Package ‘paleobuddy’

February 5, 2025

Title Simulating Diversification Dynamics
Version 1.1.0

Description Simulation of species diversification, fossil records, and phylogenies. While the litera-
ture on species birth-death simulators is extensive, including important software like 'pale-
otree' and 'APE', we concluded there were interesting gaps to be filled regarding possible diversi-
fication scenarios. Here we strove for flexibility over focus, implementing a large array of regi-
mens for users to experiment with and combine. In this way, ‘paleobuddy’ can be used in comple-
ment to other simulators as a flexible jack of all trades, or, in the case of scenarios imple-
mented only here, can allow for robust and easy simulations for novel situations. Environmen-
tal data modified from that in 'RPANDA': Morlon H. et al (2016) <doi:10.1111/2041-
210X.12526>.

URL https://github.com/brpetrucci/paleobuddy

Suggests ape, fitdistrplus, knitr, rmarkdown

Imports methods

License GPL-3

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

BugReports https://github.com/brpetrucci/paleobuddy/issues
NeedsCompilation no

Author Bruno do Rosario Petrucci [aut, cre]
(<https://orcid.org/0000-0001-6334-8483>),
Matheus Januario [aut] (<https://orcid.org/0000-0002-6480-7095>),
Tiago Quental [aut] (<https://orcid.org/0000-0002-4832-9468>)

Maintainer Bruno do Rosario Petrucci <petrucci@iastate.edu>
Repository CRAN
Date/Publication 2025-02-05 18:00:07 UTC

https://doi.org/10.1111/2041-210X.12526
https://doi.org/10.1111/2041-210X.12526
https://github.com/brpetrucci/paleobuddy
https://github.com/brpetrucci/paleobuddy/issues
https://orcid.org/0000-0001-6334-8483
https://orcid.org/0000-0002-6480-7095
https://orcid.org/0000-0002-4832-9468

2 bd.sim
Contents
bdssim 2
bd.sim.traits L e e e e 14
bIN.OCCUITENCES ¢« v ottt e e et e e e e 25
binner L. 27
COZ .t i e e 28
draw.sim 29
findlineages L 34
make.phylo e 39
make.rate e e 47
paleobuddy 50
phylo.to.sim oL e 53
TEXP.VAT « v v v vt e 56
samplecclade e 61
sample.clade.traits 73
SIM . . v v vt 77
BIND L e 79
traitS. SUMMATY ot v e e e e e e e e e e e e e e e 80
varrate.div. . ..o 82
Index 88
bd.sim General rate Birth-Death simulation
Description
Simulates a species birth-death process with general rates for any number of starting species. Allows
for the speciation/extinction rate to be (1) a constant, (2) a function of time, (3) a function of time
and;or an environmental variable, or (4) a vector of numbers representing a step function. Allows
for constraining results on the number of species at the end of the simulation, either total or extant.
The function can also take an optional shape argument to generate age-dependence on speciation
and/or extinction, assuming a Weibull distribution as a model of age-dependence. Returns a sim
object (see ?sim). It may return true extinction times or simply information on whether species
lived after the maximum simulation time, depending on simulation settings.
Usage
bd.sim(
no,
lambda,
mu,
tMax = Inf,
N = Inf,

1Shape = NULL,
mShape = NULL,
envL = NULL,

bd.sim

envM = NULL,
NULL,
NULL,

1Shifts
mShifts

nFinal = c(@, Inf),
nExtant = c(@, Inf),
trueExt = FALSE

Arguments

no

lambda

mu

tMax

1Shape

mShape

Initial number of species. Usually 1, in which case the simulation will describe
the full diversification of a monophyletic lineage. Note that when lambda is
less than or equal to mu, many simulations will go extinct before speciating even
once. One way of generating large sample sizes in this case is to increase n@,
which will simulate the diversification of a paraphyletic group.

Speciation rate (events per species per million years) over time. It can be a
numeric describing a constant rate, a function(t) describing the variation in
speciation over time t, a function(t, env) describing the variation in specia-
tion over time following both time AND an environmental variable (please see
envL for details) or a vector containing rates that correspond to each rate be-
tween speciation rate shift times times (please see 1Shifts). Note that lambda
should always be greater than or equal to zero.

Similar to 1ambda, but for the extinction rate.

Note: rates should be considered as running from @ to tMax, as the simulation
runs in that direction even though the function inverts speciation and extinction
times before returning.

Ending time of simulation, in million years after the clade origin. Any species
still living after tMax is considered extant, and any species that would be gener-
ated after tMax is not present in the return.

Number of species at the end of the simulation. End of the simulation will be
set for one of the times where N species are alive, chosen from all the times
there were N species alive weighted by how long the simulation was in that
situation. Exactly one of tMax and N must be non-Inf. Note that if N is the
chosen condition, mu cannot be 9, since paelobuddy’s current algorithm would
mean only species 1 would have children. Future features will hopefully remove
this limitation.

Shape parameter defining the degree of age-dependency in speciation rate. This

will be equal to the shape parameter in a Weibull distribution: as a species’

longevity increases (negative age-dependency). When larger than one, specia-

tion rate will increase as a species’ longevity increases (positive age-dependency).
It may be a function of time, but see note below for caveats therein. Default

is NULL, equivalent to an age-independent process. For 1Shape !=NULL (in-

cluding when equal to one), 1lambda will be considered a scale (= 1/rate), and

rexp.var will draw a Weibull distribution instead of an exponential. This means

Weibull(rate, 1) = Exponential(1/rate). Note that even when 1Shape != NULL,

lambda may still be time-dependent.

Similar to 1Shape, but for the extinction rate.

envL

envM

1shifts

mShifts

nFinal

nExtant

trueExt

bd.sim

Note: Simulations with time-varying shape behave within theoretical expecta-
tions for most cases, but if shape is lower than 1 and varies too much (e.g. 0.5
+@.5*t), it can be biased for higher waiting times due to computational error.
A degree of time dependence of the order of 0.01 events/my”2 are advisable.
It might, although rarely, exhibit a small bias when using shape functions with
abrupt time variations. In both cases, error is still quite low for the purposes of
the package.

Note: Shape must be greater than 0. We arbitrarily chose 0.01 as the minimum
accepted value, so if shape is under 0.01 for any reasonable time in the simula-
tion, it returns an error.

A data.frame describing a time series that represents the variation of an en-
vironmental variable (e.g. CO2, temperature, available niches, etc) with time.
The first column of this data. frame must be time, and the second column must
be the values of the variable. This will be internally passed to the make.rate
function, to create a speciation rate variation in time following the interaction
between the environmental variable and the function. Note paleobuddy has
two environmental data frames, temp and co2. One can check RPANDA for more
examples, or use their own time series of a variable of interest

Similar to envL, but for the extinction rate.

Vector of rate shifts. First element must be the starting time for the simulation (@
or tMax). It must have the same length as 1ambda. c(@, x, tMax) is equivalent
to c(tMax, tMax - x, @) for the purposes of make.rate.

Similar to mShif'ts, but for the extinction rate.

A vector of length 2, indicating an interval of acceptable number of species
at the end of the simulation. Default value is c(@, Inf), so that any number
of species (including zero, the extinction of the whole clade) is accepted. If
different from default value, simulation will restart until the number of total
species at tMax is in the nFinal interval. Note that nFinal must be a sensible
vector. The function will error if its maximum is lower than 1, or if its length is
not 2.

A vector of length 2, indicating an interval of acceptable number of extant
species at the end of the simulation. Equal to nFinal in every respect except for
that.

Note: The function returns NA if it runs for more than 100009 iterations without
fulfilling the requirements of nFinal and nExtant.

Note: Using values other than the default for nFinal and nExtant will condition
simulation results.

A logical indicating whether the function should return true or truncated ex-
tinction times. When TRUE, time of extinction of extant species will be the true
time, otherwise it will be NA if a species is alive at the end of the simulation.

Note: This is interesting to use to test age-dependent extinction. Age-dependent
speciation would require all speciation times (including the ones after extinc-
tion) to be recorded, so we do not attempt to add an option to account for that.
Since age-dependent extinction and speciation use the same underlying process,
however, if one is tested to satisfaction the other should also be in expectations.

bd.sim 5

Details

Please note while time runs from @ to tMax in the simulation, it returns speciation/extinction times
as tMax (origin of the group) to @ (the "present” and end of simulation), so as to conform to other
packages in the literature.

Value

A sim object, containing extinction times, speciation times, parent, and status information for each
species in the simulation. See ?sim.

Author(s)

Bruno do Rosario Petrucci.

References

Stadler T. 2011. Simulating Trees with a Fixed Number of Extant Species. Systematic Biology.
60(5):676-684.

Examples

we will showcase here some of the possible scenarios for diversification,
touching on all the kinds of rates

HiH
consider first the simplest regimen, constant speciation and extinction

initial number of species
no <- 1

maximum simulation time
tMax <- 40

speciation
lambda <- 0.11

extinction
mu <- 0.08

set a seed
set.seed(1)

run the simulation, making sure we have more than 1 species in the end
sim <- bd.sim(n@, lambda, mu, tMax, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape: :plot.phylo(phy)

3

bd.sim

i
if we want, we can simulate up to a number of species instead

initial number of species
ne <- 1

maximum simulation time
N <- 10

speciation
lambda <- 0.11

extinction
mu <- 0.08

set a seed
set.seed(1)

run the simulation, making sure we have more than 1 species in the end
sim <- bd.sim(n@, lambda, mu, N = N)

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape: :plot.phylo(phy)

3

fiziz:d
now let us complicate speciation more, maybe a linear function

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

make a vector for time
time <- seq(@, tMax, 0.1)

speciation rate
lambda <- function(t) {

return(0.05 + 0.005xt)
3

extinction rate
mu <- 0.1

set a seed
set.seed(4)

run the simulation, making sure we have more than 1 species in the end
sim <- bd.sim(n@, lambda, mu, tMax, nFinal = c(2, Inf))

bd.sim

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
full phylogeny
phy <- make.phylo(sim)
ape: :plot.phylo(phy)

3

fizizd
what if we want mu to be a step function?

initial number of species
no <- 1

maximum simulation time
tMax <- 40

speciation

lambda <- function(t) {
return(0.02 + 0.005xt)

3

vector of extinction rates
mList <- c(0.09, 0.08, 0.1)

vector of shift times. Note mShifts could be c(40, 20, 5) for identical
results
mShifts <- c(@, 20, 35)

let us take a look at how make.rate will make it a step function
mu <- make.rate(mList, tMax = tMax, rateShifts = mShifts)

and plot it

plot(seq(@, tMax, 0.1), rev(mu(seq(@, tMax, 0.1))), type = '1l',
main = "Extintion rate as a step function”, xlab = "Time (Mya)",
ylab = "Rate (events/species/My)", xlim = c(tMax, 0))

looking good, we will keep everything else the same

a different way to define the same extinction function
mu <- function(t) {
ifelse(t < 20, 0.09,
ifelse(t < 35, 0.08, 0.1))

set seed
set.seed(2)

run the simulation
sim <- bd.sim(n@, lambda, mu, tMax, nFinal = c(2, Inf))
we could instead have used mList and mShifts

we can plot the phylogeny to take a look
if (requireNamespace(”ape”, quietly = TRUE)) {

phy <- make.phylo(sim)
ape: :plot.phylo(phy)
3

fizizid
we can also supply a shape parameter to try age-dependent rates

initial number of species
no <- 1

maximum simulation time
tMax <- 40

speciation - note that since this is a Weibull scale,
the unites are my/events/lineage, not events/lineage/my

lambda <- 10

speciation shape
1Shape <- 2

extinction
mu <- 0.08

set seed
set.seed(4)

run the simulation - note the message saying lambda is a scale

sim <- bd.sim(n@, lambda, mu, tMax, 1Shape = 1Shape, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

H#it#
scale can be a time-varying function

initial number of species
no <- 1

maximum simulation time
tMax <- 40

speciation - note that since this is a Weibull scale,
the unites are my/events/lineage, not events/lineage/my
lambda <- function(t) {
return(2 + 0.25%t)
3

speciation shape
1Shape <- 2

bd.sim

bd.sim

extinction
mu <- 0.2

set seed
set.seed(1)

run the simulation - note the message saying lambda is a scale
sim <- bd.sim(n@, lambda, mu, tMax, 1Shape = 1Shape, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape: :plot.phylo(phy)

3

fizizid
and shape can also vary with time

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

speciation - note that since this is a Weibull scale,
the unites are my/events/lineage, not events/lineage/my
lambda <- function(t) {
return(2 + 0.25%t)
3

speciation shape
1Shape <- function(t) {
return(1 + 0.02xt)

3

extinction
mu <- 0.2

set seed
set.seed(4)

run the simulation - note the message saying lambda is a scale
sim <- bd.sim(n@, lambda, mu, tMax, 1Shape = 1Shape, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

fizizid
finally, we can also have a rate dependent on an environmental variable,
like temperature data

10

bd.sim

get temperature data (see ?temp)
data(temp)

initial number of species
no <- 1

maximum simulation time
tMax <- 40

speciation - a scale
lambda <- 10
note the scale for the age-dependency could be a time-varying function

speciation shape
1Shape <- 2

extinction, dependent on temperature exponentially
mu <- function(t, env) {

return(@.1*%exp(0.025%env))
3

need a data frame describing the temperature at different times
envM <- temp

by passing mu and envM to bd.sim, internally bd.sim will make mu into a
function dependent only on time, using make.rate
mFunc <- make.rate(mu, tMax = tMax, envRate = envM)

take a look at how the rate itself will be

plot(seq(@, tMax, @.1), rev(mFunc(seq(@, tMax, 0.1))),
main = "Extinction rate varying with temperature”, xlab = "Time (Mya)",
ylab = "Rate (events/species/My)"”, type = 'l1', xlim = c(tMax, 0))

set seed
set.seed(2)

run the simulation
sim <- bd.sim(n@, lambda, mu, tMax, lShape = 1Shape, envM = envM,
nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

fizizid

one can mix and match all of these scenarios as they wish - age-dependency
and constant rates, age-dependent and temperature-dependent rates, etc.

the only combination that is not allowed is a step function rate and

environmental data, but one can get around that as follows

bd.sim 11

get the temperature data - see ?temp for information on the data set
data(temp)

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

speciation - a step function of temperature built using ifelse()
note that this creates two shifts for lambda, for a total of 3 values
throughout the simulation
lambda <- function(t, env) {
ifelse(t < 20, env,
ifelse(t < 30, env / 4, env / 3))

speciation shape
1Shape <- 2

environment variable to use - temperature
envL <- temp

this is kind of a complicated scale, let us take a look

make it a function of time
1Func <- make.rate(lambda, tMax = tMax, envRate = envlL)

plot it
plot(seq(@, tMax, ©0.1), rev(lFunc(seq(@, tMax, 0.1))),
main = "Speciation scale varying with temperature”, xlab = "Time (Mya)",

ylab = "Scale (1/(events/species/My))", type = '1', x1lim = c(tMax, 0))
extinction
mu <- 0.1

maximum simulation time
tMax <- 40

set seed
set.seed(1)

run the simulation
sim <- bd.sim(n@, lambda, mu, tMax, lShape = 1Shape, envL = envL,
nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

time2 <- Sys.time()

12

after presenting the possible models, we can consider how to
create mixed models, where the dependency changes over time

H#it#
consider speciation that becomes environment dependent
in the middle of the simulation

get the temperature data - see ?temp for information on the data set

data(temp)

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

time and temperature-dependent speciation
lambda <- function(t, temp) {
return(
ifelse(t < 20, 0.1 - 0.005*t,
0.05 + 0.1xexp(0.02xtemp))

extinction
mu <- 0.11

set seed
set.seed(4)

run simulation

sim <- bd.sim(n@, lambda, mu, tMax, envL = temp, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

