Package ‘origami’
October 20, 2022

Title Generalized Framework for Cross-Validation
Version 1.0.7
Maintainer Jeremy Coyle <jeremyrcoyle@gmail.com>

Description A general framework for the application of cross-validation schemes
to particular functions. By allowing arbitrary lists of results, origami
accommodates a range of cross-validation applications. This implementation
was first described by Coyle and Hejazi (2018) <doi:10.21105/joss.00512>.

Depends R (>=3.0.0),
License GPL-3

URL https://tlverse.org/origami/

BugReports https://github.com/tlverse/origami/issues
Encoding UTF-8

Imports abind, methods, data.table, assertthat, future, future.apply,
listenv

Suggests testthat, class, rmarkdown, knitr, stringr, glmnet, forecast,
randomForest

VignetteBuilder knitr
RoxygenNote 7.2.1
NeedsCompilation no

Author Jeremy Coyle [aut, cre, cph] (<https://orcid.org/0000-0002-9874-6649>),
Nima Hejazi [aut] (<https://orcid.org/0000-0002-7127-2789>),
Ivana Malenica [aut] (<https://orcid.org/0000-0002-7404-8088>),
Rachael Phillips [aut] (<https://orcid.org/0000-0002-8474-591X>)

Repository CRAN
Date/Publication 2022-10-19 23:22:36 UTC

R topics documented:

COmMDINETS e e
combine results e

https://doi.org/10.21105/joss.00512
https://tlverse.org/origami/
https://github.com/tlverse/origami/issues
https://orcid.org/0000-0002-9874-6649
https://orcid.org/0000-0002-7127-2789
https://orcid.org/0000-0002-7404-8088
https://orcid.org/0000-0002-8474-591X

2 combiners
cross_validate L e 3
folds2foldvec e 6
fold_from_foldvec e 7
fold funs e 7
fold_helpers 9
GUESS_COMDINET vttt e e e e e e 10
id_folds_to_folds e 10
make fold L 11
make _folds e 11
make_repeated_folds 12
WIAP_IN_IIY .« .« . o o ot e e i e e e e e e 13

Index 14

combiners Combiners

Description

Combiners are functions that collapse across a list of similarly structured results. These are standard
idioms for combining lists of certain data types.

Usage

combiner_rbind(x)

combiner_c(x)

combiner_factor(x)

combiner_array(x)
Arguments

X A list of similar results to be combined.
Value

A combined results object.

combine_results 3

combine_results Combine Results from Different Folds

Description

Applies combiners: functions that collapse across a list of similarly structured results, to a list of
such lists.

Usage

combine_results(results, combiners = NULL, smart_combiners = TRUE)

Arguments
results A list of lists, corresponding to each result, with the inner 1ists correspond-
ing to results from each fold.
combiners A list with the same names as results, containing combiner function names or

functions for each result.
smart_combiners
A logical indicating whether combiners should be guessed from the data type
of the results if they are missing.
Details
In theory you should never call this function directly, because it is called automatically by cross_validate.
The defaults, combiners guessed based on data type, should work in most cases.

Value

A list of combined results.

See Also

combiners

cross_validate Main Cross-Validation Function

Description

Applies cv_fun to the folds using future_lapply and combines the results across folds using
combine_results.

4 cross_validate

Usage

cross_validate(
cv_fun,
folds,

use_future = TRUE,
.combine = TRUE,
.combine_control = list(),
.old_results = NULL

)
Arguments

cv_fun A function that takes a *fold’ as it’s first argument and returns a list of results
from that fold. NOTE: the use of an argument named X’ is specifically disal-
lowed in any input function for compliance with the functions future_lapply
and lapply.

folds A list of folds to loop over generated using make_folds.
Other arguments passed to cvfun.

use_future A logical option for whether to run the main loop of cross-validation with
future_lapply or with lapply.

.combine A logical indicating if combine_results should be called.

.combine_control
A list of arguments to combine_results.

