covariate|individual/group in which case the parameters
of the main growth model will themselves be estimated by models as specified
in the hierarchy argument. For instance, if normally "A" had an intercept for
each group, now it would be predicted as A ~ AI + AA * covariate where AI
and AA now have an intercept for each group. Note that if you specify a hierar-
chical model then priors are required for AI and AA in the previous example.

sigma Other models for distributional parameters. This argument is only used with
"brms" and "nlme" models and is handled differently for each. When type="brms"
this can be supplied as a model or as a list of models. It is turned into a formula
(or list of formulas) with an entry corresponding to each distributional param-
eter (after the mean) of the growth model family. If no family was specified
(model="logistic" for instance) then the student T distribution is used, with
additional distributional parameters sigma and nu. To check the naming of distri-
butional parameters in each response family use brms::brmsfamily("family")$dpars.
The supported options are the same as the model options (including threshold
models). For distributional parameters that do not have a formula specified they
will be modeled as intercept only (not by group). Parameter names are the same
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as those in the main model but with the distributional parameter name as a pre-
fix. Additionally, if a linear model is used for sigma then it can be modeled with
or without a prior, if a prior is specified ("sigmaA") then a non-linear formula is
used and the "sigmaA" parameter will be included in the output instead of the de-
fault "sigma" term. In the rare case that you wish to model the mean and the 3rd
distributional parameter but not the 2nd then sigma = list("not_estimated",
"model") would allow for that. When type ="nlme" the options are more lim-
ited to c("none", "power", "exp"), corresponding to using nlme::varIdent,
nlme::varPower, or nlme::varExp respectively where "power" is the default.

df A dataframe to use. Must contain all the variables listed in the formula. Note that
rows with NA or infinite values in x, y, or hierarchical predictors are removed.

start An optional named list of starting values OR means for prior distributions. If
this is not provided then starting values are picked with stats::selfStart.
When type = "brms" these should be provided and are treated as the means of
lognormal priors for all growth model parameters and T_5(mu, 3) priors for
changepoint parameters. This is done because the values are strictly positive
and the lognormal distribution is easily interpreted. The changepoint priors are
T distributions for symmetry, 5 DF having been chosen for heavy but not un-
manageable tails. If this argument is not provided then priors are made using
brms::get_prior. Those priors are unlikely to be suitable and a different set of
priors will need to be made for the model using brms::set_prior for good
convergence. When specifying starting values/prior means think of this as be-
ing similar to the params argument in growthSim. Names should correspond to
parameter names from the model argument. A numeric vector can also be used,
but specifying names is best practice for clarity. Additionally, due to a limita-
tion in brms currently lower bounds cannot be set for priors for specific groups.
If priors include multiple groups (start = list(A = c(10,15), ...)) then you
will see warnings after the model is fit about not having specified a lower bound
explicitly. Those warnings can safely be ignored and will be addressed if the
necessary features are added to brms. See details for guidance.

pars Optionally specify which parameters should change by group. Not this is model
dependent and is not implemented for brms models due to their more flexible
hypothesis testing.

type Type of model to fit, options are "brms", "nlrq", "nlme", "nls", and "mgcv". Note
that the "mgcv" option only supports "gam" models. Survival models can use the
"survreg" model type (this will be called if any non-brms/flexsurv type is given)
or the "flexsurv" model type which requires the flexsurv package to be installed.
Note that for non-brms models variables in the model will be labeled by the
factor level of the group, not necessarily by the group name. This is done for ease
of use with different modeling functions, the levels are alphabetically sorted and
can be checked using: table(ss$df$group, ss$df$group_numericLabel).

tau A vector of quantiles to fit for nlrq models.

hierarchy Optionally a list of model parameters that should themselves by modeled by
another predictor variable. This is only used with the brms backend.
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Details

Default priors are not provided, but these can serve as starting points for each distribution. You are
encouraged to use growthSim to consider what kind of trendlines result from changes to your prior
and for interpretation of each parameter. The plotPrior function can be used to do prior predictive
checks. You should not looking back and forth at your data trying to match your observed growth
exactly with a prior distribution, rather this should be informed by an understanding of the plants
you are using and expectations based on previous research. For the "double" models the parameter
interpretation is the same as for their non-double counterparts except that there are A and A2,
etc. It is strongly recommended to familiarize yourself with the double sigmoid distributions using
growthSim before attempting to model one. Additionally, those distributions are intended for use
with long delays in an experiment, think stress recovery experiments, not for minor hiccups in plant
growth.

• Logistic: list('A' = 130, 'B' = 12, 'C' = 3)

• Gompertz: list('A' = 130, 'B' = 12, 'C' = 1.25)

• Weibull: list('A' = 130, 'B' = 2, 'C' = 2)

• Frechet: list('A' = 130, 'B' = 5, 'C' = 6)

• Gumbel: list('A' = 130, 'B' = 6, 'C' = 4)

• Double Logistic: list('A' = 130, 'B' = 12, 'C' = 3, 'A2' = 200, 'B2' = 25, 'C2' = 1)

• Double Gompertz: list('A' = 130, 'B' = 12, 'C' = 0.25, 'A2' = 220, 'B2' = 30, 'C2'
= 0.1)

• Monomolecular: list('A' = 130, 'B' = 2)

• Exponential: list('A' = 15, 'B' = 0.1)

• Linear: list('A' = 1)

• Power Law: list('A' = 13, 'B' = 2)

See details below about parameterization for each model option.

• Logistic: ‘A / (1 + exp( (B-x)/C) )‘ Where A is the asymptote, B is the inflection point, C is
the growth rate.

• Gompertz: ‘A * exp(-B * exp(-C*x))‘ Where A is the asymptote, B is the inflection point, C
is the growth rate.

• Weibull: ‘A * (1-exp(-(x/C)^B))‘ Where A is the asymptote, B is the weibull shape parameter,
C is the weibull scale parameter.

• Frechet: ‘A * exp(-((x-0)/C)^(-B))‘ Where A is the asymptote, B is the frechet shape param-
eter, C is the frechet scale parameter. Note that the location parameter (conventionally m) is 0
in these models for simplicity but is still included in the formula.

• Gumbel: ‘A * exp(-exp(-(x-B)/C))‘ Where A is the asymptote, B is the inflection point (loca-
tion), C is the growth rate (scale).

• Double Logistic: ‘A / (1+exp((B-x)/C)) + ((A2-A) /(1+exp((B2-x)/C2)))‘ Where A is the
asymptote, B is the inflection point, C is the growth rate, A2 is the second asymptote, B2 is
the second inflection point, and C2 is the second growth rate.

• Double Gompertz: ‘A * exp(-B * exp(-C*x)) + ((A2-A) * exp(-B2 * exp(-C2*(x-B))))‘
Where A is the asymptote, B is the inflection point, C is the growth rate, A2 is the second
asymptote, B2 is the second inflection point, and C2 is the second growth rate.
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• Monomolecular: ‘A-A * exp(-B * x)‘ Where A is the asymptote and B is the growth rate.

• Exponential: ‘A * exp(B * x)‘ Where A is the scale parameter and B is the growth rate.

• Linear: ‘A * x‘ Where A is the growth rate.

• Power Law: ‘A * x^(B)‘ Where A is the scale parameter and B is the growth rate.

• Bragg: ‘A * exp(-B * (x - C) ^ 2)‘ This models minima and maxima as a dose-response curve
where A is the max response, B is the "precision" or slope at inflection, and C is the x position
of the max response.

• Lorentz: ‘A / (1 + B * (x - C) ^ 2)‘ This models minima and maxima as a dose-response curve
where A is the max response, B is the "precision" or slope at inflection, and C is the x position
of the max response. Generally Bragg is preferred to Lorentz for dose-response curves.

• Beta: ‘A * (((x - D) / (C - D)) * ((E - x) / (E - C)) ^ ((E - C) / (C - D))) ^ B‘ This models minima
and maxima as a dose-response curve where A is the Maximum Value, B is a shape/concavity
exponent similar to the sum of alpha and beta in a Beta distribution, C is the position of
maximum value, D is the minimum position where distribution > 0, E is the maximum position
where distribution > 0. This is a difficult model to fit but can model non-symmetric dose-
response relationships which may sometimes be worth the extra effort.

Note that for these distributions parameters do not exist in a vacuum. Changing one will make the
others look different in the resulting data. The growthSim function can be helpful in familiarizing
further with these distributions.