H#it#
we can also change the environmental variable
halfway into the simulation

note below that for this scenario we need make.rate, which
in general can aid users looking for more complex scenarios
than those available directly with bd.sim arguments

get the temperature data - see ?temp for information on the data set

data(temp)

same for co2 data (and ?co2)

bd.sim

bd.sim

data(co2)

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

speciation
lambda <- 0.1

temperature-dependent extinction
m_t1 <- function(t, temp) {

return(0.05 + 0.1xexp(@.02*%temp))
3

make first function
mul <- make.rate(m_t1, tMax = tMax, envRate = temp)

co2-dependent extinction

m_t2 <- function(t, co2) {
return(0.02 + @.14%exp(@.01*co2))

3

make second function
mu2 <- make.rate(m_t2, tMax = tMax, envRate = co2)

final extinction function
mu <- function(t) {

ifelse(t < 20, mul(t), mu2(t))
}

set seed
set.seed(3)

run simulation
sim <- bd.sim(n@, lambda, mu, tMax, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

note one can also use this mul mu2 workflow to create a rate

dependent on more than one environmental variable, by decoupling
the dependence of each in a different function and putting those
together

H#HiHH
finally, one could create an extinction rate that turns age-dependent
in the middle, by making shape time-dependent

13

14 bd.sim.traits

initial number of species
ne <- 1

maximum simulation time
tMax <- 40

speciation
lambda <- 0.15

extinction - note that since this is a Weibull scale,
the unites are my/events/lineage, not events/lineage/my
mu <- function(t) {
return(8 + 0.05%t)
3

extinction shape
mShape <- function(t) {
return(
ifelse(t < 30, 1, 2)
)
3

set seed
set.seed(3)

run simulation
sim <- bd.sim(n@, lambda, mu, tMax, mShape = mShape,
nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim)
ape::plot.phylo(phy)

3

H#HHHH

note nFinal has to be sensible

Not run:

this would return an error, since it is virtually impossible to get 100
species at a process with diversification rate -0.09 starting at no = 1
sim <- bd.sim(1, lambda = ©.01, mu = 1, tMax = 100, nFinal = c(100, Inf))

End(Not run)

bd.sim.traits MuSSE simulation

Description

Simulates a species birth-death process following the Multiple State-dependent Speciation and Ex-
tinction (MuSSE) or the Hidden State-dependent Speciation and Extinction (HiSSE) model for any

bd.sim.traits

15

number of starting species. Allows for the speciation/extinction rate to be (1) a constant, or (2)
a list of values for each trait state. Traits are simulated to evolve under a simple Mk model (see
references). Results can be conditioned on either total simulation time, or total number of extant
species at the end of the simulation. Also allows for constraining results on a range of number of
species at the end of the simulation, either total or extant, using rejection sampling. Returns a sim
object (see ?sim), and a list of data frames describing trait values for each interval. It may return
true extinction times or simply information on whether species lived after the maximum simulation
time, depending on input. Can simulate any number of traits, but rates need to depend on only one
(each, so speciation and extinction can depend on different traits).

Usage

bd.sim.traits(

no,
lambda,
mu,

tMax = Inf,

N = Inf,
nTraits

nFocus =
nStates =

nHidden
X0 =0,

Q = list(matrix(c(0, 0.1, 0.1, @), ncol = 2, nrow = 2)),
nFinal = c(@, Inf),
nExtant = c(@, Inf)

Arguments

no

lambda

mu

tMax

Initial number of species. Usually 1, in which case the simulation will describe
the full diversification of a monophyletic lineage. Note that when lambda is
less than or equal to mu, many simulations will go extinct before speciating even
once. One way of generating large sample sizes in this case is to increase no,
which will simulate the diversification of a paraphyletic group.

Vector to hold the speciation rate over time. It should either be a constant, or a
list of size nStates. For each species a trait evolution simulation will be run,
and then used to calculate the final speciation rate. Note that lambda should
always be greater than or equal to zero.

Similar to above, but for the extinction rate.

Ending time of simulation, in million years after the clade origin. Any species
still living after tMax is considered extant, and any species that would be gener-
ated after tMax is not present in the return.

Number of species at the end of the simulation. End of the simulation will be
set for one of the times where N species are alive, chosen from all the times
there were N species alive weighted by how long the simulation was in that
situation. Exactly one of tMax and N must be non-Inf. Note that if N is the
chosen condition, mu cannot be @, since paelobuddy’s current algorithm would

16

nTraits

nFocus

nStates

nHidden

X0

nFinal

nExtant

Details

bd.sim.traits

mean only species 1 would have children. Future features will hopefully remove
this limitation.

The number of traits to be considered. lambda and mu need not reference every
trait simulated.

Trait of focus, i.e. the one that rates depend on. If it is one number, that will be
the trait of focus for both speciation and extinction rates. If it is of length 2, the
first will be the focus for the former, the second for the latter.

Number of possible states for categorical trait. The range of values will be as-
sumed to be (@, nStates - 1). Can be a constant or a vector of length nTraits,
if traits are intended to have different numbers of states.

Number of hidden states for categorical trait. Default is 1, in which case there
are no added hidden traits. Total number of states is then nStates * nHidden.
States will then be set to a value in the range of (@, nStates - 1) to simulate
that hidden states are hidden. This is done by setting the value of a state to the
remainder of state / nStates. E.g. if nStates = 2 and nHidden = 3, possible
states during simulation will be in the range (@, 5), but states (2, 4) (corre-
sponding to (@B, @C) in the nomenclature of the original HiSSE reference) will
be set to @, and states (3, 5) (corresponding to (1B, 1C)) to 1.

Initial trait value for original species. Must be within (@, nStates - 1). Can be
a constant or a vector of length nTraits.

Transition rate matrix for continuous-time trait evolution. For different states i
and j, the rate at which a species at i transitions to j is Q[i + 1, j+ 1]. Must
be within a list, so as to allow for different Q matrices when nTraits > 1.

Note that for all of nStates, nHidden, X@ and Q, if nTraits > 1 and any of those
is of length 1, they will be considered to apply to all traits equally. This might
lead to problems if, e.g., two traits have different states but the same Q, so double
check that you are providing all parameters for the required traits.

A vector of length 2, indicating an interval of acceptable number of species
at the end of the simulation. Default value is c(@, Inf), so that any number
of species (including zero, the extinction of the whole clade) is accepted. If
different from default value, simulation will restart until the number of total
species at tMax is in the nFinal interval. Note that nFinal must be a sensible
vector. The function will error if its maximum is lower than 1, or if its length is
not 2.

A vector of length 2, indicating an interval of acceptable number of extant
species at the end of the simulation. Equal to nFinal in every respect except for
that.

Note: The function returns NA if it runs for more than 100000 iterations without
fulfilling the requirements of nFinal and nExtant.

Note: Using values other than the default for nFinal and nExtant will condition
simulation results.

Please note while time runs from @ to tMax in the simulation, it returns speciation/extinction times
as tMax (origin of the group) to @ (the "present" and end of simulation), so as to conform to other
packages in the literature.

bd.sim.traits 17

Value

A sim object, containing extinction times, speciation times, parent, and status information for each
species in the simulation, and a list object with the trait data frames describing the trait value for
each species at each specified interval.

Author(s)

Bruno do Rosario Petrucci.

References

Maddison W.P., Midford P.E., Otto S.P. 2007. Estimating a binary character’s effect on speciation
and extinction. Systematic Biology. 56(5):701.

FitzJohn R.G. 2012. Diversitree: Comparative Phylogenetic Analyses of Diversification in R. Meth-
ods in Ecology and Evolution. 3:1084-1092.

Beaulieu J.M., O’Meara, B.C. 2016. Detecting Hidden Diversification Shifts in Models of Trait-
Dependent Speciation and Extinction. Systematic Biology. 65(4):583-601.

Examples

H#it#
first, it's good to check that it can work with constant rates

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

speciation
lambda <- 0.1

extinction
mu <- 0.03

set seed
set.seed(1)

run the simulation, making sure we have more than one species in the end
sim <- bd.sim.traits(n@, lambda, mu, tMax, nFinal = c(2, Inf))

we can plot the phylogeny to take a look

if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)
ape: :plot.phylo(phy)

3

i
now let's actually make it trait-dependent, a simple BiSSE model

18

initial number of species
ne <- 1

maximum simulation time
tMax <- 40

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, trait-independent
mu <- 0.03

number of traits and states (1 binary trait)
nTraits <- 1
nStates <- 2

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates
Q <- list(matrix(c(o, 0.1,
0.1, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traits <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]1$value, 1)))

we can plot the phylogeny to take a look
if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = c("red”, "blue”)[traits + 1])
}

#iH#
extinction can be trait-dependent too, of course

initial number of species
no <- 1

number of species at the end of the simulation
N <- 20

speciation, higher for state 1
lambda <- c(0.1, 0.2)

bd.sim.traits

bd.sim.traits 19

extinction, highe for state @
mu <- c(0.06, 0.03)

number of traits and states (1 binary trait)
nTraits <- 1
nStates <- 2

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates
Q <- list(matrix(c(o, 0.1,
0.1, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, N = N, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traits <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]1$value, 1)))

we can plot the phylogeny to take a look
if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = c("red”, "blue”)[traits + 1])
}

fiziz1d
we can complicate the model further by making transition rates asymmetric

initial number of species
no <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, lower for state 1
mu <- c(0.03, 0.01)

number of traits and states (1 binary trait)
nTraits <- 1
nStates <- 2

initial value of the trait
X0 <- 0

20

bd.sim.traits

transition matrix, with g@1 higher than q10
Q <- list(matrix(c(o, 0.1,
0.25, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traits <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]1$value, 1)))

we can plot the phylogeny to take a look
if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = c("red”, "blue”)[traits + 1])
}

H#HiH#
MuSSE is BiSSE but with higher numbers of states

initial number of species
ng <- 1

number of species at the end of the simulation
N <- 20

speciation, higher for state 1, highest for state 2
lambda <- c(0.1, 0.2, 0.3)

extinction, higher for state 2
mu <- c(0.03, 0.03, 0.06)

number of traits and states (1 trinary trait)
nTraits <- 1
nStates <- 3

initial value of the trait
X0 <- 0

transition matrix, with symmetrical, fully reversible transition rates
Q <- list(matrix(c(o, 0.1, 0.1,

0.1, 0, 0.1,

0.1, 0.1, @), ncol = 3, nrow = 3))

set seed
set.seed(1)

bd.sim.traits

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, N = N, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traits <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]J1$value, 1)))

we can plot the phylogeny to take a look
if (requireNamespace(”ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

0 tips = red, 1 tips = blue, 2 tips = green
ape: :plot.phylo(phy, tip.color = c("red”, "blue”", "green")[traits + 1])
3

fizizid

HiSSE is like BiSSE, but with the possibility of hidden traits

here we have 4 states, representing two states for the observed trait
(0 and 1) and two for the hidden trait (A and B), i.e. @A, 1A, 0B, 1B

initial number of species
no <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1A, highest for 1B
lambda <- c(0.1, 0.2, 0.1, 0.3)

extinction, lowest for 0B
mu <- c(0.03, 0.03, 0.01, 0.03)

number of traits and states (1 binary observed trait,
1 binary hidden trait)

nTraits <- 1

nStates <- 2

nHidden <- 2

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates. Only one transition
is allowed at a time, i.e. QA can go to @B and 1A,

but not to 1B, and similarly for others

Q <- list(matrix(c(o, 0.1, 0.1, 0,

0, 9, 0.1,
0, 9, 0.1,
1, 0.1, @), ncol = 4, nrow = 4))

1,
A,
, 0.

[SENS NS

’

set seed
set.seed(1)

run the simulation

22

bd.sim.traits

sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, nHidden = nHidden,
X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traits <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]J1$value, 1)))

we can plot the phylogeny to take a look
if (requireNamespace(”ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = c("red”, "blue”)[traits + 1])
3

fizizid
we can also increase the number of traits, e.g. to have a neutral trait
evolving with the real one to compare the estimates of the model for each

initial number of species
no <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, lowest for state 0
mu <- c(0.01, 0.03)

number of traits and states (2 binary traits)
nTraits <- 2
nStates <- 2

initial value of both traits
X0 <- 0

transition matrix, with symmetrical transition rates for trait 1,
and asymmetrical (and higher) for trait 2
Q <- list(matrix(c(o, 0.1,
0.1, @), ncol
matrix(c(o, 1,
0.5, @), ncol = 2, nrow

2, nrow = 2),

2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,

nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips

bd.sim.traits 23

traitsl <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]1]$value, 1)))
traits2 <- unlist(lapply(sim$TRAITS, function(x) tail(x[[2]]$value, 1)))

make index for coloring tips
index <- ifelse(!(traitsl | traits2), "red”,
ifelse(traitsl & !traits2, "purple”,
ifelse(!traits1 & traits2, "magenta”, "blue")))
00 = red, 10 = purple, @1 = magenta, 11 = blue

we can plot the phylogeny to take a look
if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape::plot.phylo(phy, tip.color = index)
}

H#it#
we can then do the same thing, but with the
second trait controlling extinction

initial number of species
ng <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 10 and 11
lambda <- c(0.1, 0.2)

extinction, lowest for state 00 and 01
mu <- c(0.01, 0.03)

number of traits and states (2 binary traits)
nTraits <- 2

nStates <- 2

nFocus <- c(1, 2)

initial value of both traits
X0 <- 0

transition matrix, with symmetrical transition rates for trait 1,
and asymmetrical (and higher) for trait 2
Q <- list(matrix(c(o, 0.1,

0.1, @), ncol = 2, nrow = 2),
matrix(c(o, 1,
0.5, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,

24

nStates = nStates, nFocus = nFocus,
X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traitsl <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]]$value, 1)))
traits2 <- unlist(lapply(sim$TRAITS, function(x) tail(x[[2]J$value, 1)))

make index for coloring tips
index <- ifelse(!(traitsl1 | traits2), "red”,
ifelse(traitsl & !traits2, "purple”,
ifelse(!traitsl & traits2, "magenta”, "blue")))
00 = red, 10 = purple, @1 = magenta, 11 = blue

we can plot the phylogeny to take a look
if (requireNamespace(”ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = index)
3

fizizid
as a final level of complexity, let us change the Xo
and number of states of the trait controlling extinction

initial number of species
ne <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 10 and 11
lambda <- c(0.1, 0.2)

extinction, lowest for state 00, 01, and 02
mu <- c(@.01, 0.03, 0.03)

number of traits and states (2 binary traits)
nTraits <- 2

nStates <- c(2, 3)

nFocus <- c(1, 2)

initial value of both traits
X0 <- c(0, 2)

transition matrix, with symmetrical transition rates for trait 1,
and asymmetrical, directed, and higher rates for trait 2
Q <- list(matrix(c(o, 0.1,
0.1, @), ncol = 2, nrow = 2),
matrix(c(o, 1, 0,
0.5, 0, 0.75,
@0, 1, @), ncol = 3, nrow = 3))

bd.sim.traits

bin.occurrences 25

set seed
set.seed(1)

run the simulation

sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, nFocus = nFocus,
X0 = X0, Q = Q, nFinal = c(2, Inf))

get trait values for all tips
traitsl <- unlist(lapply(sim$TRAITS, function(x) tail(x[[1]1]$value, 1)))
traits2 <- unlist(lapply(sim$TRAITS, function(x) tail(x[[2]]1$value, 1)))

make index for coloring tips
index <- ifelse(!(traitsl | (traits2 != 0)), "red",
ifelse(traitsl & (traits2 == @), "purple”,
ifelse(!traits] & (traits2 == 1), "magenta”,
ifelse(traitsl & (traits2 == 1), "blue”,
ifelse(!traitsl & (traits2 == 2),
"orange”, "green")))))

00 = red, 10 = purple, @1 = magenta, 11 = blue, 02 = orange, 12 = green

we can plot the phylogeny to take a look
if (requireNamespace("ape”, quietly = TRUE)) {
phy <- make.phylo(sim$SIM)

color @ valued tips red and 1 valued tips blue
ape: :plot.phylo(phy, tip.color = index)
3
one could further complicate the model by adding hidden states
to each trait, each with its own number etc, but these examples
include all the tools necessary to make these or further extensions

bin.occurrences Bin true occurrences into geologic intervals

Description

Given the output of sample.clade(..., returnTrue = FALSE), returns the occurrence counts in
each bin (i.e., the same as sample.clade(. .., returnTrue = TRUE)). This helps to trace perfect
parallels between both output formats of sample.clade.

