
Package ‘parabar’
December 17, 2024

Title Progress Bar for Parallel Tasks

Version 1.4.2

Description A simple interface in the form of R6 classes for executing tasks in
parallel, tracking their progress, and displaying accurate progress bars.

License MIT + file LICENSE

URL https://parabar.mihaiconstantin.com

BugReports https://github.com/mihaiconstantin/parabar/issues

Imports R6, progress, parallel, callr, filelock, utils

Encoding UTF-8

RoxygenNote 7.3.1

Collate 'TaskState.R' 'Options.R' 'Helper.R' 'Exception.R'
'Specification.R' 'BackendService.R' 'Backend.R'
'AsyncBackend.R' 'SyncBackend.R' 'BackendFactory.R' 'Bar.R'
'ModernBar.R' 'BasicBar.R' 'BarFactory.R' 'Context.R'
'ProgressTrackingContext.R' 'ContextFactory.R' 'SessionState.R'
'Warning.R' 'UserApiConsumer.R' 'exports.R' 'logo.R'
'parabar-package.R'

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Mihai Constantin [aut, cre] (<https://orcid.org/0000-0002-6460-0107>)

Maintainer Mihai Constantin <mihai@mihaiconstantin.com>

Repository CRAN

Date/Publication 2024-12-17 08:50:02 UTC

1

https://parabar.mihaiconstantin.com
https://github.com/mihaiconstantin/parabar/issues
https://orcid.org/0000-0002-6460-0107

2 AsyncBackend

Contents
AsyncBackend . 2
Backend . 7
BackendFactory . 9
BackendService . 10
Bar . 13
BarFactory . 14
BasicBar . 16
clear . 17
configure_bar . 19
Context . 20
ContextFactory . 25
evaluate . 26
Exception . 28
export . 29
get_option . 31
Helper . 32
LOGO . 33
make_logo . 33
ModernBar . 34
Options . 36
par_apply . 38
par_lapply . 40
par_sapply . 42
peek . 44
ProgressTrackingContext . 46
SessionState . 50
Specification . 52
start_backend . 54
stop_backend . 57
SyncBackend . 59
TaskState . 63
UserApiConsumer . 66
Warning . 69

Index 70

AsyncBackend AsyncBackend

Description

This is a concrete implementation of the abstract class Backend that implements the BackendService
interface. This backend executes tasks in parallel asynchronously (i.e., without blocking the main R
session) on a parallel::makeCluster() cluster created in a background R session.

AsyncBackend 3

Super classes

parabar::BackendService -> parabar::Backend -> AsyncBackend

Active bindings

task_state A list of logical values indicating the state of the task execution. See the TaskState
class for more information on how the statues are determined. The following statuses are
available:

• task_not_started: Indicates whether the backend is free. TRUE signifies that no task
has been started and the backend is free to deploy.

• task_is_running: Indicates whether a task is currently running on the backend.
• task_is_completed: Indicates whether a task has finished executing. TRUE signifies that

the output of the task has not been fetched. Calling the method get_option() will move
the output from the background R session to the main R session. Once the output has been
fetched, the backend is free to deploy another task.

session_state A list of logical values indicating the state of the background session managing
the cluster. See the SessionState class for more information on the available statuses. The
following statuses are available:

• session_is_starting: Indicates whether the session is starting.
• session_is_idle: Indicates whether the session is idle.
• session_is_busy: Indicates whether the session is busy. A session is busy when a task

is running or when the output of a task has not been fetched into the main R session. See
the task_state field.

• session_is_finished: Indicates whether the session was closed.

Methods

Public methods:
• AsyncBackend$new()

• AsyncBackend$start()

• AsyncBackend$stop()

• AsyncBackend$clear()

• AsyncBackend$peek()

• AsyncBackend$export()

• AsyncBackend$evaluate()

• AsyncBackend$sapply()

• AsyncBackend$lapply()

• AsyncBackend$apply()

• AsyncBackend$get_output()

• AsyncBackend$clone()

Method new(): Create a new AsyncBackend object.

Usage:
AsyncBackend$new()

4 AsyncBackend

Returns: An object of class AsyncBackend.

Method start(): Start the backend.

Usage:
AsyncBackend$start(specification)

Arguments:
specification An object of class Specification that contains the backend configuration.

Returns: This method returns void. The resulting backend must be stored in the .cluster
private field on the Backend abstract class, and accessible to any concrete backend implementa-
tions via the active binding cluster.

Method stop(): Stop the backend.

Usage:
AsyncBackend$stop()

Returns: This method returns void.

Method clear(): Remove all objects from the backend. This function is equivalent to calling
rm(list = ls(all.names = TRUE)) on each node in the backend.

Usage:
AsyncBackend$clear()

Returns: This method returns void.

Method peek(): Inspect the backend for variables available in the .GlobalEnv.

Usage:
AsyncBackend$peek()

Returns: This method returns a list of character vectors, where each element corresponds to a
node in the backend. The character vectors contain the names of the variables available in the
.GlobalEnv on each node.

Method export(): Export variables from a given environment to the backend.

Usage:
AsyncBackend$export(variables, environment)

Arguments:
variables A character vector of variable names to export.
environment An environment object from which to export the variables.

Returns: This method returns void.

Method evaluate(): Evaluate an arbitrary expression on the backend.

Usage:
AsyncBackend$evaluate(expression)

Arguments:
expression An unquoted expression to evaluate on the backend.

Returns: This method returns the result of the expression evaluation.

AsyncBackend 5

Method sapply(): Run a task on the backend akin to parallel::parSapply().

Usage:
AsyncBackend$sapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method lapply(): Run a task on the backend akin to parallel::parLapply().

Usage:
AsyncBackend$lapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method apply(): Run a task on the backend akin to parallel::parApply().

Usage:
AsyncBackend$apply(x, margin, fun, ...)

Arguments:

x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method get_output(): Get the output of the task execution.

Usage:
AsyncBackend$get_output(wait = FALSE)

Arguments:

6 AsyncBackend

wait A logical value indicating whether to wait for the task to finish executing before fetching
the results. Defaults to FALSE. See the Details section for more information.

Details: This method fetches the output of the task execution after calling the sapply()
method. It returns the output and immediately removes it from the backend. Subsequent calls to
this method will throw an error if no additional tasks have been executed in the meantime. This
method should be called after the execution of a task.
If wait = TRUE, the method will block the main process until the backend finishes executing the
task and the results are available. If wait = FALSE, the method will immediately attempt to fetch
the results from the background R session, and throw an error if the task is still running.

Returns: A vector, matrix, or list of the same length as x, containing the results of the fun. The
output format differs based on the specific operation employed. Check out the documentation
for the apply operations of parallel::parallel for more information.

Method clone(): The objects of this class are cloneable with this method.

Usage:
AsyncBackend$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BackendService, Backend, SyncBackend, ProgressTrackingContext, and TaskState.

Examples

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.
specification$set_type(type = "psock")

Create an asynchronous backend object.
backend <- AsyncBackend$new()

Start the cluster on the backend.
backend$start(specification)

Check if there is anything on the backend.
backend$peek()

Create a dummy variable.
name <- "parabar"

Export the variable to the backend.
backend$export("name")

Backend 7

Remove variable from current environment.
rm(name)

Run an expression on the backend, using the exported variable `name`.
backend$evaluate({

Print the name.
print(paste0("Hello, ", name, "!"))

})

Run a task in parallel (i.e., approx. 2.5 seconds).
backend$sapply(

x = 1:10,
fun = function(x) {

Sleep a bit.
Sys.sleep(0.5)

Compute something.
output <- x + 1

Return the result.
return(output)

}
)

Right know the main process is free and the task is executing on a `psock`
cluster started in a background `R` session.

Trying to get the output immediately will throw an error, indicating that the
task is still running.
try(backend$get_output())

However, we can block the main process and wait for the task to complete
before fetching the results.
backend$get_output(wait = TRUE)

Clear the backend.
backend$clear()

Check that there is nothing on the cluster.
backend$peek()

Stop the backend.
backend$stop()

Check that the backend is not active.
backend$active

Backend Backend

8 Backend

Description

This is an abstract class that serves as a base class for all concrete backend implementations. It
defines the common properties that all concrete backends require.

Details

This class cannot be instantiated. It needs to be extended by concrete subclasses that implement the
pure virtual methods. Instances of concrete backend implementations can be conveniently obtained
using the BackendFactory class.

Super class

parabar::BackendService -> Backend

Active bindings

cluster The cluster object used by the backend. For SyncBackend objects, this is a cluster object
created by parallel::makeCluster(). For AsyncBackend objects, this is a permanent R
session created by callr::r_session that contains the parallel::makeCluster() cluster
object.

supports_progress A boolean value indicating whether the backend implementation supports
progress tracking.

active A boolean value indicating whether the backend implementation has an active cluster.

Methods

Public methods:

• Backend$new()

• Backend$clone()

Method new(): Create a new Backend object.

Usage:
Backend$new()

Returns: Instantiating this class will throw an error.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Backend$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BackendService, SyncBackend, AsyncBackend, BackendFactory, and Context.