Using the brms backend the sigma argument optionally specifies a sub model to account for het-
eroskedasticity. Any combination of models (except for decay models) can be specified in the sigma
term. If you need variance to raise and lower then a gam/spline is the most appropriate option.

Using the brms backend a model with lots of parameters may be difficult to estimate if there are lots
of groups. If you have very many levels of your "group" variable in a complex model then consider
fitting models to subsets of the "group" variable and using combineDraws to make a data.frame for
hypothesis testing.

Limits on the Y variable can be specified in the brms backend. This should generally be unnecessary
and will make the model slower to fit and potentially more difficult to set priors on. If you do
have a limited phenotype (besides the normal positive constraint for growth models) then this may
be helpful, one situation may be canopy coverage percentage which is naturally bounded at an
upper and lower limit. To specify these limits add square brackets to the Y term with upper and
lower limits such as "y[0,100] ~ time|id/group". Other "Additional response information" such
as resp_weights or standard errors can be specified using the brms backend, with those options
documented fully in the brms::brmsformula details.

There are also three supported submodel options for nlme models, but a varFunc object can also be
supplied, see ?nlme::varClasses.

• none: varIdent(1|group), which models a constant variance separately for each group.

• power: varPower(x|group), which models variance as a power of x per group.

• exp: varExp(x|group), which models variance as an exponent of x per group.

Survival models can be fit using the "survival" keyword in the model specification. Using the
"brms" backend (type argument) you can specify "weibull" (the default) or "binomial" for the dis-
tribution to use in that model so that the final model string would be "survival binomial" or "survival
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weibull" which is equivalent to "survival". Time to event data is very different than standard phe-
notype data, so the formula argument should include a cutoff for the Y variable to count as an
"event". For example, if you were checking germination using area and wanted to use 50 pixels
as a germinated plant your formula would be area > 50 ~ time|id/group. Internally the input
dataframe will be converted to time-to-event data based on that formula. Alternatively you can
make your own time to event data and supply that to growthSS. In that case your data should
have columns called "n_events" (number of individuals experiencing the event at this time) and
"n_eligible" (number of individuals who had not experienced the event at least up to this time) for
the binomial model family OR "event" (binary 1,0 for TRUE, FALSE) for the Weibull model fam-
ily. Note that since these are linear models using different model families the priors are handled
differently. For survival models the default priors are weak regularizing priors (Normal(0,5)) on
all parameters. If you wish to specify your own priors you can supply them as brmsprior objects
or as a list such as priors = list("group1" = c(0,3), "group2" = c(0,1)) where the order of
values is Mu, Sigma. Any non-brms backend will instead use survival::survreg to fit the model
unless the "flexsurv" type is specified. Distributions will be passed to survreg where options are
"weibull", "exponential", "gaussian", "logistic","lognormal" and "loglogistic" if type = "survreg" or
to flexsurv::flexsurvreg if type = "flexsurv" where options are "gengamma", "gengamma.orig",
"genf", "genf.orig", "weibull", "gamma", "exp", "llogis", "lnorm", "gompertz", "exponential", and
"lognormal". In flexsurvreg distributional modeling is supported and additional formula can be
passed as a list to the sigma argument of growthSS in the same way as to the anc argument of
flexsurv::flexsurvreg. Further additional arguments should be supplied via fitGrowth if de-
sired.

Value

A named list of elements to make it easier to fit non linear growth models with several R packages.

For brms models the output contains:

formula: A brms::bf formula specifying the growth model, autocorrelation, variance submodel,
and models for each variable in the growth model. prior: A brmsprior/data.frame object. initfun:
A function to randomly initialize chains using a random draw from a gamma distribution (confines
initial values to positive and makes correct number of initial values for chains and groups). df The
data input, with dummy variables added if needed and a column to link groups to their factor levels.
family The model family, currently this will always be "student". pcvrForm The form argument
unchanged. This is returned so that it can be used later on in model visualization. Often it may be
a good idea to save the output of this function with the fit model, so having this can be useful later
on.

For quantreg::nlrq models the output contains:

formula: An nls style formula specifying the growth model with groups if specified. taus: The
quantiles to be fit start: The starting values, typically these will be generated from the growth
model and your data in a similar way as shown in stats::selfStart models. df The input data
for the model. pcvrForm The form argument unchanged.

For nls models the output is the same as for quantreg::nlrq models but without taus returned.

For nlme::nlme models the output contains:

formula: An list of nlme style formulas specifying the model, fixed and random effects, random
effect grouping, and variance model (weights). start: The starting values, typically these will be
generated from the growth model and your data in a similar way as shown in stats::selfStart
models. df The input data for the model. pcvrForm The form argument unchanged.
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For all models the type and model are also returned for simplicity downstream.

See Also

fitGrowth for fitting the model specified by this list and mvSS for the multi-value trait equivalent.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group,
sigma = "spline", df = simdf,
start = list("A" = 130, "B" = 12, "C" = 3), type = "brms"

)
lapply(ss, class)
ss$initfun()
# the next step would typically be compiling/fitting the model
# here we use very few chains and very few iterations for speed, but more of both is better.

fit_test <- fitGrowth(ss,
iter = 500, cores = 1, chains = 1, backend = "cmdstanr",
control = list(adapt_delta = 0.999, max_treedepth = 20)

)

# formulas and priors will look different if there is only one group in the data

ex <- growthSim("linear", n = 20, t = 25, params = list("A" = 2))
ex_ss <- growthSS(

model = "linear", form = y ~ time | id / group, sigma = "spline",
df = ex, start = list("A" = 1), type = "brms"

)

ex_ss$prior # no coef level grouping for priors
ex_ss$formula # intercept only model for A

ex2 <- growthSim("linear", n = 20, t = 25, params = list("A" = c(2, 2.5)))
ex2_ss <- growthSS(

model = "linear", form = y ~ time | id / group, sigma = "spline",
df = ex2, start = list("A" = 1), type = "brms"

)
ex2_ss$prior # has coef level grouping for priors
ex2_ss$formula # specifies an A intercept for each group and splines by group for sigma
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mvSim Multi Value Trait simulating function

Description

mvSim can be used to simulate data for example models/plots.

Usage

mvSim(
dists = list(rnorm = list(mean = 100, sd = 15)),
n_samples = 10,
counts = 1000,
min_bin = 1,
max_bin = 180,
wide = TRUE,
binwidth = 1,
t = NULL,
model = "linear",
params = list(A = 10)

)

Arguments

dists A list of lists, with names corresponding to random deviate generating functions
and arguments to the function in the list values (see examples). Note that the n
argument does not need to be provided.

n_samples Number of samples per distribution to generate. Defaults to 10, can be >1L.

counts Number of counts per histogram, defaults to 1000.

min_bin The minimum bin number. This can be thought of as the minimum value that
will be accepted in the distribution functions, with lower numbers being raised
to this value. Note that bin arguments are both ignored in the case of "rbeta" and
treated as 0,1.

max_bin The number of bins to return. Note that this is also the max value that will be
accepted in the distribution functions, with higher numbers being shrunk to this
value. Defaults to 180.

wide Boolean, should data be returned in wide format (the default)? If FALSE then
long data is returned.

binwidth How wide should bins be? Defaults to 1.

t Number of timepoints to simulate. Defaults to NULL in which case data is
simulated as non-longitudinal. Note that currently the first non n argument of
the data simulating function is assumed to be the parameter changing over time
(ie, mean in rnorm, meanlog in rlnorm).

model A type of growth model, passed to growthSim. This is only used if t is specified.
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params Parameters for the growth model, passed to growthSim. This is also only used
if t is specified. Note growth will start from the values specified in dists. See
examples.

Value

Returns a dataframe of example multi-value trait data simulated from specified distributions.