Usage

bin.occurrences(fossils, bins)

26 bin.occurrences

Arguments
fossils A data.frame exactly as returned by sample.clade(..., returnTrue = FALSE).
See ?sample.clade) for details.
bins A vector of time intervals corresponding to geological time ranges.
Details

This function helps a user bin "true occurrences" directly into binned occurrences, allowing for
comparisons among "perfectly known" fossil records and records that have a certain resolution
(given by the bins parameter).

Value

A data. frame exactly as returned by sample.clade(. .., returnTrue = TRUE). See ?sample. clade)
for details.

Author(s)

Matheus Januario.

Examples

HiH#
set seed
set.seed(1)

run a birth-death simulation
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.05, tMax = 50)

choose bins
bins <- seq(@, 50, by = 1)

generate "true” fossil occurrences
fossils_true <- sample.clade(sim, rho = 1, tMax = 50, returnTrue = TRUE)

bin the true occurrences
fossils_binned <- bin.occurrences(fossils_true, bins)

compare
fossils_true
fossils_binned

binner 27

binner Bin occurrences in geologic intervals

Description
Given a vector of fossil occurrences and time bins to represent geological ranges, returns the occur-
rence counts in each bin.

Usage

binner(x, bins)

Arguments
X The vector containing occurrence times for one given species.
bins A vector of time intervals corresponding to geological time ranges.
Details

The convention for couting occurrences inside a bin is to count all occurrences exactly in the bound-
ary furthest from zero and exclude bins exactly in the boundary closest to zero. Then, in the bin
closest to zero (i.e., the "last", or "most recent" bin), include all occurrence on each of the two
boundaries. So occurrences that fall on a boundary are placed on the most recent bin possible

Value

A vector of occurrence counts for each interval, sorted from furthest to closest to zero.

Author(s)

Matheus Januario and Bruno do Rosario Petrucci

Examples

H#iH#
first let us create some artificial occurrence data and check

occurrence vector
x <- ¢(5.2, 4.9, 4.1, 3.2, 1, 0.2)

bins vector
bins <- c(6, 5, 4, 3, 2, 1, @)

result
binnedSamp <- binner(x, bins)
binnedSamp

fizizid
it should work with any type of number in bins

28

co2

occurrence vector
x <- c(6.7, 5.03, 4.2, 3.4, 1.2, 0.4)

bins vector
bins <- ¢(7.2, 6.7, 5.6, 4.3, 3.2, sqrt(2), 1, 0)

result
binnedSamp <- binner(x, bins)
binnedSamp

H#HHHH
let us try with a real simulated species fossil record

set seed
set.seed(1)

run the simulation
sim <- bd.sim(1, lambda = 0.1, mu = 0.05, tMax = 15)

sample it
sampled <- sample.clade(sim = sim, rho = 1, tMax = 15, S = 1)$SampT

bins vector
bins <- ¢(15.1, 12.3, 10, 7.1, 5.8, 3.4, 2.2, 0)

result
binnedsample <- binner(sampled, bins)
binnedsample
co2 Jurassic CO2 data
Description

CO2 data during the Jurassic. Modified from the co2 set in RPANDA, originally taken from May-
hew et al (2008, 2012). Inverted so lower times represent time since first measurement, to be in line
with the past-to-present convention of most time-dependent functions in paleobuddy.

Usage

data(co2)

Format

A data frame with 53 rows and 2 variables:

t A numeric vector representing time since the beginning of the data frame age, 520 million years
ago, in million years. We set this from past to present as opposed to present to past since

https://github.com/hmorlon/PANDA

draw.sim 29

birth-death functions in paleobuddy consider time going in the former direction. Hence t = @
represents the time point at 520mya, while t = 520 represents the present.

co2 A numeric vector representing CO2 concentration as the ratio of CO2 mass at t over the
present.

Source

https://github.com/hmorlon/PANDA

References
Morlon H. et al (2016) RPANDA: an R package for macroevolutionary analyses on phylogenetic
trees. Methods in Ecology and Evolution T: 589-597.

Mayhew, P.J. et al (2008) A long-term association between global temperature and biodiversity,
origination and extinction in the fossil record Proc. of the Royal Soc. B 275:47-53.

Mayhew, P.J. et al (2012) Biodiversity tracks temperature over time Proc. of the Nat. Ac. of Sci. of
the USA 109:15141-15145.

Berner R.A. & Kothavala, Z. (2001) GEOCARB III: A revised model of atmospheric CO2 over
Phanerozoic time Am. J. Sci. 301:182-204.

draw.sim Draw a sim object

Description

Draws species longevities for a paleobuddy simulation (a sim object - see ?sim) in the graphics
window. Allows for the assignment of speciation and sampling events, and further customization.

Usage

draw.sim(
sim,
traits = NULL,
fossils = NULL,
lineageColors = NULL,
sortBy = "TS",
lwdLin = 4,
tipLabels = NULL,
showLabel = TRUE,

traitlD = 1,

traitColors = c("#a40000", "#16317d", "#007e2f", "#ffcd12", "#b86092", "#721b3e",
"#00b7a7"),

traitLegendPlacement = "topleft”,

fossilsFormat = "exact",

fossilRangeAlpha = 100,
restore0ldPar = TRUE,

https://github.com/hmorlon/PANDA

30 draw.sim

Arguments

sim A sim object, containing extinction times, speciation times, parent, and status
information for each species in the simulation. See ?sim.

traits A list of data frames enconding the value of one or more traits during the life-
time of each species, usually coming from the TRAITS member of the output of
bd.sim.traits. It should have length equal to the number of species in sim,
and the traitIDth trait (see below) (i.e. the data frame of number traitID for
each species) will be used to draw trait values.

fossils A data. frame containing the fossil occurrences of each lineage, e.g. as returned

by the sample.clade function. The format of this argument will define the way
fossils are drawn (see below).

lineageColors Character vector giving the colors of all lineages, sorted by the original lineage
order (the one in the sim object). Must have same length as the number of
lineages in the sim object. If NULL (default value) all lineages are plotted as
black. this parameter has no effect if traits is also provided.

sortBy A single character or integer vector indicating how lineages should be sorted
in the plot. If it is a string (see example 3), it indicates which element in the
sim object that should be used to sort lineages in the plot. If it is a vector of
integers, it directly specifies the order in which lineages should be drawn, from
the bottom (i.e. the first integer) to the upper side (#th integer, with # = number
of lineages in sim) of the figure. Default value of this parameter is "TS", so by
default species will be sorted by order of origination in the simulation.

lwdLin The relative thickness/size of all elements (i.e., lines and points in the plot. De-
fault value is 4 (i.e. equal to 1wd = 4 for the black horizontal lines).

tipLabels Character vector manually assigning the tip labels of all lineages, sorted by the
original lineage order (the one in the sim object). Must have same length as the
number of lineages in the sim object. If NULL (default value) all lineages are
plotted as "t#", with "#" being the position of that lineage in the sim object.

showLabel A logical on whether to draw species labels (i.e. species 1 being t1, species 2
t2 etc.). Default is TRUE.
traitID Numerical giving the trait which will be plotted. this parameter is only useful

when multiple traits were simulated in the same sim object, i.e. when traits
has more than one data frame per species.

traitColors Character vector providing colors for the states of a given trait, so its length must
equal or exceed the number of states. Default values provide 7 colors (and so
they can plot up to 7 states).

traitLegendPlacement
Placement of state legend. Accepted values are "topleft” (default value),
"bottomleft”, "bottomright”, "topright”, and "none"”.

fossilsFormat Character assigning if fossils will be represented by exact time placements ("exact”,
default value), by horizontal bars giving range information ("ranges"”), or by
both forms ("all").

fossilRangeAlpha
Numerical giving color transparency for fossil range representation. Integers
between @ and 255 are preferred, but any float between @ and 1 is also accepted.
Default value is 100.

draw.sim 31

restore0ldPar Logical assigning if plot default values show be restored after function final-
izes plotting. Deafult is TRUE, but users interesting in using plot additions (e.g.
abline() to highlight a certain age) should assign this as FALSE to use the x and
y values in the plot. If false, x-axis follows time, and y-axis follows the number
of species plotted, with 1 being the bottom lineage, and the upper y-limit being
the Nth lineage in the sim.

Further arguments to be passed to plot

Value

A plot of the simulation in the graphics window. If the fossils data.frame is supplied, its format
will dictate how fossil occurrences will be plotted. If fossils has a SampT column (i.e. the occur-
rence times are exact), fossil occurrences are assigned as dots. If fossils has columns MaxT and
MinT (i.e. the early and late stage bounds associated with each occurrence), fossil occurrences are
represented as slightly jittered, semitransparent bars indicating the early and late bounds of each
fossil occurrence.

Author(s)

Matheus Januario

Examples

we start drawing a simple simulation

maximum simulation time
tMax <- 10

set seed
set.seed(1)

run a simulation
sim <- bd.sim(n@ = 1, lambda = 0.6, mu = 0.55, tMax = tMax,
nFinal = c(10,20))

draw it
draw.sim(sim)

H#it#
we can add fossils to the drawing

maximum simulation time
tMax <- 10

set seed
set.seed(1)

run a simulation
sim <- bd.sim(n@ = 1, lambda = 0.6, mu = 0.55, tMax = tMax,
nFinal = c(10,20))

32

set seed
set.seed(1)

simulate data resulting from a fossilization process
with exact occurrence times

fossils <- sample.clade(sim = sim, rho = 4, tMax = tMax, returnTrue = TRUE)

draw it
draw.sim(sim, fossils = fossils)

we can order the vertical drawing of species based on
any element of sim

draw.sim(sim, fossils = fossils, sortBy = "PAR")

here we cluster lineages with their daughters by

sorting them by the "PAR" list of the sim object

draw.sim(sim, fossils = fossils, sortBy = "TE")
here we sort lineages by their extinction times

fizizid
fossils can also be represented by ranges

maximum simulation time
tMax <- 10

set seed
set.seed(1)

run birth-death simulation
sim <- bd.sim(n@ = 1, lambda = ©.6, mu = .55, tMax = tMax,
nFinal = c(10,20))

simulate data resulting from a fossilization process
with fossil occurrence time ranges

set seed
set.seed(20)

create time bins randomly

bins <- c(tMax, @, runif(n = rpois(1, lambda = 6), min = @, max = tMax))

set seed
set.seed(1)

simulate fossil sampling
fossils <- sample.clade(sim = sim, rho = 2, tMax = tMax,
returnTrue = FALSE, bins = bins)

get old par
oldPar <- par(no.readonly = TRUE)

draw it, sorting lineages by their parent
draw.sim(sim, fossils = fossils, sortBy = "PAR",

draw.sim

draw.sim

fossilsFormat = "ranges”, restoreOldPar = FALSE)

adding the bounds of the simulated bins
abline(v = bins, 1ty = 2, col = "blue”, 1lwd = 0.5)

alternatively, we can draw lineages varying colors and tip labels
(note how they are sorted)

draw.sim(sim, fossils = fossils, fossilsFormat = "ranges”,
tipLabels = paste@("spp_", 1:length(sim$TS)),
lineageColors = rep(c("red”, "green"”, "blue"), times = 5))

restore old par
par(oldPar)

fizizid
we can control how to sort displayed species exactly

maximum simulation time
tMax <- 10

set seed
set.seed(1)

run birth-death simulations
sim <- bd.sim(n@ = 1, lambda = 0.6, mu = 0.55, tMax = tMax,
nFinal = c(19,20))

set seed
set.seed(1)

simulate fossil sampling
fossils <- sample.clade(sim = sim, rho = 4, tMax = tMax, returnTrue

draw it with random sorting (in pratice this could be a trait
value, for instance)

draw.sim(sim, fossils = fossils, sortBy = sample(1:length(sim$TS)))

H#iHH
we can display trait values as well

initial number of species
no <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, lowest for state 0
mu <- c(0.01, 0.03)

number of traits and states (2 binary traits)

TRUE)

33

34 find.lineages

nTraits <- 2
nStates <- 2

initial value of both traits
X0 <- 0

transition matrix, with symmetrical transition rates for trait 1,
and asymmetrical (and higher) for trait 2
Q <- list(matrix(c(o, 0.1,
2.1, 0), ncol
matrix(c(o, 1,
0.5, @), ncol = 2, nrow = 2))

2, nrow = 2),

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, 10))

maybe we want to take a look at the traits of fossil records too
fossils <- sample.clade(sim$SIM, rho = 0.5, tMax = max(simSIMTS),
returnAll = TRUE, bins = seq(@, 20, by = 1))

draw.sim(sim$SIM, traits = sim$TRAITS, sortBy = "PAR",
fossils = fossils, fossilsFormat = "all”,
traitLegendPlacement = "bottomleft"”)
note how fossil ranges are displayed above and below the true
occurrence times, but we could also draw only one or the other

just ranges

draw.sim(sim$SIM, traits = sim$TRAITS, sortBy = "PAR",
fossils = fossils, fossilsFormat = "ranges”,
traitLegendPlacement = "bottomleft”)

just true occurrence times

draw.sim(sim$SIM, traits = sim$TRAITS, sortBy = "PAR", traitID = 2,
fossils = fossils, fossilsFormat = "exact”,
traitLegendPlacement = "bottomleft")

note the different traitID, so that segments are colored

following the value of the second trait

find.lineages Separate a paleobuddy simulation into monophyletic clades

Description

Separates a sim object into sim objects each with a mother species and its descendants. If argument
S is not used, it returns by default the list of sim objects descended from each species with an NA

find.lineages 35

parent in the original input (meaning species alive at the beginning of the simulation). If a vector of
numbers is supplied for S, the list of sim objects return will instead be descended from each species
in S. Returns for each clade a vector with the original identity of member species as well.

Usage

find.lineages(sim, S = NULL)

Arguments

sim A sim object, containing extinction times, speciation times, parent, and status
information for each species in the simulation. See ?sim.

S A vector of species in sim. If not supplied, S will be the starting species in the
simulation, i.e. those for which the parent is NA. If only one species has NA as
parent, there is only one clade in the sim object, and therefore the function will
return the input.

Value

A list object with (named) sim objects corresponding to the clades descended from species in S.
For each clade, an extra vector LIN is included so the user can identify the order of species in the
returned sim objects with the order of species in the original simulation.

Author(s)

Bruno do Rosario Petrucci and Matheus Januario.