.old_results A list containing the returned result from a previous call to this function. Will
be combined with the current results. This is useful for adding additional CV
folds to a results object.

Value

A list of results, combined across folds.

Examples

B S S s S
This example explains how to use the cross_validate function naively.

R HHHHHEEEHEHHHE R HHHEEHREEEHHH R HHHHREEE B EEHHEHEHHHHEREERBHHEHE RN
data(mtcars)

resubstitution MSE
r <- lm(mpg ~ ., data = mtcars)
mean(resid(r)*2)

function to calculate cross-validated squared error

cv_1lm <- function(fold, data, reg_form) {
get name and index of outcome variable from regression formula
out_var <- as.character(unlist(stringr::str_split(reg_form, " "))[1])
out_var_ind <- as.numeric(which(colnames(data) == out_var))

cross_validate

split up data into training and validation sets
train_data <- training(data)
valid_data <- validation(data)

fit linear model on training set and predict on validation set
mod <- 1lm(as.formula(reg_form), data = train_data)
preds <- predict(mod, newdata = valid_data)

capture results to be returned as output
out <- list(

coef = data.frame(t(coef(mod))),

SE = ((preds - valid_data[, out_var_ind])*2)
)

return(out)

replicate the resubstitution estimate

resub <- make_folds(mtcars, fold_fun = folds_resubstitution)[[1]]
resub_results <- cv_1lm(fold = resub, data = mtcars, reg_form = "mpg ~ .")
mean(resub_results$SE)

cross-validated estimate
folds <- make_folds(mtcars)
cv_results <- cross_validate(
cv_fun = cv_1lm, folds = folds, data = mtcars,
reg_form = "mpg ~ ."
)
mean(cv_results$SE)
HHHHHHHHHHEE AR AR AR RN
This example explains how to use the cross_validate function with
parallelization using the framework of the future package.
SHHHHHHHHHE AR AR AR RN

suppressMessages(library(data. table))
library(future)

data(mtcars)

set.seed(1)

make a lot of folds
folds <- make_folds(mtcars, fold_fun = folds_bootstrap, V = 1000)

function to calculate cross-validated squared error for linear regression
cv_1lm <- function(fold, data, reg_form) {

get name and index of outcome variable from regression formula

out_var <- as.character(unlist(str_split(reg_form, " "))[1])

out_var_ind <- as.numeric(which(colnames(data) == out_var))

split up data into training and validation sets
train_data <- training(data)

valid_data <- validation(data)

fit linear model on training set and predict on validation set

6 folds2foldvec

mod <- 1lm(as.formula(reg_form), data = train_data)
preds <- predict(mod, newdata = valid_data)

capture results to be returned as output
out <- list(

coef = data.frame(t(coef(mod))),

SE = ((preds - valid_data[, out_var_ind])*2)
)
return(out)

}

plan(sequential)
time_seq <- system.time({
results_seq <- cross_validate(
cv_fun = cv_1m, folds = folds, data = mtcars,
reg_form = "mpg ~ ."
)
»

plan(multicore)
time_mc <- system.time({
results_mc <- cross_validate(
cv_fun = cv_1m, folds = folds, data = mtcars,
reg_form = "mpg ~ ."
)
»

if (availableCores() > 1) {
time_mc["elapsed”] < 1.2 x time_seq["elapsed”]

3

folds2foldvec Build a Fold Vector from a Fold Object

Description

For V-fold type cross-validation. This takes a fold object and returns a fold vector (containing the
validation set IDs) for use with other tools like cv.glmnet.

Usage
folds2foldvec(folds)
Arguments
folds A fold object as produced by make_folds, from which a numeric vector of the
validation set fold IDs are returned.
See Also

Other fold generation functions: fold_from_foldvec(), fold_funs, make_folds(), make_repeated_folds()

fold_from_foldvec 7

fold_from_foldvec Build a Fold Object from a Fold Vector

Description
For V-fold type cross-validation. This takes a fold vector (validation set IDs) and builds a fold
object for fold V.