Examples

library(extraDistr) # for rmixnorm
library(ggplot2)
dists <- list(

rmixnorm = list(mean = c(70, 150), sd = c(15, 5), alpha = c(0.3, 0.7)),
rnorm = list(mean = 90, sd = 3)

)
x <- mvSim(dists = dists, wide = FALSE)
dim(x)
x2 <- mvSim(dists = dists)
dim(x2)

ggplot(x, aes(
x = as.numeric(sub("sim_", "", variable)),
y = value, group = interaction(group, id), fill = group

)) +
geom_col(position = "identity", alpha = 0.25) +
pcv_theme() +
labs(x = "bin")

dists = list(rnorm = list(mean = 30, sd = 15), rnorm = list(mean = 25, sd = 10))
x3 <- mvSim(

dists = dists, wide = FALSE, # here we make longitudinal data
t = 10, model = "linear", params = list("A" = c(10, 5))

)
ggplot(x3, aes(

x = as.numeric(sub("sim_", "", variable)),
y = value, group = interaction(group, id), fill = group

)) +
facet_wrap(~times) +
geom_col(position = "identity", alpha = 0.25) +
pcv_theme() +
labs(x = "bin")

mvSS Ease of use multi-value trait model helper function.

Description

This function provides a simplified interface to modeling multi-value traits using growthSS. Output
from this should be passed to fitGrowth to fit the specified model.
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Usage

mvSS(
model = "linear",
form,
sigma = NULL,
df,
start = NULL,
pars = NULL,
type = "brms",
tau = 0.5,
hierarchy = NULL,
spectral_index = c("none", "ari", "ci_rededge", "cri550", "cri700", "egi", "evi",
"gdvi", "mari", "mcari", "mtci", "ndre", "ndvi", "pri", "psnd_chlorophyll_a",
"psnd_chlorophyll_b", "psnd_caroteniods", "psri", "pssr_chlorophyll_a",

"pssr_chlorophyll_b", "pssr_caroteniods", "rgri", "rvsi", "savi", "sipi", "sr",
"vari", "vi_green", "wi", "fvfm", "fqfm")

)

Arguments

model A model specification as in growthSS.

form A formula similar to label | value ~ time + id/group where label is a column
of histogram bins, value is the counts within those bins, time is an optional time
variable, id identifies an individual, and group contains the treatment groups. If
the time variable is not included then the individual variable should also not be
included.

sigma Distributional models passed to growthSS.

df Data passed to growthSS.

start Starting values or priors, passed to growthSS.

pars Parameters to vary, passed to growthSS.

type Backend to use, passed to growthSS.

tau Quantile to model, passed to growthSS.

hierarchy Formulae describing any hierarchical models, see growthSS.

spectral_index Optionally, a spectral index from those calculated by PlantCV. If this is given
then the appropriate truncation and model family (if applicable) will be included
for the index you are using without you having to write it in the formula.

Value

A named list of plots showing prior distributions that growthSS would use, optionally with a plot
of simulated growth curves using draws from those priors.

See Also

fitGrowth for fitting the model specified by this list.

https://plantcv.readthedocs.io/en/stable/spectral_index/
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Examples

set.seed(123)
mv_df <- mvSim(dists = list(rnorm = list(mean = 100, sd = 30)), wide = FALSE)
mv_df$group <- rep(c("a", "b"), times = 900)
mv_df <- mv_df[mv_df$value > 0, ]
mv_df$label <- as.numeric(gsub("sim_", "", mv_df$variable))

ss1 <- mvSS(
model = "linear", form = label | value ~ group, df = mv_df,
start = list("A" = 5), type = "brms", spectral_index = "none"

)

mod1 <- fitGrowth(ss1, backend = "cmdstanr", iter = 1000, chains = 1, cores = 1)
growthPlot(mod1, ss1$pcvrForm, df = ss1$df)

# when the model is longitudinal the same model is possible with growthSS

m1 <- mvSim(
dists = list(
rnorm = list(mean = 100, sd = 30),
rnorm = list(mean = 110, sd = 25),
rnorm = list(mean = 120, sd = 20),
rnorm = list(mean = 135, sd = 15)

),
wide = FALSE, n = 6

)
m1$time <- rep(1:4, times = 6 * 180)
m2 <- mvSim(

dists = list(
rnorm = list(mean = 85, sd = 25),
rnorm = list(mean = 95, sd = 20),
rnorm = list(mean = 105, sd = 15),
rnorm = list(mean = 110, sd = 15)

),
wide = FALSE, n = 6

)
m2$time <- rep(1:4, times = 6 * 180)
mv_df2 <- rbind(m1, m2)
mv_df2$group <- rep(c("a", "b"), each = 4320)
mv_df2 <- mv_df2[mv_df2$value > 0, ]
mv_df2$label <- as.numeric(gsub("sim_", "", mv_df2$variable))
ss_mv0 <- mvSS(

model = "linear", form = label | value ~ group, df = mv_df2,
start = list("A" = 50), type = "brms", spectral_index = "ci_rededge"

)
ss_mv0 # non longitudinal model setup

ss_mv1 <- mvSS(
model = "linear", form = label | value ~ time | group, df = mv_df2,
start = list("A" = 50), type = "brms", spectral_index = "ci_rededge"

)
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ss_mv1
ss_mv2 <- growthSS(

model = "skew_normal: linear",
form = label | resp_weights(value) + trunc(lb = -1, ub = Inf) ~ time | group,
df = mv_df2, start = list("A" = 50)

)
ss_mv2
# ignoring environments and other such details these are identical except for the
# function call.
unlist(lapply(names(ss_mv1), function(nm) {

if (!identical(ss_mv1[[nm]], ss_mv2[[nm]],
ignore.environment = TRUE,
ignore.srcref = TRUE

)) {
if (!identical(as.character(ss_mv1[[nm]]), as.character(ss_mv2[[nm]]))) {

nm
}

}
}))

if (rlang::is_installed("mnormt")) {
m2 <- fitGrowth(ss_mv1, backend = "cmdstanr", iter = 1000, chains = 1, cores = 1)
growthPlot(m2, ss_mv1$pcvrForm, df = ss_mv1$df)

}

mv_ag Multi Value Trait Aggregation function

Description

EMD can get very heavy with large datasets. For an example lemnatech dataset filtering for images
from every 5th day there are 6332^2 = 40,094,224 pairwise EMD values. In long format that’s a
40 million row dataframe, which is unwieldy. This function is to help reduce the size of datasets
before comparing histograms and moving on with matrix methods or network analysis.

Usage

mv_ag(
df,
group,
mvCols = "frequencies",
n_per_group = 1,
outRows = NULL,
keep = NULL,
parallel = getOption("mc.cores", 1),
traitCol = "trait",
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labelCol = "label",
valueCol = "value",
id = "image"

)

Arguments

df A dataframe with multi value traits. This can be in wide or long format, data is
assumed to be long if traitCol, valueCol, and labelCol are present.

group Vector of column names for variables which uniquely identify groups in the data
to summarize data over. Typically this would be the design variables and a time
variable.

mvCols Either a vector of column names/positions representing multi value traits or a
character string that identifies the multi value trait columns as a regex pattern.
Defaults to "frequencies".

n_per_group Number of rows to return for each group.

outRows Optionally this is a different way to specify how many rows to return. This will
often not be exact so that groups have the same number of observations each.

keep A vector of single value traits to also average over groups, if there are a mix of
single and multi value traits in your data.

parallel Optionally the groups can be run in parallel with this number of cores, defaults
to 1 if the "mc.cores" option is not set globally.

traitCol Column with phenotype names, defaults to "trait".

labelCol Column with phenotype labels (units), defaults to "label".

valueCol Column with phenotype values, defaults to "value".

id Column that uniquely identifies images if the data is in long format. This is
ignored when data is in wide format.

Value

Returns a dataframe summarized by the specified groups over the multi-value traits.

Examples

s1 <- mvSim(
dists = list(runif = list(min = 15, max = 150)),
n_samples = 10,
counts = 1000,
min_bin = 1,
max_bin = 180,
wide = TRUE

)
mv_ag(s1, group = "group", mvCols = "sim_", n_per_group = 2)
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net.plot Visualizing igraph networks

Description

Easy igraph visualization with pcv.net output

Usage

net.plot(
net,
fill = "strength",
shape = NULL,
size = 3,
edgeWeight = "emd",
edgeFilter = NULL

)

Arguments

net Network object similar to that returned from pcv.net, having dataframes named
"edges" and "nodes"

fill Variable name(s) from the nodes data to be used to color points. By default
"strength" is used.

shape Optional discrete variable name(s) from the nodes data to be used to change the
shape of points. If this variable is numeric it will be coerced to character.

size Size of points, defaults to 3.

edgeWeight Edge dataframe column to weight connections between nodes. Defaults to "emd"
for compatability with pcv.emd.

edgeFilter How should edges be filtered? This can be either a numeric (0.5) in which
case it is taken as a filter where only edges with values greater than or equal to
that number are kept or a character string ("0.5") in which case the strongest X
percentage of edges are kept. This defaults to NULL which does no filtering,
although that should not be considered the best standard behaviour. See details.

