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Abstract

This paper introduces the R-package ordinal for the analysis of ordinal data using
cumulative link models. The model framework implemented in ordinal includes partial
proportional odds, structured thresholds, scale effects and flexible link functions. The
package also support cumulative link models with random effects which are covered in a
future paper. A speedy and reliable regularized Newton estimation scheme using analyt-
ical derivatives provides maximum likelihood estimation of the model class. The paper
describes the implementation in the package as well as how to use the functionality in
the package for analysis of ordinal data including topics on model identifiability and cus-
tomized modelling. The package implements methods for profile likelihood confidence
intervals, analysis of deviance tables with type I, II and III tests, predictions of various
kinds as well as methods for checking the convergence of the fitted models.
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1. Introduction

Ordered categorical data, or simply ordinal data, are common in a multitude of empirical
sciences and in particular in scientific disciplines where humans are used as measurement
instruments. Examples include school grades, ratings of preference in consumer studies,
degree of tumor involvement in MR images and animal fitness in ecology. Cumulative link
models (CLM) are a powerful model class for such data since observations are treated correctly
as categorical, the ordered nature is exploited and the flexible regression framework allows
for in-depth analyses.

This paper introduces the ordinal package (Christensen 2019) for R (R Core Team 2020) for
the analysis of ordinal data with cumulative link models. The paper describes how ordinal

supports the fitting of CLMs with various models structures, model assessment and inferen-
tial options including tests of partial proportional odds, scale effects, threshold structures and
flexible link functions. The implementation, its flexibility in allowing for costumizable models
and an effective fitting algorithm is also described. The ordinal package also supports cu-
mulative link mixed models (CLMM); CLMs with normally distributed random effects. The

https://www.jstatsoft.org/
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support of this model class will not be given further treatment here but remain a topic for a
future paper.

The name, cumulative link models is adopted from Agresti (2002), but the model class has
been referred to by several other names in the literature, such as ordered logit models and
ordered probit models (Greene and Hensher 2010) for the logit and probit link functions. The
cumulative link model with a logit link is widely known as the proportional odds model due
to McCullagh (1980) and with a complementary log-log link, the model is sometimes referred
to as the proportional hazards model for grouped survival times.

CLMs is one of several types of models specifically developed for ordinal data. Alternatives
to CLMs include continuation ratio models, adjacent category models, and stereotype models
(Ananth and Kleinbaum 1997) but only models in the CLM framework will be considered in
this paper.

1.1. Software review

Cumulative link models can be fitted by all the major software packages and while some
software packages support scale effects, partial proportional odds (also referred to as unequal
slopes, partial effects, and nominal effects), different link functions and structured thresholds
all model structures are not available in any one package or implementation. The following
brief software review is based on the publicly available documentation at software package
websites retrieved in May 2020.

IBM SPSS (IBM Corp. 2017) implements McCullagh’s PLUM (McCullagh 1980) procedure,
allows for the five standard link functions (cf. Table 3) and scale effects. Estimation is via
Fisher-Scoring and a test for equal slopes is available for the location-only model while it is
not possible to estimate a partial proportional odds model.

Stata (StataCorp 2017) includes the ologit and oprobit procedures for CLMs with logistic
and probit links but without support for scale effects, partial effect or structured thresholds.
The add-on package oglm (Williams 2010) allows for all five standard link functions and scale
effects. The GLLAMM package (Rabe-Hesketh, Skrondal, and Pickles 2004) also has some
support for CLMs in addition to some support for random effects.

SAS (SAS Institute Inc. 2010) implements CLMs with logit links in proc logistic and CLMs
with the 5 standard links in prog genmod.

Matlab (Matlab 2020) fits CLMs with the mnrfit function allowing for logit, probit, comple-
mentary log-log and log-log links.

Python has a package mord (Pedregosa-Izquierdo 2015) for ordinal classification and predic-
tion focused at machine learning applications.

In R, several packages on the Comprehensive R Archive Network (CRAN) implements CLMs.
polr from MASS (Venables and Ripley 2002) implements standard CLMs allowing for the 5
standard link functions but no further extensions; the VGAM package (Yee 2010) includes
CLMs via the vglm function using the cumulative link. vglm allows for several link functions
as well as partial effects. The lrm and orm functions from the rms package (Harrell Jr 2018)
also implements CLMs with the 5 standard link functions but without scale effects, partial or
structured thresholds. A Bayesian alternative is implemented in the brms package (Bürkner
2017; ?) which includes structured thresholds in addition to random-effects.

In addition, several other R packages include methods for analyses of ordinal data including
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Fitting Miscellaneous Former impl. Distributions

clm convergence clm2 [pdqrg]gumbelc

clmmc slice clmm2c [pdg]lgammac

clm.fit drop.coef clm2.control gnormc

clm.control clmm2.control glogisc

clmm.control gcauchyc

Table 1: Key functions in ordinal. Superscript "c" indicates (partial or full) implementation
in C.

oglmx (Carroll 2018), MCMCpack (Martin, Quinn, and Park 2011), mvord (Hirk, Hornik,
and Vana 2020), CUB (Iannario, Piccolo, and Simone 2020), and ordinalgmifs (Archer, Hou,
Zhou, Ferber, Layne, and Gentry 2014).

1.2. ordinal package overview

The ordinal package implements CLMs and CLMMs along with functions and methods to
support these model classes as summarized in Table 1. The two key functions in ordinal are
clm and clmm which fits CLMs and CLMMs respectively; clm2 and clmm21 provide legacy
implementations primarily retained for backwards compatibility. This paper introduces clm

and its associated functionality covering CLMs with location, scale and nominal effects, struc-
tured thresholds and flexible link functions. clm.fit is the main work horse behind clm and
an analogue to lm.fit for linear models. The package includes methods for assessment of
convergence with convergence and slice, an auxiliary method for removing linearly depen-
dent columns from a design matrix in drop.coef. Distributional support functions in ordinal

provide support for Gumbel and log-gamma distributions as well as gradients2 of normal,
logistic and Cauchy probability density functions which are used in the iterative methods
implemented in clm and clmm.

As summarized in Table 2, ordinal provides the familiar suite of extractor and print methods
for clm objects known from lm and glm. These methods all behave in ways similar to those
for glm-objects with the exception of model.matrix which returns a list of model matrices
and terms which can return the terms object for each of three formulae. The inference
methods facilitate profile likelihood confidence intervals via profile and confint, likelihood
ratio tests for model comparison via anova, model assessment by tests of removal of model
terms via drop1 and addition of new terms via add1 or AIC-based model selection via step.
Calling anova on a single clm-object provides an analysis of deviance table with type I, II or
III Wald-based χ2 tests following the SAS-definitions of such tests (SAS Institute Inc. 2008).
In addition to standard use of clm, the implementation facilitates extraction a model environ-
ment containing a complete representation of the model allowing the user to fit costumized
models containing, for instance, special structures on the threshold parameters, restrictions on
regression parameters or other case-specific model requirements. As CLMMs are not covered
by this paper methods for clmm objects will not be discussed.

1A brief tutorial on clmm2 is currently available at the package website on CRAN: https://CRAN.

R-project.org/package=ordinal
2gradients with respect to x, the quantile; not the parameters of the distributions

https://CRAN.R-project.org/package=ordinal
https://CRAN.R-project.org/package=ordinal
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Extractor and Print Inference Checking

coef print anova slice

fitted summary drop1 convergence

logLik model.frame add1

nobs model.matrix confint

vcov update profile

AIC, BIC predict

extractAIC step, stepAIC

Table 2: Key methods for clm objects.

Other packages including emmeans (Lenth 2020), margins (Leeper 2018), ggeffects (Lüdecke
2018), generalhoslem (Jay 2019) and effects (Fox and Weisberg 2018; Fox and Hong 2009)
extend the ordinal package by providing methods marginal means, tests of functions of the
coefficients, goodness-of-fit tests and methods for illustration of fitted models.

The ordinal package is therefore unique in providing a comprehensive framework for cumula-
tive link models exceeding that of other software packages with its functionality extended by
a series of additional R packages.

1.3. Organization of the paper

The remainder of the paper is organized as follows. The next section establishes notation
by defining CLMs and associated log-likelihood functions, then describes the extended class
of CLMs that is implemented in ordinal including details about scale effects, structured
thresholds, partial proportional odds and flexible link functions. The third section describes
how maximum likelihood (ML) estimation of CLMs is implemented in ordinal. The fourth
section describes how CLMs are fitted and ordinal data are analysed with ordinal including
sections on nominal effects, scale effects, structured thresholds, flexible link functions, profile
likelihoods, assessment of model convergence, fitted values and predictions. The final parts of
section four is on a more advanced level and include issues around model identifiability and
customizable fitting of models not otherwise covered by the ordinal API. We end in section 5
with Conclusions.

2. Cumulative link models

A cumulative link model is a model for ordinal-scale observations, i.e., observations that fall
in an ordered finite set of categories. Ordinal observations can be represented by a random
variable Yi that takes a value j if the ith ordinal observations falls in the j’th category where
j = 1, . . . , J and J ≥ 2.3A basic cumulative link model is

γij = F (ηij) , ηij = θj − x⊤

i β , i = 1, . . . , n , j = 1, . . . , J − 1 , (1)

3binomial models (J = 2) are also included.
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where

γij = P(Yi ≤ j) = πi1 + . . . + πij with
J
∑

j=1

πij = 1

are cumulative probabilities4, πij is the probability that the ith observation falls in the jth
category, ηij is the linear predictor and x⊤

i is a p-vector of regression variables for the param-
eters, β without a leading column for an intercept and F is the inverse link function. The
thresholds (also known as cut-points or intercepts) are strictly ordered:

−∞ ≡ θ0 ≤ θ1 ≤ . . . ≤ θJ−1 ≤ θJ ≡ ∞.

2.1. The multinomial distribution and the log-likelihood function

The ordinal observation Yi which assumes the value j can be represented by a multinomially
distributed variable Y ∗

i ∼ multinom(πi, 1), where Y ∗
i is a J-vector with a 1 at the j’th entry

and 0 otherwise, and with probability mass function

P(Y ∗

i = y∗

i ) =
∏

j

π
y∗

ij

ij . (2)

The log-likelihood function can therefore be written as

ℓ(θ,β;y∗) =
∑

i

∑

j

y∗

ij log πij

or equivalently

ℓ(θ,β;y) =
∑

i

∑

j

I(yi = j) log πij

=
∑

i

log π̃i

where π̃i is the j’th entry in J-vector πi with elements πij and I(·) is the indicator function.

