Package ‘orderly’

October 14, 2022

Title Lightweight Reproducible Reporting
Version 1.4.3

Description Order, create and store reports from R. By defining a
lightweight interface around the inputs and outputs of an
analysis, a lot of the repetitive work for reproducible research
can be automated. We define a simple format for organising and
describing work that facilitates collaborative reproducible
research and acknowledges that all analyses are run multiple
times over their lifespans.

License MIT + file LICENSE
Encoding UTF-8

URL https://www.vaccineimpact.org/orderly/,
https://github.com/vimc/orderly

BugReports https://github.com/vimc/orderly/issues
SystemRequirements git
Imports DBI, R6, RSQLite (>= 2.2.4), crayon, digest, docopt, fs (>=
1.2.7), gert, ids, withr, yaml, zip (>=2.0.0)
Suggests httr, jsonlite, knitr, markdown, mockery, processx,
rmarkdown, testthat, vaultr (>= 1.0.4)
RoxygenNote 7.1.2
VignetteBuilder knitr
Language en-GB
NeedsCompilation no
Author Rich FitzJohn [aut, cre],
Robert Ashton [aut],
Alex Hill [aut],
Martin Eden [aut],
Wes Hinsley [aut],
Emma Russell [aut],

James Thompson [aut],
Imperial College of Science, Technology and Medicine [cph]

1

https://www.vaccineimpact.org/orderly/
https://github.com/vimc/orderly
https://github.com/vimc/orderly/issues

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>
Repository CRAN
Date/Publication 2021-09-22 10:30:02 UTC

R topics documented:

R topics documented:

orderly_batch 3
orderly_bundle_pack 3
orderly_bundle_pack_remote 6
orderly_cleanup 7
orderly_commit e e 8
orderly_config 9
orderly_db 11
orderly_deduplicate 12
orderly_default_remote_set 14
orderly_develop_start 15
orderly_example e e e 17
orderly_graph e 18
orderly_graph_out_of date 20
orderly_info 21
orderly_inmit 21
orderly_latest L 23
orderly_list 24
orderly_list drafts 25
orderly_list_metadata 26
orderly_log on e 27
orderly_migrate e e e 28
orderly_new 29
orderly_pull_dependencies 31
orderly_rebuild 33
orderly_remote L. e 35
orderly_remote_path L 36
orderly_remote_status. e e e e e e 38
orderly_run L e e 38
orderly_run_info 41
orderly_run_remote e e 42
orderly_search. 43
orderly_test_start e e 46
orderly_USe_TESOUICE v v v v v vttt et e e e e e e 48
Index 51

orderly_batch 3

orderly_batch Run a batch of reports.

Description

Run one report multiple times with different sets of parameters.

Usage
orderly_batch(name = NULL, parameters = NULL, ...)
Arguments
name Name of the report to run (see orderly_list()). A leading src/ will be re-
moved if provided, allowing easier use of autocomplete. Alternatively, the de-
fault of NULL is useful if you have already set the working directory to be the
source directory.
parameters Data frame of parameters passed to report. Each row represents a parameter set
to be passed to one report run.
Additional args passed to orderly_run()
Value

List of ids of newly created reports

See Also

orderly_run() for details of report running

Examples

path <- orderly::orderly_example("demo")
params <- data.frame(nmin = c(0.2, 0.25))
ids <- orderly::orderly_batch("other"”, params, root = path)

orderly_bundle_pack Pack and run orderly "bundles"

Description

Pack up and run orderly reports to run elsewhere. By using these functions you can safely copy all
requirements of an orderly report into a portable archive and run them on another machine (perhaps
a cluster or HPC), then import the completed archive into your orderly tree. There is considerable
overhead to using these functions (mostly due to transport costs) so they are intended primarily for
very computationally demanding patterns.

4 orderly_bundle_pack

Usage
orderly_bundle_pack(
path,
name,
parameters = NULL,
envir = NULL,
root = NULL,

locate = TRUE,
message = NULL,
instance = NULL,
remote = NULL,
tags = NULL

)

tempfile(), echo = TRUE, envir = NULL)

orderly_bundle_run(path, workdir
orderly_bundle_import(path, root = NULL, locate = TRUE)

orderly_bundle_list(path)

Arguments

path A path, whose interpretation depends on the function:
orderly_bundle_pack: A directory to save bundles to. If it does not exist it
will be created for you.
orderly_bundle_run: The path to the packed bundle (a zip file created by
orderly_bundle_pack)
orderly_bundle_import: The path to unpack and import (a zip file created by
orderly_bundle_run)
orderly_bundle_list: The path to a directory that might contain either incom-
plete or complete bundles (created by either orderly_bundle_pack or orderly_bundle_run)

name Name of the report to pack (see orderly_list(). A leading src/ will be re-
moved if provided, allowing easier use of autocomplete.

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

envir The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

message An optional character string containing a message explaining why the report was
run

orderly_bundle_pack 5

instance Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. If given, then this name must be present in all databases where instances
are listed in orderly_config.yml, and will be ignored by all database where
instances are not given. See the "orderly" vignette for further information.

remote Remote to use to resolve dependencies. Use this in order to run a report with the
same dependencies as are available on a remote server, particularly when using
id = "latest”. Note that this is not the same as running orderly_pull_dependencies(),
then orderly_run with remote = NULL, as the pull/run approach will use the lat-
estreport in your archive but the remote = "remote” approach will use the latest
approach in the remote archive (which might be less recent).

tags Character vector of tags to add to the report. Tags are immutable and can-
not be removed once the report is run. Tags added here will be in addition
to any tags listed in the tags: field in orderly.yml and must be present in
orderly_config.yml.

workdir The path in which to run bundles. If it does not exist it will be created for you.
The completed bundle will be saved in this directory as <id>.zip.
echo Print the result of running the R code to the console
Value

For orderly_bundle_pack and orderly_bundle_run, a list with elements path (the path to the
bundle) and id (its orderly id). For orderly_bundle_list a data.frame with key information about
the report in the bundles (id, name, parameters, status, time). The function orderly_bundle_import
is called for its side effect only and does not return anything useful.

Examples

path <- orderly::orderly_example("minimal")

A working directory to export bundles to:
workdir <- tempfile()

Pack up the "example” report to go:
res <- orderly::orderly_bundle_pack(workdir, "example"”, root = path)

The return value is a list with the id and the path to the zip
file created:
res

A list of reports bundled in this directory and their status
orderly::orderly_bundle_list(workdir)

Run the bundle (this would ordinarily be done on another computer)
zip <- orderly::orderly_bundle_run(res$path, workdir)
zip

The status has now been updated to reflect the status
orderly::orderly_bundle_list(workdir)

orderly_bundle_pack_remote

We can import this into the orderly tree
orderly::orderly_bundle_import(zip$path, root = path)

This has now been included in your orderly archive and the
workdir can be safely deleted

unlink(workdir, recursive = TRUE)
orderly::orderly_list_archive(path)

orderly_bundle_pack_remote

Pack and import bundles with remotes

Description

Pack a bundle on a remote. This is like calling orderly_bundle_pack() on the remote and can be
used to extract a long-running report from a server to run (say) on an HPC system.

Usage

orderly_bundle_pack_remote(

name,

parameters = NULL,
instance = NULL,
root = NULL,
locate = TRUE,
remote = NULL,
dest = tempdir()

orderly_bundle_import_remote(path, root = NULL, locate = TRUE, remote = NULL)

Arguments

name

parameters

instance

root

Name of the report to pack (see orderly_list(). A leading src/ will be re-
moved if provided, allowing easier use of autocomplete.

Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. If given, then this name must be present in all databases where instances
are listed in orderly_config.yml, and will be ignored by all database where
instances are not given. See the "orderly" vignette for further information.

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

orderly_cleanup

locate

remote

dest

path

Details

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

The remote to pack the bundle from, or import into

Optional path to write bundle to (a directory name). By default we use the
temporary directory and return the full path to the created file.