Value

Returns a ggplot of a network.

Examples

library(extraDistr)
dists <- list(

rmixnorm = list(mean = c(70, 150), sd = c(15, 5), alpha = c(0.3, 0.7)),
rnorm = list(mean = 90, sd = 3)

)
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x <- mvSim(
dists = dists, n_samples = 5, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
emd_df <- pcv.emd(x,

cols = "sim", reorder = c("group"), mat = FALSE,
plot = FALSE, parallel = 1

)
net <- pcv.net(emd_df, meta = "group")
net.plot(net)
net.plot(net, edgeFilter = "0.25")
net.plot(net,

edgeFilter = 0.25, fill = c("degree", "group"),
shape = c("degree", "group")

)
net.plot(net,

edgeFilter = 0.25, fill = c("degree", "group"),
shape = c("degree")

)

nlmePlot Function to visualize common nlme::nlme growth models.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

nlmePlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

Arguments

fit A model fit returned by fitGrowth with type="nlme".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the output)
specifying the outcome, predictor, and grouping structure of the data as outcome
~ predictor|individual/group
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df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for nlme models.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for
future data if the available data has not reached some point (such as asymptotic
size).

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps.

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an nlme model’s credible intervals and optionally the individual growth
lines.

Examples

simdf <- growthSim("logistic",
n = 10, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)

ss <- growthSS(
model = "logistic", form = y ~ time | id / group, sigma = "none",
df = simdf, start = NULL, type = "nlme"

)

fit <- fitGrowth(ss)

nlmePlot(fit, form = ss$pcvrForm, groups = NULL, df = ss$df, timeRange = NULL)
nlmePlot(fit, form = ss$pcvrForm, groups = "a", df = ss$df, timeRange = 1:10, groupFill = TRUE)

nlrqPlot Function to visualize common quantreg::nlrq growth models.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.
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Usage

nlrqPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

Arguments

fit A model fit, or list of model fits, returned by fitGrowth with type="nlrq".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. If the individual and group are
specified then the observed growth lines are plotted.

df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for nlrq models.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for
future data if the available data has not reached some point (such as asymptotic
size).

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an nlrq model’s quantiles and optionally the individual growth lines.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group,
tau = c(0.5, 0.9), df = simdf, start = NULL, type = "nlrq"

)
fit <- fitGrowth(ss)
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nlrqPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:20)
nlrqPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE, virMaps = c("plasma", "viridis"))

ss <- growthSS(
model = "logistic", form = y ~ time,
tau = c(0.5, 0.9), df = simdf, start = NULL, type = "nlrq"

)
fit <- fitGrowth(ss)
nlrqPlot(fit, form = ss$pcvrForm, df = ss$df)

nlsPlot Function to visualize common stats::nls growth models.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

nlsPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

gamPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

lmPlot(
fit,
form,
df = NULL,
groups = NULL,
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timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

Arguments

fit A model fit returned by fitGrowth with type="nls".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. If the individual and group are
specified then the observed growth lines are plotted.

df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for nls models.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for
future data if the available data has not reached some point (such as asymptotic
size).

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an nls model’s predictions.

Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "logistic", form = y ~ time | id / group,
df = simdf, start = NULL, type = "nls"

)
fit <- fitGrowth(ss)
nlsPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
nlsPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:10)

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))
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)
ss <- growthSS(

model = "gam", form = y ~ time | id / group,
df = simdf, start = NULL, type = "nls"

)
fit <- fitGrowth(ss)
gamPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
gamPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:10)
ss <- growthSS(

model = "gam", form = y ~ time | group,
df = simdf, start = NULL, type = "nls"

)
fit <- fitGrowth(ss)
gamPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "gam", form = y ~ time | id / group,
df = simdf, start = NULL, type = "nls"

)
fit <- fitGrowth(ss)
lmPlot(fit, form = ss$pcvrForm, df = ss$df)

pcadf Function to run a PCA, plot and optionally return the data with PCA
coordinates and pca object

Description

Function to run a PCA, plot and optionally return the data with PCA coordinates and pca object

Usage

pcadf(
df = NULL,
cols = NULL,
color = NULL,
facet = NULL,
returnData = TRUE,
ncp = NULL

)

Arguments

df Dataframe to ordinate
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cols columns to reduce dimensions of. Can be specified with names or positions. If
this is length of 1 then it is treated as regex pattern to match the column names
that should be used.

color column name(s) used to color points in the pca plot.

facet Optional column or vector to facet plots on.

returnData Logical, should data be returned?

ncp Optional, number of principal components to return attached to dataframe if data
is returned. Defaults to all.

Details

If data is returned then it will contain the coordinates from the PCA and will not contain the columns
that were reduced.

Value

A ggplot or list with a ggplot, a dataframe with the data and PCs, and the factominer PCA object as
elements.

Examples

dists <- list(
rlnorm = list(meanlog = log(40), sdlog = 0.5),
rnorm = list(mean = 60, sd = 10)

)
mv <- mvSim(

dists = dists, n_samples = 100, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
mv$otherGroup <- sample(c("a", "b"), size = nrow(mv), replace = TRUE)
pcadf(mv, cols = "sim_", returnData = TRUE)
pcadf(mv, cols = 2:181, color = c("group", "otherGroup"), returnData = FALSE)

pcv.emd Earth Mover’s Distance between spectral histograms

Description

pcv.emd can be used to calculate Earth Mover’s Distance between pairwise histograms in a wide
dataframe of multi value traits. The is expected to be used with output from mv_ag. See also pcv.euc
for euclidean distance between histograms.
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Usage

pcv.emd(
df,
cols = NULL,
reorder = NULL,
include = reorder,
mat = FALSE,
plot = TRUE,
parallel = getOption("mc.cores", 1),
trait = "trait",
id = "image",
value = "value",
raiseError = TRUE,
method = "emd"

)

pcv.euc(
df,
cols = NULL,
reorder = NULL,
include = reorder,
mat = FALSE,
plot = TRUE,
parallel = getOption("mc.cores", 1),
trait = "trait",
id = "image",
value = "value",
raiseError = TRUE,
method = "euc"

)

Arguments

df Data frame to use with multi value traits in wide format or long format

cols Columns to use. Defaults to NULL in which case all columns are used. Single
strings will be used to regex a pattern in column names (see examples). A vector
of names, positions, or booleans will also work. For long data this is taken as a
regex pattern (or full name) to use in filtering the trait column.

reorder Should data be reordered to put similar rows together in the resulting plot? This
takes a vector of column names of length 1 or more (see examples).

include if a long dataframe is returned then these columns will be added to the dataframe,
labelled for i and j (the row positions for compared histograms). If a matrix
is returned then this information is stored in the row names. This defaults to
reorder.

mat Logical, should data be returned as an nrow x nrow matrix or as a long dataframe?
By Default this is FALSE and a long dataframe is returned. Both options are
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comparable in terms of speed, although for large datasets the matrix version
may be slightly faster.

plot Logical, should a plot be returned? For a matrix this is made with heatmap(),
for a dataframe this uses ggplot.

parallel Number of cores to use. Defaults to 1 unless the "mc.cores" option is set.

trait Column name for long data to identify traits. This defaults to "trait". If this and
value are in the column names of the data then it is assumed to be in long format,
otherwise it is assumed to be in wide format.

id A vector of column names that uniquely identifies observations if the data is in
long format. Defaults to "image".

value A column name for the values to be drawn from in long data. Defaults to "value".

raiseError Logical, should warnings/errors be raised for potentially large output? It is easy
to ask for very many comparisons with this function so the goal of this argument
is to catch a few of those and give estimates of how much time something may
take. If the function is expected to take very long then a warning or an error is
raised. If this is set to FALSE then no time estimates are made.

method Which method to use (one of "emd" or "euc"). Defaults to "emd".

Value

A dataframe/matrix (if plot=FALSE) or a list with a dataframe/matrix and\ a ggplot (if plot=TRUE).
The returned data contains pairwise EMD values.