Allowing for observation-level weights (case weights), wi leads finally to

ℓ(θ,β;y) =
∑

i

wi log π̃i . (3)

Likelihood based inference

Confidence intervals for model parameters are obtained by appealing to the asymptotic normal
distribution of a statistic s(·) for a scalar parameter of interest βa and defined as

CI :
{

βa; |s(βa)| < z1−α/2

}

.

where z1−α/2 is the (1−α/2) quantile of the standard normal cumulative distribution function.

Taking s(·) to be the Wald statistic s(βa) : w(βa) = (β̂a − βa)/ŝe(β̂a) leads to the classical

4we have suppressed the conditioning on the covariate vector, xi, i.e., γij = γj(xi) and P (Yi ≤ j) = P (Y ≤
j|xi).
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symmetric intervals. Better confidence intervals can be obtained by choosing instead the
likelihood root statistic (see e.g., Pawitan 2001; Brazzale, Davison, and Reid 2007):

s(βa) : r(βa) = sign(β̂a − βa)
√

−2[ℓ(θ̂, β̂;y) − ℓp(βa;y)]

where
ℓp(βa;y) = max

θ,β−a

ℓ(θ,β;y) ,

is the profile likelihood for the scalar parameter βa and β−a is the vector of regression pa-
rameters without the a’th one.

While the profile likelihood has to be optimized over all parameters except βa we define a
log-likelihood slice as

ℓslice(βa;y) = ℓ(βa; θ̂, β̂−a,y) , (4)

which is the log-likelihood function evaluated at βa while keeping the remaining parameters
fixed at their ML estimates.

A quadratic approximation to the log-likelihood slice is (β̂a − βa)2/2τ2
a where the curvature

unit τa is the square root of a’th diagonal element of the Hessian of −ℓ(θ̂, β̂;y).

2.2. Link functions

A commonly used link function is the logit link which leads to

logit(γij) = log
P(Yi ≤ j)

1 − P(Yi ≤ j)
(5)

The odds ratio (OR) of the event Yi ≤ j at x1 relative to the same event at x2 is then

OR =
γj(x1)/[1 − γj(x1)]

γj(x2)/[1 − γj(x2)]
=

exp(θj − x⊤
1 β)

exp(θj − x⊤
2 β)

= exp[(x⊤

2 − x⊤

1 )β] (6)

which is independent of j. Thus the cumulative odds ratio is proportional to the distance
between x1 and x2 which motivated McCullagh (1980) to denote the cumulative logit model
a proportional odds model. If x represent a treatment variable with two levels (e.g., placebo
and treatment), then x2 − x1 = 1 and the odds ratio is exp(−βtreatment). Similarly the odds
ratio of the event Y ≥ j is exp(βtreatment).

The probit link has its own interpretation through a normal linear model for a latent variable
which is considered in section 2.4.

The complementary log-log (clog-log) link is also sometimes used because of its interpretation
as a proportional hazards model for grouped survival times:

− log{1 − γj(xi)} = exp(θj − xT
i β)

Here 1 − γj(xi) is the probability or survival beyond category j given xi. The proportional
hazards model has the property that

log{γj(x1)} = exp[(xT
2 − xT

1 )β] log{γj(x2)} .

thus the ratio of hazards at x1 relative to x2 are proportional. If the log-log link is used on
the response categories in the reverse order, this is equivalent to using the clog-log link on



Rune Haubo B Christensen 7

Name logit probit log-log

Distribution logistic normal Gumbel (max)b

Shape symmetric symmetric right skew
Link function (F −1) log[γ/(1 − γ)] Φ−1(γ) − log[− log(γ)]
Inverse link (F ) 1/[1 + exp(η)] Φ(η) exp(− exp(−η))
Density (f = F ′) exp(−η)/[1 + exp(−η)]2 ϕ(η)

Name clog-loga cauchit

Distribution Gumbel (min)b Cauchyc

Shape left skew kurtotic
Link function (F −1) log[− log(1 − γ)] tan[π(γ − 0.5)]
Inverse link (F ) 1 − exp[− exp(η)] arctan(η)/π + 0.5
Density (f = F ′) exp[− exp(η) + η] 1/[π(1 + η2)]

Table 3: Summary of the five standard link functions. a: the complementary log-log link;
b: the Gumbel distribution is also known as the extreme value (type I) distribution for
extreme minima or maxima. It is also sometimes referred to as the Weibull (or log-Weibull)
distribution; c: the Cauchy distribution is a t-distribution with one degree of freedom.

the response in the original order. This reverses the sign of β as well as the sign and order of
{θj} while the likelihood and standard errors remain unchanged.

Details of the most common link functions are described in Table 3.

The ordinal package allows for the estimation of an extended class of cumulative link models
in which the basic model (1) is extended in a number of ways including structured thresholds,
partial proportional odds, scale effects and flexible link functions. The following sections will
describe these extensions of the basic CLM.

2.3. Extensions of cumulative link models

A general formulation of the class of models (excluding random effects) that is implemented
in ordinal can be written

γij = Fλ(ηij), ηij =
gα(θj) − x⊤

i β −w⊤
i β̃j

exp(ziζ)
(7)

where

Fλ is the inverse link function. It may be parameterized by the scalar parameter λ in which
case we refer to F −1

λ as a flexible link function,

gα(θj) parameterises thresholds {θj} by the vector α such that g restricts {θj} to be for
example symmetric or equidistant. We denote this structured thresholds.

x⊤
i β are the ordinary regression effects,

w⊤
i β̃j are regression effects which are allowed to depend on the response category j and they

are denoted partial or non-proportional odds (Peterson and Harrell Jr. 1990) when the
logit link is applied. To include other link functions in the terminology we denote these
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effects nominal effects (in text and code) because these effects are not integral to the
ordinal nature of the data.

exp(ziζ) are scale effects since in a latent variable view these effects model the scale of the
underlying location-scale distribution.

With the exception of the structured thresholds, these extensions of the basic CLM have
been considered individually in a number of sources but to the author’s best knowledge not
previously in a unified framework. For example partial proportional odds have been considered
by Peterson and Harrell Jr. (1990) and scale effect have been considered by McCullagh (1980)
and Cox (1995).

2.4. Latent variable motivation of CLMs

It is natural to motivate the CLM from a linear model for a categorized version of a latent
variable. Assume the following linear model for an unobserved latent variable:

Si = α∗ + x⊤

i β
∗ + εi, εi ∼ N(0, σ∗2) (8)

If Si falls between two thresholds, θ∗
j−1 < Si ≤ θ∗

j where

−∞ ≡ θ∗

0 < θ∗

1 < . . . < θ∗

J−1 < θ∗

J ≡ ∞ (9)

then Yi = j is observed and the cumulative probabilities are:

γij = P(Yi ≤ j) = P(Si ≤ θ∗

j ) = P

(

Z ≤
θ∗

j − α∗ − x⊤
i β

∗

σ∗

)

= Φ(θj − x⊤

i β)

where Z follows a standard normal distribution, Φ denotes the standard normal cumulative
distribution function, parameters with an “∗” exist on the latent scale, θj = (θ∗

j − α∗)/σ∗ and
β = β∗/σ∗. Note that α∗, β∗ and σ∗ would have been identifiable if the latent variable S was
directly observed, but they are not identifiable with ordinal observations.

If we allow a log-linear model for the scale such that

εi ∼ N(0, σ∗2
i ), σ∗

i = exp(µ + z⊤

i ζ) = σ∗ exp(z⊤

i ζ)

where zi is the i’th row of a design matrix Z without a leading column for an intercept and
σ∗ = exp(µ), then

γij = P

(

Z ≤
θ∗

j − α∗ − x⊤
i β

∗

σ∗
i

)

= Φ

(

θj − xT
i β

σi

)

where σi = σ∗
i /σ∗ = exp(z⊤

i ζ) is the relative scale.

The common link functions: probit, logit, log-log, c-log-log and cauchit correspond to inverse
cumulative distribution functions of the normal, logistic, Gumbel(max), Gumbel(min) and
Cauchy distributions respectively. These distributions are all members of the location-scale
family with common form F (µ, σ), with location µ and non-negative scale σ, for example,
the logistic distribution has mean µ and standard deviation σπ/

√
3. Choosing a link func-

tion therefore corresponds to assuming a particular distribution for the latent variable S in
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which x⊤
i β and exp(z⊤

i ζ) models location differences and scale ratios respectively of that
distribution.

2.5. Structured thresholds

Structured thresholds, {g(α)j} makes it possible to impose restrictions on the thresholds
θ = g(α). For instance restricting the thresholds to be equidistant means that only the
location of, say, the first threshold and the spacing between adjacent thresholds has to be
estimated, thus only two parameters are used to parameterize the thresholds irrespective of
the number of response categories.

ordinal takes g(α) to be a linear function and operates with

g(α) = J ⊤α = θ

where the Jacobian J defines the mapping from the parameters α to the thresholds θ. The
traditional ordered but otherwise unrestricted thresholds are denoted flexible thresholds and
obtained by taking J to be an identity matrix.

Assuming J = 6 ordered categories, the Jacobians for equidistant and symmetric thresholds
(denoted equidistant and symmetric in the clm-argument threshold) are

Jequidistant =

[

1 1 1 1 1
0 1 2 3 4

]

, Jsymmetric =







1 1 1 1 1
0 −1 0 1 0

−1 0 0 0 1






.

Another version of symmetric thresholds (denoted symmetric2) is sometimes relevant with
an unequal number of response categories here illustrated with J = 5 together with the
symmetric thresholds:

Jsymmetric2 =

[

0 −1 1 0
−1 0 0 1

]

, Jsymmetric =







1 1 0 0
0 0 1 1

−1 0 0 1







The nature of J for a particular model can always be inspected by printing the tJac com-
ponent of the clm fit.

2.6. Partial proportional odds and nominal effects

The nominal effects w⊤
i β̃j can be considered an extension of the regression part of the model

x⊤
i β in which the regression effects are allowed to vary with j. The nominal effects can also

be considered an extension of the thresholds θj which allows them to depend on variables w⊤
i :

θ̃ij(w⊤
i ) = θj −w⊤

i β̃j is the j’th threshold for the i’th observation. The following treatment
assumes for latter view.

In general let W denote the design matrix for the nominal effects without a leading column
for an intercept; the nominal-effects parameter vector β̃j is then ncol(W ) long and β̃ is
ncol(W ) · (J − 1) long.

If W is the design matrix for the nominal effects containing a single column for a continuous
variable then β̃j is the slope parameter corresponding to the j’th threshold and θj is the j’th



10 Cumulative Link Models with the R package ordinal

intercept, i.e., the threshold when the covariate is zero. Looking at θ̃ij(w⊤
i ) = θj −w⊤

i β̃j as
a linear model for the thresholds facilitates the interpretation.