The path to unpack and import (a zip file created by orderly_bundle_run)

The workflow here will typically be:

1. Use orderly_bundle_pack_remote() to create a local copy of a bundle, extracted from a
remote. Typically this will be run from the system where the bundle will be run (an HPC
head-node or another powerful computer).

2. Run the bundle using orderly_bundle_run()

3. Re-import the completed bundle using orderly_bundle_import_remote which sends the zip
file to the remote and adds it to the archive.

Typically these commands will not be run from the orderly root. However, the root argument may
still be used to find your remote configuration. Alternatively, if your remote argument is an orderly
remote (e.g., orderly_remote_path(), or orderlyweb’s orderlyweb: :orderlyweb_remote) then
the root and locate arguments will be ignored and this command can be run from anywhere. This
is the recommended configuration for running on a HPC system.

orderly_cleanup

Orderly cleanup

Description

Clean up orderly draft and data directories. Deletes all drafts (possibly just for a set of report
names) and then deletes dangling data sets that are not pointed to by any draft or committed reports.
Running cleanup does not affect any reports that have been committed with orderly_commit()
(i.e., the contents of the archive/ directory).

Usage
orderly_cleanup(
name = NULL,
root = NULL,
locate = TRUE,
draft = TRUE,
data = TRUE,

failed_only = FALSE

8 orderly_commit

Arguments

name Optional name; in this case only clean up drafts with this name

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

draft Logical, indicating if drafts should be removed

data Logical, indicating if dangling data should be removed (data not used by any

draft or archived report).

failed_only Delete only failed reports (those without the end-of-run metadata). This will
also clean up drafts created by orderly_test_start()

Value

No return value, this function is called only for its side effects

Examples

In a new example orderly, run two reports and commit only the
second one:

path <- orderly::orderly_example("minimal")

id1 <- orderly::orderly_run("example”, root = path)

id2 <- orderly::orderly_run("example", root = path)
orderly::orderly_commit(id2, root = path)

We now have one draft and one archive report:
orderly::orderly_list_drafts(root = path)
orderly::orderly_list_archive(root = path)

To clean up the drafts:
orderly::orderly_cleanup(root = path)

We now have no draft and one archive reports:
orderly::orderly_list_drafts(root = path)
orderly::orderly_list_archive(root = path)

orderly_commit Commit a generated report

Description
Commit a generated report, moving it from the draft/ directory to archive/ and updating the
orderly index. Once committed, reports should not be deleted.

Usage

orderly_commit(id, name = NULL, root = NULL, locate = TRUE, timeout = 10)

orderly_config
Arguments

id

name

root

locate

timeout

Value

The identifier of the report

The name of the report - this can be omitted and the name will be determined
from the id.

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Time in seconds to wait for db to be available. In parallel the database may
become locked so we can choose to wait for timeout seconds before throwing
an error.

The path to the newly committed report

Examples

In a new example orderly, run a report
path <- orderly::orderly_example("minimal")
id <- orderly::orderly_run("example”, root = path)

To commit it, all we need is the report id
orderly::orderly_commit(id, root = path)

The report is now committed, and as such could be used as a

dependency in another report and is not subject to deletion by
orderly::orderly_cleanup

orderly::orderly_list_archive(root = path)

orderly_config

Retrieve orderly config object.

Description

Retrieve orderly config object.

Usage

orderly_config(root = NULL, locate = TRUE)

Arguments

root

locate

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

10 orderly_config

Value

An R6 object representing the orderly config.

Public fields

root Root dir of the orderly repository
raw The raw orderly config yaml

destination DB connection configuration for where to store orderly output database. Defaults to
local SQLite db orderly.sqlite

fields Configuration of fields in reports, specifying which are required

remote Configuration of remote sources i.e. shared copy of orderly on a remote machine
vault Vault server connection information

global_resources Path to dir containing global resources.

changelog Changelog type configuration

tags List of available tags for orderly reports.

database Database configuration specifying driver and connection args for (possibly multiple)
databases

archive_version Orderly version number of the archive

run_options List of run options

Methods
Public methods:

e orderly_config_$new()

e orderly_config_$server_options()
* orderly_config_$add_run_option()
e orderly_config_$get_run_option()

Method new(): Create an object representing orderly config
Usage:
orderly_config_$new(root, validate = TRUE)
Arguments:
root Root dir of the orderly repository

validate If TRUE migrate cfg to handle any format changes and validate structure if well
formed for each of the cfg fields

Method server_options(): Get connection options for the current server. This is the details
from the "remote" section for the server being run on. Server identified via env var ORDERLY_API_SERVER_IDENTITY

Usage:
orderly_config_$server_options()

Returns: Options for current server if can be identified, otherwise NULL

Method add_run_option(): Add a key-value pair run option

orderly_db

Usage:

11

orderly_config_$add_run_option(name, value)

Arguments:

name Name of run option
value Value for run option

Method get_run_option(): Retrieve value of a run option

Usage:

orderly_config_$get_run_option(name)

Arguments:

name Name of run option

Examples

The orderly demo, with lots of potential reports:
path <- orderly::orderly_example("demo")

orderly::orderly_config(path)

orderly_db

Connect to orderly databases

Description

Connect to the orderly databases. These should be treated as as read-only.

Usage

orderly_db(type, root = NULL, locate = TRUE, validate = TRUE, instance = NULL)

Arguments

type
root
locate

validate

instance

The type of connection to make (source, destination, csv or rds).

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Logical, indicating if the database schema should be validated on open (cur-
rently only applicable with type = "destination”). This is primarily intended
for internal use.

Used only by type = "source”, and used to select the instance, where multiple
instances are configured. Use a single unnamed character string to indicate an
instance to match. If given, then this name must be present in all databases
where instances are listed in orderly_config.yml, and will be ignored by all
database where instances are not given. See the "orderly" vignette for further
information.

12 orderly_deduplicate

Details
Orderly has several databases:

* source: All of the databases named in the database section of the orderly_config.yml

* destination: The orderly index database (typically a SQLite database stored at the orderly
root)

» csv: The cache of database query results, in csv format

* rds: The cache of database query results, in rds format

Value

A database connection, or list of connections in the case of source.

Examples

Create an orderly that has a single commited report:
path <- orderly::orderly_example("minimal™)

id <- orderly::orderly_run("example”, root = path)
orderly::orderly_commit(id, root = path)

The source database holds the data that might be accessible via
the 'data' entry in orderly.yml:

db <- orderly::orderly_db("source”, root = path)

This is a list, with one connection per database listed in the
orderly_config.yml (an empty list if none are specified):

db

DBI: :dbListTables(db$source)

head(DBI: :dbReadTable(db$source, "data"))
DBI::dbDisconnect(db$source)

The destination database holds information about the archived
reports:

db <- orderly::orderly_db("destination”, root = path)

DBI: :dbListTables(db)

These tables are documented online:
https://vimc.github.io/orderly/schema
DBI: :dbReadTable(db, "report_version")

orderly_deduplicate Deduplicate an orderly archive

Description

Deduplicate an orderly archive. Deduplicating an orderly archive will replace all files that have the
same content with "hard links". This requires hard link support in the underlying operating system,
which is available on all unix-like systems (e.g. MacOS and Linux) and on Windows since Vista.
However, on windows systems this might require somewhat elevated privileges. If you use this

orderly_deduplicate 13

feature, it is very important that you treat your orderly archive as read-only (though you should be
anyway) as changing one copy of a linked file changes all the other instances of it - the files are
literally the same file.

Usage
orderly_deduplicate(root = NULL, locate = TRUE, dry_run = TRUE, quiet = FALSE)

Arguments
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
dry_run Logical, indicating if the deduplication should be planned but not run
quiet Logical, indicating if the status should not be printed
Details

This function will alter your orderly archive. Ordinarily this is not something that should be done,
so we try to be careful. In order for this to work, it is very important to treat your orderly archive
as read-only generally. If your canonical orderly archive is behind OrderlyWeb this will almost
certainly be the case already.