Examples

H#HH
first, we run a simple simulation with one starting species

set seed
set.seed(1)

run simulation with a minimum of 20 species
sim <- bd.sim(n@ = 3, lambda = 0.1, mu = 0.1, tMax = 10,
nFinal = c(20, Inf))

get a simulation object with the clade originating from species 2
clades <- find.lineages(sim, S = 2)

now we can check to make sure the subclade was correctly separated

change NA to @ on the clade's TE
clades[[1]]1simTE[clades[[1]1]1simEXTANT] <- @

plot the phylogeny
if (requireNamespace("ape”, quietly = TRUE)) {
plot <- ape::plot.phylo(
make.phylo(clades[[1]]$sim),

36

find.lineages

main = "red: extinction events \n blue: speciation events");
ape: :axisPhylo()
3

check speciation times
for (j in 2:length(clades[[1]11simTS)) {
the subtraction is just to adjust the wt with the plot scale
lines(x = c(
sort(clades[[1]]1simTS, decreasing = TRUE)[2] -
clades[[1]]1simTS[j],
sort(clades[[1]]1simTS, decreasing = TRUE)[2] -
clades[[1]1]1simTS[j]1),
y = c(plot$y.lim[1], plot$y.lim[2]), lwd = 2, col = "blue")
3

check extinction times:
for (j in 1:length(sim$TE)) {
the subtraction is just to adjust the wt with the plot scale
lines(x = c(
sort(clades[[1]]1simTS, decreasing = TRUE)[2] -
clades[[1]11simTEL]],
sort(clades[[1]]1simTS, decreasing = TRUE)[2] -
clades[[1]11simTELF]),
y = c(plot$y.lim[1], plot$y.lim[2]), lwd = 2, col = "red")

}

H#it#
now we try a simulation with 3 clades

set seed
set.seed(4)

run simulation
sim <- bd.sim(n@ = 3, lambda = 0.1, mu = 0.1, tMax = 10,
nFinal = c(20, Inf))

get subclades descended from original species
clades <- find.lineages(sim)

get current par options so we can reset later
oldPar <- par(no.readonly = TRUE)

set up for plotting side by side
par(mfrow = c(1, length(clades)))

for each clade

for (i in 1:1length(clades)) {
change NA to @ on the clade's TE
clades[[i]]1simTE[clades[[i]]simEXTANT] <- @

if there is only one lineage in the clade, nothing happens
if (length(clades[[i]]simTE) < 2) {
placeholder plot

find.lineages 37

plot(NA, xlim = c(-1, 1), ylim = c(-1, 1))
text(”"simulation with \n just one lineage”, x = @, y = 0.5, cex = 2)

3

else, plot phylogeny
else {
if (requireNamespace("ape”, quietly = TRUE)) {
plot <- ape::plot.phylo(
make.phylo(clades[[i]]$sim),
main = "red: extinction events \n blue: speciation events”);
ape: :axisPhylo()
}

check speciation times
for (j in 2:length(clades[[i]1]1simTS)) {
the subtraction is just to adjust the wt with the plot scale
lines(x = c(
sort(clades[[i]]1simTS, decreasing = TRUE)[2] -
clades[[i]]1simTS[j],
sort(clades[[i]]1simTS, decreasing = TRUE)[2] -
clades[[i]1simTS[j1),
y = c(plot$y.lim[1], plot$y.lim[2]), lwd = 2, col = "blue”)
}

check extinction times:
for (j in 1:length(sim$TE)) {
the subtraction is just to adjust the wt with the plot scale
lines(x = c(
sort(clades[[i]]1simTS, decreasing = TRUE)[2] -
clades[[i]1simTE[]],
sort(clades[[i]]1simTS, decreasing = TRUE)[2] -
clades[[i]1]1simTE[j]),
y = c(plot$y.lim[1], plot$y.lim[2]1), lwd = 2, col = "red")

3
b
3

reset par
par(oldPar)

H#iH
we can also have an example with more non-starting species in S

set seed
set.seed(3)

run simulation
sim <- bd.sim(n@ = 1, lambda = @.1, mu = 0.1, tMax = 10,
nFinal = c(10, Inf))

get current par options so we can reset later
oldPar <- par(no.readonly = TRUE)

38

set up for plotting side by side
par(mfrow = c(1, 2))

if (requireNamespace("ape”, quietly = TRUE)) {

first we plot the clade started by 1
ape: :plot.phylo(make.phylo(sim), main = "original”)
ape: :axisPhylo()

this should look the same

ape: :plot.phylo(make.phylo(find.lineages(sim)[[1]]1$sim),
main="after find.lineages()")

ape: :axisPhylo()

get sublcades descended from the second and third species

clades <- find.lineages(sim, c(2,3))

and these should be part of the previous phylogenies
ape: :plot.phylo(make.phylo(clades$clade_2$sim),

main = "Daughters of sp 2")
ape: :axisPhylo()

ape: :plot.phylo(make.phylo(clades$clade_3%$sim),
main = "Daughters of sp 3")
ape: :axisPhylo()
3

reset par
par(oldPar)

fiziz:d
if there is only one clade and we use the default for
S, we get back the original simulation object

set seed
set.seed(1)

run simulation
sim <- bd.sim(n@ = 1, lambda = @.1, mu = 0.08, tMax = 10,
nFinal = c(5, Inf))

get current par options so we can reset later
oldPar <- par(no.readonly = TRUE)

set up for plotting side by side
par(mfrow = c(1, 2))

plotting sim and find.lineages(sim) - should be equal
if (requireNamespace("ape”, quietly = TRUE)) {

ape::plot.phylo(make.phylo(sim), main="original")
ape: :axisPhylo()
ape: :plot.phylo(make.phylo(find.lineages(sim)[[1]1]1$sim),

find.lineages

make.phylo

main="after find.lineages()")
ape: :axisPhylo()
3

reset par
par(oldPar)

39

make.phylo Phylogeny generating

Description

Generates a phylogeny from a sim object containing speciation and extinction times, parent and
status information (see ?sim). Returns a phylo object containing information on the phylogeny,
following an "evolutionary Hennigian" (sensu Ezard et al 2011) format (i.e., a bifurcating tree).
Takes an optional argument encoding fossil occurrences to return a sampled ancestor tree (see ref-
erences). This tree consists of the original tree, plus the fossil occurrences added as branches of
length @ branching off of the corresponding species at the time of occurrence. Such trees can be
used, as is or with small modifications, as starting trees in phylogenetic inference software that
make use of the fossilized birth-death model. Returns NA and sends a warning if the simulation
has only one lineage or if more than one species has NA as parent (i.e. there is no single common

ancestor in the simulation). In the latter case, please use find.lineages first.

Usage
make . phylo(
sim,
fossils = NULL,
saFormat = "branch”,

returnTrueExt = TRUE,
returnRootTime = NULL

)
Arguments

sim A sim object, containing extinction times, speciation times, parent, and status
information for each species in the simulation. See ?sim.

fossils A data frame with a "Species” column and a SampT column, usually an output
of the sample.clade function. Species names must contain only one number
each, corresponding to the order of the sim vectors. Note that we require it to
have a SampT column, i.e. fossils must have an exact age. This assumption might
be relaxed in the future.

saFormat A string indicating which form sampled ancestors should take in the tree. If set

to "branch” (default), SAs are returned as 0-length branches. If set to "node”,
they are returned as degree-2 nodes. Note that some software prefer the former
(e.g. Beast) and some the latter (e.g. RevBayes). The code for making O-length
branches become nodes was written by Joshua A. Justison.

40

make.phylo

returnTrueExt A logical indicating whether to include in tree the tips representing the true
extinction time of extinct species. If set to FALSE, the returned tree will include
those tips. If TRUE (default), they will be dropped and instead the last sampled
fossil of a given species will be the last sampled tip of that species. Note that if
a species was not sampled it will then not appear in the tree. If no fossils have
been added to the tree with the parameter fossils, this will have the same effect
as the ape function drop. fossil, returning an ultrametric tree. Note that if this
is set to FALSE, the root. time and root.edge arguments will not be accurate,
depending on which species are dropped. The user is encouraged to use the ape
package to correct these problems, as shown in an example below.

returnRootTime Logical indicating if phylo should have information regarding root.time. If
set to NULL (default), returned phylogenies will not have root . time if there is at
least one extant lineage in the sim object. If there are only extinct lineages in the
sim object and it is set to NULL, root. time will be returned. If set to FALSE or
TRUE, root.time will be removed or forced into the phylo object, respectively.
In this case, we highly recommend users to read about the behavior of some
functions (such as APE’s axisPhylo) when this argument is forced.

Details

When root.time is added to a phylogeny, packages such as APE can change their interpretation
of the information in the phylo object. For instance, a completely extinct phylogeny might be
interpreted as extant if there is no info about root.time. This might create misleading interpre-
tations even with simple functions such as ape: :axisPhylo. make.phylo tries to accommodate
different evo/paleo practices in its default value for returnRootTime by automatically attributing
root.time when the sim object is extinct. We encourage careful inspection of output if users
force make . phylo to use a specific behavior, especially when using phylogenies generated by this
function as input in functions from other packages. For extinct phylogenies, it might usually be
important to explicitly provide information that the edge is indeed a relevant part of the phylogeny
(for instance adding root.edge = TRUE when plotting a phylogeny with root.time information
with ape: :plot.phylo. An example below provides a visualization of this issue.

Value

A phylo object from the APE package. Tip labels are numbered following the order of species in
the sim object. If fossil occurrence data was supplied, the tree will include fossil occurrences as tips
with branch length 0, bifurcating at its sampling time from the corresponding species’ edge (i.e. a
sampled ancestor tree). Note that to obtain a true sampled ancestor (SA) tree, one must perform the
last step of deleting tips that are not either extant or fossil occurrences (i.e. the tips at true time of
extinction).

Note this package does not depend on APE (Paradis et al, 2004) since it is never used inside its
functions, but it is suggested since one might want to manipulate the phylogenies generated by this
function. Furthermore, a limited version of the drop. tip function from APE has been copied for
use in this function (namely, due to the parameter returnTrueExt). Likewise, a limited version of
collapse.singles and node.depth.edgelength were also copied to support those features. One
does not need to have APE installed for the function to use that code, but the authors wished to do
their due diligence by crediting the package and its maintainers.

make.phylo 41

Author(s)

Matheus Januario and Bruno do Rosario Petrucci

References

Ezard, T. H., Pearson, P. N., Aze, T., & Purvis, A. (2012). The meaning of birth and death (in
macroevolutionary birth-death models). Biology letters, 8(1), 139-142.

Paradis, E., Claude, J., Strimmer, & K. (2004). APE: Analyses of Phylogenetics and Evolution in
R language. Bioinformatics, 20(2), 289-290.

Heath, T. A., Huelsenbeck, J. P., & Stadler, T. (2014). The fossilized birth—death process for co-
herent calibration of divergence-time estimates. Proceedings of the National Academy of Sciences,
111(29), E2957-E2966.

Examples

HiH
we can start with a simple phylogeny

set a simulation seed
set.seed(1)

simulate a BD process with constant rates
sim <- bd.sim(n@ = 1, lambda = 0.3, mu = 0.1, tMax = 10,
nExtant = c(2, Inf))

make the phylogeny
phy <- make.phylo(sim)

plot it

if (requireNamespace(”ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

change par to show phylogenies
par(mfrow = c(1, 2))

ape: :plot.phylo(phy)

we can also plot only the molecular phylogeny
ape::plot.phylo(ape: :drop.fossil(phy))

reset par
par(oldPar)
3

H#it#
this works for sim generated with any of the scenarios in bd.sim

set seed
set.seed(1)

42

make.phylo

simulate

sim <- bd.sim(n@ = 1, lambda = function(t) 0.2 + 0.01%t,
mu = function(t) 0.03 + 0.015%t, tMax = 10,
nExtant = c(2, Inf))

make the phylogeny
phy <- make.phylo(sim)

plot it

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

change par to show phylogenies
par(mfrow = c(1, 2))

plot phylogeny

ape::plot.phylo(phy)
ape: :axisPhylo()

we can also plot only the molecular phylogeny
ape: :plot.phylo(ape: :drop.fossil(phy))
ape: :axisPhylo()

reset par
par(oldPar)

Hit#
we can use the fossils argument to generate a sample ancestors tree

set seed
set.seed(1)

simulate a simple birth-death process
sim <- bd.sim(n@ = 1, lambda = 0.2, mu = 0.05, tMax = 10,
nExtant = c(2, Inf))

make the traditional phylogeny
phy <- make.phylo(sim)

sample fossils
fossils <- sample.clade(sim, 0.1, 10)

make the sampled ancestor tree
fbdPhy <- make.phylo(sim, fossils)

plot them

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

visualize longevities and fossil occurrences

make.phylo

draw.sim(sim, fossils = fossils)

change par to show phylogenies
par(mfrow = c(1, 2))

phylogeny
ape: :plot.phylo(phy, main = "Phylogenetic tree")
ape: :axisPhylo()

sampled ancestor tree
ape: :plot.phylo(fbdPhy, main = "Sampled Ancestor tree")
ape: :axisPhylo()

reset par
par(oldPar)

H#iH#
we can instead have the sampled ancestors as degree-2 nodes

set seed
set.seed(1)

simulate a simple birth-death process
sim <- bd.sim(n@ = 1, lambda = 0.2, mu = 0.05, tMax = 10,
nExtant = c(2, Inf))

make the traditional phylogeny
phy <- make.phylo(sim)

sample fossils
fossils <- sample.clade(sim, 0.1, 10)

make the sampled ancestor tree
fbdPhy <- make.phylo(sim, fossils, saFormat = "node")

plot them

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

visualize longevities and fossil occurrences
draw.sim(sim, fossils = fossils)

change par to show phylogenies
par(mfrow = c(1, 2))

phylogeny
ape: :plot.phylo(phy, main = "Phylogenetic tree")
ape: :axisPhylo()

sampled ancestor tree, need show.node.label parameter to see SAs
ape::plot.phylo(fbdPhy, main = "Sampled Ancestor tree”,

43

44

show.node.label = TRUE)
ape: :axisPhylo()

reset par
par(oldPar)
3

fizizd
we can use the returnTrueExt argument to delete the extinct tips and
have the last sampled fossil of a species as the fossil tip instead

set seed
set.seed(5)

simulate a simple birth-death process
sim <- bd.sim(n@ = 1, lambda = 0.2, mu = 0.05, tMax = 10,
nExtant = c(2, Inf))

make the traditional phylogeny
phy <- make.phylo(sim)

sample fossils
fossils <- sample.clade(sim, 0.5, 10)

make the sampled ancestor tree

fbdPhy <- make.phylo(sim, fossils, saFormat = "node", returnTrueExt =
returnTrueExt = FALSE means the extinct tips will be removed,

so we will only see the last sampled fossil (see tree below)

plot them

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

visualize longevities and fossil occurrences
draw.sim(sim, fossils = fossils)

change par to show phylogenies
par(mfrow = c(1, 2))

phylogeny
ape::plot.phylo(phy, main = "Phylogenetic tree")
ape: :axisPhylo()

sampled ancestor tree, need show.node.label parameter to see SAs

ape: :plot.phylo(fbdPhy, main = "Sampled Ancestor tree”,
show.node.label = TRUE)

ape: :axisPhylo()

note how t1.3 is an extinct tip now, as opposed to t1, since

we would not know the exact extinction time for t1,

rather just see the last sampled fossil

reset par

make.phylo

make.phylo

par(oldPar)
3

HiH
suppose in the last example, t2 went extinct and left no fossils
this might lead to problems with the root.time object

set seed
set.seed(5)

simulate a simple birth-death process
sim <- bd.sim(n@ = 1, lambda = 0.2, mu = .05, tMax = 10,
nExtant = c(2, Inf))

make the traditional phylogeny
phy <- make.phylo(sim)

sample fossils
fossils <- sample.clade(sim, 0.5, 10)

make it so t2 is extinct
sim$TE[2] <- 9
sim$EXTANT[2] <- FALSE

take out fossils of t2
fossils <- fossils[-which(fossils$Species == "t2"),]

make the sampled ancestor tree

fbdPhy <- make.phylo(sim, fossils, saFormat = "node”, returnTrueExt = FALSE)
returnTrueExt = FALSE means the extinct tips will be removed,

so we will only see the last sampled fossil (see tree below)

plot them

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

visualize longevities and fossil occurrences
draw.sim(sim, fossils = fossils)

change par to show phylogenies
par(mfrow = c(1, 2))