If, on the other hand, W is the design matrix for a categorical variable (a factor in R)
then the interpretation of β̃j depends on the contrast-coding of W . If we assume that the
categorical variable has 3 levels, then β̃j is a 2-vector. In the default treatment contrast-
coding ("contr.treatment") θj is the j’th threshold for the first (base) level of the factor,
β̃1j is the differences between thresholds for the first and second level and β̃2j is the difference
between the thresholds for the first and third level.

In general we define Θ as a matrix with J − 1 columns and with 1 row for each combination
of the levels of factors in W . This matrix is available in the Theta component of the model
fit.

Note that variables in X cannot also be part of W if the model is to remain identifiable.
ordinal detects this and automatically removes the offending variables from X.

2.7. Flexible link functions

The ordinal package allows for two kinds of flexible link functions due to Aranda-Ordaz (1983)
and Genter and Farewell (1985).

The link function proposed by Aranda-Ordaz (1983) reads

F −1
λ (γij) = log

{

(1 − γij)−λ − 1

λ

}

,

which depends on the auxiliary parameter λ ∈]0, ∞[. When λ = 1, the logistic link function
arise, and when λ → 0,

{(1 − γij)−λ − 1}/λ → log(1 − γij)−1 ,

so the log-log link arise.

The inverse link function and its derivative are given by

F (η) = 1 − (λ exp(η) + 1)−λ−1

f(η) = exp(η)(λ exp(η) + 1)−λ−1
−1

The density implied by the inverse link function is left-skewed if 0 < λ < 1, symmetric if
λ = 1 and right-skewed if λ > 1, so the link function can be used to assess the evidence about
possible skewness of the latent distribution.

The log-gamma link function proposed by Genter and Farewell (1985) is based on the log-
gamma density by Farewell and Prentice (1977). The cumulative distribution function and
hence inverse link function reads

Fλ(η) =















1 − G(q; λ−2) λ < 0

Φ(η) λ = 0

G(q; λ−2) λ > 0

where q = λ−2 exp(λη) and G(·; α) denotes the Gamma distribution with shape parameter α
and unit rate parameter, and Φ denotes the standard normal cumulative distribution function.
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The corresponding density function reads

fλ(η) =

{

|λ|kkΓ(k)−1 exp{k(λη − exp(λη))} λ ̸= 0

ϕ(η) λ = 0

where k = λ−2, Γ(·) is the gamma function and ϕ is the standard normal density function.

By attaining the Gumbel(max) distribution at λ = −1, the standard normal distribution
at λ = 0 and the Gumbel(min) distribution at λ = 1 the log-gamma link bridges the log-
log, probit and complementary log-log links providing right-skew, symmetric and left-skewed
latent distributions in a single family of link functions.

Note that choice and parameterization of the predictor, ηij , e.g., the use of scale effects, can
affect the evidence about the shape of the latent distribution. There are usually several link
functions which provide essentially the same fit to the data and choosing among the good
candidates is often better done by appealing to arguments such as ease of interpretation rather
than arguments related to fit.

3. Implementation of ML Estimation of CLMs in ordinal

In the ordinal package cumulative link models are (by default) estimated with a regularized
Newton-Raphson (NR) algorithm with step-halving (line search) using analytical expressions
for the gradient and Hessian of the negative log-likelihood function.

This NR algorithm with analytical derivatives is used irrespective of whether the model con-
tains structured thresholds, nominal effects or scale effects; the only exception being models
with flexible link functions for which a general-purpose quasi-Newton optimizer is used.

Due to computationally cheap and efficient evaluation of the analytical derivatives, the rel-
ative well-behaved log-likelihood function (with exceptions described below) and the speedy
convergence of the Newton-Raphson algorithm, the estimation of CLMs is virtually instant
on a modern computer even with complicated models on large datasets. This also facilitates
simulation studies. More important than speed is perhaps that the algorithm is reliable and
accurate.

Technical aspects of the regularized NR algorithm with step-halving (line search) are described
in appendix A and analytical gradients are described in detail in Christensen (2012).

Properties of the log-likelihood function for extended CLMs

Pratt (1981) and Burridge (1981) showed (seemingly independent of each other) that the log-
likelihood function of the basic cumulative link model (1) is concave. This means that there
is a unique global optimum of the log-likelihood function and therefore no risk of convergence
to a local optimum.

It also means that the Hessian matrix for the negative log-likelihood is strictly positive definite
and therefore also that the Newton step is always in direction of higher likelihood. The genuine
Newton step may be too long to actually cause an increase in likelihood from one iteration
to the next (this is called “overshoot”). This is easily overcome by successively halving the
length of the Newton step until an increase in likelihood is achieved.

Exceptions to the strict concavity of the log-likelihood function include models using the
cauchit link, flexible link functions as well as models with scale effects. Notably models with
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structured thresholds as well as nominal effects do not affect the linearity of the predictor,
ηij and so are also guaranteed to have concave log-likelihoods.

The restriction of the threshold parameters {θj} being non-decreasing is dealt with by defining
ℓ(θ,β; y) = ∞ when {θj} are not in a non-decreasing sequence. If the algorithm attempts
evaluation at such illegal values step-halving effectively brings the algorithm back on track.

Other implementations of CLMs re-parameterize {θj} such that the non-decreasing nature of
{θj} is enforced by the parameterization, for example, MASS::polr (package version 7.3.49)
optimize the likelihood using

θ̃1 = θ1, θ̃2 = exp(θ2 − θ1), . . . , θ̃J−1 = exp(θJ−2 − θJ−1)

This is deliberately not used in ordinal because the log-likelihood function is generally closer
to quadratic in the original parameterization in our experience which facilitates faster con-
vergence.

Starting values

For the basic CLMs (1) the threshold parameters are initialized to an increasing sequence
such that the cumulative density of a logistic distribution between consecutive thresholds
(and below the lowest or above the highest threshold) is constant. The regression parameters
β, scale parameters ζ as well as nominal effect β∗ are initialized to 0.

If the model specifies a cauchit link or includes scale parameters estimation starts at the
parameter estimates of a model using the probit link and/or without the scale-part of the
model.

Estimation problems

With many nominal effects it may be difficult to find a model in which the threshold pa-
rameters are strictly increasing for all combinations of the parameters. Upon convergence of
the NR algorithm the model evaluates the Θ-matrix and checks that each row of threshold
estimates are increasing.

When a continuous variable is included among the nominal effects it is often helpful if the
continuous variable is centered at an appropriate value (at least within the observed range of
the data). This is because {θj} represent the thresholds when the continuous variable is zero
and {θj} are enforced to be a non-decreasing sequence. Since the nominal effects represent
different slopes for the continuous variable the thresholds will necessarily be ordered differently
at some other value of the continuous variable.

Convergence codes

Irrespective of the fitting algorithm, ordinal reports the following convergence codes for CLMs
in which negative values indicate convergence failure:

-3 Not all thresholds are increasing. This is only possible with nominal effects and the
resulting fit is invalid.

-2 The Hessian has at least one negative eigenvalue. This means that the point at which the
algorithm terminated does not represent an optimum.
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-1 Absolute convergence criterion (maximum absolute gradient) was not satisfied. This means
that the algorithm couldn’t get close enough to a stationary point of the log-likelihood
function.

0 Successful convergence.

1 The Hessian is singular (i.e., at least one eigenvalue is zero). This means that some param-
eters are not uniquely determined.

Note that with convergence code 1 the optimum of the log-likelihood function has been found
although it is not a single point but a line (or in general a (hyper) plane), so while some
parameters are not uniquely determined the value of the likelihood is valid enough and can
be compared to that of other models.

In addition to these convergence codes, the NR algorithm in ordinal reports the following
messages:

0 Absolute and relative convergence criteria were met

1 Absolute convergence criterion was met, but relative criterion was not met

2 iteration limit reached

3 step factor reduced below minimum

4 maximum number of consecutive Newton modifications reached

Note that convergence is assessed irrespective of potential messages from the fitting algorithm
and irrespective of whether the tailored NR algorithm or a general-purpose quasi-Newton
optimizer is used.

4. Fitting cumulative link models in ordinal with clm

The clm function takes the following arguments:

clm(formula, scale, nominal, data, weights, start, subset,

doFit = TRUE, na.action, contrasts, model = TRUE, control = list(),

link = c("logit", "probit", "cloglog", "loglog", "cauchit",

"Aranda-Ordaz", "log-gamma"), threshold = c("flexible",

"symmetric", "symmetric2", "equidistant"), ...)

Several arguments are standard and well-known from lm and glm and will not be described in
detail; formula, data, weights, subset and na.action are all parts of the standard model
specification in R.

scale and nominal are interpreted as R-formulae with no left hand sides and specifies the
scale and nominal effects of the model respectively, see sections 4.3 and 4.2 for details; start

is an optional vector of starting values; doFit can be set to FALSE to prompt clm to return
a model environment, for details see section 4.10; model controls whether the model.frame

should be included in the returned model fit; link specifies the link function and threshold

specifies an optional threshold structure, for details see section 4.4.
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Note the absence of a separate offset argument. Since clm allows for different offsets in
formula and scale, offsets have to be specified within a each formulae, e.g., scale = ~ x1 + offset(x2).

Methods for clm model fits are summarized in Table 2 and introduced in the following sections.

Control parameters can either be specified as a named list, among the optional ... arguments,
or directly as a call to clm.control — in the first two cases the arguments are passed on to
clm.control. clm.control takes the following arguments:

clm.control(method = c("Newton", "model.frame", "design", "ucminf",

"nlminb", "optim"), sign.location = c("negative", "positive"),

sign.nominal = c("positive", "negative"), ..., trace = 0L,

maxIter = 100L, gradTol = 1e-06, maxLineIter = 15L, relTol = 1e-06,

tol = sqrt(.Machine$double.eps), maxModIter = 5L, convergence = c("warn",

"silent", "stop", "message"))

The method argument specifies the optimization and/or return method. The default estima-
tion method (Newton) is the regularized Newton-Raphson estimation scheme described in sec-
tion A; options model.frame and design prompts clm to return respectively the model.frame

and a list of objects that represent the internal representation instead of fitting the model;
options ucminf, nlminb and optim represent different general-purpose optimizers which may
be used to fit the model (the former from package ucminf (Nielsen and Mortensen 2016),
the latter two from package stats). The sign.location and sign.nominal options allow
the user to flip the signs on the location and nominal model terms. The convergence argu-
ment instructs clm how to alert the user of potential convergence problems; ... are optional
arguments passed on to the general purpose optimizers; trace applies across all optimizers
and positive values lead to printing of progress during iterations; the remaining arguments
(maxIter, gradTol, maxLineIter, relTol, tol) control the behavior of the regularized
NR algorithm described in appendix A.