BackendFactory 9

BackendFactory BackendFactory

Description

This class is a factory that provides concrete implementations of the Backend abstract class.

Methods

Public methods:
• BackendFactory$get()

• BackendFactory$clone()

Method get(): Obtain a concrete implementation of the abstract Backend class of the specified
type.

Usage:
BackendFactory$get(type)

Arguments:
type A character string specifying the type of the Backend to instantiate. Possible values are

"sync" and "async". See the Details section for more information.

Details: When type = "sync" a SyncBackend instance is created and returned. When type =
"async" an AsyncBackend instance is provided instead.

Returns: A concrete implementation of the class Backend. It throws an error if the requested
backend type is not supported.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BackendFactory$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

BackendService, Backend, SyncBackend, AsyncBackend, and ContextFactory.

Examples

Create a backend factory.
backend_factory <- BackendFactory$new()

Get a synchronous backend instance.
backend <- backend_factory$get("sync")

Check the class of the backend instance.
class(backend)

10 BackendService

Get an asynchronous backend instance.
backend <- backend_factory$get("async")

Check the class of the backend instance.
class(backend)

BackendService BackendService

Description

This is an interface that defines the operations available on a Backend implementation. Backend
implementations and the Context class must implement this interface.

Methods

Public methods:

• BackendService$new()

• BackendService$start()

• BackendService$stop()

• BackendService$clear()

• BackendService$peek()

• BackendService$export()

• BackendService$evaluate()

• BackendService$sapply()

• BackendService$lapply()

• BackendService$apply()

• BackendService$get_output()

• BackendService$clone()

Method new(): Create a new BackendService object.

Usage:
BackendService$new()

Returns: Instantiating this class will throw an error.

Method start(): Start the backend.

Usage:
BackendService$start(specification)

Arguments:

specification An object of class Specification that contains the backend configuration.

BackendService 11

Returns: This method returns void. The resulting backend must be stored in the .cluster
private field on the Backend abstract class, and accessible to any concrete backend implementa-
tions via the active binding cluster.

Method stop(): Stop the backend.

Usage:
BackendService$stop()

Returns: This method returns void.

Method clear(): Remove all objects from the backend. This function is equivalent to calling
rm(list = ls(all.names = TRUE)) on each node in the backend.

Usage:
BackendService$clear()

Details: This method is ran by default when the backend is started.

Returns: This method returns void.

Method peek(): Inspect the backend for variables available in the .GlobalEnv.

Usage:
BackendService$peek()

Returns: This method returns a list of character vectors, where each element corresponds to a
node in the backend. The character vectors contain the names of the variables available in the
.GlobalEnv on each node.

Method export(): Export variables from a given environment to the backend.

Usage:
BackendService$export(variables, environment)

Arguments:
variables A character vector of variable names to export.
environment An environment object from which to export the variables.

Returns: This method returns void.

Method evaluate(): Evaluate an arbitrary expression on the backend.

Usage:
BackendService$evaluate(expression)

Arguments:
expression An unquoted expression to evaluate on the backend.

Returns: This method returns the result of the expression evaluation.

Method sapply(): Run a task on the backend akin to parallel::parSapply().

Usage:
BackendService$sapply(x, fun, ...)

Arguments:
x An atomic vector or list to pass to the fun function.

12 BackendService

fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method lapply(): Run a task on the backend akin to parallel::parLapply().

Usage:
BackendService$lapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method apply(): Run a task on the backend akin to parallel::parApply().

Usage:
BackendService$apply(x, margin, fun, ...)

Arguments:

x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method get_output(): Get the output of the task execution.

Usage:
BackendService$get_output(...)

Arguments:

... Additional optional arguments that may be used by concrete implementations.

Details: This method fetches the output of the task execution after calling the sapply()
method. It returns the output and immediately removes it from the backend. Therefore, subse-
quent calls to this method are not advised. This method should be called after the execution of
a task.

Bar 13

Returns: A vector, matrix, or list of the same length as x, containing the results of the fun. The
output format differs based on the specific operation employed. Check out the documentation
for the apply operations of parallel::parallel for more information.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BackendService$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Backend, SyncBackend, AsyncBackend, and Context.

Bar Bar

Description

This is an abstract class that defines the pure virtual methods a concrete bar must implement.

Details

This class cannot be instantiated. It needs to be extended by concrete subclasses that implement the
pure virtual methods. Instances of concrete backend implementations can be conveniently obtained
using the BarFactory class.

Active bindings

engine The bar engine.

Methods

Public methods:
• Bar$new()

• Bar$create()

• Bar$update()

• Bar$terminate()

• Bar$clone()

Method new(): Create a new Bar object.

Usage:
Bar$new()

Returns: Instantiating this class will throw an error.

Method create(): Create a progress bar.

14 BarFactory

Usage:
Bar$create(total, initial, ...)

Arguments:

total The total number of times the progress bar should tick.
initial The starting point of the progress bar.
... Additional arguments for the bar creation. See the Details section for more information.

Details: The optional ... named arguments depend on the specific concrete implementation
(i.e., BasicBar or ModernBar).

Returns: This method returns void. The resulting bar is stored in the private field .bar, acces-
sible via the active binding engine.

Method update(): Update the progress bar.

Usage:
Bar$update(current)

Arguments:

current The position the progress bar should be at (e.g., 30 out of 100), usually the index in a
loop.

Method terminate(): Terminate the progress bar.

Usage:
Bar$terminate()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Bar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BasicBar, ModernBar, and BarFactory.

BarFactory BackendFactory

Description

This class is a factory that provides concrete implementations of the Bar abstract class.

BarFactory 15

Methods

Public methods:

• BarFactory$get()

• BarFactory$clone()

Method get(): Obtain a concrete implementation of the abstract Bar class of the specified type.

Usage:
BarFactory$get(type)

Arguments:

type A character string specifying the type of the Bar to instantiate. Possible values are
"modern" and "basic". See the Details section for more information.

Details: When type = "modern" a ModernBar instance is created and returned. When type =
"basic" a BasicBar instance is provided instead.

Returns: A concrete implementation of the class Bar. It throws an error if the requested bar
type is not supported.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BarFactory$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Bar, BasicBar, and ModernBar.

Examples

Create a bar factory.
bar_factory <- BarFactory$new()

Get a modern bar instance.
bar <- bar_factory$get("modern")

Check the class of the bar instance.
class(bar)

Get a basic bar instance.
bar <- bar_factory$get("basic")

Check the class of the bar instance.
class(bar)

16 BasicBar

BasicBar BasicBar

Description

This is a concrete implementation of the abstract class Bar using the utils::txtProgressBar()
as engine for the progress bar.

Super class

parabar::Bar -> BasicBar

Methods

Public methods:
• BasicBar$new()

• BasicBar$create()

• BasicBar$update()

• BasicBar$terminate()

• BasicBar$clone()

Method new(): Create a new BasicBar object.

Usage:
BasicBar$new()

Returns: An object of class BasicBar.

Method create(): Create a progress bar.

Usage:
BasicBar$create(total, initial, ...)

Arguments:
total The total number of times the progress bar should tick.
initial The starting point of the progress bar.
... Additional arguments for the bar creation passed to utils::txtProgressBar().

Returns: This method returns void. The resulting bar is stored in the private field .bar, acces-
sible via the active binding engine. Both the private field and the active binding are defined in
the super class Bar.

Method update(): Update the progress bar by calling utils::setTxtProgressBar().

Usage:
BasicBar$update(current)

Arguments:
current The position the progress bar should be at (e.g., 30 out of 100), usually the index in a

loop.

clear 17

Method terminate(): Terminate the progress bar by calling base::close() on the private
field .bar.

Usage:
BasicBar$terminate()

Method clone(): The objects of this class are cloneable with this method.

Usage:
BasicBar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Bar, ModernBar, and BarFactory.

Examples

Create a basic bar instance.
bar <- BasicBar$new()

Specify the number of ticks to be performed.
total <- 100

Create the progress bar.
bar$create(total = total, initial = 0)

Use the progress bar.
for (i in 1:total) {

Sleep a bit.
Sys.sleep(0.02)

Update the progress bar.
bar$update(i)

}

Terminate the progress bar.
bar$terminate()

clear Clear a Backend

Description

This function can be used to clear a backend created by start_backend().

Usage

clear(backend)

18 clear

Arguments

backend An object of class Backend as returned by the start_backend() function.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function calls the clear method on the provided backend instance.

Value

The function returns void. It throws an error if the value provided for the backend argument is not
an instance of class Backend.

See Also

start_backend(), peek(), export(), evaluate(), configure_bar(), par_sapply(), par_lapply(),
par_apply(), stop_backend(), and BackendService.

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

configure_bar 19

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute and return.
return(x + 1)

})

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

Check that the backend is not active.
backend$active

configure_bar Configure The Progress Bar

Description

This function can be used to conveniently configure the progress bar by adjusting the progress_bar_config
field of the Options instance in the base::.Options list.