phylogeny
ape::plot.phylo(phy, main = "Phylogenetic tree")
ape: :axisPhylo()

sampled ancestor tree, need show.node.label parameter to see SAs

ape: :plot.phylo(fbdPhy, main = "Sampled Ancestor tree”,
show.node.label = TRUE)

ape: :axisPhylo()

note how t2 is gone, since it went extinct and left no fossils

46

make.phylo

this made it so the length of the tree + the root edge

does not equal the origin time of the simulation anymore
max (ape: :node.depth.edgelength(fbdPhy)) + fbdPhy$root.edge
it should equal 10

to correct it, we need to set the root edge again

fbdPhy$root.edge <- 10 - max(ape::node.depth.edgelength(fbdPhy))

this is necessary because ape does not automatically fix the root.edge
when species are dropped, and analyes using phylogenies + fossils

frequently condition on the origin of the process

reset par
par(oldPar)

fiziz:d
finally, we can test the usage of returnRootTime

set seed
set.seed(1)

simulate a simple birth-death process with more than one
species and completely extinct:
sim <- bd.sim(n@ = 1, lambda = ©.5, mu = 0.5, tMax = 10, nExtant = c(0, 0))

make a phylogeny using default values
phy <- make.phylo(sim)

force phylo to not have root.time info
phy_rootless <- make.phylo(sim, returnRootTime = FALSE)

plot them

if (requireNamespace("ape”, quietly = TRUE)) {
store old par settings
oldPar <- par(no.readonly = TRUE)

change par to show phylogenies
par(mfrow = c(1, 3))

if we use the default value, axisPhylo works as intended
ape::plot.phylo(phy, root.edge = TRUE, main = "root.time default value")
ape: :axisPhylo()

note that without root.edge, we have incorrect times,

as APE assumes tMax was the time of first speciation

ape: :plot.phylo(phy, main = "root.edge not passed to plot.phylo")
ape: :axisPhylo()

if we force root.time to be FALSE, APE assumes the tree is

ultrametric, which leads to an incorrect time axis

ape: :plot.phylo(phy_rootless, main = "root.time forced as FALSE")
ape: :axisPhylo()

note time scale in axis

make.rate 47

reset par
par(oldPar)
}

make.rate Create a flexible rate for birth-death or sampling simulations

Description

Generates a function determining the variation of a rate (speciation, extinction, sampling) with
respect to time. To be used on birth-death or sampling functions, it takes as the base rate (1) a
constant, (2) a function of time, (3) a function of time and a time-series (usually an environmental
variable), or (4) a vector of numbers describing rates as a step function. Requires information
regarding the maximum simulation time, and allows for optional extra parameters to tweak the
baseline rate.

Usage

make.rate(rate, tMax = NULL, envRate = NULL, rateShifts = NULL)

Arguments

rate The baseline function with which to make the rate. It can be a

A number For constant birth-death rates.

A function of time For rates that vary with time. Note that this can be any
function of time.

A function of time and an environmental variable For rates varying with time
and an environmental variable, such as temperature. Note that supplying a
function on more than one variable without an accompanying envRate will
result in an error.

A numeric vector To create step function rates. Note this must be accompa-
nied by a corresponding vector of rate shift times, rateShifts.

tMax Ending time of simulation, in million years after the clade’s origin. Needed to
ensure rateShifts runs the correct way.

envRate A data.frame representing a time-series, usually an environmental variable
(e.g. CO2, temperature, etc) varying with time. The first column of this data. frame
must be time, and the second column must be the values of the variable. The
function will return an error if the user supplies envRate without rate being
a function of two variables. paleobuddy has two environmental data frames,
temp and co2. One can check RPANDA for more examples.
Note that, since simulation functions are run in forward-time (i.e. with @ being
the origin time of the simulation), the time column of envRate is assumed to
do so as well, so that the row corresponding to t = @ is assumed to be the value

48

rateShifts

Value

make.rate

of the time-series when the simulation starts, and t = tMax is assumed to be its
value when the simulation ends (the present).

Acknowledgements: The strategy to transform a function of t and envRate into
a function of t only using envRate was adapted from RPANDA.

A vector indicating the time of rate shifts in a step function. The first element
must be the first or last time point for the simulation, i.e. @ or tMax. Since func-
tions in paleobuddy run from @ to tMax, if rateShifts runs from past to present
(meaning rateShifts[2] < rateShifts[1]), we take tMax - rateShifts as
the shifts vector. Note that supplying rateShifts when rate is not a numeric
vector of the same length will result in an error.

A constant or time-varying function (depending on input) that can then be used as a rate in the other
paleobuddy functions.

Author(s)

Bruno do Rosario Petrucci

References

Morlon H. et al (2016) RPANDA: an R package for macroevolutionary analyses on phylogenetic
trees. Methods in Ecology and Evolution T: 589-597.

Examples

first we need a time vector to use on plots

time <- seq(@, 50, 0.1)

H#iH
we can have a step function rate

vector of rates
rate <- c(0.1, 0.2, 0.3, 0.2)

vector of rate shifts
rateShifts <- c(@, 10, 20, 35)
this could be c(50, 40, 30, 15) for equivalent results

make the rate
r <- make.rate(rate, tMax = 50, rateShifts = rateShifts)

plot it
plot(time, rev(r(time)),type = '1', xlim = c(max(time), min(time)))

note that this method of generating a step function rate is slower to
numerically integrate

it is also not possible a rate and a shifts vector and a time-series

dependency, so in cases where one looks to run many simulations, or have a

make.rate 49

step function modified by an environmental variable, consider
using ifelse() (see below)

fizizid
we can have an environmental variable (or any time-series)

temperature data
data(temp)

function
rate <- function(t, env) {
return(0.05%env)

}

make the rate
r <- make.rate(rate, envRate = temp)

plot it
plot(time, rev(r(time)), type = '1l', xlim = c(max(time), min(time)))

H#HiHH
we can have a rate that depends on time AND temperature

temperature data
data(temp)

function

rate <- function(t, env) {
return(0.001xexp(0.1xt) + @.05%env)

3

make a rate
r <- make.rate(rate, envRate = temp)

plot it
plot(time, rev(r(time)), type = '1l', xlim = c(max(time), min(time)))

H#iH
as mentioned above, we could also use ifelse() to
construct a step function that is modulated by temperature

temperature data
data(temp)

function
rate <- function(t, env) {
return(ifelse(t < 10, 0.1 + 0.01*env,
ifelse(t < 30, 0.2 - 0.005%env,
ifelse(t <= 50, 0.1 + 0.005%env, 0))))

rate
r <- make.rate(rate, envRate = temp)

50

paleobuddy

plot it
plot(time, rev(r(time)), type = 'l', xlim = c(max(time), min(time)))

while using ifelse() to construct a step function is more

cumbersome, it leads to much faster numerical integration,

so in cases where the method above is proving too slow,

consider using ifelse() even if there is no time-series dependence

H###
make.rate will leave some types of functions unaltered

constant rates
r <- make.rate(0.5)

plot it
plot(time, rep(r, length(time)), type = 'l',
xlim = c(max(time), min(time)))

H#HiH#
linear rates

function

rate <- function(t) {
return(0.01*t)

3

create rate
r <- make.rate(rate)

plot it
plot(time, rev(r(time)), type = 'l', xlim = c(max(time), min(time)))

HiH#
any time-varying function, really

function

rate <- function(t) {
return(abs(sin(t))*0.1 + 0.05)

3

create rate
r <- make.rate(rate)

plot it
plot(time, r(time), type = '1')

paleobuddy paleobuddy: Simulating diversification dynamics

paleobuddy 51

Description

paleobuddy provides users with flexible scenarios for species birth-death simulations. It also pro-
vides the possibility of generating phylogenetic trees (with extinct and extant species) and fossil
records (with a number of preservation scenarios) from the same underlying process.

Birth-death simulation

Users have access to a large array of scenarios to use and combine for species birth-death simu-
lation. The function bd. sim allows for constant rates, rates varying as a function of time, or time
and/or an environmental variable, as well as age-dependent rates by using a shape parameter from a
Weibull distribution (which can itself also be time-dependent). Extinction and speciation rates can
be supplied independently, so that one can combine multiple types of scenarios for birth and death
rates. The function find.lineages separates birth-death simulations into monophyletic clades
so one can generate fossil records and phylogenies (see below) for clades with a specific mother
species. This is particularly useful for simulations with multiple starting species. See ?bd.sim and
?find.lineages for more information.

All birth-death simulation functions return a sim object, which is a list of vectors containing spe-
ciation times, extinction times, status (extant or extinct) and parent identity for each species of the
simulation. We supply methods for summarizing and printing sim objects in a more informative
manner (see Visualization below). See ?sim for more information.

Fossil record simulation

The package provides users with a similarly diverse array of scenarios for preservation rates in gen-
erating fossil records from birth-death simulations. The function sample.clade accepts constant,
time-varying, and environmentally dependent rates. Users might also supply a model describing the
distribution of fossil occurrences over a species duration to simulate age-dependent sampling. See
?sample.clade for more information.

Phylogeny generation

We believe it is imperative to be able to generate fossil records and phylogenetic trees from the same
underlying process, so the package provides make.phylo, a function that takes a simulation object
of the form returned by bd. sim and generates a phylo object from the APE package. One can then
use functions such as ape: :plot.phylo and ape: :drop.fossil to plot the phylogeny or analyze
the phylogeny of extant species. Since APE is not required for any function in the package, it is a
suggested but not imported package. Note that, as above, the function find.lineages allows users
to separate clades with mother species of choice, the results of which can be passed to make.phylo
to generate separate phylogenies for each clade. See ?make.phylo and ?find.lineages for more
information.

Note: If a user wishes to perform the opposite operation - transform a phylo object into a sim
object, perhaps to use paleobuddy for sampling on phylogenies generated by other packages, see
?phylo.to.sim.

Visualization

paleobuddy provides the user with a number of options for visualizing a sim object besides phy-
logenies. The sim object returned by birth-death simulation functions (see above) has summary

52

paleobuddy

and plot methods. summary (sim) gives quantitative details of a sim objective, namely the total and
extant number of species, and summaries of species durations and speciation times. plot(sim)
plots births, deaths, and diversity through time for that realization. The function draw.sim draws
longevities of species in the simulation, allowing for customization through the addition of fossil
occurrences (which can be time points or ranges), and vertical order of the drawn longevities.

Utility functions

The package makes use of a few helper functions for simulation and testing that we make available
for the user. rexp.var aims to emulate the behavior of rexp, the native R function for drawing
an exponentially distributed variate, with the possibility of supplying a time-varying rate. The
function also allows for a shape parameter, in which case the times drawn will be distributed as a
Weibull, possibly with time-varying parameters, for age-dependent rates. var.rate.div calculates
the expected diversity of a birth-death process with varying rates for any time period, which is
useful when testing the birth-death simulation functions. Finally, binner takes a vector of fossil
occurrence times and a vector of time boundaries and returns the number of occurrences within each
time period. This is mostly for use in the sample. clade function. See ?rexp.var, ?var.rate.div
and ?binner for more information.

Author(s)

Bruno do Rosario Petrucci, Matheus Januario and Tiago B. Quental

Maintainer: Bruno do Rosario Petrucci <petrucci @iastate.edu>

See Also

Useful links:

* https://github.com/brpetrucci/paleobuddy
* Report bugs at https://github.com/brpetrucci/paleobuddy/issues

Examples

here we present a quick example of paleobuddy usage
for a more involved introduction, see the \code{overview} vignette

make a vector for time
time <- seq(@, 10, 0.1)

speciation rate

lambda <- function(t) {
0.15 + 0.03*t

extinction rate
mu <- 0.08

these are pretty simple scenarios, of course
check the examples in ?bd.sim for a more comprehensive review

diversification

https://github.com/brpetrucci/paleobuddy
https://github.com/brpetrucci/paleobuddy/issues

phylo.to.sim

d <- function(t) {
lambda(t) - mu
3

calculate how many species we expect over 10 million years
div <- var.rate.div(rate = d, n@ =1, t = time)

note we are starting with 3 species (n@ = 3), but the user
can provide any value - the most common scenario is n@ = 1

plot it

plot(time, rev(div), type = '1', main = "Expected diversity"”,
xlab = "Time (My)", ylab = "Species”,
xlim = c(max(time), min(time)))

we then expect around 9 species
alive by the present, seems pretty good

set seed
set.seed(1)

run the simulation
sim <- bd.sim(n@ = 1, lambda = lambda, mu = mu,
tMax = 10, nFinal = c(20, Inf))
nFinal controls the final number of species
here we throw away simulations with less than 20 species generated

draw longevities
draw.sim(sim)

from sim, we can create fossil records for each species
rho is the fossil sampling rate, see ?sample.clade
samp <- sample.clade(sim = sim, rho = .75, tMax = 10,
bins = seq(10, @, -1))
note 7 out of the 31 species did not leave a fossil - we can in this way
simulate the incompleteness of the fossil record

we can draw fossil occurrences as well, and order by extinction time
draw.sim(sim, fossils = samp, sortBy = "TE")

take a look at the phylogeny

if (requireNamespace("ape”, quietly = TRUE)) {
ape::plot.phylo(make.phylo(sim), root.edge = TRUE)
ape: :axisPhylo()

3

phylo.to.sim Converting a phylogeny in a paleobuddy object

54 phylo.to.sim

Description

Generates a sim object using a phylo object and some additional information (depending on other
arguments). It is the inverse of the make.phylo function. Input is (1) a phylogeny, following
an evolutionary Hennigian (sensu Ezard et al 2011) format (i.e., a fully bifurcating phylogeny),
(2) information on the "mother lineage" of each tip in the phylogeny, (3) the status ("extant" or
"extinct") of each lineage, (4) the stem age (or age of origination of the clade), and (5) the stem
length (or time interval between the stem age and the first speciation event). The user can also
choose if the event dating should be done from root to tips or from tips-to-root. The function
returns a sim object (see ?sim). The function does not accept more than one species having NA as
parent (which is interpreted as if there were no single common ancestor in the phylogeny). In that
case, use find.lineages first.

Usage

phylo.to.sim(
phy,
mothers,
extant,
dateFromPresent = TRUE,
stemAge = NULL,
stemLength = NULL

)
Arguments

phy A phylo object, which may contain only extant or extant and extinct lineages.

mothers Vector containing the mother of each tip in the phylogeny. First species’ mother
should be NA. See details below.

extant Logical vector indicating which lineages are extant and extinct.

dateFromPresent
Logical vector indicating if speciation/extinction events should be dated from
present-to-root (TRUE, default value) or from root-to-present. As it is impossible
to date "from present" without a living lineage, it is internally set to FALSE and
prints a message in the prompt if there are no extant species.

stemAge Numeric vetor indicating the age, in absolute geological time (million years
ago), when the first lineage of the clade originated. It is not needed when
dateFromPresent is TRUE and stemLength is provided, or when phy has a
root.edge. This argument is required if dateFromPresent is FALSE.

stemLength Numeric vector indicating the time difference between the stemAge and the first
speciation event of the group. This argument is required if dateFromPresent
is FALSE, but users have no need to assign values in this parameter if phy has a
$root.edge, which is taken by the function as the stemLength value.