4.1. Fitting a basic cumulative link model with clm

In the following examples we will use the wine data from Randall (1989) available in the
object wine in package ordinal, cf., Table 4. The data represent a factorial experiment on
factors determining the bitterness of wine with 1 = “least bitter” and 5 = “most bitter”. Two
treatment factors (temperature and contact) each have two levels. Temperature and contact
between juice and skins can be controlled when crushing grapes during wine production. Nine
judges each assessed wine from two bottles from each of the four treatment conditions, hence
there are 72 observations in all. The main objective is to examine the effect of contact and
temperature on the perceived bitterness of wine.

Initially we consider the following cumulative link model for the wine data:

logit(P (Yi ≤ j)) = θj − β1(tempi) − β2(contacti)
i = 1, . . . , n, j = 1, . . . , J − 1

(10)

where β1(tempi) attains the values β1(cold) and β1(warm), and β2(contacti) attains the
values β2(no) and β2(yes). The effect of temperature in this model is illustrated in Figure 1.

This is a model for the cumulative probability of the ith rating falling in the jth category
or below, where i index all observations (n = 72), j = 1, . . . , J index the response categories
(J = 5) and θj is the intercept or threshold for the jth cumulative logit: logit(P (Yi ≤ j)).
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Least—Most bitter
Temperature Contact 1 2 3 4 5

cold no 4 9 5 0 0
cold yes 1 7 8 2 0
warm no 0 5 8 3 2
warm yes 0 1 5 7 5

Table 4: The number of ratings from nine judges in bitterness categories 1 — 5. Wine data
from Randall (1989) aggregated over bottles and judges.

Fitting the model with clm we obtain:

R> library("ordinal")

R> fm1 <- clm(rating ~ temp + contact, data = wine)

R> summary(fm1)

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.49 184.98 6(0) 4.02e-12 2.7e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.5031 0.5287 4.735 2.19e-06 ***

contactyes 1.5278 0.4766 3.205 0.00135 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.3444 0.5171 -2.600

2|3 1.2508 0.4379 2.857

3|4 3.4669 0.5978 5.800

4|5 5.0064 0.7309 6.850

The summary method prints basic information about the fitted model. The primary result is
the coefficient table with parameter estimates, standard errors and Wald based p values for
tests of the parameters being zero. If one of the flexible link functions (link = "log-gamma"

or link = "Aranda-Ordaz") is used a coefficient table for the link parameter, λ is also in-
cluded. The maximum likelihood estimates of the model coefficients are:

β̂1(warm − cold) = 2.50, β̂2(yes − no) = 1.53,

{θ̂j} = {−1.34, 1.25, 3.47, 5.01}.
(11)

The coefficients for temp and contact are positive indicating that higher temperature and
contact increase the bitterness of wine, i.e., rating in higher categories is more likely. Because
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Figure 1: Illustration of the effect of temperature in the standard cumulative link model in
Equation 10 for the wine data in Table 4 through a latent variable interpretation.

the treatment contrast coding which is the default in R was used, {θ̂j} refers to the thresholds
at the setting with tempi = cold and contacti = no. Three natural and complementing
interpretations of this model are

1. The thresholds {θ̂j} at contacti = yes conditions have been shifted a constant amount

1.53 relative to the thresholds {θ̂j} at contacti = no conditions.

2. The location of the latent distribution has been shifted +1.53σ∗ (scale units) at contacti =
yes relative to contacti = no.

3. The odds ratio of bitterness being rated in category j or above (OR(Y ≥ j)) is
exp(β̂2(yes − no)) = 4.61.

Note that there are no p values displayed for the threshold coefficients because it usually does
not make sense to test the hypothesis that they equal zero.

The number of Newton-Raphson iterations is given below niter with the number of step-
halvings in parenthesis. max.grad is the maximum absolute gradient of the log-likelihood
function with respect to the parameters. The condition number of the Hessian (cond.H) is
well below 104 and so does not indicate a problem with the model.

The anova method produces an analysis of deviance (ANODE) table also based on Wald
χ2-tests and provides tables with type I, II and III hypothesis tests using the SAS definitions.
A type I table, the R default for linear models fitted with lm, sequentially tests terms from
first to last, type II tests attempt to respect the principle of marginality and test each term
after all others while ignoring higher order interactions, and type III tables are based on
orthogonalized contrasts and tests of main effects or lower order terms can often be interpreted
as averaged over higher order terms. Note that in this implementation any type of contrasts
(e.g., contr.treatment or contr.SAS as well as contr.sum) can be used to produce type III
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tests. For further details on the interpretation and definition of type I, II and III tests, please
see (Kuznetsova, Brockhoff, and Christensen 2017) and (SAS Institute Inc. 2008).

Here we illustrate with a type III ANODE table, which in this case is equivalent to type I
and II tables since the variables are balanced:

R> anova(fm1, type = "III")

Type III Analysis of Deviance Table with Wald chi-square tests

Df Chisq Pr(>Chisq)

temp 1 22.417 2.195e-06 ***

contact 1 10.275 0.001348 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Likelihood ratio tests, though asymptotically equivalent to the Wald tests usually better
reflect the evidence in the data. These tests can be obtained by comparing nested models
with the anova method, for example, the likelihood ratio test of contact is

R> fm2 <- clm(rating ~ temp, data = wine)

R> anova(fm2, fm1)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm2 rating ~ temp logit flexible

fm1 rating ~ temp + contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm2 5 194.03 -92.013

fm1 6 184.98 -86.492 11.043 1 0.0008902 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

which in this case produces a slightly lower p value. Equivalently we can use drop1 to obtain
likelihood ratio tests of the explanatory variables while controlling for the remaining variables:

R> drop1(fm1, test = "Chi")

Single term deletions

Model:

rating ~ temp + contact

Df AIC LRT Pr(>Chi)

<none> 184.98

temp 1 209.91 26.928 2.112e-07 ***

contact 1 194.03 11.043 0.0008902 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Likelihood ratio tests of the explanatory variables while ignoring the remaining variables are
provided by the add1 method:

R> fm0 <- clm(rating ~ 1, data = wine)

R> add1(fm0, scope = ~ temp + contact, test = "Chi")

Single term additions

Model:

rating ~ 1

Df AIC LRT Pr(>Chi)

<none> 215.44

temp 1 194.03 23.4113 1.308e-06 ***

contact 1 209.91 7.5263 0.00608 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Confidence intervals of the parameter estimates are provided by the confint method which
by default compute the so-called profile likelihood confidence intervals:

R> confint(fm1)

2.5 % 97.5 %

tempwarm 1.5097627 3.595225

contactyes 0.6157925 2.492404

The cumulative link model in Equation 10 assumes that the thresholds, {θj} are constant for
all values of the remaining explanatory variables, here temp and contact. This is generally
referred to as the proportional odds assumption or equal slopes assumption. We can relax this
assumption in two general ways: with nominal effects and scale effects examples of which will
now be presented in turn.

4.2. Partial and non-proportional odds: nominal effects

The CLM in Equation 10 specifies a structure in which the regression parameters, β are not
allowed to vary with j or equivalently that the threshold parameters {θj} are not allowed to
depend on regression variables. In the following model this assumption is relaxed and the
threshold parameters are allowed to depend on contact. This leads to the so-called partial
proportional odds for contact:

logit(P (Yi ≤ j)) = θj + β̃j(contacti) − β(tempi)
i = 1, . . . , n, j = 1, . . . , J − 1

(12)

One way to view this model is to think of two sets of thresholds being applied at conditions
with and without contact as illustrated in Figure 2. The model is specified as follows with
clm:

R> fm.nom <- clm(rating ~ temp, nominal = ~ contact, data = wine)

R> summary(fm.nom)
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formula: rating ~ temp

nominal: ~contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.21 190.42 6(0) 1.64e-10 4.8e+01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.519 0.535 4.708 2.5e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2.(Intercept) -1.3230 0.5623 -2.353

2|3.(Intercept) 1.2464 0.4748 2.625

3|4.(Intercept) 3.5500 0.6560 5.411

4|5.(Intercept) 4.6602 0.8604 5.416

1|2.contactyes -1.6151 1.1618 -1.390

2|3.contactyes -1.5116 0.5906 -2.559

3|4.contactyes -1.6748 0.6488 -2.581

4|5.contactyes -1.0506 0.8965 -1.172

As can be seen from the output of summary there are no regression coefficient estimated for
contact, but there are additional threshold coefficients estimated instead. The naming and
meaning of the threshold coefficients depend on the contrast coding applied to contact. Here
the R default treatment contrasts ("contr.treatment") are used.

Here coefficients translate to the following parameter functions:

β̂(warm − cold) = 2.52,

{θ̂j} = {−1.32, 1.25, 3.55, 4.66},

{ ˆ̃βj(yes − no)} = {−1.62, −1.51, −1.67, −1.05}.

(13)

Again {θj} refer to the thresholds at tempi = cold and contacti = no settings while the

thresholds at tempi = cold and contacti = yes are {θ̂j + ˆ̃βj(yes − no)}. The odds ratio of

bitterness being rated in category j or above (OR(Y ≥ j)) now depend on j: {exp(− ˆ̃βj(yes−
no))} = {5.03, 4.53, 5.34, 2.86}.

The resulting thresholds for each level of contact, i.e., the estimated Θ-matrix can be ex-
tracted with:

R> fm.nom$Theta

contact 1|2 2|3 3|4 4|5

1 no -1.323043 1.2464435 3.550044 4.660247

2 yes -2.938103 -0.2651238 1.875288 3.609624
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Figure 2: Illustration of nominal effects leading to different sets of thresholds being applied
for each level of contact in a latent variable interpretation, cf., Equation 12.

As part of the convergence checks, clm checks the validity of Θ, i.e., that each row of the
threshold matrix is non-decreasing.

We can perform a likelihood ratio test of the proportional odds assumption for contact by
comparing the likelihoods of models (10) and (12) as follows:

R> anova(fm1, fm.nom)

Likelihood ratio tests of cumulative link models:

formula: nominal: link: threshold:

fm1 rating ~ temp + contact ~1 logit flexible

fm.nom rating ~ temp ~contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm1 6 184.98 -86.492

fm.nom 9 190.42 -86.209 0.5667 3 0.904

There is only little difference in the log-likelihoods of the two models and the test is in-
significant. Thus there is no evidence that the proportional odds assumption is violated for
contact.