With "hard linking", two files with the same content can be updated so that both files point at the
same physical bit of data. This is great, as if the file is large, then only one copy needs to be stored.
However, this means that if a change is made to one copy of the file, it is immediately reflected in
the other, but there is nothing to indicate that the files are linked!

This approach is worth exploring if you have large files that are outputs of one report and inputs to
another, or large inputs repeatedly used in different reports, or outputs that end up being the same
in multiple reports. If you run the deduplication with dry_run = TRUE, an indication of the savings
will be printed.

Value

Invisibly, information about the duplication status of the archive before deduplication was run.

Examples

path <- orderly::orderly_example("demo")
id1 <- orderly::orderly_run("minimal”, root = path)
id2 <- orderly::orderly_run("minimal”, root path)
orderly_commit(idl1, root = path)
orderly_commit(id2, root = path)
tryCatch(
orderly::orderly_deduplicate(path, dry_run = TRUE),
error = function(e) NULL)

14 orderly_default_remote_set

orderly_default_remote_set
Set default remote location

Description

Set and get default remote locations. Default locations are specific to an orderly repository (based
on the path of the repository) so there is no interaction between different orderly projects.

Usage

orderly_default_remote_set(value, root = NULL, locate = TRUE)

orderly_default_remote_get(root = NULL, locate = TRUE)

Arguments
value A string describing a remote, a remote object, or NULL to clear
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
Value

The default remote (for orderly_default_remote_get). The function orderly_default_remote_set
is called for its side effects only.

Examples

Same setup as in orderly_remote_path, with a remote orderly:
path_remote <- orderly::orderly_example(”"demo")
id <- orderly::orderly_run("other"”, list(nmin = @),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency”,

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

And a local orderly
path_local <- orderly::orderly_example("demo")

We'll create an object to interact with this remote using
orderly_remote_path.

remote <- orderly::orderly_remote_path(path_remote)

There is no remote set by default:

orderly_develop_start 15

try(orderly: :orderly_default_remote_get(root = path_local))

We can set one:
orderly::orderly_default_remote_set(remote, root = path_local)

and now we can retrieve it:
orderly::orderly_default_remote_get(root = path_local)

Note that this has not affected the other orderly:
try(orderly: :orderly_default_remote_get(root = path_remote))

orderly_develop_start Develop an orderly report

Description

The functions orderly_develop_start, orderly_develop_status and orderly_develop_clean
provide a workflow for developing a report in much the same way as one might write code outside of

orderly. orderly_develop_start will copy all files required (global resources and dependencies)

into the report source directory, as well as collect all data and parameters - at this point the directory

can be developed in directly. It will also load all declared packages, and source all code files listed

in the packages: and sources: sections of your orderly.yml. orderly_develop_status pro-

vides information about the status of files in the directory, while orderly_develop_clean deletes

all copied files.

Usage

orderly_develop_start(
name = NULL,
parameters = NULL,
envir = parent.frame(),
root = NULL,
locate = TRUE,
instance = NULL,
use_draft = FALSE,
remote = NULL

orderly_develop_status(name = NULL, root = NULL, locate = TRUE)

orderly_develop_clean(name = NULL, root = NULL, locate = TRUE)

Arguments

name Name of the report to develop (see orderly_list()). A leading src/ will be
removed if provided, allowing easier use of autocomplete. Alternatively, the
default of NULL is useful if you have already set the working directory to be the
source directory.

16 orderly_develop_start

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

envir The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

instance Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. If given, then this name must be present in all databases where instances
are listed in orderly_config.yml, and will be ignored by all database where
instances are not given. See the "orderly" vignette for further information.

use_draft Should draft reports be used for dependencies? This should be used only in
development. Valid values are logical (TRUE, FALSE) or use the string newer to
use draft reports where they are newer than archive reports. For consistency,
always and never are equivalent to TRUE and FALSE, respectively.

remote Remote to use to resolve dependencies. Use this in order to run a report with the
same dependencies as are available on a remote server, particularly when using
id = "latest". Note that this is not the same as running orderly_pull_dependencies(),
then orderly_run with remote = NULL, as the pull/run approach will use the lat-
estreport in your archive but the remote = "remote” approach will use the latest
approach in the remote archive (which might be less recent).

Details

These functions are designed to work within a report’s src directory. For example, for a report

analysis they will alter or report on the directory src/analysis. Itis intended that orderly_develop_start
can be run repeatedly; doing this will refresh the contents of the directory if upstream files have been

updated.

Some degree of care should be used while using these functions.

Because orderly_develop_start copies files into your source tree you should be careful to add

these files to your . gitignore files so that they are not included if using git. Rerunning orderly_develop_start
will copy a fresh copy of dependencies into your tree, overwriting files that are there without warn-

ing.

Repeatedly running orderly_develop_start is "safe", in that it will re-run through the setup

steps, but beware that sourcing functions is additive and never subtractive. If you delete (or rename)

a function within a source file, it will not be removed from your global environment. Similarly,

environment variables will be loaded each time you call this, but no deletions will happen. When

in doubt, restart your R session.

Note that these functions are much more permissive as to the state of your orderly.yml than
orderly_run() - in particular, they will run, with a message, even if you have not yet defined a
script: or any artefacts:.

orderly_example 17

The orderly_develop_clean function will delete dependencies without warning.

Value

A character vector with the full path to the directory, invisibly.

Examples

path <- orderly::orderly_example("demo")

This report uses a dependency - it requires that the file
incoming.csv exists. This file is created from the report 'other'’
orderly::orderly_develop_status("use_dependency"”, root = path)

Copy the required dependencies over, in this case from a draft report
orderly::orderly_run("other”, list(nmin = @), root = path, echo = FALSE)
orderly::orderly_develop_start("use_dependency”, root = path,

use_draft = TRUE)

Files have been copied across into the source directory
orderly::orderly_develop_status("use_dependency"”, root = path)

The report can then be developed as needed, interactively. After
we're happy things can be cleaned up with
orderly::orderly_develop_clean("use_dependency”, root = path)

orderly_example Set up an orderly example

Description

Set up one of the orderly examples included with the package. These are not intended to be starting
points for new orderly repositories, but are used in the package examples and vignettes.

Usage

orderly_example(
name,
path = tempfile(),
run_demo = FALSE,
quiet = FALSE,
git = FALSE

18 orderly_graph

Arguments
name Name of the example
path Destination to create the example - if it exists already it must be an empty direc-
tory. By default, creates a new temporary directory
run_demo Logical, indicating if the example is configured as a "demo" (i.e., with a set of
reports to be run and committed), should these be run?
quiet Logical, indicating if informational messages should be suppressed when run-
ning the demo.
git Logical, indicating if we should create an basic git repository along with the
demo. This will have the default orderly .gitignore set up, and a remote which
is itself (so that git pull and git fetch run without error, though they will do
nothing).
Value

Returns the path to the orderly example

Examples

Create a new copy of the "minimal” example
path <- orderly::orderly_example("minimal”)
dir(path)

Example reports within this repository:
orderly::orderly_list(path)

orderly_graph Print the dependency tree for a given report using orderly log

Description

Investigate the dependency structure in a set of orderly reports. This function allows the dependency
graph to be created for set of reports that have been run and committed (the archive) or of a set of
reports that could be run (the src) to be discovered and printed to screen. This is experimental and
somewhat subject to change and improvement.

Usage

orderly_graph(
name,
id = "latest”,
root = NULL,
locate = TRUE,
direction = "downstream"”,
propagate = TRUE,
max_depth = Inf,

orderly_graph

19

recursion_limit = 100,
show_all = FALSE,

use = "archive”
)
Arguments

name the name of the report

id the id of the report, if omitted, use the id of the latest report

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

direction A string indicating if we want to move up or down the tree permitted values are
upstream, downstream

propagate A boolean indicating if we want to propagate out of date through the tree

max_depth A numeric, how far back should the tree go, this can be useful to truncate a very

recursion_limit

show_all

use

Details

large tree. (default = Inf)

A numeric, limit for depth of tree, if the tree goes beyond this then an error is
thrown. (default = 100)

A boolean, should we show all reports in the tree, not just the latest.

