Introduction to the City Clustering Algorithm

Steffen Kriewald

December 19, 2019

Contents

1 Introduction 1

2 First clustering 1

3 Clustering of geo-referenced data 3
3.1 City Clustering 5
3.2 Clustering point data 5

4 Comparison of the two Versions - matrix vs. list 7

1 Introduction

This vignette describes first steps with the R package of the City Clustering
Algorithm (CCA). CCA allows to cluster a specific value in a 2-dimensional
data-set. This algorithm was originally used to identify cities based on clustered
population- or land-cover-data, but can be applied in multiple cases. It was also
used to identify hydrological connected areas based on digital elevation models.

The clustering algorithm based on the burning algorithm presented in Rozen-
feld et al.[1] and is implemented in two versions: a matrix based and a list based.
The differences in run time and memory use will be discussed in section 4. The
list-based algorithm can handle geo-referenced data and offers full integration
of raster objects.

For the problem of cities the method in general can be described as following:
The CCA selects an urban cell and burns it in a first step. "burns” means the
urban cell will be marked and then belongs to a specific cluster. Then the cca
starts an iterative burning of all neighboring cells until all neighboring cells are
non-urban cells. Another possibility is to allow small gaps between cells, by
introducing a cluster distance. These small gaps are important as cities can be
divided by rivers or through data processing.

2 First clustering

We will start with a small example, using the exampledata. The data frame
contains two columns representing the rows and columns, namely x and y. We
will cluster the given points with a cluster distance s = 1. Here a cluster distance
of s = 1 is equal to the pixel width.

> library(osc)
> data(exampledata)
> str(exampledata)

'data.frame': 235 obs. of 4 variables:
$ x cnum 1111111111

$y :num 1 23569 12 15 18 19

$ z cint 1111111111

$ cluster: int 1111122344

> pop.list <- cca(exampledatal,1:2],s=1)

[1] "use as X-coordinates column ' x '"
[1] "use as Y-coordinates column ' y '"
[1] "Sorting... Done"

[1] "Start Clustering..."

[1] "Clustering... Done"

[1] "Summary... Done"

> str(pop.list)

List of 2
$ cluster:'data.frame': 235 obs. of 3 variables:
..$ long :num [1:235] 1111111111
..$ lat : num [1:235] 1 2356 9 12 15 18 19 ...
..$ cluster_id: num [1:235] 1 111122344 ...
$ size : num [1:24] 26 69 1 11 59 2 2 2 25 2 ...

In this example the cluster distance s=1 is equal to rook’s case and conse-
quently only four neighboring cells will be joined to the cluster and no diagonal
neighbors, see figure 1. The result, pop.list, is a list with two entries. The first
contains a data frame with the original coordinates followed by a column rep-
resenting the cluster by an identification number (id). The second is a a vector
giving the size of the cluster. First number is the size of the cluster with cluster
id = 1, second the size of cluster with cluster id = 2, and so on.

If we want to use the matrix based version we have first to convert the data
into a matrix.

> #initiate empty matrix

> exampledata.pop <- matrix(0, nrow=max(exampledata$x), ncol=max(exampledata$y))
> #restructure data

> for(i in 1:NROW(exampledata)){

+ exampledata.poplexampledata$x[i],exampledata$y[i]] <- exampledata$z[i]

+ }

Afterwards we can call the cca again for the cluster distance s = 1.

v

example.result <- cca(exampledata.pop, s=1)
str(example.result)

v

int [1:20, 1:201 1 01 000880 12 ...

20

15

10
|

Figure 1: Clustering based on a data frame with a cluster distance equal to
the pixel width. Only the four directly connected neighboring cells are joined
to a cluster and no diagonal neighbors. The left figure shows the original data
and the right figure the clustered result, where each color represent a separated
cluster.

Figure 2: Clustering based on a matrix with a cluster distance equal to the pixel
width. The result is exactly the same as the previous result shown in figure 1.