Details

See Details below for more information on each argument.
Mothers:

phylo.to.sim 55

The function needs the indication of a mother lineage for every tip in the phylogeny but one (which
is interpreted as the first known lineage in the clade, and should have NA as the mother). This
assignment might be straightforward for simulations (as in the examples section below), but is a
non-trivial task for empirical phylogenies. As there are many ways to assign impossible combi-
nations of motherthood, the function does not return any specific error message if the provided
motherhood does not map to possible lineages given the phylogeny. Instead, the function tends to
crash when an "impossible" motherhood is assigned, but this is not guaranteed to happen because
the set of "impossible" ways to assign motherhood is vast, and therefore has not allowed for a test
of every possibility. If the function crashes when all lineages have reasonable motherhood, users
should submit an issue report at https://github.com/brpetrucci/paleobuddy/issues.
Dating:

Phylogenies store the relative distances between speciation (and possibly extinction) times of each
lineage. However, to get absolute times for those events (which are required to construct the output
of this function), users should provide a moment in absolute geological time to position the phy-
logeny. This could be (1) the present, which is used as reference in the case at least one lineage in
the phylogeny is extant (i.e., default behavior of the function), or (2) some time in the past, which is
the stemAge parameter. Those two possible dating methods are used by setting dateFromPresent
to TRUE or FALSE. If users have extant lineages in their phylogeny but do not have a reasonable
value for stemAge, they are encouraged to use present-to-root dating (dateFromPresent = TRUE),
as in that case deviations in the value of stemLength will only affect the speciation time of the first
lineage of the clade. In other words, when dateFromPresent is set to FALSE, user error in stemAge
or stemLength will bias the absolute (but not the relative) dating of all nodes in the phylogeny.

Value

A simobject. For details, see ?sim. Items in the object follow their tip assignment in the phylogeny.

Author(s)

Matheus Januario.

References

Ezard, T. H., Pearson, P. N., Aze, T., & Purvis, A. (2012). The meaning of birth and death (in
macroevolutionary birth-death models). Biology letters, 8(1), 139-142.

Examples

to check the usage of the function, let us make sure it transforms a
phylogeny generated with make.phylo back into the original simulation

fizizid
birth-death process

set seed
set.seed(1)

run simulation
sim <- bd.sim(1, lambda = 0.3, mu = 0.1, tMax = 10, nFinal = c(10, Inf))

https://github.com/brpetrucci/paleobuddy/issues

56

rexp.var

convert birth-death into phylo
phy <- make.phylo(sim)

convert phylo into a sim object again
res <- phylo.to.sim(phy = phy, extant = sim$EXTANT, mothers = sim$PAR)

test if simulation and converted object are the same
all.equal(sim, res)

fiziz:d

birth-death process with extinct lineages:
set seed

set.seed(1)

run simulation
sim <- bd.sim(1, lambda = 0.1, mu = 0.3, tMax = 10, nFinal = c(2, 4))

convert birth-death into phylo
phy <- make.phylo(sim)

convert phylo into a sim object again
res <- phylo.to.sim(phy = phy, extant = sim$EXTANT, mothers = sim$PAR, stemAge = max(sim$TS))

test if simulation and converted object are the same
all.equal(sim, res)

H#it#
pure birth process

set seed
set.seed(1)

run simulation
sim <- bd.sim(1, lambda = 0.2, mu = @, tMax = 10, nFinal = c(10, Inf))

convert birth-death into phylo
phy <- make.phylo(sim)

convert phylo into birth-death again

note we can supply optional arguments, see description above

res <- phylo.to.sim(phy = phy, extant = sim$EXTANT, mothers = sim$PAR,
stemAge = 10, stemLength = (10 - sim$TS[2]))

testing if simulation and converted object are the same
all.equal(sim, res)

rexp.var General rate exponential and Weibull waiting times

rexp.var

Description

57

Generates a waiting time following an exponential or Weibull distribution with constant or varying
rates. Output can be used as the waiting time to an extinction, speciation, or fossil sampling event.
Allows for an optional shape parameter, in which case rate will be taken as a Weibull scale. Allows
for further customization by restricting possible waiting time outputs with arguments for (1) current
time, to consider only the rates starting at that time, (2) maximum time, to bound the output and
therefore allow for faster calculations if one only cares about waiting times lower than a given
amount, and (3) speciation time, necessary to scale rates in the case where the output is to follow
a Weibull distribution, i.e. for age-dependent processes. This function is used in birth-death and
sampling functions, but can also be convenient for any user looking to write their own code requiring
exponential or Weibull distributions with varying rates.

Usage

rexp.var(n, rate, now = @, tMax = Inf, shape = NULL, TS = @, fast = FALSE)

Arguments

n

rate

now

tMax

shape

The number of waiting times to return. Usually 1, but we allow for a higher n to
be consistent with the rexp function.

The rate parameter for the exponential distribution. If shape is not NULL, rate
is a scale for a Weibull distribution. In both cases we allow for any time-varying
function. Note rate can be constant.

The current time. Needed if one wants to consider only the interval between the
current time and the maximum time for the time-varying rate. Note this does
means the waiting time is >= now, so we also subtract now from the result before
returning. The default is 0.

The simulation ending time. If the waiting time would be too high, we return
tMax + @.01 to signify the event never happens, if fast == TRUE. Otherwise we
return the true waiting time. By default, tMax will be Inf, but if FAST == TRUE
one must supply a finite value.

Shape of the Weibull distribution. Can be a numeric for constant shape or
a function(t) for time-varying. When smaller than one, rate will decrease
along species’ age (negative age-dependency). When larger than one, rate will
increase along each species’ age (positive age-dependency). Default is NULL,
so the function acts as an exponential distribution. For shape !=NULL (in-
cluding when equal to one), rate will be considered a scale (= 1/rate), and
rexp.var will draw a Weibull distribution instead of an exponential. This means
Weibull(rate, 1) = Exponential(1/rate). Notice even when Shape !=NULL, rate
may still be time-dependent.

Note: Time-varying shape is within expectations for most cases, but if it is lower
than 1 and varies too much (e.g. 0.5+ @.5%t), it can be slightly biased for
higher waiting times due to computational error. Slopes (or equivalent, since it
can be any function of time) of the order of 0.01 are advisable. It rarely also
displays small biases for abrupt variations. In both cases, error is still quite low
for the purposes of the package.

58 rexp.var

Note: We do not test for shape < 0 here since as we allow shape to be a function
this would severely slow the rest of the package. It is tested on the birth-death
functions, and the user should make sure not to use any functions that become
negative eventually.

TS Speciation time, used to account for the scaling between simulation and species
time. The default is @. Supplying a TS > now will return an error.

fast If set to FALSE, waiting times larger than tMax will not be thrown away. This
argument is needed so one can test the function without bias.

Value
A vector of waiting times following the exponential or Weibull distribution with the given parame-
ters.

Author(s)

Bruno do Rosario Petrucci.

Examples

H#HHH#
let us start by checking a simple exponential variable

rate
rate <- 0.1

set seed
set.seed(1)

find the waiting time
t <- rexp.var(n = 1, rate)
t

this is the same as t <- rexp(1, rate)

H#it#
now let us try a linear function for the rate

rate

rate <- function(t) {
return(0.01xt + 0.1)

3

set seed
set.seed(1)

find the waiting time
t <- rexp.var(n = 1, rate)

t

#iH#

rexp.var

what if rate is exponential?

rate
rate <- function(t) {

return(0.01 * exp(@.1*xt) + 0.02)
3

set seed
set.seed(1)

find the waiting time
t <- rexp.var(n = 1, rate)
t

H#it#
if we give a shape argument, we have a Weibull distribution

scale - note that this is equivalent to 1/rate if shape were NULL
rate <- 2

shape
shape <- 1

speciation time
TS <- 0

set seed
set.seed(1)

find the vector of waiting time
t <- rexp.var(n = 1, rate, shape = shape, TS = TS)
t

fiziz:d
when shape = 1, the Weibull is an exponential, we could do better

scale
rate <- 10
shape
shape <- 2

speciation time
TS <- 0

set seed
set.seed(1)

find the vector of waiting times - it doesn't need to be just one
t <- rexp.var(n = 5, rate, shape = shape, TS = TS)

t

#iH#

59

60

shape can be less than one, of course

scale

rate <- 10
shape
shape <- 0.5

note we can supply now (default @) and tMax (default Inf)

now matters when we wish to consider only waiting times
after that time, important when using time-varying rates
now <- 3

tMax matters when fast = TRUE, so that higher times will be
thrown out and returned as tMax + 0.01
tMax <- 40

speciation time - it will be greater than @ frequently during a

simulation, as it is used to represent where in the species life we
currently are and rescale accordingly

TS <- 2.5

set seed
set.seed(1)

find the vector of waiting times
t <- rexp.var(n = 10, rate, now, tMax,
shape = shape, TS = TS, fast = TRUE)

note how some results are tMax + .01, since fast = TRUE

H#iH#
both rate and shape can be time varying for a Weibull

scale

rate <- function(t) {
return(0.25xt + 5)

3

shape
shape <- 3

current time
now <- @

maximum time to check
tMax <- 40

speciation time
TS <- 0

rexp.var

sample.clade

set seed
set.seed(1)

61

find the vector of waiting times
t <- rexp.var(n = 5, rate, now, tMax,

shape = shape, TS = TS, fast = TRUE)

sample.clade

General rate fossil sampling

Description

Generates occurrence times or time ranges (as most empirical fossil occurrences) for each of the
desired species using a Poisson process. Allows for the Poisson rate to be (1) a constant, (2) a
function of time, (3) a function of time and a time-series (usually environmental) variable, or (4) a
vector of numbers (rates in a step function). Allows for age-dependent sampling with a parameter
for a distribution representing the expected occurrence number over a species duration. Allows
for further flexibility in rates by a shift times vector and environmental matrix parameters. Finally,
allows for the simulation of trait-dependent fossil sampling when trait value information is supplied.

Usage
sample.clade(
sim,
rho,
tMax,
S = NULL,
envR = NULL,

rShifts = NULL,
returnTrue = TRUE,
returnAll = FALSE,

bins = NULL,
adFun = NULL,
)
Arguments
sim
rho

A sim object, containing extinction times, speciation times, parent, and status
information (extant or extinct) for each species in the simulation. See ?sim.

Sampling rate (per species per million years) over time. It can be a numeric
describing a constant rate, a function(t) describing the variation in sampling
over time t, a function(t, env) describing the variation in sampling over time
following both time AND a time-series, usually an environmental variable (see
envR), or a vector of rates, corresponding to each rate between sampling rate

62

tMax

envR

rShifts

returnTrue

returnAll

bins

adFun

sample.clade

shift times times (see rShifts), describing an episodic model of fossil sampling.
If adFun is supplied, it will be used to find the number of occurrences during the
species duration, and a normalized rho*adFun will determine their distribution
along the species duration. Note that rho should always be greater than or equal
to zero.

The maximum simulation time, used by rexp.var. A sampling time greater
than tMax would mean the occurrence is sampled after the present, so for con-
sistency we require this argument. This is also required to ensure time follows
the correct direction both in the Poisson process and in the output.

A vector of species numbers to be sampled. The default is all species in sim.
Species not included in S will not be sampled by the function.

A data frame containing time points and values of an environmental variable,
like temperature, for each time point. This will be used to create a sampling rate,
so rho must be a function of time and said variable if envR is not NULL. Note
paleobuddy has two environmental data frames, temp and co2. See RPANDA for
more examples.

Vector of rate shifts. First element must be the starting time for the simulation (@
or tMax). It must have the same length as lambda. c(@, x, tMax) is equivalent
to c(tMax, tMax - x, @) for the purposes of make.rate.

If set to FALSE, it will contain the occurrence times as ranges. In this way, we
simulate the granularity presented by empirical fossil records. If returnTrue is
TRUE, this is ignored.

If set to TRUE, returns both the true sampling time and age ranges. Default is
FALSE.

A vector of time intervals corresponding to geological time ranges. It must be
supplied if returnTrue or returnAll is TRUE.

A density function representing the age-dependent preservation model. It must
be a density function, and consequently integrate to 1 (though this condition is
not verified by the function). If not provided, a uniform distribution will be used
by default. The function must also have the following properties:

* Return a vector of preservation densities for each time in a given vector t
in geological time.

* Be parameterized in the absolute geological time associated to each mo-
ment in age (i.e. age works relative to absolute geological time, in Mya -
in other words, the convention is TS > 0). The function does not directly
use the lineage’s age (which would mean that TS = 0 for all species when-
ever they are born). Because of this, it is assumed to go from tMax to @, as
opposed to most functions in the package.

* Should be limited between s (i.e. the lineage’s speciation/birth) and e (i.e.
the lineage’s extinction/death), with s > e. It is possible to assign param-
eters in absolute geological time (see third example) and relative to age as
long as this follows the convention of age expressed in absolute geological
time (see fourth example).

* Include the arguments t, s, e and sp. The argument sp is used to pass
species-specific parameters (see examples), allowing for dFun to be species-
inhomogeneous.

sample.clade 63
Additional parameters used by adFun. See examples.

Details

Optionally takes a vector of time bins representing geologic periods, if the user wishes occurrence
times to be represented as a range instead of true points.

The age-dependent preservation function assumes that all extant species at the end of the simula-
tions have TE = @ (i.e., the function assumes all extant species got extinct exaclty when the simu-
lation ended. This might create distortion for some adFun - especially in the case of bell-shaped
functions. As interpretations of what age-dependent preservation mean to species alive at the end of
the simulation, we recommend users to implement their own preservation functions for the species
that are extant at the end of the simulation.

Value
A data.frame containing species names/numbers, whether each species is extant or extinct, and
the true occurrence times of each fossil, a range of occurrence times based on bins, or both.

Author(s)

Matheus Januario and Bruno do Rosario Petrucci.

Examples

vector of times
time <- seq(10, @, -0.1)

H#iH#
we can start with a constant case

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

sampling rate
rho <- 2

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho, tMax = 10,
bins = bins, returnTrue = FALSE)

draw simulation with fossil occurrences as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

fizizid
sampling can be any function of time

64

sample.clade

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

sampling rate

rho <- function(t) {
return(2 - 0.15%t)

3

plot sampling function
plot(x = time, y = rho(time), type = "1",
ylab = "Preservation rate”,
xlab = "Time since the start of the simulation (My)")
note for these examples we do not reverse time in the plot
see other functions in the package for examples where we do

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho, tMax = 10,
bins = bins, returnTrue = FALSE)

draw simulation with fossil occurrences as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

H#it#
now we can try a step function rate
not running because it takes a long time

Not run:
set seed

set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = @.1, mu = 0.1, tMax = 10)

we will use the less efficient method of creating a step function
one could instead use ifelse()

rates vector
rList <- c(2, 5, 0.5)

rate shifts vector
rShifts <- c(o, 4, 8)

make it a function so we can plot it
rho <- make.rate(rList, 10, rateShifts = rShifts)

plot sampling function

sample.clade 65

plot(x = time, y = rho(time), type = "1",
ylab = "Preservation rate”,
xlab = "Time since the start of the simulation (My)")

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho = rList, rShifts = rShifts, tMax = 10,
bins = bins, returnTrue = FALSE)

draw simulation with fossil occurrences as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

End(Not run)

fizizid
finally, sample.clade also accepts an environmental variable

get temperature data
data(temp)

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = @.1, mu = 0.1, tMax = 10)

rho will be temperature dependent
envR <- temp

function describing environmental dependence
r_t <- function(t, env) {

return(((env) / 12) * 6)
3

make it a function so we can plot it
rho <- make.rate(r_t, tMax = tMax, envRate = envR)

plot sampling function
plot(x = time, y = rho(time), type = "1",
ylab = "Preservation rate”,
xlab = "Time since the start of the simulation (My)")

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho = r_t, envR = envR, tMax = 10, bins = bins)
now we record the true time of fossil occurrences

draw simulation with fossil occurrences as time points
draw.sim(sim, fossils = fossils)

note that any techniques used in examples for ?bd.sim to create more
complex mixed scenarios can be used here as well