Character string indicating what we read to infer the dependency tree. Current
valid values are archive (the default), which reads from archive reports and src
which reads from the source reports.

orderly allows a report to rely on the artefacts of one or more other orderly reports. This allows
users to develop a network of interconnected reports where the output from report becomes the
source of data for another. There are two natural questions that can develop around this workflow:

1. We have updated a report; what are the reports that depend on this so that we can re-run them?

2. We have a report that we want to re-run to ensure uses the latest information. Which other
reports are used (directly or indirectly) by this report?

This function displays this information in an easily readable format. Allowing users to see the
dependency tree and which reports are out of date and need to be re-run.

Value

An orderly tree object with the root corresponding to the given report.

orderly_graph_out_of_date

Remark

By default the tree is built using data from the local report database (see orderly_commit, or-
derly_db). This means that it will not find changes from a report that has not be run and committed.
That is, if a user changes a report to use or create different artefacts this will not be picked up by
the function until the reports are re-run and committed to the archive.

It is possible to generate a tree from the source reports by using use = "src” - this generates the
"theoretical tree", and has no concept of being "up to date" or of ids.

Warning

This interface is considered experimental and may change without notice. Please do not depend
on it in scripts as it may break things. Consider this a (hopefully) useful way of exploring the
dependencies in your reports interactively - let us know what is missing and we’ll try and build it

out.

Examples

path <- orderly::orderly_example("demo")

id <- orderly::orderly_run("other"”, root = path, parameters=list(nmin=0))
orderly::orderly_commit(id, root = path)
id <- orderly::orderly_run("use_dependency”, root = path)
orderly::orderly_commit(id, root = path)
id <- orderly::orderly_run("use_dependency_2", root = path)
orderly::orderly_commit(id, root = path)
orderly::orderly_graph("other”, root = path)
orderly::orderly_graph("use_dependency_2", root = path,

direction = "upstream”)

orderly_graph_out_of_date
Given a tree return a list of reports to be re-run (and the order that
they should be re-run)

Description

Given a tree return a list of reports to be re-run (and the order that they should be re-run)

Usage

orderly_graph_out_of_date(tree)

Arguments

tree A dependency tree object from orderly_graph_out_of_date

Value

a list of report names to be re-run. First report to rerun first

orderly_info 21

orderly_info Return info about a report which has been run

Description
This will return info from either successful or failed reports. It will look for the report with id in
archive first and then look in drafts if it can’t be found from archive.

Usage
orderly_info(id, name, root = NULL, locate = TRUE)

Arguments
id The report ID
name The name of the report
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
Value

Info from report run - this is subject to change. Returns a list which includes report id, name,
indication of success, run date and elapsed time, parameters, git info (if available), path to logfile
(if exists) and details of error if the run failed

Examples

path <- orderly::orderly_example("demo")
id <- orderly::orderly_run("minimal”, root = path)
orderly::orderly_info(id, "minimal”, root = path)

orderly_init Initialise an orderly store

Description

Initialise an orderly store. This is a helper function that automates getting started with using orderly
for a new project. It is not required to use - you can create the orderly structure yourself (all that is
compulsory is the orderly_config.yml file).

Usage
orderly_init(root, doc = TRUE, quiet = FALSE)

22 orderly_init
Arguments
root The root of the store; this must be an empty directory or the path of a directory
to create
doc Logical, indicating if documentation should be added to the directories. This
also has the (potentially useful) effect of making these directories noticeable by
git.
quiet Logical, indicating if informational messages should be suppressed.
Details

This function creates a minimal orderly structure, containing:

Value

orderly_config.yml: The orderly configuration. Minimally, this can be empty, but it must
exist.

src: The path where report sources live. This should be placed under version control, and
contain a number of reports, each in their own directory with an orderly.yml describing
their inputs and outputs (artefacts). The orderly_new() function can be used to accelerate
creation of new reports.

draft: A directory where reports will be run using orderly_run(). This directory should
be excluded from version control. orderly will create it as needed if it does not exist when a
report is run.

archive: A directory where successfully run reports will be moved to after being committed
with orderly_commit (). This directory should be excluded from version control. orderly
will create it as needed if it does not exist when a report is committed.

data: A directory where data extracted from the database (if used) will be stored. This direc-
tory should be excluded from version control. orderly will create it as needed if it does not
exist when a report is run.

The path to the newly created archive

See Also

orderly_new() for creating new reports within a configured orderly repository.

Examples

Initialise a new orderly repository in an temporary directory:

path

<- orderly::orderly_init(tempfile())

This has created the directory skeleton that you need to get
started using orderly:
fs::dir_tree(path)

As

instructed, the next thing to do is to edit the

orderly_config.yml file to match your needs:
readLines(file.path(path, "orderly_config.yml"))

orderly_latest 23

orderly_latest Find most recent report

Description

Find most recent version of an orderly report. The most recent report is always the most recently
run report that has been committed (regardless of the order in which they were committed).

Usage
orderly_latest(
name = NULL,
root = NULL,

locate = TRUE,
draft = FALSE,
must_work = TRUE

)
Arguments
name Name of the report to find; if NULL returns the most recent report across all
names
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and

config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

draft Should draft reports be used searched? Valid values are logical (TRUE, FALSE)
or use the string newer to use draft reports where they are newer than archive
reports. For consistency, always and never are equivalent to TRUE and FALSE,
respectively.

must_work Throw an error if no report is found. If FALSE, returns NA_character_.

Value

A character string with the id of the most recent report

See Also

orderly_list and orderly_list_archive for listing report names and versions.

Examples

path <- orderly::orderly_example("minimal")
id1 <- orderly::orderly_run("example”, root = path, echo = FALSE)
id2 <- orderly::orderly_run("example”, root = path, echo = FALSE)

24 orderly_list

With no reports committed there is no latest report:
orderly::orderly_latest("example", root = path, must_work = FALSE)

Commit the first report and it will be reported as latest:
orderly::orderly_commit(id1, root = path)
orderly::orderly_latest("example”, root = path)

Commit the second report and it will be reported as latest instead:
orderly::orderly_commit(id2, root = path)
orderly::orderly_latest("example”, root = path)

orderly_list List orderly reports

Description

List the names of reports known to orderly. These are the source names, not the results of running
reports. Note that if a report has been committed from a different branch it will not appear here, as
this is simply the set of reports in the src directory that can be run.

Usage
orderly_list(root = NULL, locate = TRUE)

Arguments
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
Value

A character vector of report names

See Also

orderly_list_archive() and orderly_list_drafts(), which list archived (committed) and
draft reports and their versions.

Examples

The orderly demo, with lots of potential reports:
path <- orderly::orderly_example("demo")

Reports that _could_ be run:
orderly::orderly_list(path)

orderly_list_drafts 25

orderly_list_drafts List draft and archived reports

Description

List draft and archived reports. This returns a data.frame with columns name (see orderly_list())
and id.

Usage
orderly_list_drafts(root = NULL, locate = TRUE, include_failed = FALSE)

orderly_list_archive(root = NULL, locate = TRUE)

Arguments
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and

config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

include_failed Logical, indicating if failed drafts should be listed (only has an effect for orderly_list_drafts
as no failed run should make it into the archive). A failed report is one that lacks
an orderly_run.rds file.

Value
A data.frame with columns name and id, containing character vectors of report names and ver-
sions, respectively.

See Also
orderly_list(), which lists the names of source reports that can be run, and orderly_latest()
which returns the id of the most recent report.