Usage

configure_bar(type = "modern", ...)

Arguments

type A character string specifying the type of progress bar to be used with compatible
backends. Possible values are "modern" and "basic". The default value is
"modern".

... A list of named arguments used to configure the progress bar. See the Details
section for more information.

Details

The optional ... named arguments depend on the type of progress bar being configured. When
type = "modern", the ... take the named arguments of the progress::progress_bar class. When
type = "basic", the ... take the named arguments of the utils::txtProgressBar() built-in
function. See the Examples section for a demonstration.

20 Context

Value

The function returns void. It throws an error if the requested bar type is not supported.

See Also

progress::progress_bar, utils::txtProgressBar(), set_default_options(), get_option(),
set_option()

Examples

Set the default package options.
set_default_options()

Get the progress bar type from options.
get_option("progress_bar_type")

Get the progress bar configuration from options.
get_option("progress_bar_config")

Adjust the format of the `modern` progress bar.
configure_bar(type = "modern", format = "[:bar] :percent")

Check that the configuration has been updated in the options.
get_option("progress_bar_config")

Change to and adjust the style of the `basic` progress bar.
configure_bar(type = "basic", style = 3)

Check that the configuration has been updated in the options.
get_option("progress_bar_type")
get_option("progress_bar_config")

Context Context

Description

This class represents the base context for interacting with Backend implementations via the BackendService
interface.

Details

This class is a vanilla wrapper around a Backend implementation. It registers a backend instance
and forwards all BackendService methods calls to the backend instance. Subclasses can override
any of the BackendService methods to decorate the backend instance with additional functionality
(e.g., see the ProgressTrackingContext class for an example).

Context 21

Super class

parabar::BackendService -> Context

Active bindings

backend The Backend object registered with the context.

Methods

Public methods:
• Context$new()

• Context$set_backend()

• Context$start()

• Context$stop()

• Context$clear()

• Context$peek()

• Context$export()

• Context$evaluate()

• Context$sapply()

• Context$lapply()

• Context$apply()

• Context$get_output()

• Context$clone()

Method new(): Create a new Context object.

Usage:
Context$new()

Returns: An object of class Context.

Method set_backend(): Set the backend instance to be used by the context.

Usage:
Context$set_backend(backend)

Arguments:

backend An object of class Backend that implements the BackendService interface.

Method start(): Start the backend.

Usage:
Context$start(specification)

Arguments:

specification An object of class Specification that contains the backend configuration.

Returns: This method returns void. The resulting backend must be stored in the .cluster
private field on the Backend abstract class, and accessible to any concrete backend implementa-
tions via the active binding cluster.

22 Context

Method stop(): Stop the backend.

Usage:
Context$stop()

Returns: This method returns void.

Method clear(): Remove all objects from the backend. This function is equivalent to calling
rm(list = ls(all.names = TRUE)) on each node in the backend.

Usage:
Context$clear()

Returns: This method returns void.

Method peek(): Inspect the backend for variables available in the .GlobalEnv.

Usage:
Context$peek()

Returns: This method returns a list of character vectors, where each element corresponds to a
node in the backend. The character vectors contain the names of the variables available in the
.GlobalEnv on each node.

Method export(): Export variables from a given environment to the backend.

Usage:
Context$export(variables, environment)

Arguments:

variables A character vector of variable names to export.
environment An environment object from which to export the variables. Defaults to the parent

frame.

Returns: This method returns void.

Method evaluate(): Evaluate an arbitrary expression on the backend.

Usage:
Context$evaluate(expression)

Arguments:

expression An unquoted expression to evaluate on the backend.

Returns: This method returns the result of the expression evaluation.

Method sapply(): Run a task on the backend akin to parallel::parSapply().

Usage:
Context$sapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Context 23

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method lapply(): Run a task on the backend akin to parallel::parLapply().

Usage:
Context$lapply(x, fun, ...)

Arguments:
x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method apply(): Run a task on the backend akin to parallel::parApply().

Usage:
Context$apply(x, margin, fun, ...)

Arguments:
x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method get_output(): Get the output of the task execution.

Usage:
Context$get_output(...)

Arguments:
... Additional arguments to pass to the backend registered with the context. This is useful for

backends that require additional arguments to fetch the output (e.g., AsyncBackend$get_output(wait
= TRUE)).

Details: This method fetches the output of the task execution after calling the sapply()
method. It returns the output and immediately removes it from the backend. Therefore, subse-
quent calls to this method are not advised. This method should be called after the execution of
a task.

Returns: A vector, matrix, or list of the same length as x, containing the results of the fun. The
output format differs based on the specific operation employed. Check out the documentation
for the apply operations of parallel::parallel for more information.

24 Context

Method clone(): The objects of this class are cloneable with this method.

Usage:
Context$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ProgressTrackingContext, BackendService, Backend, and SyncBackend.

Examples

Define a task to run in parallel.
task <- function(x, y) {

Sleep a bit.
Sys.sleep(0.25)

Return the result of a computation.
return(x + y)

}

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.
specification$set_type(type = "psock")

Create a backend factory.
backend_factory <- BackendFactory$new()

Get a synchronous backend instance.
backend <- backend_factory$get("sync")

Create a base context object.
context <- Context$new()

Register the backend with the context.
context$set_backend(backend)

From now all, all backend operations are intercepted by the context.

Start the backend.
context$start(specification)

Run a task in parallel (i.e., approx. 1.25 seconds).
context$sapply(x = 1:10, fun = task, y = 10)

Get the task output.

ContextFactory 25

context$get_output()

Close the backend.
context$stop()

Get an asynchronous backend instance.
backend <- backend_factory$get("async")

Register the backend with the same context object.
context$set_backend(backend)

Start the backend reusing the specification object.
context$start(specification)

Run a task in parallel (i.e., approx. 1.25 seconds).
context$sapply(x = 1:10, fun = task, y = 10)

Get the task output.
backend$get_output(wait = TRUE)

Close the backend.
context$stop()

ContextFactory ContextFactory

Description

This class is a factory that provides instances of the Context class.

Methods

Public methods:
• ContextFactory$get()

• ContextFactory$clone()

Method get(): Obtain instances of the Context class.

Usage:
ContextFactory$get(type)

Arguments:
type A character string specifying the type of the Context to instantiate. Possible values are

"regular" and "progress". See the Details section for more information.

Details: When type = "regular" a Context instance is created and returned. When type =
"progress" a ProgressTrackingContext instance is provided instead.

Returns: An object of type Context. It throws an error if the requested context type is not
supported.

26 evaluate

Method clone(): The objects of this class are cloneable with this method.

Usage:
ContextFactory$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Context, ProgressTrackingContext, BackendService, and Backend

Examples

Create a context factory.
context_factory <- ContextFactory$new()

Get a regular context instance.
context <- context_factory$get("regular")

Check the class of the context instance.
class(context)

Get a progress context instance.
context <- context_factory$get("progress")
class(context)

evaluate Evaluate An Expression On The Backend

Description

This function can be used to evaluate an arbitrary base::expression() a backend created by
start_backend().

Usage

evaluate(backend, expression)

Arguments

backend An object of class Backend as returned by the start_backend() function.

expression An unquoted expression to evaluate on the backend.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function calls the evaluate method on the provided backend instance.

evaluate 27

Value

This method returns the result of the expression evaluation. It throws an error if the value provided
for the backend argument is not an instance of class Backend.

See Also

start_backend(), peek(), export(), clear(), configure_bar(), par_sapply(), par_lapply(),
par_apply(), stop_backend(), and BackendService.

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

28 Exception

Compute and return.
return(x + 1)

})

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

Check that the backend is not active.
backend$active

Exception Package Exceptions

Description

This class contains static methods for throwing exceptions with informative messages.

Format

Exception$abstract_class_not_instantiable(object) Exception for instantiating abstract
classes or interfaces.

Exception$method_not_implemented() Exception for calling methods without an implementa-
tion.

Exception$feature_not_developed() Exception for running into things not yet developed.

Exception$not_enough_cores() Exception for requesting more cores than available on the ma-
chine.

Exception$cluster_active() Exception for attempting to start a cluster while another one is
active.

Exception$cluster_not_active() Exception for attempting to stop a cluster while not active.

Exception$async_task_not_started() Exception for reading results while an asynchronous
task has not yet started.

Exception$async_task_running() Exception for reading results while an asynchronous task is
running.

Exception$async_task_completed() Exception for reading results while a completed asynchronous
task has unread results.

Exception$async_task_error(error) Exception for errors while running an asynchronous task.

Exception$stop_busy_backend_not_allowed() Exception for stopping a busy backend without
intent.

Exception$temporary_file_creation_failed() Exception for reading results while an asyn-
chronous task is running.

export 29

Exception$type_not_assignable(actual, expected) Exception for when providing incorrect
object types.

Exception$unknown_package_option(option) Exception for when requesting unknown pack-
age options.

Exception$primitive_as_task_not_allowed() Exception for when decorating primitive func-
tions with progress tracking.