Usage
fold_from_foldvec(v, folds)

Arguments
% An identifier of the fold in which observations fall for cross-validation.
folds A vector of the fold status for each observation for cross-validation.
See Also

Other fold generation functions: fold_funs, folds2foldvec(), make_folds(), make_repeated_folds()

fold_funs Cross-Validation Schemes

Description

These functions represent different cross-validation schemes that can be used with origami. They
should be used as options for the fold_fun argument to make_folds, which will call the re-
quested function specify n, based on its arguments, and pass any remaining arguments (e.g. V
or pvalidation) on.

Usage
folds_vfold(n, V = 10L)

folds_resubstitution(n)

folds_loo(n)

folds_montecarlo(n, V = 1000L, pvalidation = 0.2)
folds_bootstrap(n, V = 1000L)

folds_rolling_origin(n, first_window, validation_size, gap = @L, batch = 1L)

fold_funs

folds_rolling_window(n, window_size, validation_size, gap = 0L, batch = 1L)

folds_rolling_origin_pooled(

)

n7

t)

id = NULL,
time = NULL,

first_window,
validation_size,
gap = oL,

batch = 1L

folds_rolling_window_pooled(

)

n)

t7

id = NULL,
time = NULL,

window_size,
validation_size,
gap = oL,

batch = 1L

folds_vfold_rolling_origin_pooled(

)

n)

t7

id = NULL,
time = NULL,
V = 1oL,

first_window,
validation_size,
gap = oL,

batch = 1L

folds_vfold_rolling_window_pooled(

n)

t’

id = NULL,
time = NULL,
vV =1eL,

window_size,
validation_size,
gap = oL,

batch = 1L

fold_helpers 9

Arguments
n An integer indicating the number of observations.
\ An integer indicating the number of folds.
pvalidation A numeric indicating the proportion of observation to be placed in the validation

fold.

first_window An integer indicating the number of observations in the first training sample.
validation_size
An integer indicating the number of points in the validation samples; should be
equal to the largest forecast horizon.

gap An integer indicating the number of points not included in the training or vali-
dation samples. The default is zero.

batch An integer indicating increases in the number of time points added to the training
set in each iteration of cross-validation. Applicable for larger time-series. The
default is one.

window_size An integer indicating the number of observations in each training sample.
t An integer indicating the total amount of time to consider per time-series sample.
id An optional vector of unique identifiers corresponding to the time vector. These
can be used to subset the time vector.
time An optional vector of integers of time points observed for each subject in the
sample.
Value
A list of Folds.
See Also

Other fold generation functions: fold_from_foldvec(), folds2foldvec(), make_folds(), make_repeated_folds()

fold_helpers Fold Helpers

Description

Accessors and indexers for the different parts of a fold.

Usage
training(x = NULL, fold = NULL)

validation(x = NULL, fold = NULL)

fold_index(x = NULL, fold = NULL)

10 id_folds_to_folds

Arguments
X an object to be indexed by a training set, validation set, or fold index. If missing,
the index itself will be returned.
fold Fold; the fold used to do the indexing. If missing, fold will be pulled from the
calling environment, if available.
Value

The elements of x corresponding to the indexes, or the indexes themselves if x is missing.

See Also
make_fold

guess_combiner Flexible Guessing and Mapping for Combining Data Types

Description

Maps data types into standard combiners that should be sensible.

Usage

guess_combiner(result)

Arguments

result A single result; flexibly accepts several object classes.

Value

A function to combine a list of such results.

id_folds_to_folds Convert ID Folds to Observation Folds

Description

This function convertsf olds that subset ids to folds that subset observations

Usage
id_folds_to_folds(idfolds, cluster_ids)

Arguments

idfolds folds that subset ids
cluster_ids a vector of cluster ids indicating which observations are in which clusters

make_fold 11

make_fold Fold

Description

Functions to make a fold. Current representation is a simple list.