Examples

The orderly demo, with lots of potential reports:
path <- orderly::orderly_example("demo")

Reports that _could_ be run:
orderly::orderly_list(path)

Run a report twice:
id1 <- orderly::orderly_run("minimal”, root = path)
id2 <- orderly::orderly_run("minimal”, root = path)

We can see both drafts:

26 orderly_list_metadata

orderly::orderly_list_drafts(path)

Nothing is in the archive:
orderly::orderly_list_archive(path)

Commit a report:
orderly::orderly_commit(id2, root = path)

Only one draft now
orderly::orderly_list_drafts(path)

And the second report is in the archive:
orderly::orderly_list_archive(path)

orderly_list_metadata List reports with only local metadata

Description

List reports that are present only as metadata; these are the result of doing orderly_pull_archive()
with recursive = FALSE, in which case only metadata was downloaded and not the report contents
itself.

Usage
orderly_list_metadata(root = NULL, locate = FALSE, include_archive = FALSE)

Arguments
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and

config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

include_archive
Logical, indicating if we should include reports that are also included in the
archive.

Value

A data. frame() with columns name and id, as for orderly_list_archive()

Examples

path <- orderly::orderly_example("minimal")

No metadata-only reports will be present, unless you have run
orderly::orderly_pull_archive(..., recursive = FALSE)
orderly::orderly_list_metadata(path)

orderly_log_on 27

orderly_log_on Orderly logging and diagnostic messages

Description

Start and stop the orderly log. When active, some actions will print diagnostic information to the
message stream. This is set to be on by default.

Usage
orderly_log_on()
orderly_log_off()

orderly_log(topic, value)

Arguments
topic Up to 9 character text string with the log topic
value Character string with the log entry

Details

The function orderly_log is designed to be used from applications that extend orderly, while the
functions orderly_log_on and orderly_log_off can be used by applications or users to enable
and disable log messages.

The interface here may expand by adding arguments or change behaviour based on global options.
Future versions may support logging to a file, or adding timestamps, or logging in json format, etc.

Value

orderly_log_on and orderly_log_off invisibly returns a logical indicating if logging was previ-
ously enabled. This allows patterns like:

if (lorderly::orderly_log_off()) {
on.exit(orderly::orderly_log_on())
3

to disable logging within a function (the on.exit block will be run when the function exits).

See Also

orderly_run(), which makes use of these log messages

28 orderly_migrate

Examples

We are going to log things below
logging_was_enabled <- orderly::orderly_log_on()

About orderly log messages:

Orderly log messages have the form "[title] message’
orderly::orderly_log_on()
orderly::orderly_log("title"”, "message")

I

If logging is disabled they are not printed:
orderly::orderly_log_off()
orderly::orderly_log("title”, "message")

Restore to previous settings:

if (logging_was_enabled) {
orderly::orderly_log_on()

3

orderly_migrate Migrate an orderly archive

Description

Migrate an orderly archive. This is needed periodically when the orderly archive version changes.
If you get a message like orderly archive needs migrating from a.b.c => x.y.z then you

need to run this function. The archive version is at most equal to the package version.

Usage

orderly_migrate(
root = NULL,
locate = TRUE,
to = NULL,
dry_run = FALSE,
skip_failed = FALSE,
clean = FALSE

)
Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

to The version to migrate to. The default is the current archive version; this is

almost always what is wanted.

orderly_new 29

dry_run Logical, indicating if we should try running the migration but not actually ap-
plying it. This is intended primarily for developing new migrations and will
probably not work if you are multiple archive versions behind.

skip_failed Logical, where TRUE we will skip over entries that failed to be migrated. This is
expected to be useful on local archives only because it violates the append-only
nature of orderly. However, if a local archive contains unusual copies of orderly
archives that can’t be migrated this might come in helpful.

clean Logical, where TRUE (and where the migration was successful and dry_run is
FALSE) orderly will clean up all migration backup files. Use this periodically to
clean up the archive.

Details

Sometimes we add change information saved out in the orderly run. This requires patching previ-
ously run versions of the orderly metadata and that’s not something we want to do lightly. This func-
tion uses a relatively safe, and reversible, way of migrating metadata. We modify the orderly_run.rds
files, but will create versioned backups as files are changed.

Value

No return value, this function is called only for its side effects

Examples

Without an orderly repository created by a previous version of
orderly, this function does nothing interesting:

path <- orderly::orderly_example("minimal")
orderly::orderly_migrate(path)

orderly_new Create new report

Description

Create new report, starting from a template. Orderly comes with a set of templates, but projects
can bring their own templates; see Details below for how these are configured and discovered by
orderly.

Usage

orderly_new(name, root = NULL, locate = TRUE, quiet = FALSE, template = NULL)

30

Arguments

name

root

locate

quiet

template

Details

orderly_new

Name of the new report (will be a directory name).

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Logical, indicating if informational messages should be suppressed.

The name of a template. If NULL orderly will search for a template (see Details).
If given it must be the name of a directory within a directory templates in your
project root. The special label "orderly" will use orderly’s builtin template.

To create a custom template, create a directory templates within your orderly root. Within that
directory create directories containing all the files that you would like a report to contain. This must
contain a file orderly.yml but may contain further files (for example, you might want a default
script and Rmd file).

If template is not given (i.e., is NULL) then we look for a template called default (i.e., stored at
template/default), then fall back on the system orderly template.

We first look for a file orderly/template.yml within the orderly root. If that is not found, then a
copy from the orderly package is used. This can always be used by using template = "system”.

Value

The path of the new source directory, invisibly

See Also

orderly_init() for initialising a new orderly repository.

Examples

path <- orderly::orderly_example("minimal™)

Create a new report with the name "myreport” in this orderly

repository:

orderly::orderly_new("myreport”, root = path)

The directory will be initialised with a orderly.yml file
containing documentation
dir(file.path(path, "src”, "myreport”))

”

readLines(file.path(path, "src”, "myreport”, "orderly.yml"))

orderly_pull_dependencies 31

orderly_pull_dependencies
Download dependent reports

Description

Download dependent reports from an orderly remote. This can only be used if the orderly_config.yml
lists a remote. This allows for a centralised workflow where a central orderly store exists and holds
the canonical copies of reports, from which versions can be downloaded into local stores.

Usage
orderly_pull_dependencies(
name = NULL,
root = NULL,

locate = TRUE,
remote = NULL,
parameters = NULL,
recursive = TRUE

)
orderly_pull_archive(
name,
id = "latest”,
root = NULL,

locate = TRUE,
remote = NULL,
parameters = NULL,
recursive = TRUE

)
orderly_push_archive(
name,
id = "latest”,
root = NULL,

locate = TRUE,
remote = NULL

)
Arguments
name Name of the report to download dependencies for. Alternatively, the default of
NULL is useful if you have already set the working directory to be the source
directory.
root The path to an orderly root directory, or NULL (the default) to search for one from

the current working directory if locate is TRUE.

32 orderly_pull_dependencies

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path(),
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.

parameters Parameters to pass through when doing dependency resolution. If you are using
a query for id that involves a parameter (e.g., latest (parameter:x ==p)) you
will need to pass in the parameters here. Similarly, if you are pulling a report
that uses query dependencies that reference parameters you need to pass them
here (the same parameter set will be passed through to all dependencies).

recursive Logical, indicating if all dependencies of a report should also be pulled. Setting
this to FALSE only the direct reports, along with metadata for the dependencies;
this will be potentially much faster, but leaves your archive in a more fragile
state.

id The identifier (for orderly_pull_archive). The default is to use the latest
report.

Details

The orderly_pull_archive function pulls report directly (without it being a dependent report).

After setting your username up you can run orderly_pull_dependencies("reportname”) to
pull the dependencies of "reportname” down so that "reportname” can be run, or you can run
orderly_pull_archive("reportname") to pull a copy of "reportname” that has been run on the
remote server.

Pulling an archive report from a remote also pulls its dependencies (recursively), and adds all of
these to the local database. This may require migrating old orderly archives (orderly_migrate()).
Note that this migration will likely fail for remote orderly versions older than 0.6.8 because the
migration needs to read data files on disk that are not included in the downloaded archive in order
to collect all the information required for the database. In this case, ask the administrator of the
remote orderly archive to migrate their archive, and then re-pull.