Examples

set.seed(123)
test <- mvSim(

dists = list(
runif = list(min = 0, max = 100),
rnorm = list(mean = 90, sd = 20)

),
n_samples = 10

)
test$meta1 <- rep(LETTERS[1:3], length.out = nrow(test))
test$meta2 <- rep(LETTERS[4:5], length.out = nrow(test))

x <- pcv.emd(
df = test, cols = "sim", reorder = "group",
include = c("meta1", "meta2"), mat = FALSE,
plot = FALSE, parallel = 1

)
head(x)
x2 <- pcv.emd(

df = test, cols = "sim", reorder = "group",
include = c("meta1", "meta2"), mat = FALSE,
plot = FALSE, parallel = 1, method = "euc"

)
head(x2)
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tryCatch(
{
library(data.table)
file <- paste0(

"https://media.githubusercontent.com/media/joshqsumner/",
"pcvrTestData/main/pcv4-multi-value-traits.csv"

)
df1 <- read.pcv(file, "wide", reader = "fread")

df1$genotype <- substr(df1$barcode, 3, 5)
df1$genotype <- ifelse(df1$genotype == "002", "B73",

ifelse(df1$genotype == "003", "W605S",
ifelse(df1$genotype == "004", "MM", "Mo17")

)
)
df1$fertilizer <- substr(df1$barcode, 8, 8)
df1$fertilizer <- ifelse(df1$fertilizer == "A", "100",

ifelse(df1$fertilizer == "B", "50", "0")
)

w <- pcv.emd(df1,
cols = "hue_frequencies", reorder = c("fertilizer", "genotype"),
mat = FALSE, plot = TRUE, parallel = 1

)
},
error = function(err) {

message(err)
}

)

# Note on computational complexity
# This scales as O^2, see the plot below for some idea
# of the time for different input data sizes.
emdTime <- function(x, n = 1) {

x^2 / n * 0.0023
}
plot(

x = c(18, 36, 54, 72, 108, 135), y = c(0.74, 2.89, 6.86, 10.99, 26.25, 42.44),
xlab = "N Input Images", ylab = "time (seconds)"

) # benchmarked test data
lines(x = 1:150, y = emdTime(1:150)) # exponential function

plot(
x = 1:1000, y = emdTime(1:1000), type = "l",
xlab = "N Input Images", ylab = "time (seconds)"

)
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pcv.joyplot Make Joyplots for multi value trait plantCV data

Description

Make Joyplots for multi value trait plantCV data

Usage

pcv.joyplot(
df = NULL,
index = NULL,
group = NULL,
y = NULL,
id = NULL,
bin = "label",
freq = "value",
trait = "trait",
fillx = TRUE

)

Arguments

df Data frame to use. Long or wide format is accepted.

index If the data is long then this is a multi value trait as a character string that must
be present in ‘trait‘. If the data is wide then this is a string used to find column
names to use from the wide data. In the wide case this should include the entire
trait name (ie, "hue_frequencies" instead of "hue_freq").

group A length 1 or 2 character vector. This is used for faceting the joyplot and iden-
tifying groups for testing. If this is length 1 then no faceting is done.

y Optionally a variable to use on the y axis. This is useful when you have three
variables to display. This argument will change faceting behavior to add an
additional layer of faceting (single length group will be faceted, length 2 group
will be faceted group1 ~ group2).

id Optionally a variable to show the outline of different replicates. Note that
ggridges::geom_density_ridges_gradient does not support transparency, so if
fillx is TRUE then only the outer line will show individual IDs.

bin Column containing histogram (multi value trait) bins. Defaults to "label".

freq Column containing histogram counts. Defaults to "value"

trait Column containing phenotype names. Defaults to "trait".

fillx Logical, whether or not to use ggridges::geom_density_ridges_gradient.
Default is T, if F then ggridges::geom_density_ridges is used instead, with
arbitrary fill. Note that ggridges::geom_density_ridges_gradient may is-
sue a message about deprecated ggplot2 features.
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Value

Returns a ggplot.

Examples

library(extraDistr)
dists <- list(

rmixnorm = list(mean = c(70, 150), sd = c(15, 5), alpha = c(0.3, 0.7)),
rnorm = list(mean = 90, sd = 20),
rlnorm = list(meanlog = log(40), sdlog = 0.5)

)
x_wide <- mvSim(

dists = dists, n_samples = 5, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
pcv.joyplot(x_wide, index = "sim", group = "group")
x_long <- mvSim(

dists = dists, n_samples = 5, counts = 1000,
min_bin = 1, max_bin = 180, wide = FALSE

)
x_long$trait <- "x"
p <- pcv.joyplot(x_long, bin = "variable", group = "group")
# we might want to display hues as their hue
p + ggplot2::scale_fill_gradientn(colors = scales::hue_pal(l = 65)(360))
x_long$group2 <- "example"
pcv.joyplot(x_long, bin = "variable", y = "group", fillx = FALSE)

pcv.net Network analysis of a distance matrix

Description

Easy igraph use with pcv.emd output

Usage

pcv.net(
emd = NULL,
meta = NULL,
dissim = TRUE,
distCol = "emd",
filter = 0.5,
direction = "greater"

)
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Arguments

emd A long dataframe as returned by pcv.emd. Currently this function is only made
to work with dataframe output, not distance matrix output.

meta Metadata to be carried from pcv.emd output into the network, defaults to NULL
which will use all metadata. Type conversion will be attempted for these columns.

dissim Logical, should the distCol be inverted to make a dissimilarity value?

distCol The name of the column containing distances/dissimilarities. Defaults to "emd"
for compatability with pcv.emd

filter This can be either a numeric (0.5) in which case it is taken as a filter where only
edges with values greater than or equal to that number are kept or a character
string ("0.5") in which case the strongest X percentage of edges are kept. This
defaults to 0.5 which does some filtering, although that should not be considered
the best behavior for every setting. If this is NULL then your network will be
almost always be a single blob, if set too high there will be very few nodes. Note
that this filtering happens after converting to dissimilarity if dissim=TRUE.

direction Direction of filtering, can be either "greater" or "lesser".

Value

Returns a list containing three elements: nodes: A dataframe of node data. edges: A dataframe of
edges between nodes. graph: The network as an igraph object

Examples

library(extraDistr)
dists <- list(

rmixnorm = list(mean = c(70, 150), sd = c(15, 5), alpha = c(0.3, 0.7)),
rnorm = list(mean = 90, sd = 3)

)
x <- mvSim(

dists = dists, n_samples = 5, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
emd_df <- pcv.emd(x,

cols = "sim", reorder = c("group"), mat = FALSE,
plot = FALSE, parallel = 1

)
net <- pcv.net(emd_df, meta = "group")
net2 <- pcv.net(emd_df, meta = "group", filter = "0.9", direction = "lesser")

pcv.plsr Run Partial Least Squares Regression on spectral data

Description

Partial Least Squares Regression (plsr) is often used to analyze spectral data.
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Usage

pcv.plsr(df, resps = NULL, spectra = NULL, train = 0.8, cv = 10, ...)

Arguments

df Data frame containing metadata and spectral histogram data

resps Vector of response variables.

spectra Either one column name (in the case of long data) or a set of columns in the
case of wide data. If a single character string is provided and it is not one of the
column names then it is taken to be a pattern that will match some set of column
names in the data to use (see examples).

train Proportion of data to use as training data.

cv Number of cross validation iterations.

... Further arguments passed to caret::train.

Details

Note that columns that sum to 0 in the training or test data will be removed. This function also uses
the ’pls’ method from the pls package.

Value

a list of lists each with model performance, prediction target, model, plot, N components, and
variable influence on projection components for each response variable.

Examples

if (rlang::is_installed("pls")) {
dists <- list(

rlnorm = list(meanlog = log(40), sdlog = 0.5),
rlnorm = list(meanlog = log(60), sdlog = 0.35)

)
mv <- mvSim(

dists = dists, n_samples = 100, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
sv <- growthSim("logistic",

n = 5, t = 20,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
d <- cbind(sv, mv[, -1])
# note that this requires the "pls" package to be installed.
x <- pcv.plsr(df = d, resps = "y", spectra = grepl("^sim_", colnames(d)))

}
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pcvrss-class Class pcvrss for models specified in pcvr.

Description

Models specified by growthSS or mvSS are represented by a pcvrss object, which contains the
model type, formulas, starting values or priors, the data for the model to use, and the model backend
to use.

Details

See methods(class = "pcvrss") for an overview of available methods.