66

fizizid
sampling can also be age-dependent

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

sampling rate
rho <- 3

here we will use the PERT function. It is described in:
Silvestro et al 2014

age-dependence distribution
note that a and b define the beta distribution used, and can be modified
dPERT <- function(t, s, e, sp, a =3, b = 3, log = FALSE) {

check if it is a valid PERT

if (e >=5s) {

message("There is no PERT with e >= s")

return(rep(NaN, times = length(t)))
}

find the valid and invalid times
id1 <- which(t <= e | t >= s)

id2 <- which(!(t <= e | t >= s))

t <- t[id2]

initialize result vector
res <- vector()

if user wants a log function
if (log) {

invalid times get -Inf
res[id1] <- -Inf

valid times calculated with log
res[id2] <- log(((s - t) * 2) *x ((~re + t) * 2) /
((s - e) » 5 % beta(a, b)))
}
otherwise
else{

res[id1] <- @

resfid2] <- ((s - t) *2) x ((ce +t) ~2) / ((s -e) *5 * beta(a, b))
}

return(res)

sample.clade

sample.clade

plot it for an example species who lived from 10 to 5 million years ago
plot(time, rev(dPERT(t = time, s =10, e =5, a = 1)),

main = "Age-dependence distribution”,

xlab = "Species age (My)", ylab = "Density”,

xlim = c(@, 5), type = "1")

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences data frame

fossils <- sample.clade(sim, rho, tMax = 10, adFun = dPERT, bins = bins,
returnAll = TRUE)

can use returnAll to get occurrences as both time points and ranges

draw simulation with fossil occurrences as time points
draw.sim(sim, fossils = fossils)
the warning is to let you know the ranges won't be used

and also as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

HiH
we can have more parameters on adFun

sampling rate

rho <- function(t) {

return(1 + 0.5%t)

}
since here rho is time-dependent, the function finds the
number of occurrences using rho, and their distribution
using a normalized rho * adFun

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

here we will use the triangular distribution

age-dependence distribution
dTRI <- function(t, s, e, sp, md) {
make sure it is a valid TRI
if (e >=5s) {
message("There is no TRI with e >= s")
return(rep(NaN, times = length(t)))
}

another condition we must check

if (md <e | md>s) {

message("There is no TRI with md outside [s, e] interval")
return(rep(NaN, times = length(t)))

}

67

68

needed to vectorize the function:

idl <- which(t >= e & t < md)

id2 <- which(t == md)

id3 <- which(t > md & t <= s)

id4 <- which(!(1:1ength(t) %in% c(id1,id2,id3)))

actually vetorizing function
res <- vector()

(t > e &t < md)
res[id1] <- (2*%(t[id1] - e)) / ((s - e) * (md - €e))

(t == md)
res[id2] <- 2 / (s - e)

(md <t &t<=5)
res[id3] <- (2*%(s - t[id3]1)) / ((s - e) * (s - md))

outside function's limits
res[id4] <- 0

return(res)

}

set mode at 8
md <- 8

plot it for an example species who lived from 1@0mya to the present
plot(time, rev(dTRI(time, 10, 5, 1, md)),

main = "Age-dependence distribution”,

xlab = "Species age (My)"”, ylab = "Density",

xlim = c(@, 5), type = "1")

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences for the first species

fossils <- sample.clade(sim, rho, tMax = 10, S = 1, adFun = dTRI,
bins = bins, returnTrue = FALSE, md = md)

note we provide the peak for the triangular sampling as an argument

here that peak is assigned in absolute geological, but

it usually makes more sense to express this in terms

of age (a given percentile of the age, for instance) - see below

* oH o R

draw simulation with fossil occurrences as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

fizizd

we can also have a hat-shaped increase through the duration of a species
with more parameters than TS and TE, but with the parameters relating to
the relative age of each lineage

sample.clade

sample.clade 69

sampling rate

rho <- function(t) {
return(1 + 0.1%t)

}

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

age-dependence distribution, with the "mde" of the triangle
being exactly at the last quarter of the duration of EACH lineage
dTRImod1 <- function(t, s, e, sp) {

note that now we don't have the "md"” parameter here,

but it is calculated inside the function

check if it is a valid TRI

if (e >=5s) {

message("There is no TRI with e >= s")
return(rep(NaN, times = length(t)))

}

calculate md
md <- ((s -e)/ 4) +e
md is at the last quarter of the duration of the lineage

please note that the same logic can be used to sample parameters
internally in the function, running for instance:
md <- runif (n =1, min = e, max = s)

check it is a valid md

if (md <e | md>s) {

message("There is no TRI with md outside [s, e] interval”)
return(rep(NaN, times = length(t)))

}

needed to vectorize function

id1 <- which(t >= e & t < md)

id2 <- which(t == md)

id3 <- which(t>md & t <= s)

id4 <- which(!(1:1length(t) %in% c(id1,id2,id3)))

vectorize the function
res<-vector()

res[id1] <- (2 * (t[id1] - e)) / ((s - e) * (md - €))
res[id2] <- 2 / (s - e)

res[id3] <- (2 * (s - t[id31)) / ((s - &) * (s - md))
res[id4] <- 0@

return(res)

70

sample.clade

plot for a species living between 10 and @ mya
plot(time, rev(dTRImod1(time, 10, @, 1)),
main = "Age-dependence distribution”,
xlab = "Species age (My)", ylab = "Density",
xlim = c(0@, 10), type = "1")

sample first two species
fossils <- sample.clade(sim = sim, rho = rho, tMax = 10, adFun = dTRImod1)

draw simulation with fossil occurrences as time points
draw.sim(sim, fossils = fossils)

here, we fix md at the last quarter
of the duration of the lineage

fizizid

the parameters of adFun can also relate to each specific lineage,
which is useful when using variable parameters for each species
to keep track of those parameters after the sampling is over

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

sampling rate
rho <- 3

get the par and parl vectors

get mins vector
minsPar <- ifelse(is.na(sim$TE), @, sim$TE)

a random time inside each species' duration
par <- runif(n = length(sim$TE), min = minsPar, max = sim$TS)

its complement to the middle of the lineage's age.

parl <- (((sim$TS - minsPar) / 2) + minsPar) - par

note that the interaction between these two parameters creates a

deterministic parameter, but inside the function one of them ("par")
is a random parameter

dTRImod2 <- function(t, s, e, sp) {
make sure it is a valid TRI
if (e >=5s) {
message("There is no TRI with e >= s")
return(rep(NaN, times = length(t)))
}

md depends on parameters
md <- par[sp] + pari[sp]

sample.clade

check that md is valid

if (md<e | md>s) {

message("There is no TRI with md outside [s, e] interval")
return(rep(NaN, times = length(t)))

}

id1 <- which(t >= e & t < md)

id2 <- which(t == md)

id3 <- which(t > md & t <= s)

id4 <- which(!(1:length(t) %in% c(id1,id2,id3)))

res <- vector()

res[id1] <- (2*%(t[id1] - e)) / ((s - e) * (md - €e))
res[id2] <- 2 / (s - e)

res[id3] <- (2*%(s - t[id3]1)) / ((s - e) * (s - md))
res[id4] <- @

return(res)

}

plot for a species living between 10 and @ mya
plot(time, rev(dTRImod2(time, 10, 0, 1)),
main = "Age-dependence distribution”,
xlab = "Species age (My)", ylab = "Density”,
xlim = c(0@, 10), type = "1")

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho, tMax = 10, adFun = dTRImod2, bins =
returnTrue = FALSE)

draw simulation with fossil occurrences as time ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

fizizid
we can also have a mix of age-independent and age-dependent
sampling in the same simulation

set seed
set.seed(1)

simulate a group
sim <- bd.sim(n@ = 1, lambda = 0.1, mu = 0.1, tMax = 10)

sampling rate
rho <- 7

define a uniform to represente age-independence
age-dependence distribution (a uniform density distribution in age)

in the format that the function needs
custom.uniform <- function(t, s, e, sp) {

bins,

71

72

make sure it is a valid uniform

if (e >=5s) {

message("There is no uniform function with e >= s")
return(rep(NaN, times = length(t)))

}

res <- dunif(x = t, min = e, max = s)

return(res)

}

PERT as above
dPERT <- function(t, s, e, sp, a =3, b = 3, log = FALSE) {
check if it is a valid PERT
if (e >=5s) {
message("There is no PERT with e >= s")
return(rep(NaN, times = length(t)))
}

find the valid and invalid times
id1 <- which(t <= e | t >= s)

id2 <- which(!(t <= e | t >= s))

t <- t[id2]

initialize result vector
res <- vector()

if user wants a log function
if (log) {

invalid times get -Inf
res[id1] <- -Inf

valid times calculated with log

res[id2] <- log(((s - t) * 2) *x ((~re + t) * 2) /
((s - e) » 5 % beta(a, b)))

}

otherwise
else{
res[id1] <- @

resfid2] <- ((s - t) *2) *x ((ce +t) ~2) / ((s -e) »5 * beta(a, b))
}

return(res)

}

actual age-dependency defined by a mix
dPERTAndUniform <- function(t, s, e, sp) {
return(
ifelse(t > 5, custom.uniform(t, s, e, sp),
dPERT(t, s, e, sp))

sample.clade

sample.clade.traits 73

}

starts out uniform, then becomes PERT
after 5my (in absolute geological time)

plot it for an example species who lived from 10 to @ million years ago
plot(time, rev(dPERTAndUniform(time, 10, @, 1)),

main = "Age-dependence distribution”,

xlab = "Species age (My)", ylab = "Density",

xlim = c(0@, 10), type = "1")

bins for fossil ranges
bins <- seq(from = 10, to = @, by = -1)

simulate fossil occurrences data frame
fossils <- sample.clade(sim, rho, tMax = 10, adFun = dPERTAndUniform,
bins = bins, returnTrue = FALSE)

draw simulation with fossil occurrences as ranges
draw.sim(sim, fossils = fossils, fossilsFormat = "ranges")

note how occurrences cluster close to the speciation time of
species 1, but not its extinction time, since around 5mya
the PERT becomes the effective age-dependence distribution

sample.clade. traits Trait-dependent fossil sampling

Description

Generates occurrence times or time ranges (as most empirical fossil occurrences) for each of the
desired species using a Poisson process. Poisson rate should be dependent on some discrete trait,
the value of which for each species will be supplied using the parameter traits. Rate can be
dependent on observed traits only, or on a combination of observed and hidden traits (in which
case the supplied trait data frame traits should have all possible states, observed or hidden, see
examples for more details).

Usage

sample.clade.traits(

tMax,

traits,

nFocus = 1,
nStates = 2,
nHidden = 1,

S = NULL,
returnTrue = TRUE,

74

sample.clade.traits

returnAll = FALSE,

bins = NULL

Arguments

sim

rho

tMax

traits

nFocus

nStates

nHidden

A sim object, containing extinction times, speciation times, parent, and status
information (extant or extinct) for each species in the simulation. See ?sim.

Sampling rate (per species per million years) over time. It is a vector of rates,
corpointEstimatesponding to the value of the rate for each value of the traits
encoded in the traits parameter. It should therefore be of length nStates *
nHidden. Note that rho should always be greater than or equal to zero.

The maximum simulation time, used by rexp.var. A sampling time greater
than tMax would mean the occurrence is sampled after the present, so for con-
sistency we require this argument. This is also required to ensure time follows
the correct direction both in the Poisson process and in the output.

List of trait data frames, usually one of the returns of bd.sim. traits[[iJ][[j]1]
should corpointEstimatespond to the jth trait data frame for species i. The data
frames contain the following columns

value A vector of trait values the species took at specific intervals of time.

max A vector of time values corpointEstimatesponding to the upper bound of
each interval.

min A vector of time values corpointEstimatesponding to the lower bound of
each interval

Trait of focus, i.e. the one that rho depends on. Note that traits can have
multiple trait data frames per species, but only one of the simulated traits can
affect fossil sampling rates. E.g. if nFocus = 1, then the first trait data frame per
species will be used to simulate fossil occurrences.

Number of possible states for categorical trait. The range of values will be
assumed to be (@, nStates - 1).

Number of hidden states for categorical trait. Default is 1, in which case there
are no added hidden traits. Total number of states is then nStates * nHidden.
States will then be set to a value in the range of (@, nStates - 1) to simulate
that hidden states are hidden. This is done by setting the value of a state to the
remainder of state / nStates. E.g. if nStates =2 and nHidden = 3, possi-
ble states during simulation will be in the range (@, 5), but states (2, 4) (cor-
pointEstimatesponding to (@B, @C) in the nomenclature of the original HiSSE
reference) will be set to @, and states (3, 5) (corpointEstimatesponding to (1B,
10))to 1.

Note that since the traits is supplied as a parameter, the user must ensure that
all states from @ to nStates * nHidden - 1 are reppointEstimatesented in the
trait information. See examples for more details on how to properly run hidden-
states fossil sampling simulations.

A vector of species numbers to be sampled. The default is all species in sim.
Species not included in S will not be sampled by the function.

sample.clade.traits 75

returnTrue If set to FALSE, it will contain the occurrence times as ranges. In this way, we
simulate the granularity presented by empirical fossil records. If returnTrue is
TRUE, this is ignored.

returnAll If set to TRUE, returns both the true sampling time and age ranges. Default is
FALSE.
bins A vector of time intervals corresponding to geological time ranges. It must be

supplied if returnTrue or returnAll is TRUE.

Details

Optionally takes a vector of time bins reppointEstimatesenting geologic periods, if the user wishes
occurrence times to be reppointEstimatesented as a range instead of true points.

Value

A data. frame containing species names/numbers, whether each species is extant or extinct, and the
true occurrence times of each fossil, a range of occurrence times based on bins, or both. Also a list
object with the trait data frames describing the trait value for each species at each specified interval.
Note that this list will only be different from the supplied traits parameter if nHidden > 1, in
which case it will transform hidden traits into observed ones (see details for parameter nHidden).

Author(s)

Bruno do Rosario Petrucci.

Examples

fizizid
first a simple BiSSE simulation, with
binary state-dependent fossil sampling

initial number of species
ne <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, highe for state @
mu <- c(0.06, 0.03)

number of traits and states (1 binary trait)
nTraits <- 1

nStates <- 2

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates

76

sample.clade.traits

Q <- list(matrix(c(o, 0.1,
0.1, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax = tMax, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal = c(2, Inf))

now a fossil sampling rate, with higher rate for state 1
rho <- c(0.5, 1)

run fossil sampling
fossils <- sample.clade.traits(sim$SIM, rho, tMax, sim$TRAITS)

draw simulation with fossil occurrences as time points
draw.sim(sim$SIM, traits = sim$TRAITS,
fossils = fossils$FOSSILS, traitLegendPlacement = "bottomleft"”)

H#HH#
can also run a HiSSE model, with hidden traits having an effect on rates

initial number of species
no <- 1

maximum simulation time
tMax <- 20

speciation, higher for state 1A, highest for 1B
lambda <- c(0.1, 0.2, 0.1, 0.3)

extinction, lowest for 0B
mu <- c(0.03, 0.03, 0.01, 0.03)

number of traits and states--in this case, we just run with 4 observed

states, so that our traits data frames will include that info for sampling
nTraits <- 1

nStates <- 4

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates. Only one transition
is allowed at a time, i.e. @A can go to OB and 1A,

but not to 1B, and similarly for others

Q <- list(matrix(c(o, 0.1, 0.1, 0,

.1, 0, 0, 0.1,
.1, 0, 0, 0.1,
1, 0.1, @), ncol = 4, nrow = 4))

[SENSENGS]

, 0.