The result, example.result, is a matrix that defines for each cell to which
cluster it belongs (illustrated by figure 2). In this example we used the default
value 3 for mode, but mode = 1 will have the same effect. However, if mode =
2 all eight neighboring cells would be considered, which would lead to one single
cluster.

3 Clustering of geo-referenced data

The CCA supports native the raster format, but will do the geo-referenced clus-
tering based on points. To do so the cca converts automatically the raster to
a data-frame with two columns, namely long and lat coordinates of the cen-
ter points from the chosen raster cells. For the use of the orthodromic distance,
option unit="m”, a WGS84 Latitude/Longitude projection of the data is manda-
tory. The algorithm compares the distances from every cell to each other. If

the distance is smaller than the threshold of the cluster-distance the cells will
be considered as one cluster.

Let’s do a short example: First we will create a raster and then cluster the
cells with value one for three different cluster distances 150, 240 and 111 km.

> # create a raster and set the projection information
> raster <- raster(extent(0,5,0,5),nrow=5,ncol=>5)

> raster[c(1,2,3,5,6,10,17,18,22,23,24)] <- 1

> proj4string(raster) <- CRS("+proj=longlat")

> # get a feeling for the dimensions

> summary (distance (raster) [])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 0 110576 65749 110979 156891

cluster all cells with value 1

for various cluster distances of 150, 240 and 111 km
cluster <- cca(raster, cell.class=1, s=1.5e+05, unit="m")
cluster2 <- cca(raster, cell.class=1, s=2.4e+05, unit="m")
cluster3 <- cca(raster, cell.class=1, s=1.11e+05, unit="m")

V V.V VvV

Notice the different results, to be more precise the different number of clus-
ters, for the different cluster distances. For the first run with a cluster distance
of 150 km where three clusters identified, see figure 3 left. The distance is large
enough to identify all neighbors as part of the cluster. Through an increase
to 240 km the upper left cluster and the upper right become one cluster, see
figure 3 middle. The distance is large enough to bridge a horizontal gap of one
empty cell, but not to bridge a diagonal gap. This can be reached by a further
increase up to 250 km. A cluster distance smaller than 110 km will result into
11 clusters, every single cell. A special case can be created by choosing a cluster
distance of 111 km, see figure 3 right. In this case the three upper left cells
forming one cluster, where as all other cells are separated. This is because of
the cell width, which is lower in high latitudes. It is also possible to cluster a
raster pixelwise, without consideration of the projection.

> pixel <- cca(raster, cell.class=1, s=1)

> str(pixel)

List of 2
$ cluster:'data.frame': 11 obs. of 3 variables:
..$ long : num [1:11] 0.5 0.5 1.5 1.5 1.5 2.5 2.5 2.5 3.5 4.5 ...
..$ lat : num [1:11] 4.5 3.5 4.5 1.5 0.5 4.5 1.5 0.5 0.5 4.5
..$ cluster_id: num [1:11] 1 112212 2 2 3
$ size :num [1:3] 4 5 2

For a clusterdistance equal to the resolution of the raster this will lead to the
same result as the in section 2 presented ways or the clump-function from the
raster package [2]. The second entry of pixel, the cluster size, is then simple the
number of cells for each cluster.

s =150 km s =240 km s=111km

~

-

O‘y—‘ .
0 1 2 3 4

5 0 1 2 3 4 5 0 1 2 3 4 5

Figure 3: Clustering of a geo-referenced raster object for several cluster dis-
tances. Each colour identifies a cluster. The number of clusters increases with
a decrease of the cluster distance.

3.1 City Clustering

Another more realistic example for a fictional land-cover data with five different
classes, see figure 5. We chose the cell class 1, a cluster distance of 2 km and
the unit="m".

> data("landcover")
> cities <- cca(landcover, cell.class=1, s=2000, unit="m")

The result, cities, is again a list. However, you can create a raster-object
from the results based on the original raster within two lines.