Slots

formula The formula that will be used to fit the model.

prior Priors if the model is a Bayesian model (ie using the brms backend).

initfun Initialization function if the model is a Bayesian model.

df The data that will be used to fit the model.

family The model family, currently only used in the brms backend.

pcvrForm The formula that was specified in growthSS and used in other pcvr functions.

type The model backend.

model The name of the main growth formula.

call The call to growthSS or mvSS.

start Starting values for frequentist models.

taus Quantiles for nlrq/rq models.

See Also

growthSS, mvSS

pcv_theme Default theme for ggplots made by pcvr functions.

Description

Default theme for ggplots made by pcvr functions.

Usage

pcv_theme()
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Value

A ggplot theme

Examples

ggplot2::ggplot() +
pcv_theme()

plot.conjugate Plot a conjugate object.

Description

Plot a conjugate object.

Usage

## S3 method for class 'conjugate'
plot(x, ...)

Arguments

x An object of class conjugate.

... further arguments, ignored.

Examples

x <- conjugate(
s1 = rnorm(10, 50, 10), s2 = rnorm(10, 60, 12), method = "t",
priors = list(list(mu = 40, sd = 10), list(mu = 45, sd = 8)),
rope_range = c(-5, 8), rope_ci = 0.89,
cred.int.level = 0.89, hypothesis = "equal"

)
plot(x)
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plotPrior Check priors used in ease of use brms functions

Description

Check priors used in ease of use brms functions

Usage

plotPrior(priors, type = "density", n = 200, t = 25)

Arguments

priors A named list of means for prior distributions. This takes the same input as the
prior argument of growthSS. Alternatively, if given the output of growthSS this
will preform a prior predictive check and return a plot from growthPlot of that
check ignoring all other arguments. Note that all priors must be proper in that
case (non-flat) and the fit is likely to be strange looking due to how thick tailed
the default priors from growthSS are.

type Either "density", the default, or a model as would be specified in growthSS
or growthSim such as "logistic", "gompertz", "monomolecular", "exponential",
"linear", "power law", "double logistic", or "double gompertz". If this is a model
type then n draws from the prior will be simulated as growth trendlines and
densities will be plotted on margins for some distributions.

n Numeric, if type is a model then how many draws from the prior should be
simulated?

t Numeric, time passed to growthSim. Defaults to 25 (the growthSim default).

Value

A named list of plots showing prior distributions that growthSS would use, optionally with a plot
of simulated growth curves using draws from those priors.

See Also

barg for Bayesian model reporting metrics, growthSim for simulating data using similar specifica-
tion.

Examples

set.seed(123)
priors <- list("A" = c(100, 130), "B" = c(10, 8), "C" = c(0.2, 0.1))
plotPrior(priors)

plotPrior(priors, "gompertz")[[1]]
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plotVIP Plot Variable Influence on Projection

Description

This function is used to visualize variable influence on projection (vip) from a plsr model.

Usage

plotVIP(plsrObject, i = 1, mean = FALSE, removePattern = ".*_")

Arguments

plsrObject Output from pcv.plsr

i An index from the plsrObject to use if the plsrObject contains models for several
outcomes. Can be a name or a position. Defaults to 1.

mean Logical, should the mean be plotted (TRUE) or should the components be shown
individually (FALSE, the default).

removePattern A pattern to remove to make the wavelength column into a numeric.

Value

A ggplot showing variable influence on projection

Examples

if (rlang::is_installed("pls")) {
dists <- list(

rlnorm = list(meanlog = log(40), sdlog = 0.5),
rlnorm = list(meanlog = log(60), sdlog = 0.35)

)
mv <- mvSim(

dists = dists, n_samples = 100, counts = 1000,
min_bin = 1, max_bin = 180, wide = TRUE

)
sv <- growthSim("logistic",

n = 5, t = 20,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
d <- cbind(sv, mv[, -1])
x <- pcv.plsr(df = d, resps = "y", spectra = grepl("^sim_", colnames(d)))
plotVIP(x)

}
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print.conjugate Print a conjugate object.

Description

Print a conjugate object.

Usage

## S3 method for class 'conjugate'
print(x, ...)

Arguments

x An object of class conjugate.

... further arguments, passed to print.default.

See Also

summary.conjugate

print.conjugatesummary

Print a conjugatesummary object.

Description

Print a conjugatesummary object.

Usage

## S3 method for class 'conjugatesummary'
print(x, ...)

Arguments

x An object of class conjugatesummary.

... further arguments, which are currently ignored.

See Also

print.conjugatesummary
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print.pcvrss Print a pcvrss object.

Description

Print a pcvrss object.

Usage

## S3 method for class 'pcvrss'
print(x, ...)

Arguments

x An object of class pcvrss to method summary of pcvrss.

... further arguments, passed to print.default.

See Also

summary.pcvrss

print.pcvrsssummary Print a pcvrsssummary object.

Description

Print a pcvrsssummary object.

Usage

## S3 method for class 'pcvrsssummary'
print(x, ...)

Arguments

x An object of class pcvrsssummary.

... further arguments, which are currently ignored.

See Also

print.pcvrsssummary
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pwue Calculate pseudo water use efficiency from phenotype and watering
data

Description

Rate based water use efficiency (WUE) is the change in biomass per unit of water metabolized.
Using image based phenotypes and watering data we can calculate pseudo-WUE (pwue) over time.
Here area_pixels is used as a proxy for biomass and transpiration is approximated using watering
data. The equation is then Pt−Pt−1

Wtend−1
−Wtstart

, where P is the phenotype and W is the weight before
watering.

Absolute value based WUE is the amount of water used to sustain a plants biomass over a given
period. The equation is then Pt

Wtend−1
−Wtstart

Usage

pwue(
df,
w = NULL,
pheno = "area_pixels",
time = "timestamp",
id = "barcode",
offset = 0,
pre_watering = "weight_before",
post_watering = "weight_after",
method = "rate"

)

Arguments

df Dataframe containing wide single-value phenotype data. This should already be
aggregated to one row per plant per day (angles/rotations combined).

w Watering data as returned from bw.water.

pheno Phenotype column name, defaults to "area_pixels"

time Variable(s) that identify a plant on a given day. Defaults to c("barcode",
"DAS").

id Variable(s) that identify a plant over time. Defaults to "barcode".

offset Optionally you can specify how long before imaging a watering should not be
taken into account. This defaults to 0, meaning that if a plant were watered
directly before being imaged then that water would be counted towards WUE
between the current image and the prior one. This argument is taken to be in
seconds.

pre_watering Column containing weight before watering in w, defaults to "weight_before".

post_watering Column containing weight after watering in w, defaults to "weight_after".
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method Which method to use, options are "rate", "abs", and "ndt". The "rate" method
considers WUE as the change in a phenotype divided by the amount of water
added. The "abs" method considers WUE as the amount of water used by a
plant given its absolute size. The "ndt" method calculates normalized daily tran-
spiration, which is the reciprocal of the "abs" method. The "rate" method is for
questions more related to efficiency in using water to grow while "abs"/"ndt" are
more suited to questions about how efficient a plant is at maintaining size given
some amount of water or how much water it uses at a given size.

Value

A data frame containing the watering data and to phenotype data with new columns for change
in the phenotype (pheno_diff), amount of water used (total_water) over the interval between
phenotype measurements (water added post to pre phenotype measurement), start and end times
for the interval as well as their difference (timeLengthSeconds), and pseudo water use efficiency
(pWUE).

Examples

set.seed(123)
weight_before <- sort(round(rnorm(20, 100, 10), 0))
weight_after <- sort(round(rnorm(20, 120, 10), 0))
df <- data.frame(

time = seq_along(weight_before),
area_pixels = round(130 / (1 + exp( (12 - seq_along(weight_before))/3) ), 0),
weight_before,
weight_after,
barcode = 1,
other = "x"

)
ex <- pwue(df, time = "time", method = "rate", id = c("barcode", "other"))
w <- df[, c("time", "weight_before", "weight_after", "barcode")]
ex2 <- pwue(df, w, time = c("time", "time"), method = "abs")
ex3 <- pwue(df, w, time = c("time", "time"), method = "ndt")

read.pcv Read in plantCV csv output in wide or long format

Description

Read in plantCV csv output in wide or long format

Usage

read.pcv(
filepath,
mode = NULL,
traitCol = "trait",
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labelCol = "label",
valueCol = "value",
reader = NULL,
filters = NULL,
awk = NULL,
...