Usage

make_fold(v, training_set, validation_set)

Arguments

v An integer index of folds in the larger scheme.
training_set An integer vector of indexes corresponding to the training set.

validation_set An integer vector of indexes corresponding to the validation set.

Value

A list containing these elements.

See Also
fold_helpers

make_folds Make List of Folds for cross-validation

Description

Generates a list of folds for a variety of cross-validation schemes.

Usage

make_folds(
n = NULL,
fold_fun = folds_vfold,
cluster_ids = NULL,
strata_ids = NULL,

12 make_repeated_folds

Arguments
n - either an integer indicating the number of observations to cross-validate over,
or an object from which to guess the number of observations; can also be com-
puted from strata_ids or cluster_ids.
fold_fun - A function indicating the cross-validation scheme to use. See fold_funs for a
list of possibilities.
cluster_ids - a vector of cluster ids. Clusters are treated as a unit — that is, all observations
within a cluster are placed in either the training or validation set.
strata_ids - a vector of strata ids. Strata are balanced: insofar as possible the distribution in
the sample should be the same as the distribution in the training and validation
sets.
other arguments to be passed to fold_fun.
Value

A list of folds objects. Each fold consists of a list with a training index vector, a validation
index vector, and a fold_index (its order in the list of folds).

See Also

Other fold generation functions: fold_from_foldvec(), fold_funs, folds2foldvec(), make_repeated_folds()

make_repeated_folds Repeated Cross-Validation

Description

Implementation of repeated window cross-validation: generates fold objects for repeated cross-
validation by making repeated calls to make_folds and concatenating the results.

Usage
make_repeated_folds(repeats, ...)
Arguments
repeats An integer indicating the number of repeats.
Arguments passed to make_folds.
See Also

Other fold generation functions: fold_from_foldvec(), fold_funs, folds2foldvec(), make_folds()

wrap_in_try 13

wrap_in_try Wrap a Function in a Try Statement

Description

Function factory that generates versions of functions wrapped in try.

Usage
wrap_in_try(fun, ...)
Arguments
fun A function to be wrapped in a try statement.

Additional arguments passed to the previous argument fun.

Index

* fold generation functions
fold_from_foldvec, 7
fold_funs, 7
folds2foldvec, 6
make_folds, 11
make_repeated_folds, 12

combine_results, 3, 3, 4
combiner_array (combiners), 2
combiner_c (combiners), 2
combiner_factor (combiners), 2
combiner_rbind (combiners), 2
combiners, 2, 3
cross_validate, 3
cv.glmnet, 6

fold_from_foldvec, 6,7, 9, 12
fold_funs, 6, 7,7, 12
fold_helpers,9, 11

fold_index (fold_helpers), 9
folds2foldvec, 6, 7, 9, 12
folds_bootstrap (fold_funs), 7
folds_loo (fold_funs), 7
folds_montecarlo (fold_funs), 7

folds_resubstitution (fold_funs), 7
folds_rolling_origin (fold_funs), 7

folds_rolling_origin_pooled
(fold_funs), 7

folds_rolling_window (fold_funs), 7

folds_rolling_window_pooled
(fold_funs), 7
folds_vfold (fold_funs), 7

folds_vfold_rolling_origin_pooled

(fold_funs), 7

folds_vfold_rolling_window_pooled

(fold_funs), 7
future_lapply, 4

guess_combiner, 10

id_folds_to_folds, 10

14

make_fold, 10, 11
make_folds, 4,6, 7,9, 11, 12
make_repeated_folds, 6, 7,9, 12, 12
training (fold_helpers), 9
validation (fold_helpers), 9

wrap_in_try, 13

	combiners
	combine_results
	cross_validate
	folds2foldvec
	fold_from_foldvec
	fold_funs
	fold_helpers
	guess_combiner
	id_folds_to_folds
	make_fold
	make_folds
	make_repeated_folds
	wrap_in_try
	Index