Exception$array_margins_not_compatible(actual, allowed) Exception for using improper
margins in the BackendService$apply operation.

export Export Objects To a Backend

Description

This function can be used to export objects to a backend created by start_backend().

Usage

export(backend, variables, environment)

Arguments

backend An object of class Backend as returned by the start_backend() function.

variables A character vector of variable names to export to the backend.

environment An environment from which to export the variables. If no environment is pro-
vided, the .GlobalEnv environment is used.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function calls the export method on the provided backend instance.

Value

The function returns void. It throws an error if the value provided for the backend argument is not
an instance of class Backend.

See Also

start_backend(), peek(), evaluate(), clear(), configure_bar(), par_sapply(), par_lapply(),
par_apply(), stop_backend(), and BackendService.

30 export

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute and return.
return(x + 1)

})

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

get_option 31

Check that the backend is not active.
backend$active

get_option Get or Set Package Option

Description

The get_option() function is a helper for retrieving the value of parabar options. If the option
requested is not available in the session base::.Options list, the corresponding default value set
by the Options R6::R6 class is returned instead.

The set_option() function is a helper for setting parabar options. The function adjusts the
fields of the Options instance stored in the base::.Options list. If no Options instance is present
in the base::.Options list, a new one is created.

The set_default_options() function is used to set the default options values for the parabar
package. The function is automatically called at package load and the entry created can be retrieved
via getOption("parabar"). Specific package options can be retrieved using the helper function
get_option().

Usage

get_option(option)

set_option(option, value)

set_default_options()

Arguments

option A character string representing the name of the option to retrieve or adjust.
See the public fields of R6::R6 class Options for the list of available parabar
options.

value The value to set the option to.

Value

The get_option() function returns the value of the requested option present in the base::.Options
list, or its corresponding default value (i.e., see Options). If the requested option is not known, an
error is thrown.

The set_option() function returns void. It throws an error if the requested option to be adjusted
is not known.

The set_default_options() function returns void. The options set can be consulted via the
base::.Options list. See the Options R6::R6 class for more information on the default values set
by this function.

32 Helper

See Also

Options, set_default_options(), base::options(), and base::getOption().

Examples

Get the status of progress tracking.
get_option("progress_track")

Set the status of progress tracking to `FALSE`.
set_option("progress_track", FALSE)

Get the status of progress tracking again.
get_option("progress_track")

Restore default options.
set_default_options()

Get the status of progress tracking yet again.
get_option("progress_track")

Helper Package Helpers

Description

This class contains static helper methods.

Format

Helper$get_class_name(object) Helper for getting the class of a given object.

Helper$is_of_class(object, class) Check if an object is of a certain class.

Helper$get_option(option) Get package option, or corresponding default value.

Helper$set_option(option, value) Set package option.

Helper$check_object_type(object, expected_type) Check the type of a given object.

Helper$check_array_margins(margins, dimensions) Helper to check array margins for the
BackendService$apply operation.

LOGO 33

LOGO The Package Logo

Description

The logo is generated by make_logo() and displayed on package attach for interactive R sessions.

Usage

LOGO

Format

An object of class character containing the ASCII logo.

See Also

make_logo()

Examples

print(LOGO)

make_logo Generate Package Logo

Description

This function is meant for generating or updating the logo. After running this procedure we end up
with what is stored in the LOGO constant.

Usage

make_logo(
template = "./inst/assets/logo/parabar-logo.txt",
version = c(1, 0, 0)

)

Arguments

template A character string representing the path to the logo template.

version A numerical vector of three positive integers representing the version of the
package to append to the logo.

34 ModernBar

Value

The ASCII logo.

See Also

LOGO

Examples

Not run:

Generate the logo.
logo <- make_logo()

Print the logo.
cat(logo)

End(Not run)

ModernBar ModernBar

Description

This is a concrete implementation of the abstract class Bar using the progress::progress_bar as
engine for the progress bar.

Super class

parabar::Bar -> ModernBar

Methods

Public methods:
• ModernBar$new()

• ModernBar$create()

• ModernBar$update()

• ModernBar$terminate()

• ModernBar$clone()

Method new(): Create a new ModernBar object.

Usage:
ModernBar$new()

Returns: An object of class ModernBar.

Method create(): Create a progress bar.

ModernBar 35

Usage:
ModernBar$create(total, initial, ...)

Arguments:
total The total number of times the progress bar should tick.
initial The starting point of the progress bar.
... Additional arguments for the bar creation passed to progress::progress_bar$new().

Returns: This method returns void. The resulting bar is stored in the private field .bar, acces-
sible via the active binding engine. Both the private field and the active binding are defined in
the super class Bar.

Method update(): Update the progress bar by calling progress::progress_bar$update().

Usage:
ModernBar$update(current)

Arguments:
current The position the progress bar should be at (e.g., 30 out of 100), usually the index in a

loop.

Method terminate(): Terminate the progress bar by calling progress::progress_bar$terminate().

Usage:
ModernBar$terminate()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ModernBar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Bar, BasicBar, and BarFactory.

Examples

Create a modern bar instance.
bar <- ModernBar$new()

Specify the number of ticks to be performed.
total <- 100

Create the progress bar.
bar$create(total = total, initial = 0)

Use the progress bar.
for (i in 1:total) {

Sleep a bit.
Sys.sleep(0.02)

36 Options

Update the progress bar.
bar$update(i)

}

Terminate the progress bar.
bar$terminate()

Options Class for Package Options

Description

This class holds public fields that represent the package options used to configure the default
behavior of the functionality parabar provides.

Details

An instance of this class is automatically created and stored in the session base::.Options at load
time. This instance can be accessed and changed via getOption("parabar"). Specific package
options can be retrieved using the helper function get_option().

Public fields

progress_track A logical value indicating whether progress tracking should be enabled (i.e.,
TRUE) or disabled (i.e., FALSE) globally for compatible backends. The default value is TRUE.

progress_timeout A numeric value indicating the timeout (i.e., in seconds) between subsequent
checks of the log file for new progress records. The default value is 0.001.

progress_wait A numeric value indicating the approximate duration (i.e., in seconds) to wait
between progress bar updates before checking if the task has finished (i.e., possibly with an
error). The default value is 0.1.

progress_bar_type A character string indicating the default bar type to use with compatible back-
ends. Possible values are "modern" (the default) or "basic".

progress_bar_config A list of lists containing the default bar configuration for each supported
bar engine. Elements of these lists represent arguments for the corresponding bar engines.
Currently, the supported bar engines are:

• modern: The progress::progress_bar engine, with the following default configura-
tion:

– show_after = 0

– format = "> completed :current out of :total tasks [:percent] [:elapsed]"

• basic: The utils::txtProgressBar engine, with no default configuration.

stop_forceful A logical value indicating whether to allow stopping an asynchronous backend
forcefully (i.e., TRUE), or not (i.e., FALSE). When stopping forcefully, the backend is terminated
without waiting for a running tasks to finish or for the results to be read into the main R session.
The default value is FALSE.

Options 37

Active bindings

progress_log_path A character string indicating the path to the log file where to track the execu-
tion progress of a running task. The default value is a temporary file generated by base::tempfile().
Calling this active binding repeatedly will yield different temporary file paths. Fixing the path
to a specific value is possible by setting this active binding to a character string representing
the desired path. Setting this active binding to NULL will reset it to the default value (i.e.,
yielding different temporary file paths).

See Also

get_option(), set_option(), and set_default_options().

Examples

Set the default package options (i.e., automatically set at load time).
set_default_options()

First, get the options instance from the session options.
parabar <- getOption("parabar")

Then, disable progress tracking.
parabar$progress_track <- FALSE

Check that the change was applied (i.e., `progress_track: FALSE`).
getOption("parabar")

To restore defaults, set the default options again.
set_default_options()

Check that the change was applied (i.e., `progress_track: TRUE`).
getOption("parabar")

We can also use the built-in helpers to get and set options more conveniently.

Get the progress tracking option.
get_option("progress_track")

Set the progress tracking option to `FALSE`.
set_option("progress_track", FALSE)

Check that the change was applied (i.e., `progress_track: FALSE`).
get_option("progress_track")

Get a temporary file for logging the progress.
get_option("progress_log_path")

Fix the logging file path.
set_option("progress_log_path", "./progress.log")

Check that the logging path change was applied.
get_option("progress_log_path")

38 par_apply

Restore the logging path to the default behavior.
set_option("progress_log_path", NULL)

Check that the logging path change was applied.
get_option("progress_log_path")

Restore the defaults.
set_default_options()

par_apply Run a Task in Parallel

Description

This function can be used to run a task in parallel. The task is executed in parallel on the specified
backend, similar to parallel::parApply(). If backend = NULL, the task is executed sequentially
using base::apply(). See the Details section for more information on how this function works.

Usage

par_apply(backend = NULL, x, margin, fun, ...)