)

Arguments

filepath Path to csv file of plantCV output.

mode NULL (the default) or one of "wide" or "long", partial string matching is sup-
ported. This controls whether data is returned in long or wide format. If left
NULL then the output format will be the same as the input format.

traitCol Column with phenotype names, defaults to "trait". This should generally not
need to be changed from the default. This, labelCol, and valueCol are used to
determine if data are in long format in their raw state (the csv file itself).

labelCol Column with phenotype labels (units), defaults to "label". This should gener-
ally not need to be changed from the default. This is used with traitCol when
mode="wide" to identify unique traits since some may be ambiguous (ellipse-
Center.x vs ellipseCenter.y, bins of histograms, etc)

valueCol Column with phenotype values, defaults to "value". This should generally not
need to be changed from the default.

reader The function to use to read in data, defaults to NULL in which case data.table::fread
is used if filters are in place and read.csv is used otherwise. Note that if you
use read.csv with filters in place then you will need to specify header=FALSE
so that the piped output from awk is read correctly. If fread is too slow for your
needs then vroom::vroom() may be useful.

filters If a very large pcv output file is read then it may be desireable to subset it before
reading it into R, either for ease of use or because of RAM limitations. The
filter argument works with "COLUMN in VALUES" syntax. This can either be
a character vector or a list of character vectors. In these vectors there needs to
be a column name, one of " in ", " is ", or " = " to match the string exactly, or
"contains" to match with awk style regex, then a set of comma delimited values
to filter that column for (see examples). Note that this and awk both use awk
through pipe(). This functionality will not work on a windows system.

awk As an alternative to filters a direct call to awk can be supplied here, in which
case that call will be used through pipe().

... Other arguments passed to the reader function. In the case of ’fread’ there are
several defaults provided already which can be overwritten with these extra ar-
guments.

Details

In plantCV version 4 the single value traits are returned in wide format from json2csv and the
multi value traits are returned in long format. Briefly plantCV data was returned as one long table
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which sparked the emphasis in this function on reading data quickly and parsing it outside of R.
With the current plantCV output these options are largely unnecessary. When data is read in using
read.pcv the traitCol, valueCol, and labelCol arguments are checked to determine if the data is in
long format. This is done to keep compatibility with interim versions of plantcv output where all
outputs were in a single long format file.

With the current implementation and plantcv output you can read wide or long format files into
wide or long format in R. Keep in mind that the ’mode’ argument controls the format that will be
returned in R, not the format that the data saved as in your csv file.

Value

Returns a data.frame in wide or long format.

Examples

tryCatch(
{
mv <- paste0(

"https://media.githubusercontent.com/media/joshqsumner/",
"pcvrTestData/main/pcv4-multi-value-traits.csv"

)
sv <- paste0(

"https://raw.githubusercontent.com/joshqsumner/",
"pcvrTestData/main/pcv4-single-value-traits.csv"

)

w2w <- read.pcv(sv, mode = "wide", reader = "fread")
dim(w2w)

w2l <- read.pcv(sv, mode = "long", reader = "fread")
dim(w2l)

l2w <- read.pcv(mv, mode = "wide", reader = "fread")
dim(l2w)

l2l <- read.pcv(mv, mode = "long", reader = "fread")
dim(l2l)

},
error = function(e) {

message(e)
}

)

read.pcv.3 Read in plantCV csv from bellwether phenotyper style experiments an-
alyzed with plantCV versions <4.
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Description

Read in plantCV csv from bellwether phenotyper style experiments analyzed with plantCV versions
<4.

Usage

read.pcv.3(
file = NULL,
snapshotFile = NULL,
designFile = NULL,
metaCol = "meta",
metaForm = "vis_view_angle_zoom_horizontal_gain_exposure_v_new_n_rep",
joinSnapshot = "id",
conversions = NULL,
mode = "long",
...

)

Arguments

file Path to the version 3 plantCV output containing phenotypes.

snapshotFile path to the snapshot info metadata file, typically called SnapshotInfo.csv. This
needs to have a column name corresponding to ‘joinSnapshot‘ (defaults to "id")
which can be used to join the snapshot data to the phenotype data. Generally
this joining will happen through a parsed section of the file path to each im-
age present in the phenotype data. This means that including a duplicate name
in ‘metaForm‘ will be overwritten by parsing image paths, so ‘metaForm‘ and
‘joinSnapshot‘ should not have duplicated names. If there is a timestamp column
in the snapshot data then it will be converted to datetime (assuming a "Y-m-d
H:M:S" format) and used to calculate days after starting (DAS) and hours.

designFile path to a csv file which contains experimental design information (treatments,
genotypes, etc) and which will be joined to phenotype and snapshot data through
all shared columns.

metaCol a column name from the phenotype data read in with the ‘file‘ argument. Gener-
ally for bellwether experiments this will correspond to an image path. The name
is split on "/" characters with the last segment being taken and parsed into some
number of sections based on ‘metaForm‘.

metaForm A character string or character vector of column names to parse ‘metaCol‘ into.
The number of names needs to match with length of ‘metaCol‘ when parsed.
If a character string is provided then it is assumed to be underscore delimited,
so do if you need underscores in a column name then use ‘c("column_one",
"column_two",...)‘ instead of ‘column_one_column_two_...‘.

joinSnapshot Column name create in phenotype data to use in joining snapshot data. By de-
fault this will attempt to make an "id" column, which is parsed from a snapshot
folder in ‘metaCol‘ ("/shares/sinc/data/Phenotyper/SINC1/ImagesNew/**snapshot1403**/").
An error will be raised if this column is not present in the snapshot data.
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conversions A named list of phenotypes that should be rescaled by the value in the list. For
instance, at zoom 1 ‘list(area = 13.2 * 3.7/46856)‘ will convert from pixels to
square cm in the 5MP bellwether camera.

mode The mode to read data in with through read.pcv. The default is "long" because
this function is built for pcv3 output, which was generally a wider format to start
with than pcv4 output.

... Other arguments passed to read.pcv.

Value

Returns a dataframe potentially with several files merged into it.

Examples

tryCatch(
{
base_url <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/"
bw <- read.pcv.3(

file = paste0(base_url, "pcv3Phenos.csv"),
metaCol = NULL,
reader = "fread"

)
bw <- read.pcv.3(

file = paste0(base_url, "pcv3Phenos.csv"),
metaCol = "meta", metaForm = "vis_view_angle_zoom_horizontal_gain_exposure_v_new_n_rep",

joinSnapshot = "id",
reader = "fread"

)
bw <- read.pcv.3(

file = paste0(base_url, "pcv3Phenos.csv"),
snapshotFile = paste0(base_url, "pcv3Snapshot.csv"),
designFile = paste0(base_url, "pcv3Design.csv"),

metaCol = "meta", metaForm = "vis_view_angle_zoom_horizontal_gain_exposure_v_new_n_rep",
joinSnapshot = "id", conversions = list(area = 13.2 * 3.7 / 46856),
reader = "fread"

)
},
error = function(e) {

message(e)
}

)

relativeTolerance Calculate relative tolerance of some phenotype(s) relative to control
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Description

Often in bellwether experiments we are curious about the effect of some treatment vs control. For
certain routes in analysing the data this requires considering phenotypes as relative differences
compared to a control. Note that the conjugate function can also be useful in considering the
relative tolerance to stress between groups and that growth models are another suggested way to
test relative tolerance questions.

Usage

relativeTolerance(
df,
phenotypes = NULL,
grouping = NULL,
control = NULL,
controlGroup = NULL,
traitCol = "trait",
valueCol = "value"

)

Arguments

df Dataframe to use, this can be in long or wide format.

phenotypes A character vector of column names for the phenotypes that should be compared
against control.

grouping A character vector of column names that identify groups in the data. These
groups will be calibrated separately, with the exception of the group that identi-
fies a control within the greater hierarchy. Note that for levels of grouping where
the control group does not exist the output will be NA.

control A column name for the variable to be used to select the control observations.
If left NULL (the default) then this will be taken as the first string in the group
argument.

controlGroup The level of the control variable to compare groups against.

traitCol Column with phenotype names, defaults to "trait". This should generally not
need to be changed from the default. If this and valueCol are present in col-
names(df) then the data is assumed to be in long format.

valueCol Column with phenotype values, defaults to "value". This should generally not
need to be changed from the default.