It is not possible to estimate both β2(contacti) and β̃j(contacti) in the same model. Con-
sequently variables that appear in nominal cannot enter in formula as well. For instance,
not all parameters are identifiable in the following model:

R> fm.nom2 <- clm(rating ~ temp + contact, nominal = ~ contact, data = wine)

We are made aware of this when summarizing or printing the model in which the coefficient
for contactyes is NA:
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R> fm.nom2

formula: rating ~ temp + contact

nominal: ~contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.21 190.42 6(0) 1.64e-10 4.8e+01

Coefficients: (1 not defined because of singularities)

tempwarm contactyes

2.519 NA

Threshold coefficients:

1|2 2|3 3|4 4|5

(Intercept) -1.323 1.246 3.550 4.660

contactyes -1.615 -1.512 -1.675 -1.051

To test the proportional odds assumption for all variables, we can use

R> nominal_test(fm1)

Tests of nominal effects

formula: rating ~ temp + contact

Df logLik AIC LRT Pr(>Chi)

<none> -86.492 184.98

temp 3 -84.904 187.81 3.1750 0.3654

contact 3 -86.209 190.42 0.5667 0.9040

This function moves all terms in formula to nominal and copies all terms in scale to nominal

one by one and produces an add1-like table with likelihood ratio tests of each term.

4.3. Modelling scale effects

To allow the scale of the latent variable distribution to depend on explanatory variables we
could for instance consider the following model where the scale is allowed to differ between
cold and warm conditions. The location of the latent distribution is allowed to depend on
both temperature and contact:

logit(P (Yi ≤ j)) =
θj − β1(tempi) − β2(contacti)

exp(ζ(tempi))

i = 1, . . . , n, j = 1, . . . , J − 1

(14)

This model structure is illustrated in Figure 3 and can be estimated with:

R> fm.sca <- clm(rating ~ temp + contact, scale = ~ temp, data = wine)

R> summary(fm.sca)
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formula: rating ~ temp + contact

scale: ~temp

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -86.44 186.88 8(0) 5.25e-09 1.0e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 2.6294 0.6860 3.833 0.000127 ***

contactyes 1.5878 0.5301 2.995 0.002743 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log-scale coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 0.09536 0.29414 0.324 0.746

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.3520 0.5223 -2.588

2|3 1.2730 0.4533 2.808

3|4 3.6170 0.7774 4.653

4|5 5.2982 1.2027 4.405

In a latent variable interpretation the location of the latent distribution is shifted 2.63σ∗ (scale
units) from cold to warm conditions and 1.59σ∗ from absence to presence of contact. The scale
of the latent distribution is σ∗ at cold conditions but σ∗ exp(ζ(warm−cold)) = σ∗ exp(0.095) =
1.10σ∗, i.e., 10% higher, at warm conditions. However, observe that the p value for the scale
effect in the summary output shows that the ratio of scales is not significantly different from
1 (or equivalently that the difference on the log-scale is not different from 0).

Scale effects offer an alternative to nominal effects (partial proportional odds) when non-
proportional odds structures are encountered in the data. Using scale effects is often a better
approach because the model is well-defined for all values of the explanatory variables irre-
spective of translocation and scaling of covariates. Scale effects also use fewer parameters
which often lead to more sensitive tests than nominal effects. Potential scale effects of vari-
ables already included in formula can be discovered using scale_test. This function adds
each model term in formula to scale in turn and reports the likelihood ratio statistic in an
add1-like fashion:

R> scale_test(fm1)

Tests of scale effects

formula: rating ~ temp + contact

Df logLik AIC LRT Pr(>Chi)

<none> -86.492 184.98
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Figure 3: Illustration of scale effects leading to different scales of the latent variable, cf.,
Equation 14.

temp 1 -86.439 186.88 0.10492 0.7460

contact 1 -86.355 186.71 0.27330 0.6011

confint and anova methods apply with no change to models with scale and nominal parts,
but drop1, add1 and step methods will only drop or add terms to the (location) formula.

4.4. Structured thresholds

In section 4.2 nominal effects were described where the assumption that regression parameters
have the same effect across all thresholds was relaxed. In this section additional restrictions
on the thresholds will be imposed instead. The following model requires that the thresholds,
{θj} are equidistant or equally spaced. This allows us to assess an assumption that judges
are using the response scale in such a way that there is the same distance between adjacent
response categories, i.e., that θj −θj−1 = constant for j = 2, ..., J −1. The effect of equidistant
thresholds is illustrated in Figure 4 and can be fitted with:

R> fm.equi <- clm(rating ~ temp + contact, data = wine,

+ threshold = "equidistant")

R> summary(fm.equi)

formula: rating ~ temp + contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit equidistant 72 -87.86 183.73 5(0) 4.80e-07 3.2e+01

Coefficients:
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Estimate Std. Error z value Pr(>|z|)

tempwarm 2.4632 0.5164 4.77 1.84e-06 ***

contactyes 1.5080 0.4712 3.20 0.00137 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

threshold.1 -1.0010 0.3978 -2.517

spacing 2.1229 0.2455 8.646

The parameters determining the thresholds are now the first threshold (threshold.1) and
the spacing among consecutive thresholds (spacing). The mapping to this parameterization
is stored in the transpose of the Jacobian matrix (tJac) component of the model fit. This
makes it possible to extract the thresholds imposed by the equidistance structure with

R> drop(fm.equi$tJac %*% coef(fm.equi)[c("threshold.1", "spacing")])

1|2 2|3 3|4 4|5

-1.001044 1.121892 3.244828 5.367764

These thresholds are in fact already stored in the Theta component of the model fit. The
following shows that the average distance between consecutive thresholds in fm1 which did
not restrict the thresholds is very close to the spacing parameter from fm.equi:

R> mean(diff(coef(fm1)[1:4]))

[1] 2.116929

One advantage of imposing additional restrictions on the thresholds is the use of fewer pa-
rameters. Whether the restrictions are warranted by the data can be assessed in a likelihood
ratio test:

R> anova(fm1, fm.equi)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm.equi rating ~ temp + contact logit equidistant

fm1 rating ~ temp + contact logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm.equi 4 183.73 -87.865

fm1 6 184.98 -86.492 2.7454 2 0.2534

In this case the test is non-significant, so there is no considerable loss of fit at the gain of
saving two parameters, hence we may retain the model with equally spaced thresholds.
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Figure 4: Illustration of flexible (left) and equidistant (right) thresholds being applied in a
cumulative link model in a latent variable interpretation.

Note that the shape of the latent distribution (determined by the choice of link function) also
affects the distances between the thresholds. If thresholds are equidistant under a normal
distribution (i.e., with the logit link) they will in general5 not be equidistant under a differently
shaped latent distribution such as a skew latent distribution (e.g., with the log-log or clog-log
link).

4.5. Scale effects, nominal effects and link functions

This section presents an example that connects aspects of scale effects, nominal effects and
link functions. The example is based on the soup data available in the ordinal package. This
dataset represents a sensory discrimination study of packet soup in which 185 respondents
assessed a reference product and one of 5 test products on an ordinal sureness-scale with 6
levels from "reference, sure" to "test, sure".

The two key explanatory variables in this example are PRODID and PROD. PRODID identifies all
6 products while PROD distinguishes test and reference products:

R> with(soup, table(PROD, PRODID))

PRODID

PROD 1 2 3 4 5 6

Ref 739 0 0 0 0 0

Test 0 369 184 185 185 185

The so-called bi-normal model plays a special role in the field of signal detection theory
(DeCarlo 1998; Macmillan and Creelman 2005) and in sensometrics (Christensen, Cleaver,

5The exception is perfect fits such as CLMs with flexible thresholds and no predictors where models have
the same likelihood irrespective of link function.
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and Brockhoff 2011) and assumes the existence of normal latent distributions potentially with
different variances. The bi-normal model can be fitted to ordinal data by identifying it as
a CLM with a probit link. The following bi-normal model assumes that the location of the
normal latent distribution depends on PRODID while the scale only varies with PROD:

R> fm_binorm <- clm(SURENESS ~ PRODID, scale = ~ PROD,

+ data = soup, link="probit")

R> summary(fm_binorm)

formula: SURENESS ~ PRODID

scale: ~PROD

data: soup

link threshold nobs logLik AIC niter max.grad cond.H

probit flexible 1847 -2677.01 5376.02 9(1) 5.38e-13 3.4e+02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

PRODID2 0.64203 0.09107 7.050 1.79e-12 ***

PRODID3 1.03043 0.13049 7.896 2.87e-15 ***

PRODID4 0.60131 0.11511 5.224 1.75e-07 ***

PRODID5 0.91243 0.12582 7.252 4.11e-13 ***

PRODID6 1.13821 0.13451 8.462 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

log-scale coefficients:

Estimate Std. Error z value Pr(>|z|)

PRODTest 0.20206 0.06129 3.297 0.000979 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -0.89853 0.05245 -17.131

2|3 -0.29373 0.04385 -6.698

3|4 -0.08049 0.04309 -1.868

4|5 0.08979 0.04335 2.071

5|6 0.54868 0.04830 11.360

Here we observe significant differences in scale for reference and test products and this is an
example of what would have been denoted non-proportional odds had the link function been
the logit function. In this context differences in scale are interpreted to mean that a location
shift of the latent normal distribution is not enough to represent the data. Another test of
such non-location effects is provided by the nominal effects:

R> fm_nom <- clm(SURENESS ~ PRODID, nominal = ~ PROD,

+ data = soup, link="probit")
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A comparison of these models shows that the scale effects increase the likelihood substantially
using only one extra parameter. The addition of nominal effects provides a smaller increase
in likelihood using three extra parameters:

R> fm_location <- update(fm_binorm, scale = ~ 1)

R> anova(fm_location, fm_binorm, fm_nom)

Likelihood ratio tests of cumulative link models:

formula: nominal: scale: link: threshold:

fm_location SURENESS ~ PRODID ~1 ~1 probit flexible

fm_binorm SURENESS ~ PRODID ~1 ~PROD probit flexible

fm_nom SURENESS ~ PRODID ~PROD ~1 probit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm_location 10 5384.9 -2682.5

fm_binorm 11 5376.0 -2677.0 10.8911 1 0.0009663 ***

fm_nom 14 5374.3 -2673.2 7.7018 3 0.0525946 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that both the location-only and bi-normal models are nested under the model with
nominal effects making these models comparable in likelihood ratio tests. This example
illustrates an often seen aspect: that models allowing for scale differences frequently capture
the majority of deviations from location-only effects that could otherwise be captured by
nominal effects using fewer parameters.