Arguments

backend An object of class Backend as returned by the start_backend() function. It
can also be NULL to run the task sequentially via base::apply(). The default
value is NULL.

x An array to pass to the fun function.

margin A numeric vector indicating the dimensions of x the fun function should be ap-
plied over. For example, for a matrix, margin = 1 indicates applying fun rows-
wise, margin = 2 indicates applying fun columns-wise, and margin = c(1, 2)
indicates applying fun element-wise. Named dimensions are also possible de-
pending on x. See parallel::parApply() and base::apply() for more de-
tails.

fun A function to apply to x according to the margin.

... Additional arguments to pass to the fun function.

Details

This function uses the UserApiConsumer class that acts like an interface for the developer API of
the parabar package.

Value

The dimensions of the output vary according to the margin argument. Consult the documentation
of base::apply() for a detailed explanation on how the output is structured.

par_apply 39

See Also

start_backend(), peek(), export(), evaluate(), clear(), configure_bar(), par_sapply(),
par_lapply(), stop_backend(), set_option(), get_option(), Options, UserApiConsumer,
and BackendService.

Examples

Define a simple task.
task <- function(x) {

Perform computations.
Sys.sleep(0.01)

Return the result.
mean(x)

}

Define a matrix for the task.
x <- matrix(rnorm(100^2, mean = 10, sd = 0.5), nrow = 100, ncol = 100)

Start an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Run a task in parallel over the rows of `x`.
results <- par_apply(backend, x = x, margin = 1, fun = task)

Run a task in parallel over the columns of `x`.
results <- par_apply(backend, x = x, margin = 2, fun = task)

The task can also be run over all elements of `x` using `margin = c(1, 2)`.
Improper dimensions will throw an error.
try(par_apply(backend, x = x, margin = c(1, 2, 3), fun = task))

Disable progress tracking.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_apply(backend, x = x, margin = 1, fun = task)

Enable progress tracking.
set_option("progress_track", TRUE)

Change the progress bar options.
configure_bar(type = "modern", format = "[:bar] :percent")

Run a task in parallel.
results <- par_apply(backend, x = x, margin = 1, fun = task)

Stop the backend.
stop_backend(backend)

Start a synchronous backend.

40 par_lapply

backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "sync")

Run a task in parallel.
results <- par_apply(backend, x = x, margin = 1, fun = task)

Disable progress tracking to remove the warning that progress is not supported.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_apply(backend, x = x, margin = 1, fun = task)

Stop the backend.
stop_backend(backend)

Run the task using the `base::lapply` (i.e., non-parallel).
results <- par_apply(NULL, x = x, margin = 1, fun = task)

par_lapply Run a Task in Parallel

Description

This function can be used to run a task in parallel. The task is executed in parallel on the specified
backend, similar to parallel::parLapply(). If backend = NULL, the task is executed sequentially
using base::lapply(). See the Details section for more information on how this function works.

Usage

par_lapply(backend = NULL, x, fun, ...)

Arguments

backend An object of class Backend as returned by the start_backend() function. It
can also be NULL to run the task sequentially via base::lapply(). The default
value is NULL.

x An atomic vector or list to pass to the fun function.

fun A function to apply to each element of x.

... Additional arguments to pass to the fun function.

Details

This function uses the UserApiConsumer class that acts like an interface for the developer API of
the parabar package.

par_lapply 41

Value

A list of the same length as x containing the results of the fun. The output format resembles that of
base::lapply().

See Also

start_backend(), peek(), export(), evaluate(), clear(), configure_bar(), par_sapply(),
par_apply(), stop_backend(), set_option(), get_option(), Options, UserApiConsumer, and
BackendService.

Examples

Define a simple task.
task <- function(x) {

Perform computations.
Sys.sleep(0.01)

Return the result.
return(x + 1)

}

Start an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Run a task in parallel.
results <- par_lapply(backend, x = 1:300, fun = task)

Disable progress tracking.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_lapply(backend, x = 1:300, fun = task)

Enable progress tracking.
set_option("progress_track", TRUE)

Change the progress bar options.
configure_bar(type = "modern", format = "[:bar] :percent")

Run a task in parallel.
results <- par_lapply(backend, x = 1:300, fun = task)

Stop the backend.
stop_backend(backend)

Start a synchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "sync")

Run a task in parallel.
results <- par_lapply(backend, x = 1:300, fun = task)

42 par_sapply

Disable progress tracking to remove the warning that progress is not supported.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_lapply(backend, x = 1:300, fun = task)

Stop the backend.
stop_backend(backend)

Run the task using the `base::lapply` (i.e., non-parallel).
results <- par_lapply(NULL, x = 1:300, fun = task)

par_sapply Run a Task in Parallel

Description

This function can be used to run a task in parallel. The task is executed in parallel on the specified
backend, similar to parallel::parSapply(). If backend = NULL, the task is executed sequentially
using base::sapply(). See the Details section for more information on how this function works.

Usage

par_sapply(backend = NULL, x, fun, ...)

Arguments

backend An object of class Backend as returned by the start_backend() function. It
can also be NULL to run the task sequentially via base::sapply(). The default
value is NULL.

x An atomic vector or list to pass to the fun function.

fun A function to apply to each element of x.

... Additional arguments to pass to the fun function.

Details

This function uses the UserApiConsumer class that acts like an interface for the developer API of
the parabar package.

Value

A vector of the same length as x containing the results of the fun. The output format resembles that
of base::sapply().

par_sapply 43

See Also

start_backend(), peek(), export(), evaluate(), clear(), configure_bar(), par_lapply(),
par_apply(), stop_backend(), set_option(), get_option(), Options, UserApiConsumer, and
BackendService.

Examples

Define a simple task.
task <- function(x) {

Perform computations.
Sys.sleep(0.01)

Return the result.
return(x + 1)

}

Start an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Run a task in parallel.
results <- par_sapply(backend, x = 1:300, fun = task)

Disable progress tracking.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_sapply(backend, x = 1:300, fun = task)

Enable progress tracking.
set_option("progress_track", TRUE)

Change the progress bar options.
configure_bar(type = "modern", format = "[:bar] :percent")

Run a task in parallel.
results <- par_sapply(backend, x = 1:300, fun = task)

Stop the backend.
stop_backend(backend)

Start a synchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "sync")

Run a task in parallel.
results <- par_sapply(backend, x = 1:300, fun = task)

Disable progress tracking to remove the warning that progress is not supported.
set_option("progress_track", FALSE)

Run a task in parallel.
results <- par_sapply(backend, x = 1:300, fun = task)

44 peek

Stop the backend.
stop_backend(backend)

Run the task using the `base::sapply` (i.e., non-parallel).
results <- par_sapply(NULL, x = 1:300, fun = task)

peek Inspect a Backend

Description

This function can be used to check the names of the variables present on a backend created by
start_backend().

Usage

peek(backend)

Arguments

backend An object of class Backend as returned by the start_backend() function.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function calls the peek method on the provided backend instance.

Value

The function returns a list of character vectors, where each list element corresponds to a node, and
each element of the character vector is the name of a variable present on that node. It throws an
error if the value provided for the backend argument is not an instance of class Backend.

See Also

start_backend(), export(), evaluate(), clear(), configure_bar(), par_sapply(), par_lapply(),
par_apply(), stop_backend(), and BackendService.

peek 45

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute and return.
return(x + 1)

})

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

46 ProgressTrackingContext

Check that the backend is not active.
backend$active

ProgressTrackingContext

ProgressTrackingContext

Description

This class represents a progress tracking context for interacting with Backend implementations via
the BackendService interface.

Details

This class extends the base Context class and overrides the sapply parent method to decorate the
backend instance with additional functionality. Specifically, this class creates a temporary file to log
the progress of backend tasks, and then creates a progress bar to display the progress of the backend
tasks.

The progress bar is updated after each backend task execution. The timeout between subsequent
checks of the temporary log file is controlled by the Options class and defaults to 0.001. This
value can be adjusted via the Options instance present in the session base::.Options list (i.e., see
set_option()). For example, to set the timeout to 0.1 we can run set_option("progress_timeout",
0.1).

This class is a good example of how to extend the base Context class to decorate the backend
instance with additional functionality.

Super classes

parabar::BackendService -> parabar::Context -> ProgressTrackingContext

Active bindings

bar The Bar instance registered with the context.

Methods

Public methods:
• ProgressTrackingContext$set_backend()

• ProgressTrackingContext$set_bar()

• ProgressTrackingContext$configure_bar()

• ProgressTrackingContext$sapply()

• ProgressTrackingContext$lapply()

• ProgressTrackingContext$apply()

• ProgressTrackingContext$clone()

ProgressTrackingContext 47

Method set_backend(): Set the backend instance to be used by the context.

Usage:
ProgressTrackingContext$set_backend(backend)

Arguments:

backend An object of class Backend that supports progress tracking implements the BackendService
interface.

Details: This method overrides the parent method to validate the backend provided and guar-
antee it is an instance of the AsyncBackend class.

Method set_bar(): Set the Bar instance to be used by the context.

Usage:
ProgressTrackingContext$set_bar(bar)

Arguments:

bar An object of class Bar.

Method configure_bar(): Configure the Bar instance registered with the context.

Usage:
ProgressTrackingContext$configure_bar(...)