Pushing an archive is possible only if the remote supports it. Currently this is supported by orderly_remote_path()
remotes, though not by orderlyweb remotes. There is no control over what will accept a push at this

point, nor any check that what you’ve pushed is "good" except that it exists in your archive. As with

pulling an archive, pushes are recursive with respect to dependencies. The configuration interface

here will likely change a little over time.

Value

No return value, these functions are called only for their side effects

See Also

orderly_remote_path(), which implements the remote interface for orderly repositories at a lo-
cal path. See also OrderlyWeb for a system for hosting orderly repositories over an HTTP API.
vignette("remote”, package = "orderly") describes the remote system in more detail.

https://github.com/vimc/orderly-web

orderly_rebuild 33

Examples

Suppose we have a "remote” orderly repository at some path.
This might be read-only for you in practice and available via a
network filesystem or a dropbox folder synced to your computer.
We'll populate this with a pair of reports:
path_remote <- orderly::orderly_example("demo")
id <- orderly::orderly_run("other”, list(nmin = @),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency”,

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

We'll create a an object to interact with this remote using
orderly_remote_path.
remote <- orderly::orderly_remote_path(path_remote)

We can use this object directly
remote$list_reports()
remote$list_versions("other")

More typically one will interact with the functions
orderly_pull_archive and orderly_pull_dependencies.

Now, suppose that you have your "local” copy of this; it shares
the same source (ordinarily these would both be under version

control with git):

path_local <- orderly::orderly_example("demo")

If we wanted to run the report "use_dependency” we need to have
a copy of the report "other”, on which it depends:
try(orderly::orderly_run("use_dependency”, root = path_local))

We can "pull” dependencies of a report before running
orderly::orderly_pull_dependencies("use_dependency”, remote = remote,
root = path_local)

Now we can run the report because we have a local copy of the
dependency:
orderly::orderly_run("use_dependency”, root = path_local)

We can also directly pull previously run reports:

orderly::orderly_pull_archive("use_dependency”, id, remote = remote,
root = path_local)

orderly::orderly_list_archive(root = path_local)

orderly_rebuild Rebuild the report database

34 orderly_rebuild

Description

Rebuild the report database. This is necessary when the orderly database schema changes, and you
will be prompted to run this function after upgrading orderly in that case.

Usage

orderly_rebuild(
root = NULL,
locate = TRUE,
verbose = TRUE,
if_schema_changed = FALSE

)
Arguments

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

verbose Logical, indicating if information about the rebuild should be printed as it runs

if_schema_changed
Logical, indicating if the rebuild should take place only if the schema has changed.
This is designed to be safe to use in (say) deployment scripts because it will be
fast enough to call regularly.

Details

The report database (orderly’s "destination" database) is essentially an index over all the metadata
associated with reports. It is used by orderly itself, and can be used by applications that extend
orderly (e.g., OrderlyWeb. All the data in this database can be rebuilt from files stored with the
committed (archive) orderly reports, using the orderly_rebuild function.

Value

No return value, this function is called only for its side effects

Examples

path <- orderly::orderly_example("minimal")
id <- orderly::orderly_run("example”, root = path)
orderly::orderly_commit(id, root = path)

con <- orderly::orderly_db("destination”, root = path)
DBI: :dbReadTable(con, "report_version")
DBI::dbDisconnect(con)

The database can be removed and will be rebuilt if requested
(this is only a good idea if you do not extend the database with

https://github.com/vimc/orderly-web

orderly_remote 35

your own fields - only the fields that orderly looks after can
be recovered!)

file.remove(file.path(path, "orderly.sqlite"))
orderly::orderly_rebuild(path)

file.exists(file.path(path, "orderly.sqlite"))

con <- orderly::orderly_db("destination”, root = path)

DBI: :dbReadTable(con, "report_version")

DBI::dbDisconnect(con)

It is safe to rebuild a database repeatedly, though this can be
slow with larger databases.
orderly::orderly_rebuild(path)

orderly_remote Get a remote

Description
Get a remote, based on the configuration in orderly_config.yml - different remote drivers have
different methods, and this function gives you access to these lower-level objects.

Usage
orderly_remote(remote = NULL, root = NULL, locate = TRUE)

Arguments
remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path(),
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
Value

The orderly remote, as described in orderly_config.yml - if no remotes are configured, or if the
requested remote does not exist, an error will be thrown.

See Also

orderly_pull_dependencies() which provides a higher-level interface to pulling from a remote
(including adding the downloaded archive into your orderly repository), and see the documentation
underlying the orderly remote driver that your orderly_config.yml declares for information about
using that remote.

36 orderly_remote_path

Examples

We need two orderly repositories here - one as a "local” and one as
a "remote” (see ?orderly_pull_archive)

path_remote <- orderly::orderly_example("demo")

path_local <- orderly::orderly_example("demo")

Configure our remote:
path_config <- file.path(path_local, "orderly_config.yml")
txt <- readlLines(path_config)
writeLines(c(

txt,

"remote:",

" default:”,

" driver: orderly::orderly_remote_path”,
args:",
paste(” path:", path_remote)),
path_config)

n

Get our remote:
remote <- orderly::orderly_remote(root = path_local)

Can use the remote's methods to interact directly - actual methods
depend on the remote driver being used.
remote$list_reports()

orderly_remote_path Orderly remote at a different path

Description

Create a "handle" for interacting with orderly repositories that are hosted at a different path. This
might be useful in cases where you have access to an orderly repository via a network mount or a
synchronised folder (e.g., Dropbox, Box, etc). More generally, orderly_remote_path implements
an interface used by orderly to abstract over different ways that orderly repositories might be hosted
remotely, including over HTTP APIs.

Usage

orderly_remote_path(path, name = NULL)

Arguments
path Path to the orderly store
name Name of the remote
Value

Anorderly_remote_path object, with methods that orderly will use in order to control this remote

orderly_remote_path 37

See Also

orderly_pull_dependencies() and orderly_pull_archive(), which are the primary ways these
remote objects are used. See also OrderlyWeb for a system for hosting orderly repositories over an
HTTP APL

Examples

Suppose we have a "remote” orderly repository at some path.
This might be read-only for you in practice and available via a
network filesystem or a dropbox folder synced to your computer.
We'll populate this with a pair of reports:
path_remote <- orderly::orderly_example(”"demo")
id <- orderly::orderly_run("other”, list(nmin = @),

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)
id <- orderly::orderly_run("use_dependency”,

root = path_remote, echo = FALSE)
orderly::orderly_commit(id, root = path_remote)

We'll create a an object to interact with this remote using
orderly_remote_path.
remote <- orderly::orderly_remote_path(path_remote)

We can use this object directly
remote$list_reports()
remote$list_versions("other”)

More typically one will interact with the functions
orderly_pull_archive and orderly_pull_dependencies.

Now, suppose that you have your "local” copy of this; it shares
the same source (ordinarily these would both be under version

control with git):

path_local <- orderly::orderly_example("demo")

If we wanted to run the report "use_dependency” we need to have
a copy of the report "other”, on which it depends:
try(orderly: :orderly_run("use_dependency”, root = path_local))

We can "pull” dependencies of a report before running
orderly::orderly_pull_dependencies("use_dependency”, remote = remote,
root = path_local)

Now we can run the report because we have a local copy of the
dependency:
orderly::orderly_run("use_dependency”, root = path_local)

We can also directly pull previously run reports:

orderly::orderly_pull_archive("use_dependency”, id, remote = remote,
root = path_local)

orderly::orderly_list_archive(root = path_local)

https://github.com/vimc/orderly-web

38 orderly_run

orderly_remote_status Get status of remote queue.

Description

Get the status of the remote queue as a list.