The role of link functions in relation to the evidence of non-location effects is also illustrated
by this example. If we consider the complementary log-log link it is apparent that there is no
evidence of scale differences. Furthermore, the likelihood of a complementary log-log model
with constant scale is almost the same as that of the bi-normal model:

R> fm_cll_scale <- clm(SURENESS ~ PRODID, scale = ~ PROD,

+ data = soup, link="cloglog")

R> fm_cll <- clm(SURENESS ~ PRODID,

+ data = soup, link="cloglog")

R> anova(fm_cll, fm_cll_scale, fm_binorm)

Likelihood ratio tests of cumulative link models:

formula: scale: link: threshold:

fm_cll SURENESS ~ PRODID ~1 cloglog flexible

fm_cll_scale SURENESS ~ PRODID ~PROD cloglog flexible

fm_binorm SURENESS ~ PRODID ~PROD probit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm_cll 10 5374.8 -2677.4

fm_cll_scale 11 5376.5 -2677.2 0.3736 1 0.541

fm_binorm 11 5376.0 -2677.0 0.4461 0
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Using the log-gamma link we can also confirm that a left-skewed latent distribution (λ > 0) is
best supported by the data and that the estimate of λ is close to 1 at which the complementary
log-log link is obtained:

R> fm_loggamma <- clm(SURENESS ~ PRODID, data = soup, link="log-gamma")

R> summary(fm_loggamma)

formula: SURENESS ~ PRODID

data: soup

link threshold nobs logLik AIC niter max.grad cond.H

log-gamma flexible 1847 -2676.98 5375.96 80(816) 1.41e-03 1.3e+03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

PRODID2 0.61385 0.08814 6.964 3.30e-12 ***

PRODID3 1.01960 0.13830 7.373 1.67e-13 ***

PRODID4 0.57953 0.11203 5.173 2.30e-07 ***

PRODID5 0.91642 0.13259 6.912 4.79e-12 ***

PRODID6 1.12139 0.14315 7.834 4.74e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Link coefficients:

Estimate Std. Error z value Pr(>|z|)

lambda 0.7799 0.2295 3.398 0.00068 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.37115 0.22819 -6.009

2|3 -0.60685 0.13456 -4.510

3|4 -0.36553 0.11384 -3.211

4|5 -0.18211 0.10083 -1.806

5|6 0.27569 0.07823 3.524

The analysis of link functions shown here can be thought of as providing a framework analo-
gous to that of Box-Cox transformations for linear models.

4.6. Profile likelihood

In addition to facilitating the generally quite accurate profile likelihood confidence intervals
which were illustrated in section 4.1, the profile likelihood function can also be used to illus-
trate the relative importance of parameter values.

As an example, the profile likelihood of model coefficients for temp and contact in fm1 can
be obtained with
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Figure 5: Relative profile likelihoods for the regression parameters in fm1 for the wine data.
Horizontal lines indicate 95% and 99% confidence bounds.

R> pr1 <- profile(fm1, alpha = 1e-4)

R> plot(pr1)

The resulting plots are provided in Figure 5. The alpha argument controls how far from the
maximum likelihood estimate the likelihood function should be profiled: the profile strays no
further from the MLE when values outside an (1 - alpha)-level profile likelihood confidence
interval.

From the relative profile likelihood in Figure 5 for tempwarm we see that parameter values
between 1 and 4 are reasonably well supported by the data, and values outside this range has
little likelihood. Values between 2 and 3 are very well supported by the data and have high
likelihood.

Profiling is implemented for regression (β) and scale (ζ) parameters but not available for
threshold, nominal and flexible link parameters.

4.7. Assessment of model convergence

Likelihood slices

The maximum likelihood estimates of the parameters in cumulative link models do not have
closed form expressions, so iterative methods have to be applied to fit the models. Further,
CLMs are non-linear models and in general the likelihood function is not guaranteed to be
well-behaved or even uni-model. In addition, the special role of the threshold parameters and
the restriction on them being ordered can affect the appearance of the likelihood function.

To confirm that an unequivocal optimum has been reached and that the likelihood function is
reasonably well-behaved around the reported optimum we can inspect the likelihood function
in a neighborhood around the reported optimum. For these purposes we can display slices of
the likelihood function.
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Figure 6: Slices of the (negative) log-likelihood function (solid) for parameters in fm1 for the
wine data. Dashed lines indicate quadratic approximations to the log-likelihood function and
vertical bars indicate maximum likelihood estimates.

The following code produces the slices shown in Figure 6 which displays the shape of the
log-likelihood function in a fairly wide neighborhood around the reported MLE; here we use
λ = 5 curvature units, as well as it’s quadratic approximation.

R> slice.fm1 <- slice(fm1, lambda = 5)

R> par(mfrow = c(2, 3))

R> plot(slice.fm1)

Figure 6 shows that log-likelihood function is fairly well behaved and relatively closely quadratic
for most parameters.

Looking at the log-likelihood function much closer to the reported optimum (using λ = 10−5)
we can probe how accurately the parameter estimates are determined. The likelihood slices in
Figure 7 which are produced with the following code shows that the parameters are determined
accurately with at least 5 correct decimals. Slices are shown for two parameters and the slices
for the remaining 4 parameters are very similar.

R> slice2.fm1 <- slice(fm1, parm = 4:5, lambda = 1e-5)

R> par(mfrow = c(1, 2))

R> plot(slice2.fm1)
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Figure 7: Slices of the (negative) log-likelihood function (solid) for parameters in fm1 for
the wine data very close to the MLEs. Dashed lines (indistinguishable from the solid lines)
indicate quadratic approximations to the log-likelihood function and vertical bars the indicate
maximum likelihood estimates.

Parameter accuracy

As discussed in section A the method independent error estimate provides an assessment of
the accuracy with which the ML estimates of the parameters have been determined by the
fitting algorithm. This error estimate is implemented in the convergence method which we
now illustrate on a model fit:

R> convergence(fm1)

nobs logLik niter max.grad cond.H logLik.Error

72 -86.49 6(0) 4.02e-12 2.7e+01 <1e-10

Estimate Std.Err Gradient Error Cor.Dec Sig.Dig

1|2 -1.344 0.5171 2.06e-12 3.09e-13 12 13

2|3 1.251 0.4379 2.11e-12 -2.43e-13 12 13

3|4 3.467 0.5978 -4.02e-12 -9.33e-13 11 12

4|5 5.006 0.7309 -7.04e-14 -9.21e-13 11 12

tempwarm 2.503 0.5287 -4.54e-13 -6.33e-13 11 12

contactyes 1.528 0.4766 5.38e-14 -2.96e-13 12 13

Eigen values of Hessian:

21.7090 18.5615 10.3914 5.2093 4.0955 0.8163

Convergence message from clm:

(0) successful convergence

In addition: Absolute and relative convergence criteria were met
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The most important information is the number of correct decimals (Cor.Dec) and the number
of significant digits (Sig.Dig) with which the parameters are determined. In this case all
parameters are very accurately determined, so there is no reason to lower the convergence
tolerance. The logLik.error shows that the error in the reported value of the log-likelihood
is below 10−10, which is by far small enough that likelihood ratio tests based on this model
are accurate.

Note that the assessment of the number of correctly determined decimals and significant
digits is only reliable sufficiently close to the optimum so in practice we caution against this
assessment if the algorithm did not converge successfully.

4.8. Fitted values and predictions

Several types of fitted values and predictions can be extracted from a CLM depending on how
it is viewed.

By fitted values we denote the values (i = 1, . . . , n)

ˆ̃πi = π̃i(ψ̂)

that is, the value of π̃i, cf., Equation 3 evaluated at the ML estimates ψ̂. These are the
values returned by the fitted and fitted.values extractor methods and stored in the
fitted.values component of the model fit.

The values of πij (cf., Equation 2) evaluated at the ML estimates of the parameters (i.e., π̂ij)
can also be thought of as fitted values for the multinomially distributed variable Y ∗

i . These
values can be obtained from the model fit by use of the predict method:

R> head(pred <- predict(fm1, newdata = subset(wine, select = -rating))$fit)

1 2 3 4 5

1 0.20679013 0.5706497 0.1922909 0.02361882 0.00665041

2 0.20679013 0.5706497 0.1922909 0.02361882 0.00665041

3 0.05354601 0.3776461 0.4430599 0.09582084 0.02992711

4 0.05354601 0.3776461 0.4430599 0.09582084 0.02992711

5 0.02088771 0.2014157 0.5015755 0.20049402 0.07562701

6 0.02088771 0.2014157 0.5015755 0.20049402 0.07562701

Note that the original data set should be supplied in the newdata argument without the
response variable (here rating). If the response variable is present in newdata predictions
are produced for only those rating categories which were observed and we get back the fitted
values:

R> stopifnot(isTRUE(all.equal(fitted(fm1), t(pred)[

+ t(col(pred) == wine$rating)])),

+ isTRUE(all.equal(fitted(fm1), predict(fm1, newdata = wine)$fit)))

Class predictions are also available and defined here as the response class with the highest
probability, that is, for the i’th observation the class prediction is the mode of πi. To obtain
class predictions use type = "class" as illustrated in the following small table:
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R> newData <- expand.grid(temp = levels(wine$temp),

+ contact = levels(wine$contact))

R> cbind(newData, round(predict(fm1, newdata = newData)$fit, 3),

+ "class" = predict(fm1, newdata = newData, type = "class")$fit)

temp contact 1 2 3 4 5 class

1 cold no 0.207 0.571 0.192 0.024 0.007 2

2 warm no 0.021 0.201 0.502 0.200 0.076 3

3 cold yes 0.054 0.378 0.443 0.096 0.030 3

4 warm yes 0.005 0.054 0.304 0.364 0.274 4

Other definitions of class predictions can be applied, e.g., nearest mean predictions:

R> head(apply(pred, 1, function(x) round(weighted.mean(1:5, x))))

1 2 3 4 5 6

2 2 3 3 3 3

which in this case happens to be identical to the default class predictions.

Standard errors and confidence intervals of predictions are also available, for example:

R> predictions <- predict(fm1, se.fit = TRUE, interval = TRUE)

R> head(do.call("cbind", predictions))

fit se.fit lwr upr

[1,] 0.57064970 0.08683884 0.39887109 0.7269447

[2,] 0.19229094 0.06388672 0.09609419 0.3477399

[3,] 0.44305990 0.07939754 0.29746543 0.5991420

[4,] 0.09582084 0.04257593 0.03887676 0.2173139

[5,] 0.20049402 0.06761012 0.09886604 0.3643505

[6,] 0.20049402 0.06761012 0.09886604 0.3643505

where the default 95% confidence level can be changed with the level argument.