Arguments:

... A list of named arguments passed to the create() method of the Bar instance. See the
documentation of the specific concrete bar for details (e.g., ModernBar).

Method sapply(): Run a task on the backend akin to parallel::parSapply(), but with a
progress bar.

Usage:
ProgressTrackingContext$sapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method lapply(): Run a task on the backend akin to parallel::parLapply(), but with a
progress bar.

Usage:
ProgressTrackingContext$lapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

48 ProgressTrackingContext

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method apply(): Run a task on the backend akin to parallel::parApply().

Usage:
ProgressTrackingContext$apply(x, margin, fun, ...)

Arguments:
x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProgressTrackingContext$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Context, BackendService, Backend, and AsyncBackend.

Examples

Define a task to run in parallel.
task <- function(x, y) {

Sleep a bit.
Sys.sleep(0.15)

Return the result of a computation.
return(x + y)

}

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.

ProgressTrackingContext 49

specification$set_type(type = "psock")

Create a backend factory.
backend_factory <- BackendFactory$new()

Get a backend instance that does not support progress tracking.
backend <- backend_factory$get("sync")

Create a progress tracking context object.
context <- ProgressTrackingContext$new()

Attempt to set the incompatible backend instance.
try(context$set_backend(backend))

Get a backend instance that does support progress tracking.
backend <- backend_factory$get("async")

Register the backend with the context.
context$set_backend(backend)

From now all, all backend operations are intercepted by the context.

Start the backend.
context$start(specification)

Create a bar factory.
bar_factory <- BarFactory$new()

Get a modern bar instance.
bar <- bar_factory$get("modern")

Register the bar with the context.
context$set_bar(bar)

Configure the bar.
context$configure_bar(

show_after = 0,
format = " > completed :current out of :total tasks [:percent] [:elapsed]"

)

Run a task in parallel (i.e., approx. 1.9 seconds).
context$sapply(x = 1:25, fun = task, y = 10)

Get the task output.
backend$get_output(wait = TRUE)

Change the bar type.
bar <- bar_factory$get("basic")

Register the bar with the context.
context$set_bar(bar)

Remove the previous bar configuration.

50 SessionState

context$configure_bar()

Run a task in parallel (i.e., approx. 1.9 seconds).
context$sapply(x = 1:25, fun = task, y = 10)

Get the task output.
backend$get_output(wait = TRUE)

Close the backend.
context$stop()

SessionState SessionState

Description

This class holds the state of a background session used by an asynchronous backend (i.e., AsyncBackend).
See the Details section for more information.

Details

The session state is useful to check if an asynchronous backend is ready for certain operations. A
session can only be in one of the following four states at a time:

• session_is_starting: When TRUE, it indicates that the session is starting.

• session_is_idle: When TRUE, it indicates that the session is idle and ready to execute oper-
ations.

• session_is_busy: When TRUE, it indicates that the session is busy (i.e., see the TaskState
class for more information about a task’s state).

• session_is_finished: When TRUE, it indicates that the session is closed and no longer
available for operations.

Active bindings

session_is_starting A logical value indicating whether the session is starting.

session_is_idle A logical value indicating whether the session is idle and ready to execute op-
erations.

session_is_busy A logical value indicating whether the session is busy.

session_is_finished A logical value indicating whether the session is closed and no longer
available for operations.

SessionState 51

Methods

Public methods:
• SessionState$new()

• SessionState$clone()

Method new(): Create a new SessionState object and determine the state of a given back-
ground session.

Usage:
SessionState$new(session)

Arguments:
session A callr::r_session object.

Returns: An object of class SessionState.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SessionState$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

TaskState, AsyncBackend and ProgressTrackingContext.

Examples

Handy function to print the session states all at once.
check_state <- function(session) {

Create a session object and determine its state.
session_state <- SessionState$new(session)

Print the state.
cat(

"Session is starting: ", session_state$session_is_starting, "\n",
"Session is idle: ", session_state$session_is_idle, "\n",
"Session is busy: ", session_state$session_is_busy, "\n",
"Session is finished: ", session_state$session_is_finished, "\n",
sep = ""

)
}

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.
specification$set_type(type = "psock")

52 Specification

Create an asynchronous backend object.
backend <- AsyncBackend$new()

Start the cluster on the backend.
backend$start(specification)

Check that the session is idle.
check_state(backend$cluster)

{
Run a task in parallel (i.e., approx. 0.25 seconds).
backend$sapply(

x = 1:10,
fun = function(x) {

Sleep a bit.
Sys.sleep(0.05)

Compute something.
output <- x + 1

Return the result.
return(output)

}
)

And immediately check that the session is busy.
check_state(backend$cluster)

}

Get the output and wait for the task to complete.
output <- backend$get_output(wait = TRUE)

Check that the session is idle again.
check_state(backend$cluster)

Manually close the session.
backend$cluster$close()

Check that the session is finished.
check_state(backend$cluster)

Stop the backend.
backend$stop()

Specification Specification

Specification 53

Description

This class contains the information required to start a backend. An instance of this class is used by
the start method of the BackendService interface.

Active bindings

cores The number of nodes to use in the cluster creation.

type The type of cluster to create.

types The supported cluster types.

Methods

Public methods:
• Specification$set_cores()

• Specification$set_type()

• Specification$clone()

Method set_cores(): Set the number of nodes to use in the cluster.

Usage:
Specification$set_cores(cores)

Arguments:
cores The number of nodes to use in the cluster.

Details: This method also performs a validation of the requested number of cores, ensuring
that the the value lies between 1 and parallel::detectCores() - 1.

Method set_type(): Set the type of cluster to create.

Usage:
Specification$set_type(type)

Arguments:
type The type of cluster to create. Possible values are "fork" and "psock". Defaults to

"psock".

Details: If no type is explicitly requested (i.e., type = NULL), the type is determined based
on the operating system. On Unix-like systems, the type is set to "fork", while on Windows
systems, the type is set to "psock". If an unknown type is requested, a warning is issued and
the type is set to "psock".

Method clone(): The objects of this class are cloneable with this method.

Usage:
Specification$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

BackendService, Backend, SyncBackend, and AsyncBackend.

54 start_backend

Examples

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 4)

Set the cluster type.
specification$set_type(type = "psock")

Get the number of cores.
specification$cores

Get the cluster type.
specification$type

Attempt to set too many cores.
specification$set_cores(cores = 100)

Check that the cores were reasonably set.
specification$cores

Allow the object to determine the adequate cluster type.
specification$set_type(type = NULL)

Check the type determined.
specification$type

Attempt to set an invalid cluster type.
specification$set_type(type = "invalid")

Check that the type was set to `psock`.
specification$type

start_backend Start a Backend

Description

This function can be used to start a backend. Check out the Details section for more information.

Usage

start_backend(cores, cluster_type = "psock", backend_type = "async")

start_backend 55

Arguments

cores A positive integer representing the number of cores to use (i.e., the number of
processes to start). This value must be between 2 and parallel::detectCores()
- 1.

cluster_type A character string representing the type of cluster to create. Possible values are
"fork" and "psock". Defaults to "psock". See the section Cluster Type for
more information.

backend_type A character string representing the type of backend to create. Possible values
are "sync" and "async". Defaults to "async". See the section Backend Type
for more information.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function uses the Specification class to create a specification object, and
the BackendFactory class to create a Backend instance based on the specification object.

Value

A Backend instance that can be used to parallelize computations. The methods available on the
Backend instance are defined by the BackendService interface.

Cluster Type

The cluster type determines the type of cluster to create. The requested value is validated and
passed to the type argument of the parallel::makeCluster() function. The following table lists
the possible values and their corresponding description.

Cluster Description
"fork" For Unix-based systems.
"psock" For Windows-based systems.

Backend Type

The backend type determines the type of backend to create. The requested value is passed to the
BackendFactory class, which returns a Backend instance of the desired type. The following table
lists the possible backend types and their corresponding description.

Backend Description Implementation Progress
"sync" A synchronous backend. SyncBackend no
"async" An asynchronous backend. AsyncBackend yes

In a nutshell, the difference between the two backend types is that for the synchronous backend the
cluster is created in the main process, while for the asynchronous backend the cluster is created in a
backend R process using callr::r_session. Therefore, the synchronous backend is blocking the
main process during task execution, while the asynchronous backend is non-blocking. Check out
the implementations listed in the table above for more information. All concrete implementations
extend the Backend abstract class and implement the BackendService interface.

56 start_backend

See Also

peek(), export(), evaluate(), clear(), configure_bar(), par_sapply(), par_lapply(),
par_apply(), stop_backend(), and BackendService.

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute and return.
return(x + 1)

})

stop_backend 57

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

Check that the backend is not active.
backend$active

stop_backend Stop a Backend

Description

This function can be used to stop a backend created by start_backend().

Usage

stop_backend(backend)

Arguments

backend An object of class Backend as returned by the start_backend() function.

Details

This function is a convenience wrapper around the lower-lever API of parabar aimed at developers.
More specifically, this function calls the stop method on the provided backend instance.