Usage

orderly_remote_status(root = NULL, locate = TRUE, remote = NULL)

Arguments
root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.
locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.
remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path(),
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.
Value

List containing details of running and queued reports on the remote queue. Including report name,
status and version (where known)

orderly_run Run a report

Description

Run a report. This will create a new directory in drafts/<reportname>, copy your declared re-
sources there, extract data from databases (if you are using them), run your script and check that all
expected artefacts were created. Once successfully run you can use orderly_commit() to move it
to the archive directory.

orderly_run

orderly_run(

name = NULL,
parameters = NULL,
envir = NULL,

root = NULL,
locate = TRUE,
echo = TRUE,

message = NULL,
instance = NULL,
use_draft = FALSE,

39

remote =
tags = NULL

Arguments

name

parameters

envir

root

locate

echo

message

instance

use_draft

remote

NULL,

Name of the report to run (see orderly_list()). A leading src/ will be re-
moved if provided, allowing easier use of autocomplete. Alternatively, the de-
fault of NULL is useful if you have already set the working directory to be the
source directory.

Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

Print the result of running the R code to the console

An optional character string containing a message explaining why the report was
run

Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. If given, then this name must be present in all databases where instances
are listed in orderly_config.yml, and will be ignored by all database where
instances are not given. See the "orderly" vignette for further information.

Should draft reports be used for dependencies? This should be used only in
development. Valid values are logical (TRUE, FALSE) or use the string newer to
use draft reports where they are newer than archive reports. For consistency,
always and never are equivalent to TRUE and FALSE, respectively.

Remote to use to resolve dependencies. Use this in order to run a report with the
same dependencies as are available on a remote server, particularly when using

40

orderly_run

id = "latest". Note that this is not the same as running orderly_pull_dependencies(),

then orderly_run with remote = NULL, as the pull/run approach will use the lat-
estreport in your archive but the remote = "remote” approach will use the latest
approach in the remote archive (which might be less recent).

tags Character vector of tags to add to the report. Tags are immutable and can-
not be removed once the report is run. Tags added here will be in addition
to any tags listed in the tags: field in orderly.yml and must be present in
orderly_config.yml.

Details

Parameters are passed to the report as a named list, for example
id <- orderly::orderly_run("other”, list(nmin = 0.2), root = path)

(see the examples). The names of the parameters (here, nmin) must correspond to declared parame-
ters in the orderly.yml. It is an error if parameters without a default are omitted, and it is an error
if unknown parameters are provided.

Environment variables that are created in orderly_envir.yml will be available while the report
runs. Those that begin with ORDERLY_ will be saved into the orderly_run.rds within the $env
section (except for any that match the patterns "TOKEN", "PAT" or "PASS").

Value

The id of the newly created report

See Also

orderly_log() for controlling display of log messages (not just R output)

Examples

path <- orderly::orderly_example("demo")

To run most reports, provide the report name (and the path if
not running in the working directory, as is the case here):
id <- orderly::orderly_run("minimal”, root = path)

Every report gets a unique identifier, based on the time (it is
ISO 8601 time with random hex appended to end)
id

After being run, a report is a "draft” and will exist in the
drafts directory:
orderly::orderly_list_drafts(root = path)

Draft reports are always stored in the path
<root>/draft/<name>/<id>, so we have
dir(file.path(path, "draft”, "minimal”, id))

orderly_run_info 41

which contains the files when the report was run.

If a report has parameters, then these must be passed in as a
named list.
id <- orderly::orderly_run("other”, list(nmin = @.2), root = path)

These parameters can be used in SQL queries or in the report
code.

orderly_run_info Information on current orderly run

Description

This function allows inspection of some of orderly’s metadata during an orderly run. The format
returned is internal to orderly and subject to change. It is designed to be used within report code.
To use in conjunction with orderly_test_start(), you must pass in the path to the report in
question.

Usage

orderly_run_info(path = NULL)

Arguments
path Path to the report currently being run. This should be left as NULL when run-
ning a report, and the path to the report being run should be used when using
orderly_test_start()
Value

A list of metadata about the current report

Warning

It is important that this data is treated as readonly!

Examples

path <- orderly::orderly_example("demo")

This example uses orderly_run_info within its script, saving the
output to "output.rds”
readLines(file.path(path, "src”", "use_dependency”, "script.R"))

Run the dependency:
id <- orderly::orderly_run("other”, list(nmin = @), root = path)
orderly::orderly_commit(id, root = path)

42 orderly_run_remote

Then the report
id <- orderly::orderly_run("use_dependency”, root = path)

This is the contents:
readRDS(file.path(path, "draft”, "use_dependency”, id, "info.rds"))

orderly_run_remote Run a report on a remote server

Description

Run a report on a remote server. Note that this is only supported for remotes using OrderlyWeb at

present.
Usage

orderly_run_remote(
name,
parameters = NULL,
ref = NULL,
timeout = NULL,
wait = 3600,
poll =1,
open = TRUE,

stop_on_error = TRUE,
stop_on_timeout = TRUE,
progress = TRUE,

root = NULL,

locate = TRUE,

instance = NULL,

remote = NULL

)
Arguments

name Name of the report

parameters Parameters for the report

ref Optional reference, indicating which branch should be used. This cannot be
used if the remote has master_only set.

timeout Time to tell the server to wait before killing the report.

wait Time to wait for the report to be run; if the report takes longer than this time to
run but timeout is longer it will remain running on the server but we will stop
waiting for it and instead throw an error.

poll Period to poll the server for results (in seconds)

open Logical, indicating if the report should be opened in a browser on completion (if

supported by the remote)

orderly_search 43

stop_on_error Logical, indicating if we should throw an error if the report fails. If you set this
to FALSE it will be much easier to debug, but more annoying in scripts. If the
report times out on the server (i.e., takes longer than timeout) that counts as an
error.

stop_on_timeout
Logical, indicating if we should throw an error if the report takes longer than
wait seconds to complete.

progress Logical, indicating if a progress spinner should be included.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

instance Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. Will use default if NULL.

remote Description of the location. Typically this is a character string indicating a re-
mote specified in the remotes block of your orderly_config.yml. It is also
possible to pass in a directly created remote object (e.g., using orderly_remote_path(),
or one provided by another package). If left NULL, then the default remote for
this orderly repository is used - by default that is the first listed remote.

Value

No return value, this function is called only for its side effects

Examples

path_remote <- orderly::orderly_example(”demo")
path_local <- orderly::orderly_example("demo")
remote <- orderly::orderly_remote_path(path_remote)
Currently, path remotes don't support run
try(orderly: :orderly_run_remote(

"minimal”, remote = remote, root = path_local))

orderly_search Search for orderly reports matching criteria

Description

Search for orderly reports matching criteria. This can be used to find reports where a particular
parameter or tag was used (it will likely be expanded as time goes on - let us know if that would be
useful). We search within versions of a single report only.

44

Usage

orderly_search(

query,
name,

orderly_search

parameters = NULL,
draft = FALSE,

root = NULL,
TRUE,

locate =
remote =

Arguments

query
name

parameters

draft

root

locate

remote

Details

The query string - see details and examples
Name of the report to search. Only a single report can be searched at once.

Named list of parameters (as would be passed to orderly_run()) if your query
uses parameters on the right-hand-side of an expression.

Should draft reports be used searched? This should be used only in development.
Valid values are logical (TRUE, FALSE) or use the string newer to use draft reports
where they are newer than archive reports. For consistency, always and never
are equivalent to TRUE and FALSE, respectively.

The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

A remote to use, if you want to apply the query remotely. If this is used then
draft cannot be set to TRUE as remotes do not expose draft reports.

The query syntax is deliberately very simple; it may expand a bit later. At this point you can search
for parameters and for tags, and these can be combined. Note that if you are using OrderlyWeb,
then only orderly (and not OrderlyWeb) tags are searched.