Here the standard errors of fitted values or predictions, ˆ̃π = π̃(ψ̂) are obtained by application
of the delta method:

Var( ˆ̃π) = CVar(ψ̂)C⊤, C =
∂π̃(ψ)

∂ψ

∣

∣

∣

ψ=ψ̂

where Var(ψ̂) is the estimated variance-covariance matrix of the parameters ψ evaluated
at the ML estimates ψ̂ as given by the observed Fisher Information matrix and finally the
standard errors are extracted as the square root of the diagonal elements of Var( ˆ̃π).

Since symmetric confidence intervals for probabilities are not appropriate unless perhaps if
they are close to one half a more generally applicable approach is to form symmetric Wald
intervals on the logit scale and then subsequently transform the confidence bounds to the
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probability scale. predict.clm takes this approach and computes the standard error of
κ̂i = logit(ˆ̃πi) by yet an application of the delta method:

se(κ̂i) =
∂g(ˆ̃πi)

∂ ˆ̃πi

se(ˆ̃πi) =
se(ˆ̃πi)

ˆ̃πi(1 − ˆ̃πi)
, g(ˆ̃πi) = log

ˆ̃πi

1 − ˆ̃πi

.

4.9. Model identifiability

Unidentifiable models or unidentifiable parameters may happen in CLMs for several reasons
some of which are special to the model class. In this section we describe issues around model
identifiability and how this is handled by ordinal::clm.

Material in the remainder of this section is generally on a more advanced level than up to
now.

Complete separation

In binary logistic regression the issue of complete separation is well known. This may happen,
for example if only “success” or only “failure” is observed for a level of a treatment factor.
In CLMs the issue may appear even when outcomes are observed in more than one response
category. This can be illustrated using the wine data set if we combine the three central
categories:

R> wine <- within(wine, {

+ rating_comb3 <- factor(rating, labels = c("1", "2-4", "2-4", "2-4", "5"))

+ })

R> ftable(rating_comb3 ~ temp, data = wine)

rating_comb3 1 2-4 5

temp

cold 5 31 0

warm 0 29 7

R> fm.comb3 <- clm(rating_comb3 ~ temp, data = wine)

R> summary(fm.comb3)

formula: rating_comb3 ~ temp

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -32.24 70.48 22(0) 3.06e-09 5.0e+09

Coefficients:

Estimate Std. Error z value Pr(>|z|)

tempwarm 21.89 NA NA NA

Threshold coefficients:

Estimate Std. Error z value
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1|2-4 -1.825 NA NA

2-4|5 23.310 NA NA

Here the true ML estimates of the coefficients for temp and the second threshold are at
infinity but the algorithm in clm terminates when the likelihood function is sufficiently flat.
This means that the reported values of the coefficients for temp and the second threshold are
arbitrary and will change if the convergence criteria are changed or a different optimization
method is used. The standard errors of the coefficients are not available because the Hessian
is effectively singular and so cannot be inverted to produce the variance-covariance matrix of
the parameters. The ill-determined nature of the Hessian is seen from the very large condition
number of the Hessian, cond.H.

Note, however, that while the model parameters cannot be uniquely determined, the likelihood
of the model is well defined and as such it can be compared to the likelihood of other models.
For example, we could compare it to a model that excludes temp

R> fm.comb3_b <- clm(rating_comb3 ~ 1, data = wine)

R> anova(fm.comb3, fm.comb3_b)

Likelihood ratio tests of cumulative link models:

formula: link: threshold:

fm.comb3_b rating_comb3 ~ 1 logit flexible

fm.comb3 rating_comb3 ~ temp logit flexible

no.par AIC logLik LR.stat df Pr(>Chisq)

fm.comb3_b 2 85.181 -40.591

fm.comb3 3 70.479 -32.240 16.702 1 4.373e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The difference in log-likelihood is substantial, however, the criteria for the validity of the
likelihood ratio test are not fulfilled, so the p value should not be taken at face value.

The complete-separation issue may also appear in less obvious situations. If, for example, the
following model is considered allowing for nominal effects of temp the issue shows up:

R> fm.nom2 <- clm(rating ~ contact, nominal = ~ temp, data = wine)

R> summary(fm.nom2)

formula: rating ~ contact

nominal: ~temp

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -84.90 187.81 20(0) 4.35e-09 4.2e+10

Coefficients:



36 Cumulative Link Models with the R package ordinal

Estimate Std. Error z value Pr(>|z|)

contactyes 1.465 NA NA NA

Threshold coefficients:

Estimate Std. Error z value

1|2.(Intercept) -1.266 NA NA

2|3.(Intercept) 1.104 NA NA

3|4.(Intercept) 3.766 NA NA

4|5.(Intercept) 24.896 NA NA

1|2.tempwarm -21.095 NA NA

2|3.tempwarm -2.153 NA NA

3|4.tempwarm -2.873 NA NA

4|5.tempwarm -22.550 NA NA

Analytical detection of which coefficients suffer from unidentifiability due to complete sepa-
ration is a topic for future research and therefore unavailable in current versions of ordinal.

Aliased coefficients

Aliased coefficients can occur in all kinds of models that build on a design matrix including
linear models as well as generalized linear models. lm and glm determine the rank deficiency
of the design matrix using the rank-revealing implementation of the QR-decomposition in
LINPACK and displays the aliased coefficients as NAs6. Though the QR decomposition is not
used during iterations in clm, it is used initially to determine aliased coefficients. An example
is provided using the soup data available in the ordinal package:

R> fm.soup <- clm(SURENESS ~ PRODID * DAY, data = soup)

R> summary(fm.soup)

formula: SURENESS ~ PRODID * DAY

data: soup

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 1847 -2672.08 5374.16 6(1) 1.41e-13 9.4e+02

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

PRODID2 0.6665 0.2146 3.106 0.00189 **

PRODID3 1.2418 0.1784 6.959 3.42e-12 ***

PRODID4 0.6678 0.2197 3.040 0.00237 **

PRODID5 1.1194 0.2400 4.663 3.11e-06 ***

PRODID6 1.3503 0.2337 5.779 7.53e-09 ***

DAY2 -0.4134 0.1298 -3.186 0.00144 **

PRODID2:DAY2 0.4390 0.2590 1.695 0.09006 .

PRODID3:DAY2 NA NA NA NA

PRODID4:DAY2 0.3308 0.3056 1.083 0.27892

6if the singular.ok = TRUE which is the default.
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PRODID5:DAY2 0.3871 0.3248 1.192 0.23329

PRODID6:DAY2 0.5067 0.3350 1.513 0.13030

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Threshold coefficients:

Estimate Std. Error z value

1|2 -1.63086 0.10740 -15.184

2|3 -0.64177 0.09682 -6.629

3|4 -0.31295 0.09546 -3.278

4|5 -0.05644 0.09508 -0.594

5|6 0.61692 0.09640 6.399

The source of the singularity is revealed in the following table:

R> with(soup, table(DAY, PRODID))

PRODID

DAY 1 2 3 4 5 6

1 369 94 184 93 88 93

2 370 275 0 92 97 92

which shows that the third PRODID was not presented at the second day.

The issue of aliased coefficients extends in CLMs to nominal effects since the joint design
matrix for location and nominal effects will be singular if the same variables are included
in both location and nominal formulae. clm handles this by not estimating the offending
coefficients in the location formula as illustrated with the fm.nom2 model fit in section 4.2.

Over parameterization

The scope of model structures allowed in clm makes it possible to specify models which are
over parameterized in ways that do not lead to rank deficient design matrices and as such
are not easily detected before fitting the model. An example is given here which includes
both additive (location) and multiplicative (scale) effects of contact for a binomial response
variable but the issue can also occur with more than two response categories:

R> wine <- within(wine, {

+ rating_comb2 <- factor(rating, labels = c("1-2", "1-2", "3-5", "3-5", "3-5"))

+ })

R> ftable(rating_comb2 ~ contact, data = wine)

rating_comb2 1-2 3-5

contact

no 18 18

yes 9 27

R> fm.comb2 <- clm(rating_comb2 ~ contact, scale = ~ contact, data = wine)

R> summary(fm.comb2)
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formula: rating_comb2 ~ contact

scale: ~contact

data: wine

link threshold nobs logLik AIC niter max.grad cond.H

logit flexible 72 -45.20 96.39 4(0) 1.38e-11 -4.1e+12

Coefficients:

Estimate Std. Error z value Pr(>|z|)

contactyes 1.099 NA NA NA

log-scale coefficients:

Estimate Std. Error z value Pr(>|z|)

contactyes -1.174e-06 NA NA NA

Threshold coefficients:

Estimate Std. Error z value

1-2|3-5 -7.171e-17 NA NA

4.10. Customized modelling

Using the doFit argument clm can be instructed to return a model environment that we
denote rho:

R> rho <- update(fm1, doFit=FALSE)

R> names(rho)

[1] "par" "nlambda" "link" "gfun" "dfun"

[6] "pfun" "clm.hess" "clm.grad" "clm.nll" "wts"

[11] "fitted" "has.scale" "sigma" "k" "Soff"

[16] "S" "n.psi" "o2" "o1" "B2"

[21] "B1"

This environment holds a complete specification of the cumulative link models including
design matrices B1, B2, S and other components. The environment also contains the cu-
mulative distribution function that defines the inverse link function pfun and its first and
second derivatives, i.e., the corresponding density function dfun and gradient gfun. Of direct
interest here is the parameter vector par and functions that readily evaluate the negative log-
likelihood (clm.nll), its gradient with respect to the parameters (clm.grad) and the Hessian
(clm.hess). The negative log-likelihood and the gradient at the starting values is therefore

R> rho$clm.nll(rho)

[1] 115.8795

R> c(rho$clm.grad(rho))
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[1] 13.6 4.8 -16.8 -4.0 -7.2 -3.6

Similarly at the MLE they are:

R> rho$clm.nll(rho, par = coef(fm1))

[1] 86.49192

R> print(c(rho$clm.grad(rho)), digits = 3)

[1] 2.06e-12 2.11e-12 -4.02e-12 -7.04e-14 -4.54e-13 5.38e-14

Note that the gradient function clm.grad assumes that clm.nll has been evaluated at the
current parameter values; similarly, clm.hess assumes that clm.grad has been evaluated at
the current parameter values. The NR algorithm in ordinal takes advantage of this so as to
minimize the computational load.