Value

The function returns void. It throws an error if:

• the value provided for the backend argument is not an instance of class Backend.

• the backend object provided is already stopped (i.e., is not active).

See Also

start_backend(), peek(), export(), evaluate(), clear(), configure_bar(), par_sapply(),
par_apply(), par_lapply(), and BackendService.

58 stop_backend

Examples

Create an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Check that the backend is active.
backend$active

Check if there is anything on the backend.
peek(backend)

Create a dummy variable.
name <- "parabar"

Export the `name` variable in the current environment to the backend.
export(backend, "name", environment())

Remove the dummy variable from the current environment.
rm(name)

Check the backend to see that the variable has been exported.
peek(backend)

Run an expression on the backend.
Note that the symbols in the expression are resolved on the backend.
evaluate(backend, {

Print the name.
print(paste0("Hello, ", name, "!"))

})

Clear the backend.
clear(backend)

Check that there is nothing on the backend.
peek(backend)

Use a basic progress bar (i.e., see `parabar::Bar`).
configure_bar(type = "basic", style = 3)

Run a task in parallel (i.e., approx. 1.25 seconds).
output <- par_sapply(backend, x = 1:10, fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute and return.
return(x + 1)

})

Print the output.
print(output)

Stop the backend.
stop_backend(backend)

SyncBackend 59

Check that the backend is not active.
backend$active

SyncBackend SyncBackend

Description

This is a concrete implementation of the abstract class Backend that implements the BackendService
interface. This backend executes tasks in parallel on a parallel::makeCluster() cluster syn-
chronously (i.e., blocking the main R session).

Super classes

parabar::BackendService -> parabar::Backend -> SyncBackend

Methods

Public methods:
• SyncBackend$new()

• SyncBackend$start()

• SyncBackend$stop()

• SyncBackend$clear()

• SyncBackend$peek()

• SyncBackend$export()

• SyncBackend$evaluate()

• SyncBackend$sapply()

• SyncBackend$lapply()

• SyncBackend$apply()

• SyncBackend$get_output()

• SyncBackend$clone()

Method new(): Create a new SyncBackend object.

Usage:
SyncBackend$new()

Returns: An object of class SyncBackend.

Method start(): Start the backend.

Usage:
SyncBackend$start(specification)

Arguments:
specification An object of class Specification that contains the backend configuration.

60 SyncBackend

Returns: This method returns void. The resulting backend must be stored in the .cluster
private field on the Backend abstract class, and accessible to any concrete backend implementa-
tions via the active binding cluster.

Method stop(): Stop the backend.

Usage:
SyncBackend$stop()

Returns: This method returns void.

Method clear(): Remove all objects from the backend. This function is equivalent to calling
rm(list = ls(all.names = TRUE)) on each node in the backend.

Usage:
SyncBackend$clear()

Returns: This method returns void.

Method peek(): Inspect the backend for variables available in the .GlobalEnv.

Usage:
SyncBackend$peek()

Returns: This method returns a list of character vectors, where each element corresponds to a
node in the backend. The character vectors contain the names of the variables available in the
.GlobalEnv on each node.

Method export(): Export variables from a given environment to the backend.

Usage:
SyncBackend$export(variables, environment)

Arguments:
variables A character vector of variable names to export.
environment An environment object from which to export the variables. Defaults to the parent

frame.

Returns: This method returns void.

Method evaluate(): Evaluate an arbitrary expression on the backend.

Usage:
SyncBackend$evaluate(expression)

Arguments:
expression An unquoted expression to evaluate on the backend.

Returns: This method returns the result of the expression evaluation.

Method sapply(): Run a task on the backend akin to parallel::parSapply().

Usage:
SyncBackend$sapply(x, fun, ...)

Arguments:
x An atomic vector or list to pass to the fun function.

SyncBackend 61

fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method lapply(): Run a task on the backend akin to parallel::parLapply().

Usage:
SyncBackend$lapply(x, fun, ...)

Arguments:

x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method apply(): Run a task on the backend akin to parallel::parApply().

Usage:
SyncBackend$apply(x, margin, fun, ...)

Arguments:

x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: This method returns void. The output of the task execution must be stored in the
private field .output on the Backend abstract class, and is accessible via the get_output()
method.

Method get_output(): Get the output of the task execution.

Usage:
SyncBackend$get_output(...)

Arguments:

... Additional arguments currently not in use.

Details: This method fetches the output of the task execution after calling the sapply()
method. It returns the output and immediately removes it from the backend. Therefore, subse-
quent calls to this method will return NULL. This method should be called after the execution of
a task.

62 SyncBackend

Returns: A vector, matrix, or list of the same length as x, containing the results of the fun. The
output format differs based on the specific operation employed. Check out the documentation
for the apply operations of parallel::parallel for more information.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SyncBackend$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

BackendService, Backend, AsyncBackend, and Context.

Examples

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.
specification$set_type(type = "psock")

Create a synchronous backend object.
backend <- SyncBackend$new()

Start the cluster on the backend.
backend$start(specification)

Check if there is anything on the backend.
backend$peek()

Create a dummy variable.
name <- "parabar"

Export the variable from the current environment to the backend.
backend$export("name", environment())

Remove variable from current environment.
rm(name)

Run an expression on the backend, using the exported variable `name`.
backend$evaluate({

Print the name.
print(paste0("Hello, ", name, "!"))

})

Run a task in parallel (i.e., approx. 1.25 seconds).
backend$sapply(

TaskState 63

x = 1:10,
fun = function(x) {

Sleep a bit.
Sys.sleep(0.25)

Compute something.
output <- x + 1

Return the result.
return(output)

}
)

Get the task output.
backend$get_output()

Clear the backend.
backend$clear()

Check that there is nothing on the cluster.
backend$peek()

Stop the backend.
backend$stop()

Check that the backend is not active.
backend$active

TaskState TaskState

Description

This class holds the state of a task deployed to an asynchronous backend (i.e., AsyncBackend). See
the Details section for more information.

Details

The task state is useful to check if an asynchronous backend is free to execute other operations. A
task can only be in one of the following three states at a time:

• task_not_started: When TRUE, it indicates whether the backend is free to execute another
operation.

• task_is_running: When TRUE, it indicates that there is a task running on the backend.

• task_is_completed: When TRUE, it indicates that the task has been completed, but the back-
end is still busy because the task output has not been retrieved.

64 TaskState

The task state is determined based on the state of the background session (i.e., see the get_state
method for callr::r_session) and the state of the task execution inferred from polling the process
(i.e., see the poll_process method for callr::r_session) as follows:

Session State Execution State Not Started Is Running Is Completed
idle timeout TRUE FALSE FALSE
busy timeout FALSE TRUE FALSE
busy ready FALSE FALSE TRUE

Active bindings

task_not_started A logical value indicating whether the task has been started. It is used to
determine if the backend is free to execute another operation.

task_is_running A logical value indicating whether the task is running.

task_is_completed A logical value indicating whether the task has been completed and the out-
put needs to be retrieved.

Methods

Public methods:

• TaskState$new()

• TaskState$clone()

Method new(): Create a new TaskState object and determine the state of a task on a given
background session.

Usage:

TaskState$new(session)

Arguments:

session A callr::r_session object.

Returns: An object of class TaskState.

Method clone(): The objects of this class are cloneable with this method.

Usage:

TaskState$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

SessionState, AsyncBackend and ProgressTrackingContext.

TaskState 65

Examples

Handy function to print the task states all at once.
check_state <- function(session) {

Create a task state object and determine the state.
task_state <- TaskState$new(session)

Print the state.
cat(

"Task not started: ", task_state$task_not_started, "\n",
"Task is running: ", task_state$task_is_running, "\n",
"Task is completed: ", task_state$task_is_completed, "\n",
sep = ""

)
}

Create a specification object.
specification <- Specification$new()

Set the number of cores.
specification$set_cores(cores = 2)

Set the cluster type.
specification$set_type(type = "psock")

Create an asynchronous backend object.
backend <- AsyncBackend$new()

Start the cluster on the backend.
backend$start(specification)

Check that the task has not been started (i.e., the backend is free).
check_state(backend$cluster)

{
Run a task in parallel (i.e., approx. 0.25 seconds).
backend$sapply(

x = 1:10,
fun = function(x) {

Sleep a bit.
Sys.sleep(0.05)

Compute something.
output <- x + 1

Return the result.
return(output)

}
)

And immediately check the state to see that the task is running.
check_state(backend$cluster)

}

66 UserApiConsumer

Sleep for a bit to wait for the task to complete.
Sys.sleep(1)

Check that the task is completed (i.e., the output needs to be retrieved).
check_state(backend$cluster)

Get the output.
output <- backend$get_output(wait = TRUE)

Check that the task has not been started (i.e., the backend is free again).
check_state(backend$cluster)

Stop the backend.
backend$stop()

UserApiConsumer UserApiConsumer

Description

This class is an opinionated interface around the developer API of the parabar package. See the
Details section for more information on how this class works.