’

set seed
set.seed(1)

sim

77

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates,
X0 = X0, Q = Q, nFinal = c(2, Inf))
note how sim$TRAITS contains states 2 and 3, even though this
is a HiSSE model, because we need that information to run hidden states
on fossil sampling as well (see below)

now a fossil sampling rate, with higher rate for state 1A,
and highest yet for state 1B
rho <- c(0.5, 1, 0.5, 2)

bins for fossil occurrences
bins <- seq(tMax, 0, -1)

run fossil sampling, with returnAll = TRUE to include ranges
fossils <- sample.clade.traits(sim$SIM, rho, tMax, sim$TRAITS,

nStates = 2, nHidden = 2,

returnAll = TRUE, bins = bins)
note how fossils$TRAITS only contains trait values @ and 1, similar to
if we had ran bd.sim.traits with nHidden = 2, since sample.clade.traits
did the job of transforming observed into hidden states

draw simulation with fossil occurrences as time points AND ranges

draw.sim(sim$SIM, traits = sim$TRAITS, fossils = fossils$FOSSILS,
fossilsFormat = "all"”, traitLegendPlacement = "bottomleft"”)

note that there are a lot of fossils, so the ranges are difficult to see

see ?sample.clade for further examples using different return types
(fossil ranges etc.), and ?bd.sim.traits for more examples using

higher numbers of states (hidden or observed), though in

sample.clade.traits we always have only one trait of focus

sim Details, generics, and methods for the sim class

Description

The sim class is a frequent return and input argument for functions in paleobuddy. It contains the
following four elements.

TE Numeric vector of extinction times, with NA as the time of extinction for extant species.

TS Numeric vector of speciation times, with tMax as the time of speciation for species that started
the simulation.

PAR Numeric vector of parents. Species that started the simulation have NA, while species that were
generated during the simulation have their parent’s number. Species are numbered as they are
born.

78 sim

EXTANT Vector of logicals representing whether each species is extant.

Here we declare useful generics and methods for sim objects.

Usage

is.sim(sim)

S3 method for class 'sim'
print(x, ...)

S3 method for class 'sim'
head(x, ...)

S3 method for class 'sim'
tail(x, ...)

S3 method for class 'sim'
summary (object, ...)

S3 method for class 'sim'
plot(x, ...)

sim.counts(sim, t)

Arguments

sim, x, object Object of class "sim"
Further arguments inherited from generics.

t Time t (in Mya). Used for counting and/or plotting births, deaths and species
number.

Details

is.sim A sim object must contain 4 members (usually vectors for extinction times, speciation
times, species’ parents and status), and all of these must have the correct length (i.e. same as all
the others) and types. We do not utilize the members’ order inside sim for our tests, since they are
accessed with the $ operator and therefore the order is irrelevant.

print.sim The printing of a sim object is formatted into a more straightforward and informative
sequence manner. We provide details only for the first few species, since otherwise this print could
be overwhelming for simulations with 10+ species.

head. sim Selects only a number of species from the beginning of a sim object.
tail.sim Selects only a number of species from the end of a sim object.

summary . sim Quantitative details on the sim object. Prints the number of species, number of extant
species, summary of durations and speciation waiting times, in case there are more than one species.

plot.sim Plots births, deaths, and diversity through time for the sim object.

sim.counts Calculates the births, deaths, and diversity for a sim at time t.

temp 79

temp Cenozoic temperature data

Description

Temperature data during the Cenozoic. Modified from the InfTemp data set in RPANDA, orig-
inally inferred from delta O18 measurements. Inverted so lower times represent time since first
measurement, to be in line with the past-to-present convention of most time-dependent functions in
paleobuddy.

Usage

data(temp)

Format

A data frame with 17632 rows and 2 variables:

t A numeric vector representing time since the beginning of the data frame age, approximately 67
million years ago, in million years. We set this from past to present as opposed to present
to past since birth-death functions in paleobuddy consider time going in the former direc-
tion. Hence t = @ represents the time point at 67.5173mya, while t = 67.5173 represents the
present.

temperature A numeric vector representing temperature in degrees celsius corresponding to time
t. Note there might be more than one temperature for each time t given the resolution of the
data set.

Source

https://github.com/hmorlon/PANDA

References

Morlon H. et al (2016) RPANDA: an R package for macroevolutionary analyses on phylogenetic
trees. Methods in Ecology and Evolution 7: 589-597.

Epstein, S. et al (1953) Revised carbonate-water isotopic temperature scale Geol. Soc. Am. Bull.
64: 1315-1326.

Zachos, J.C. et al (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle
dynamics Nature 451: 279-283.

Condamine, F.L. et al (2013) Macroevolutionary perspectives to environmental change Eco Lett.
16: 72-85.

https://github.com/hmorlon/PANDA
https://github.com/hmorlon/PANDA

80 traits.summary

traits.summary Summarizing trait data

Description

Summarizes trait data from a sim object, usually the ouput of bd.sim in the case where diversi-
fication rates are trait-dependent. Returns a list of trait values at the present or the time of ex-
tinction (depending on whether the species is alive at present), and optionally returns values at
the time of fossil sampling if provided with a fossil record object fossils, usually the output of
sample.clade. Does not make assumptions on the number of traits described in the traits pa-
rameter, so that if that list has more than one trait per species, multiple vectors will be returned by
the function.

Usage

traits.summary(sim, traits, fossils = NULL, selection = "all")

Arguments

sim A sim object, containing extinction times, speciation times, parent, and status
information for each species in the simulation. See ?sim.

traits List of trait data frames, usually one of the returns of bd. sim. traits[[i1][[j]1]
should correspond to the jth trait data frame for species i. The data frames con-
tain the following columns

value A vector of trait values the species took at specific intervals of time.
max A vector of time values corresponding to the upper bound of each interval.
min A vector of time values corresponding to the lower bound of each interval

fossils A data frame with a "Species” column and a SampT column, usually an output
of the sample.clade function. Species names must contain only one number
each, corresponding to the order of the sim vectors. Note that we require it to
have a SampT column, i.e. fossils must have an exact age. This assumption might
be relaxed in the future.

selection Which subset of species to collect trait data for. If set to "all”, it will return
every trait value it has access to, i.e. either all species, living or dead, or all
species plus fossils if fossils is supplied. If set to "extant”, it will return
only trait values for living species. If set to "extinct”, it will return only trait
values for extinct species, and fossils if fossils is supplied. If set to "fossil”,
it will return values for only the fossil species (and therefore requires a fossils
parameter). If set to "sampled”, it will function the same as in the case for
"extant”, except it will also return values for the fossils if fossils is supplied.

Value

A named list of named vectors of trait values. List element names refer to each trait, so i.e.
res$traitN will correspond to the vector of trait values for trait N. Vector element names refer
to the species, using the default naming convention of the package (tN is the Nth species in the
simulation, and tN.M is the Mth sampled fossil of that species).

traits.summary

Author(s)

Bruno do Rosario Petrucci

Examples

fizizid
need a simple simulation to use as an example

initial number of species
ng <- 1

maximum simulation time
tMax <- 40

speciation, higher for state 1
lambda <- c(0.1, 0.2)

extinction, trait-independent
mu <- 0.03

number of traits and states (1 binary trait)
nTraits <- 1
nStates <- 2

initial value of the trait
X0 <- 0

transition matrix, with symmetrical transition rates
Q <- list(matrix(c(o, 0.1,
0.1, @), ncol = 2, nrow = 2))

set seed
set.seed(1)

run the simulation
sim <- bd.sim.traits(n@, lambda, mu, tMax, nTraits = nTraits,
nStates = nStates, X0 = X0, Q = Q, nFinal

get all trait values
traitSummary <- traits.summary(simSIM, simTRAITS)
traitSummary

could get only the extant values, instead
traitSummary <- traits.summary(simSIM, simTRAITS, selection
traitSummary

or all the extinct values
traitSummary <- traits.summary(simSIM, simTRAITS, selection
traitSummary

set seed
set.seed(1)

c(2, Inf))

"extant")

"extinct")

81

82 var.rate.div

maybe we want to take a look at the traits of fossil records too
fossils <- sample.clade(sim$SIM, rho = 0.5, tMax = max(simSIMTS))

get the trait values for all extinct species, including fossil samples
traitSummary <- traits.summary(simSIM, simTRAITS,

fossils = fossils, selection = "extinct"”)
traitSummary

can also get the values for all sampled species, i.e. extant or fossils
traitSummary <- traits.summary(simSIM, simTRAITS,

fossils = fossils, selection = "sampled”)
traitSummary

or just the fossil species
traitSummary <- traits.summary(simSIM, simTRAITS,

fossils = fossils, selection = "fossil")
traitSummary
var.rate.div Expected diversity for general exponential rates
Description

Calculates the expected species diversity on an interval given a (possibly time-dependent) expo-
nential rate. Takes as the base rate (1) a constant, (2) a function of time, (3) a function of time
interacting with an environmental variable, or (4) a vector of numbers describing rates as a step
function. Requires information regarding the maximum simulation time, and allows for optional
extra parameters to tweak the baseline rate. For more information on the creation of the final rate,
see make.rate.

Usage

var.rate.div(rate, t, n@ = 1, tMax = NULL, envRate = NULL, rateShifts = NULL)

Arguments

rate The baseline function with which to make the rate. It can be a

A number For constant birth-death rates.

A function of time For rates that vary with time. Note that this can be any
function of time.

A function of time and an environmental variable For rates varying with time
and an environmental variable, such as temperature. Note that supplying a
function on more than one variable without an accompanying envRate will
result in an error.

A numeric vector To create step function rates. Note this must be accompa-
nied by a corresponding vector of rate shift times, rateShifts.

var.rate.div 83

t A time vector over which to consider the distribution.

no The initial number of species is by default 1, but one can change to any nonneg-
ative number.

Note: var.rate.div will find the expected number of species given a rate rate
and an initial number of parents n@, so in a biological context rate is diversifi-
cation rate, not speciation (unless extinction is 0).

tMax Ending time of simulation, in million years after the clade’s origin. Needed to
ensure rateShifts runs the correct way.

envRate A data.frame representing a time-series, usually an environmental variable
(e.g. CO2, temperature, etc) varying with time. The first column of this data. frame
must be time, and the second column must be the values of the variable. The
function will return an error if the user supplies envRate without rate being
a function of two variables. paleobuddy has two environmental data frames,
temp and co2. One can check RPANDA for more examples.

Note that, since simulation functions are run in forward-time (i.e. with @ being
the origin time of the simulation), the time column of envRate is assumed to
do so as well, so that the row corresponding to t = @ is assumed to be the value
of the time-series when the simulation starts, and t = tMax is assumed to be its
value when the simulation ends (the present).

Acknowledgements: The strategy to transform a function of t and envRate into
a function of t only using envRate was adapted from RPANDA.

rateShifts A vector indicating the time of rate shifts in a step function. The first element
must be the first or last time point for the simulation, i.e. @ or tMax. Since func-
tions in paleobuddy run from @ to tMax, if rateShifts runs from past to present
(meaning rateShifts[2] <rateShifts[1]), we take tMax - rateShifts as
the shifts vector. Note that supplying rateShifts when rate is not a numeric
vector of the same length will result in an error.

Value

A vector of the expected number of species per time point supplied in t, which can then be used to
plot vs. t.

Examples

let us first create a vector of times to use in these examples
time <- seq(@, 50, 0.1)

i
we can start simple: create a constant rate
rate <- 0.1

make the rate
r <- make.rate(0.5)

plot it
plot(time, rep(r, length(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(50, @), type = '1")

var.rate.div

get expected diversity
div <- var.rate.div(rate, time)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)"”, xlim = c(50, @), type = '1l")

H#it#
something a bit more complex: a linear rate
rate <- function(t) {
return(1l - 0.05%t)
3

make the rate
r <- make.rate(rate)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(50, @), type = '1")
negative values are ok since this represents a diversification rate

get expected diversity
div <- var.rate.div(rate, time)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)", xlim = c(50, @), type = 'l")

#iH#
remember: rate is the diversification rate!

we can create speciation...

lambda <- function(t) {
return(0.5 - 0.01x*t)

3

...and extinction...

mu <- function(t) {
return(0.01*t)

3

...and get rate as diversification

rate <- function(t) {
return(lambda(t) - mu(t))

3

make the rate
r <- make.rate(rate)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(50, @), type = '1")

var.rate.div

get expected diversity
div <- var.rate.div(rate, time)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)"”, xlim = c(50, @), type = '1l")

H#HiH#
we can use ifelse() to make a step function like this
rate <- function(t) {
return(ifelse(t < 2, 0.2,
ifelse(t < 3, 0.4,
ifelse(t < 5, -0.2, 0.5))))
3

change time so things are faster
time <- seq(@, 10, 0.1)

make the rate
r <- make.rate(rate)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")
negative rates is ok since this represents a diversification rate

get expected diversity
div <- var.rate.div(rate, time)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")

this method of creating a step function might be annoying, but when
running thousands of simulations it will provide a much faster

integration than when using our method of transforming

a rates and a shifts vector into a function of time

#H
...which we can do as follows

rates vector
rateList <- c(0.2, 0.4, -0.2, 0.5)

rate shifts vector
rateShifts <- c(0, 2, 3, 5)

make the rate
r <- make.rate(rateList, tMax = 10, rateShifts = rateShifts)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,

86

var.rate.div

xlab = "Time (Mya)", xlim = c(10, @), type = '1")
negative rates is ok since this represents a diversification rate

get expected diversity
div <- var.rate.div(ratelList, time, tMax = 10, rateShifts = rateShifts)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")

fizizid
finally let us see what we can do with environmental variables

get the temperature data
data(temp)

diversification

rate <- function(t, env) {
return(0.2 + 2%exp(-0.25%env))

3

make the rate
r <- make.rate(rate, tMax = tMax, envRate = temp)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(10, 0), type = '1")

get expected diversity
div <- var.rate.div(rate, time, tMax = tMax, envRate = temp)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")

#iH
we can also have a function that depends on both time AND temperature

diversification

rate <- function(t, env) {
return(0.02 * env - 0.01 * t)

3

make the rate
r <- make.rate(rate, tMax = tMax, envRate = temp)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")

get expected diversity
div <- var.rate.div(rate, time, tMax = tMax, envRate = temp)

var.rate.div

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)", xlim = c(10, @), type = '1")

fizizid
as mentioned above, we could also use ifelse() to construct a step
function that is modulated by temperature

diversification
rate <- function(t, env) {
return(ifelse(t < 2, 0.1 + 0.01*xenv,
ifelse(t < 5, 0.2 - 0.05*env,
ifelse(t < 8, 0.1 + @.1*xenv, 0.2))))

make the rate
r <- make.rate(rate, tMax = tMax, envRate = temp)

plot it
plot(time, rev(r(time)), ylab = "Diversification rate”,
xlab = "Time (Mya)", xlim = c(1@, @), type = '1")

get expected diversity
div <- var.rate.div(rate, time, tMax = tMax, envRate = temp)

plot it
plot(time, rev(div), ylab = "Expected number of species”,
xlab = "Time (Mya)”, xlim = c(10, @), type = '1l")

takes a bit long so we set it to not run, but the user
should feel free to explore this and other scenarios

87

Index

+ datasets
co2, 28
temp, 79

x fossils
paleobuddy, 50

* paleobiology
paleobuddy, 50

* phylogeny
paleobuddy, 50

x simulation
paleobuddy, 50

bd.sim, 2
bd.sim.traits, 14
bin.occurrences, 25
binner, 27

co2, 28

draw.sim, 29
find.lineages, 34
head.sim (sim), 77
is.sim(sim), 77

make . phylo, 39
make.rate, 47

paleobuddy, 50

paleobuddy-package (paleobuddy), 50
phylo.to.sim, 53

plot.sim(sim), 77

print.sim(sim), 77

rexp.var, 56

sample.clade, 61
sample.clade.traits, 73
sim, 77

88

summary.sim(sim), 77

tail.sim(sim), 77
temp, 79
traits.summary, 80

var.rate.div, 82

	bd.sim
	bd.sim.traits
	bin.occurrences
	binner
	co2
	draw.sim
	find.lineages
	make.phylo
	make.rate
	paleobuddy
	phylo.to.sim
	rexp.var
	sample.clade
	sample.clade.traits
	sim
	temp
	traits.summary
	var.rate.div
	Index