If interest is in fitting a custom CLM with, say, restrictions on the parameter space, this can
be achieved by a combination of a general purpose optimizer and the functions clm.nll and
optionally clm.grad. Assume for instance we know that the regression parameters can be no
larger than 2, then the model can be fitted with the following code:

R> nll <- function(par, envir) {

+ envir$par <- par

+ envir$clm.nll(envir)

+ }

R> grad <- function(par, envir) {

+ envir$par <- par

+ envir$clm.nll(envir)

+ envir$clm.grad(envir)

+ }

R> nlminb(rho$par, nll, grad, upper = c(rep(Inf, 4), 2, 2), envir = rho)$par

1|2 2|3 3|4 4|5 tempwarm contactyes

-1.470404 1.014029 3.073575 4.548003 2.000000 1.444449

Constrained partial proportional odds

A type of models which are not implemented in full generality in ordinal are the so-called
constrained partial proportional odds models proposed by Peterson and Harrell Jr. (1990).
These models impose restrictions on the nominal effects considered in section 4.2 and are well
suited to illustrate the customisable modelling options available in the ordinal package. We
consider an example from Peterson and Harrell Jr. (1990) in which disease status is tabulated
by smoking status:

R> artery <- data.frame(disease = factor(rep(0:4, 2), ordered = TRUE),

+ smoker = factor(rep(c("no", "yes"), each = 5)),

+ freq = c(334, 99, 117, 159, 30, 350, 307,

+ 345, 481, 67))

R> addmargins(xtabs(freq ~ smoker + disease, data = artery), margin = 2)



40 Cumulative Link Models with the R package ordinal

disease

smoker 0 1 2 3 4 Sum

no 334 99 117 159 30 739

yes 350 307 345 481 67 1550

The overall odds-ratio of smoking is

R> fm <- clm(disease ~ smoker, weights = freq, data = artery)

R> exp(fm$beta)

smokeryes

2.090131

showing that overall the odds of worse disease rating is twice as high for smokers compared
to non-smokers.

Allowing for nominal effects we see that the log odds-ratio for smoking clearly changes with
disease status, and that it does so in an almost linearly decreasing manor:

R> fm.nom <- clm(disease ~ 1, nominal = ~ smoker, weights = freq,

+ data = artery, sign.nominal = "negative")

R> coef(fm.nom)[5:8]

0|1.smokeryes 1|2.smokeryes 2|3.smokeryes 3|4.smokeryes

1.03939761 0.65405519 0.46469327 0.06552842

Peterson and Harrell Jr. (1990) suggested a model which restricts the log odds-ratios to be
linearly decreasing with disease status modelling only the intercept (first threshold) and slope
of the log odds-ratios:

R> coef(fm.lm <- lm(I(coef(fm.nom)[5:8]) ~ I(0:3)))

(Intercept) I(0:3)

1.0225640 -0.3110969

We can implement the log-likelihood of this model as follows. As starting values we combine
parameter estimates from fm.nom and the linear model fm.lm, and finally optimize the log-
likelihood utilizing the fm.nom model environment:

R> nll2 <- function(par, envir) {

+ envir$par <- c(par[1:4], par[5] + par[6] * (0:3))

+ envir$clm.nll(envir)

+ }

R> start <- unname(c(coef(fm.nom)[1:4], coef(fm.lm)))

R> fit <- nlminb(start, nll2, envir = update(fm.nom, doFit = FALSE))

R> round(fit$par[5:6], 2)

[1] 1.02 -0.30
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Thus the log-odds decrease linearly from 1.02 for the first two disease categories by 0.3 per
disease category.

5. Conclusions

This paper has described the class of cumulative link models for the analysis of ordinal data
and the implementation of such models in the R package ordinal. It is shown how the package
supports model building and assessment of CLMs with scale effects, partial proportional odds,
structured thresholds, flexible link functions and how models can be costumized to specific
needs. A number of examples have been given illustrating analyses of ordinal data using clm

in practice.

The significant flexibility of model structures available in ordinal is in one respect a clear
advantage but it can also be a challenge when particular model variants turn out to be
unidentifiable. Analytical detection of unidentifiable models could prove very useful in the
analysis of ordinal data, but it is, unfortunately, a difficult question that remains a topic of
future research.

In a wider data analysis perspective, cumulative link models have been described as a very
rich model class—a class that sits in between, in a sense, the perhaps the two most impor-
tant model classes in statistics; linear models and logistic regression models. The greater
flexibility of CLMs relative to binary logistic regression models facilitates the ability to check
assumptions such as the partial proportional odds assumption. A latent variable interpreta-
tion connects cumulative link models to linear models in a natural way and also motivates
non-linear structures such as scale effects. In addition to nominal effects and the non-linear
scale effects, the ordered nature of the thresholds gives rise to computational challenges that
we have described here and addressed in the ordinal package.

In addition to computational challenges, practical data analysis with CLMs can also be chal-
lenging. In our experience a top-down approach in which a “full” model is fitted and gradually
simplified is often problematic, not only because this easily leads to unidentifiable models but
also because there are many different ways in which models can be reduced or expanded. A
more pragmatic approach is often preferred; understanding the data through plots, tables,
and even linear models can aid in finding a suitable intermediate ordinal starting model.

Attempts to identify a “correct” model will also often lead to frustrations; the greater the
model framework, the greater the risk that there are multiple models which fit the data (al-
most) equally well. It is well known statistical wisdom that with enough data many goodness
of fit tests become sensitive to even minor deviations of little practical relevance. This is
particularly true for tests of partial proportional odds; in the author’s experience almost all
CLMs on real data show some evidence of non-proportional odds for one or more variables
but it is not always the case that models with partial or non-proportional odds are the most
useful. Such effects complicate the interpretation and often generalize poorly outside the ob-
served data and models assuming proportional odds or including scale effects are often more
appropriate.

Computational details

The results in this paper were obtained using R 4.4.1 with ordinal, version 2023.12.4.1. R
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itself and all packages used are available from CRAN at https://CRAN.R-project.org/.
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A. A regularized Newton-Raphson algorithm with step halving

The regularized NR algorithm is an iterative method that produce a sequence of estimates
ψ(0), . . . ,ψ(i), . . ., where parenthesized superscripts denote iterations. From the ith estimate,
the (i + 1)’th estimate is given by

ψ(i+1) = ψ(i) − c1h
(i), h(i) = H̃(ψ(i);y)−1g(ψ(i);y)

where
H̃(ψ(i);y) = H(ψ(i);y) + c2(c3 + min(e(i)))I,

H(ψ(i);y) and g(ψ(i);y) are the Hessian and gradient of the negative log-likelihood function
with respect to the parameters evaluated at the current estimates; e(i) is a vector of eigenvalues
of H(ψ(i);y), h(i) is the i’th step, c1 is a scalar parameter which controls the step halving,
and c2, c3 are scalar parameters which control the regularization of the Hessian.

Regularization is only enforced when the Hessian is not positive definite, so c2 = 1 when
min(e(i)) < τ and zero otherwise, were τ is an appropriate tolerance. The choice of c3 is to
some extent arbitrary (though required positive) and the algorithm in ordinal sets c3 = 1.

Step-halving is enforced when the full step h(i) causes a decrease in the likelihood function
in which case c1 is consecutively halved, c1 = 1

2 , 1
4 , 1

8 , . . . until the step c1h
(i) is small enough

to cause an increase in the likelihood or until the maximum allowed number of consecutive
step-halvings has been reached.

The algorithm in ordinal also deals with a couple of numerical issues that may occur. For
example, the likelihood function may be sufficiently flat that the change in log-likelihood is
smaller than what can be represented in double precision, and so, while the new parameters
may be closer to the true ML estimates and be associated with a smaller gradient, it is not
possible to measure progress by the change in log-likelihood.

The NR algorithm in ordinal has two convergence criteria: (1) an absolute criterion requesting
that max |g(ψ(i);y)| < τ1 and (2) a relative criterion requesting that max |h(i)| < τ2 where
the default thresholds are τ1 = τ2 = 10−6.

Here the first criterion attempts to establish closeness of ψ(i) to the true ML estimates in
absolute terms; the second criterion is an estimate of relative closeness of to the true ML
estimates. Both convergence criteria are needed if both small (e.g., ≈ 0.0001) and large (e.g.,
≈ 1000) parameter estimates are to be determined accurately with an appropriate number of
correct decimals as well as significant digits.

The NR algorithm in ordinal attempts to satisfy the absolute criterion first and will then only
attempt to satisfy the relative criterion if it can take the full un-regularized NR step and then
only for a maximum of 5 steps.

A.1. Convergence properties and parameter accuracy

Convergence to a well-defined optimum is achieved when the gradient of the negative log-
likelihood function with respect to the parameters is small and the Hessian is positive definite
i.e., having only positive eigenvalues away from zero. Identifiability problems occur when
the likelihood function is flat in directions of one or more parameters (or linear functions of
the parameters) while well-defined, i.e., pointy in other directions. It may happen that a
parameter is exactly unidentifiable and clm is in some cases (including rank-deficient design
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matrices) able to detect this and exclude the parameter from the optimization procedure.
In other cases the likelihood is almost flat in one or more directions. These cases are not
uncommon in practice and it is not possible to reduce the parameter space before optimizing
the model. To measure the degree of empirical identifiability clm reports the condition number
of the Hessian which is the ratio of the largest to the smallest eigenvalue. A large condition
number of the Hessian does not necessarily mean there is a problem with the model, but it
can be. A small condition number of the Hessian, say smaller than about 104 or 106, on the
other hand is a good assurance that a well-defined optimum has been reached.

A key problem for optimization methods is when to stop iterating: when have the parameters
that determine the optimum of the function been found with sufficient accuracy? The method
independent error estimate (Eldén, Wittmeyer-Koch, and Nielsen 2004) provides a way to
approximate the error in the parameter estimates. Sufficiently close to the optimum the
Newton-Raphson step provides this estimate:

|α̂(i) −α∗| ≲ h(i), h(i) = H(ψ(i);y)−1g(ψ(i);y)

where α∗ is the exact (but unknown) value of the ML estimate, α̂(i) is the ML estimator of α
at the i’th iteration and h(i) is the full unregularized NR step at the i’th iteration. Since the
gradient and Hessian of the negative log-likelihood function with respect to the parameters is
already evaluated and part of the model fit at convergence, it is essentially computationally
cost-free to approximate the error in the parameter estimates. Based on the error estimate
the number of correctly determined decimals and significant digits is determined for each
parameter.

The assessment of the number of correctly determined decimals and significant digits is only
reliable sufficiently close to the optimum and when the NR algorithm converges without reg-
ularization and step-halving. In practice we caution against this assessment if the algorithm
did not converge successfully.
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