Details

This class acts as a wrapper around the R6::R6 developer API of the parabar package. In a nutshell,
it provides an opinionated interface by wrapping the developer API in simple functional calls. More
specifically, for executing a task in parallel, this class performs the following steps:

• Validates the backend provided.

• Instantiates an appropriate parabar context based on the backend. If the backend supports
progress tracking (i.e., the backend is an instance of AsyncBackend), a progress tracking con-
text (i.e., ProgressTrackingContext) is instantiated and used. Otherwise, a regular context
(i.e., Context) is instantiated. A regular context is also used if the progress tracking is disabled
via the Options instance.

• Registers the backend with the context.

• Instantiates and configures the progress bar based on the Options instance in the session
base::.Options list.

• Executes the task in parallel, and displays a progress bar if appropriate.

• Fetches the results from the backend and returns them.

UserApiConsumer 67

Methods

Public methods:
• UserApiConsumer$sapply()

• UserApiConsumer$lapply()

• UserApiConsumer$apply()

• UserApiConsumer$clone()

Method sapply(): Execute a task in parallel akin to parallel::parSapply().

Usage:
UserApiConsumer$sapply(backend, x, fun, ...)

Arguments:
backend An object of class Backend as returned by the start_backend() function. It can also

be NULL to run the task sequentially via base::sapply().
x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: A vector of the same length as x containing the results of the fun. The output format
resembles that of base::sapply().

Method lapply(): Execute a task in parallel akin to parallel::parLapply().

Usage:
UserApiConsumer$lapply(backend, x, fun, ...)

Arguments:
backend An object of class Backend as returned by the start_backend() function. It can also

be NULL to run the task sequentially via base::lapply().
x An atomic vector or list to pass to the fun function.
fun A function to apply to each element of x.
... Additional arguments to pass to the fun function.

Returns: A list of the same length as x containing the results of the fun. The output format
resembles that of base::lapply().

Method apply(): Execute a task in parallel akin to parallel::parApply().

Usage:
UserApiConsumer$apply(backend, x, margin, fun, ...)

Arguments:
backend An object of class Backend as returned by the start_backend() function. It can also

be NULL to run the task sequentially via base::apply().
x An array to pass to the fun function.
margin A numeric vector indicating the dimensions of x the fun function should be applied

over. For example, for a matrix, margin = 1 indicates applying fun rows-wise, margin
= 2 indicates applying fun columns-wise, and margin = c(1, 2) indicates applying fun
element-wise. Named dimensions are also possible depending on x. See parallel::parApply()
and base::apply() for more details.

68 UserApiConsumer

fun A function to apply to x according to the margin.
... Additional arguments to pass to the fun function.

Returns: The dimensions of the output vary according to the margin argument. Consult the
documentation of base::apply() for a detailed explanation on how the output is structured.

Method clone(): The objects of this class are cloneable with this method.

Usage:
UserApiConsumer$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

start_backend(), stop_backend(), configure_bar(), par_sapply(), and par_lapply().

Examples

Define a simple task.
task <- function(x) {

Perform computations.
Sys.sleep(0.01)

Return the result.
return(x + 1)

}

Start an asynchronous backend.
backend <- start_backend(cores = 2, cluster_type = "psock", backend_type = "async")

Change the progress bar options.
configure_bar(type = "modern", format = "[:bar] :percent")

Create an user API consumer.
consumer <- UserApiConsumer$new()

Execute the task using the `sapply` parallel operation.
output_sapply <- consumer$sapply(backend = backend, x = 1:200, fun = task)

Print the head of the `sapply` operation output.
head(output_sapply)

Execute the task using the `sapply` parallel operation.
output_lapply <- consumer$lapply(backend = backend, x = 1:200, fun = task)

Print the head of the `lapply` operation output.
head(output_lapply)

Stop the backend.
stop_backend(backend)

Warning 69

Warning Package Warnings

Description

This class contains static methods for throwing warnings with informative messages.

Format

Warning$requested_cluster_cores_too_low() Warning for not requesting enough cluster cores.

Warning$requested_cluster_cores_too_high() Warning for requesting too many cluster cores.

Warning$requested_cluster_type_not_supported() Warning for requesting an unsupported
cluster type.

Warning$progress_not_supported_for_backend() Warning for using a backend incompatible
with progress tracking.

Warning$error_in_backend_finalizer() Warning for errors in the backend finalizer during
garbage collection.

Index

∗ datasets
LOGO, 33

AsyncBackend, 2, 3, 4, 8, 9, 13, 47, 48, 50, 51,
53, 55, 62–64, 66

Backend, 2, 4–6, 7, 8–13, 18, 20, 21, 23, 24,
26, 27, 29, 38, 40, 42, 44, 46–48, 53,
55, 57, 59–62, 67

backend, 17, 18, 26, 29, 44, 57, 66
BackendFactory, 8, 9, 55
backends, 19
BackendService, 2, 6, 8–10, 10, 18, 20, 21,

24, 26, 27, 29, 39, 41, 43, 44, 46–48,
53, 55–57, 59, 62

Bar, 13, 13, 14–17, 34, 35, 46, 47
BarFactory, 13, 14, 14, 17, 35
base::.Options, 19, 31, 36, 46, 66
base::apply(), 5, 12, 23, 38, 48, 61, 67, 68
base::close(), 17
base::expression(), 26
base::getOption(), 32
base::lapply(), 40, 41, 67
base::options(), 32
base::sapply(), 42, 67
base::tempfile(), 37
BasicBar, 14–16, 16, 35

callr::r_session, 8, 51, 55, 64
clear, 17, 18
clear(), 27, 29, 39, 41, 43, 44, 56, 57
configure_bar, 19
configure_bar(), 18, 27, 29, 39, 41, 43, 44,

56, 57, 68
Context, 8, 10, 13, 20, 21, 25, 26, 46, 48, 62,

66
ContextFactory, 9, 25

evaluate, 26, 26
evaluate(), 18, 29, 39, 41, 43, 44, 56, 57

Exception, 28
export, 29, 29
export(), 18, 27, 39, 41, 43, 44, 56, 57

get_option, 31
get_option(), 20, 31, 36, 37, 39, 41, 43
getOption(parabar), 31, 36

Helper, 32

LOGO, 33, 33, 34

make_logo, 33
make_logo(), 33
ModernBar, 14, 15, 17, 34, 34, 47

option, 31
Options, 19, 31, 32, 36, 39, 41, 43, 46, 66
options, 31, 36

par_apply, 38
par_apply(), 18, 27, 29, 41, 43, 44, 56, 57
par_lapply, 40
par_lapply(), 18, 27, 29, 39, 43, 44, 56, 57,

68
par_sapply, 42
par_sapply(), 18, 27, 29, 39, 41, 44, 56, 57,

68
parabar, 18, 26, 29, 31, 36, 38, 40, 42, 44, 55,

57, 66
parabar::Backend, 3, 59
parabar::BackendService, 3, 8, 21, 46, 59
parabar::Bar, 16, 34
parabar::Context, 46
parallel::makeCluster(), 2, 8, 55, 59
parallel::parallel, 6, 13, 23, 62
parallel::parApply(), 5, 12, 23, 38, 48, 61,

67
parallel::parLapply(), 5, 12, 23, 40, 47,

61, 67

70

INDEX 71

parallel::parSapply(), 5, 11, 22, 42, 47,
60, 67

peek, 44, 44
peek(), 18, 27, 29, 39, 41, 43, 56, 57
progress::progress_bar, 19, 20, 34, 36
progress::progress_bar$new(), 35
progress::progress_bar$terminate(), 35
progress::progress_bar$update(), 35
ProgressTrackingContext, 6, 20, 24–26, 46,

51, 64, 66

R6::R6, 31, 66

sapply, 46
session, 2, 50, 51, 64
SessionState, 3, 50, 51, 64
set_default_options (get_option), 31
set_default_options(), 20, 31, 32, 37
set_option (get_option), 31
set_option(), 20, 31, 37, 39, 41, 43, 46
Specification, 4, 10, 21, 52, 55, 59
start_backend, 54
start_backend(), 17, 18, 26, 27, 29, 38–44,

57, 67, 68
stop, 57
stop_backend, 57
stop_backend(), 18, 27, 29, 39, 41, 43, 44,

56, 68
SyncBackend, 6, 8, 9, 13, 24, 53, 55, 59, 59

TaskState, 3, 6, 50, 51, 63, 64

UserApiConsumer, 38–43, 66
utils::setTxtProgressBar(), 16
utils::txtProgressBar, 36
utils::txtProgressBar(), 16, 19, 20

Warning, 69

	AsyncBackend
	Backend
	BackendFactory
	BackendService
	Bar
	BarFactory
	BasicBar
	clear
	configure_bar
	Context
	ContextFactory
	evaluate
	Exception
	export
	get_option
	Helper
	LOGO
	make_logo
	ModernBar
	Options
	par_apply
	par_lapply
	par_sapply
	peek
	ProgressTrackingContext
	SessionState
	Specification
	start_backend
	stop_backend
	SyncBackend
	TaskState
	UserApiConsumer
	Warning
	Index