Value

A dataframe with relative tolerance columns added.

Examples

f <- "https://raw.githubusercontent.com/joshqsumner/pcvrTestData/main/pcv4-single-value-traits.csv"
tryCatch(

{
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sv <- read.pcv(
f,
reader = "fread"

)
sv$genotype <- substr(sv$barcode, 3, 5)
sv$genotype <- ifelse(sv$genotype == "002", "B73",

ifelse(sv$genotype == "003", "W605S",
ifelse(sv$genotype == "004", "MM", "Mo17")

)
)
sv$fertilizer <- substr(sv$barcode, 8, 8)
sv$fertilizer <- ifelse(sv$fertilizer == "A", "100",

ifelse(sv$fertilizer == "B", "50", "0")
)

sv <- bw.time(sv,
plantingDelay = 0, phenotype = "area_pixels",
cutoff = 10, timeCol = "timestamp", group = c("barcode", "rotation"), plot = FALSE

)
phenotypes <- colnames(sv)[19:35]
phenoForm <- paste0("cbind(", paste0(phenotypes, collapse = ", "), ")")
groupForm <- "DAS+DAP+barcode+genotype+fertilizer"
form <- as.formula(paste0(phenoForm, "~", groupForm))
sv <- aggregate(form, data = sv, mean, na.rm = TRUE)
sv <- bw.outliers(sv,

phenotype = "area_pixels",
group = c("DAS", "genotype", "fertilizer"),
plotgroup = c("barcode")

)$data

pixels_per_cmsq <- 42.5^2 # pixel per cm^2
sv$area_cm2 <- sv$area_pixels / pixels_per_cmsq
sv$height_cm <- sv$height_pixels / 42.5

df <- sv
phenotypes <- c("area_cm2", "height_cm")
grouping <- c("fertilizer", "genotype", "DAS")
controlGroup <- "100"
control <- "fertilizer"

rt <- relativeTolerance(df, phenotypes, grouping, control, controlGroup)
head(rt)
sapply(rt, function(c) sum(is.na(c)))

},
error = function(e) {

message(e)
}

)
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rqPlot Function to visualize quantreg::rq general additive growth models.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

rqPlot(
fit,
form,
df = NULL,
groups = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

Arguments

fit A model fit, or list of model fits, returned by fitGrowth with type="nlrq" and
model="gam".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. If the individual and group are
specified then the observed growth lines are plotted.

df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for rq models.

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

timeRange An optional range of times to use. This can be used to view predictions for
future data if the available data has not reached some point (such as asymptotic
size).

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an rq general additive model’s quantiles and optionally the individual
growth lines.
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Examples

simdf <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "gam", form = y ~ time | id / group,
tau = c(0.25, 0.5, 0.75), df = simdf, start = NULL, type = "nlrq"

)
fits <- fitGrowth(ss)
rqPlot(fits, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)
rqPlot(fits, form = ss$pcvrForm, df = ss$df, groups = "a", timeRange = 1:10)

ss <- growthSS(
model = "gam", form = y ~ time | group,
tau = c(0.5), df = simdf, start = NULL, type = "nlrq"

)
fit <- fitGrowth(ss)
rqPlot(fit, form = ss$pcvrForm, df = ss$df, groupFill = TRUE)

summary.conjugate Summarize a conjugate object.

Description

Summarize a conjugate object.

Usage

## S3 method for class 'conjugate'
summary(object, ...)

Arguments

object An object of class conjugate.

... further arguments, passed to print.default.
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summary.pcvrss Summarize a pcvrss object.

Description

Summarize a pcvrss object.

Usage

## S3 method for class 'pcvrss'
summary(object, ...)

Arguments

object An object of class pcvrss to method summary of pcvrss.

... further arguments, passed to print.default.

survregPlot Function to visualize survival::survreg models fit by fitGrowth.

Description

Models fit using growthSS inputs by fitGrowth (and similar models made through other means) can
be visualized easily using this function. This will generally be called by growthPlot.

Usage

survregPlot(
fit,
form,
groups = NULL,
df = NULL,
timeRange = NULL,
facetGroups = TRUE,
groupFill = FALSE,
virMaps = c("plasma")

)

Arguments

fit A model fit returned by fitGrowth with type="nls".

form A formula similar to that in growthSS inputs (or the pcvrForm part of the
output) specifying the outcome, predictor, and grouping structure of the data
as outcome ~ predictor|individual/group. If the individual and group are
specified then the observed growth lines are plotted.



testGrowth 95

groups An optional set of groups to keep in the plot. Defaults to NULL in which case
all groups in the model are plotted.

df A dataframe to use in plotting observed growth curves on top of the model. This
must be supplied for nls models.

timeRange Ignored, included for compatibility with other plotting functions.

facetGroups logical, should groups be separated in facets? Defaults to TRUE.

groupFill logical, should groups have different colors? Defaults to FALSE. If TRUE then
viridis colormaps are used in the order of virMaps

virMaps order of viridis maps to use. Will be recycled to necessary length. Defaults to
"plasma", but will generally be informed by growthPlot’s default.

Value

Returns a ggplot showing an survival model’s survival function.

Examples

df <- growthSim("logistic",
n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- growthSS(

model = "survival weibull", form = y > 100 ~ time | id / group,
df = df, type = "survreg"

)
fit <- fitGrowth(ss)
survregPlot(fit, form = ss$pcvrForm, df = ss$df)
survregPlot(fit, form = ss$pcvrForm, df = ss$df, groups = "a")
survregPlot(fit,

form = ss$pcvrForm, df = ss$df, facetGroups = FALSE,
groupFill = TRUE, virMaps = c("plasma", "mako")

)

testGrowth Hypothesis testing for fitGrowth models.

Description

Hypothesis testing for fitGrowth models.

Usage

testGrowth(ss = NULL, fit, test = "A")
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Arguments

ss A list output from growthSS. This is not required for nls, nlme, and brms models
if test is given in brms::hypothesis style as a written statement.

fit A model (or list of nlrq models) output from fitGrowth. For brms models this
can also be a data.frame of draws.

test A description of the hypothesis to test. This can take two main forms, either the
parameter names to vary before comparing a nested model ("A", "B", "C") using
an anova or a hypothesis test/list of hypothesis tests written as character strings.
The latter method is not implemented for nlrq models. If this is a vector of pa-
rameters to test in the model then they should be parameters which vary by group
in your original model and that you want to test against a null model where they
do not vary by group. Alternatively for nlrq models this can be a comparison of
model terms written as "group_X|tau|par - group_Y|tau|par", which uses
a fat tailed T distribution to make comparisons on the means of each quantile
estimate. For GAMs these tests compare the model with splines either by group
or interacting with group to a model that ignores the grouping in the data. If this
is a list of hypothesis tests then they should describe tests similar to "A.group1
- A.group2*1.1" and can be thought of as contrasts. For brms models the "test"
argument is passed to brms::hypothesis, which has extensive documentation and
is very flexible. Note that for survreg the survival::survdiff function is used
so fewer hypothesis testing options are available and flexsurv models are tested
using contrasts via flexsurv::standsurv.

Details

For nls and nlme models an anova is run and returned as part of a list along with the null model. For
nlrq models several assumptions are made and a likelihood ratio test for each tau is run and returned
as a list.

Value

A list containing an anova object comparing non-linear growth models and the null model.

See Also

growthSS and fitGrowth for making compatible models, growthPlot for hypothesis testing on com-
patible models.

Examples

set.seed(123)
simdf <- growthSim("logistic",

n = 20, t = 25,
params = list("A" = c(200, 160), "B" = c(13, 11), "C" = c(3, 3.5))

)
ss <- suppressMessages(growthSS(

model = "logistic", form = y ~ time | id / group,
df = simdf, type = "nlrq"

))
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fit <- fitGrowth(ss)
testGrowth(ss, fit, "A")
testGrowth(ss, fit, "a|0.5|A > b|0.5|A")

ss2 <- suppressMessages(growthSS(
model = "logistic", form = y ~ time | id / group,
df = simdf, type = "nls"

))
fit2 <- fitGrowth(ss2)
testGrowth(ss2, fit2, "A")$anova
coef(fit2) # check options for contrast testing
testGrowth(ss2, fit2, "A1 - A2*1.1")
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