> str(cities)

List of 2
$ cluster:'data.frame': 116 obs. of 3 variables:
..$ long : num [1:116] 13.3 13.3 13.3 13.2 13.3 ...
..$ lat : num [1:116] 52.2 52.2 52.2 52.2 52.2 ...
..$ cluster_id: num [1:116] 1 1 1 1 111111
$ size :num [1:9] 17.771 2.449 0.612 1.836 21.398 ...

> result <- landcover*NA
> result[cellFromXY(result, cities$cluster[,1:2])] <- cities$cluster([,3]

We took the coordinates of the clustered cells to compute the cellnumber
and replaced these cells with the corosponding cluster id. The result is shown
in figure 5.

3.2 Clustering point data

> library (maps)
> head(world.cities)
> str(world.cities)

> city.cluster <- cca(data = world.cities[,c(5,4,1:3,6)], s = 0.5)

Figure 4: Clustering of land cover data. Left side the original data and on the

. ‘

3 3
5 8 %
mn [Te]
N N
ol o
n n

T

k
o o r
N N
o N i
n [Te]

1

|
wn n
— —
ol o T T T T
wn wn
13.15 13.20 13.25 13.30 13.15 13.20 13.25 13.30

right side the clustered result.

[1] "use as X-coordinates column ' long '"
[1] "use as Y-coordinates column ' lat '"
[1] "Sorting... Done"

[1] "Start Clustering..."

[1] "Clustering... Done"

[1] "Summary... Done"

>

> city.cluster.m <- cca(data = world.cities[,c(5,4,1:3,6)], s = 56*1e+03,
+ res.x = 0.05, res.y = 0.05, unit = "m")

[1] "use as X-coordinates column ' long '"
[1] "use as Y-coordinates column ' lat '"
[1] "Sorting... Done"

[1] "Start Clustering..."

[1] "Clustering... Done"
[1] "Summary... Done"
>

> coordinates(city.cluster[[1]]) <- ~“long+lat
> proj4string(city.cluster[[1]]) <- CRS("+init=epsg:4326")

d=0.5° d =56 km

o _J o _J
[[
o _J o _|
E [V E N
o o —
¥ §40
© T T T T T 1 © T T T T T 1
-150 -50 0 50 150 -150 -50 0 50 150
long long

Figure 5: CBla bla bla

4 Comparison of the two Versions - matrix vs.
list

As we have shown already in section 2 the two implemented versions do exactly
the same just in different ways. If your data is already in one of the known types
(matrix, data.frame, raster) it is logical to use the corresponding implementation
of the algorithm. However, there are huge differences in run time and memory
consumption which could give you a hint for the right choice.

The memory use of the matrix-based version depends only on the size of the
matrix / raster. As for the algorithm two matrices are needed, consequently
the memory use will be doubled. For the list-based version the memory needed
depends on the number of cells which are occupied. Each of these cells will be
saved in a data-frame with xy-coordinates and a placeholder for the cluster id.

To summarize it: The list-version is faster for sparse matrices and large
cluster-distances, where as the matrix version is better for dense matrices and
small cluster-distances. In general the list version needs less memory.

| = matrix
= list

timeins
10 15 20 25

5
|

0
l

0 20 40 60 80 100

cluster distance

Figure 6: Comparison of the run time for matrix and list based implementation
of the cca.

References

[1] Rozenfeld, H. D., Rybski, D., Andrade, J. S., Batty, M., Stanley, H. E., &
Makse, H. a. (2008). Laws of population growth. Proceedings of the National
Academy of Sciences of the United States of America, 105(48), 18702-7.
doi:10.1073/pnas.0807435105

[2] Robert J. Hijmans (2014). raster: raster: Geographic data analysis and mod-
eling. R package version 2.2-31. http://CRAN.R-project.org/package=raster