The idea here is that the queries can be used to find ids that match certain criteria for use as depen-
dencies. This function lets you work out what would be resolved by the query, and using this query
string in a depends: section will let you select a report that matches some criteria. For example,
suppose that you have report A that takes a parameter "fruit" with values like "apple"”, "banana", and
a report B that depends on A. You could then write:

depends:
A:

id: latest(parameter:fruit == "apple")

uses:

summary.csv: summary.csv

orderly_search 45

To get the summary.csv file out of the latest report A that was run with the "fruit" parameter set to
"apple". If "B" itself takes parameters, you can use those parameters in these query expressions like

depends:
A:
id: latest(parameter:fruit == target_fruit)
uses:
summary.csv: summary.csv

(assuming that B takes a parameter target_fruit).
The syntax for tags is simpler, one uses tag: tagname to test for presence of a tag called "tagname".

Search queries can be joined by && and | | and grouped using parentheses, these groups (or tags)
can be negated with !, so a complicated query expression might look like:

(parameter:fruit == "apple” && !tag:weekly) || parameter:fruit == "banana”

Be careful of comparing floating point numbers with == or != as they may not always return what
you expect (for example sqrt(3)*2 == 3 is FALSE).

In the documentation and error messages we may refer to the left-hand-side of : as a "namespace".
At this point the only supported namespaces are tag and parameter.
Value

A character vector of matching report ids, possibly zero-length. If the query is a "latest" query, then
exactly one report id, possibly NA.

Examples
We need a few reports here to actually query. There is a report in
the "demo” example called "other"” that takes a parameter "nmin”,
which is used to filter data - it's not terribly important what it
does here, but it can give us a set of reports to use.

The demo set also includes configuration for two tags, called
"dataset” and "plot"” - the "dataset” tag will always be applied
as it is listed in the orderly.yml but we can still add the
"plot” tag interactively

root <- orderly::orderly_example("demo")

ETE T

A helper function to mass-produce reports will reduce noise a bit
runl <- function(nmin, tags = NULL) {
id <- orderly_run("other"”, root = root, echo = FALSE,
parameters = list(nmin = nmin), tags = tags)
orderly_commit(id, root = root)
id
3

ids <- c(run1(@.1), run1(0.2, "plot"”), runi(0.3))

We can then ask for all reports where the parameter nmin was more

46 orderly_test_start

than some value
orderly::orderly_search("parameter:nmin > @.15", "other”, root = root)

Or use "&&" to find tags within a range
orderly::orderly_search(”parameter:nmin > 0.1 && parameter:nmin < 0.3",
"other”, root = root)

If a parameter is not present in some versions of a report you

can use is.null to test for it (this is only ever the case if

you have altered a report definition to add or remove a

parameter)

orderly::orderly_search("is.null(parameter:nmin)"”, "other”, root = root)

We can look for tags
orderly::orderly_search("tag:plot”, "other”, root = root)

or exclude them
orderly::orderly_search(”!tag:plot”, "other"”, root = root)

or combine that with the presence/absence of a tag
orderly::orderly_search(”"parameter:nmin > 0.15 && !tag:plot”,
"other"”, root = root)

Use latest() over a query to find the latest report matching the
query expression.
orderly::orderly_search("latest(parameter:nmin > 0.15)",

"other”, root = root)

If no reports are found, then a zero-length character vector is returned
orderly::orderly_search("parameter:nmin > 0.4", "other”, root = root)

Or, in the case of latest(), NA
orderly::orderly_search(”latest(parameter:nmin > 0.4)",
"other"”, root = root)

orderly_test_start Prepare a directory for orderly to use

Description

For interactive testing of orderly code. This runs through and sets everything up as orderly would
(creates a new working directory and copies files into it, pulls data from the database, copies over
any dependent reports) but then rather than running the report hands back to the user.

Usage

orderly_test_start(
name,
parameters = NULL,
envir = parent.frame(),

orderly_test_start 47

root = NULL,
locate = TRUE,
instance = NULL,
use_draft = FALSE,
remote = NULL

orderly_test_check(path = NULL)

Arguments

name Name of the report to run (see orderly_list()). A leading src/ will be re-
moved if provided, allowing easier use of autocomplete.

parameters Parameters passed to the report. A named list of parameters declared in the
orderly.yml. Each parameter must be a scalar character, numeric, integer or
logical.

envir The parent of the environment that will be used to evaluate the report script;
by default a new environment will be made with the global environment as the
parent.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

instance Select instance of the source database to be used, where multiple instances are
configured. Use a single unnamed character string to indicate an instance to
match. If given, then this name must be present in all databases where instances
are listed in orderly_config.yml, and will be ignored by all database where
instances are not given. See the "orderly" vignette for further information.

use_draft Should draft reports be used for dependencies? This should be used only in
development. Valid values are logical (TRUE, FALSE) or use the string newer to
use draft reports where they are newer than archive reports. For consistency,
always and never are equivalent to TRUE and FALSE, respectively.

remote Remote to use to resolve dependencies. Use this in order to run a report with the
same dependencies as are available on a remote server, particularly when using
id = "latest”. Note that this is not the same as running orderly_pull_dependencies(),
then orderly_run with remote = NULL, as the pull/run approach will use the lat-
estreport in your archive but the remote = "remote” approach will use the latest
approach in the remote archive (which might be less recent).

path Path to the report that is currently being run

Details

Previous versions of orderly changed into the created directory when using orderly: :orderly_test_start,
which allowed interactive testing of a report, including ensuring that it has created all expected
outputs. However, CRAN rules do not allow changing the working directory, which significantly

48

orderly_use_resource

reduces the usefulness of this function - as such we may remove it entirely in a future version of
orderly if it does not prove useful in this more limited form.

The new suggested workflow is:

1. run orderly_test_start(...) to prepare a report directory

2. manually change into that directory following the printed instructions

3. use orderly_test_check to check that your report has created the expected artefacts
4.

manually change back to your original directory

Value

The path to the report directory

Examples

path <- orderly::orderly_example("minimal")
p <- orderly::orderly_test_start("example"”, root = path)

The data in the orderly example is now available to use
dat

Check to see which artefacts have been created so far:
orderly::orderly_test_check(p)

Manually the code that this report has in its script
png(file.path(p, "mygraph.png"))
barplot(setNames(dat$number, dat$name), las = 2)
dev.off()

We now confirm that the artefact has been created:
orderly::orderly_test_check(p)

orderly_use_resource Add a resource to orderly.yml

Description

Add one or more resources to an orderly.yml file.

Usage

orderly_use_resource(
resources,
name = NULL,
root = NULL,
locate = TRUE,
show = TRUE,

orderly_use_resource 49

edit = TRUE,
prompt = TRUE

)

orderly_use_source(
sources,
name = NULL,
root = NULL,
locate = TRUE,
show = TRUE,
edit = TRUE,
prompt = TRUE

)

orderly_use_package(
packages,
name = NULL,
root = NULL,
locate = TRUE,
show = TRUE,
edit = TRUE,
prompt = TRUE

)

orderly_use_gitignore(
root = NULL,
locate = TRUE,
show = TRUE,
edit = TRUE,
prompt = TRUE

)

Arguments

resources, sources
Character vector of resources or sources to add. These must be filenames rel-
ative to the report directory, must exist, and must not already be present in the
orderly.yml

name Name of the report to modify. Like orderly_develop_start() this can be
NULL if you have already set the working directory to be the source directory.

root The path to an orderly root directory, or NULL (the default) to search for one from
the current working directory if locate is TRUE.

locate Logical, indicating if the configuration should be searched for. If TRUE and
config is not given, then orderly looks in the working directory and up through
its parents until it finds an orderly_config.yml file.

show Logical, indicating if we should print the proposed changes to screen

edit Logical, indicating if we should actually edit the orderly.yml file.

50

prompt

packages

Details

orderly_use_resource

Logical, indicating if we should prompt before editing the orderly.yml file. Only
has an effect if edit is TRUE.

Character vector of package names to add. These must not already exist in the
orderly.yml

The orderly_use_gitignore configures a basic . gitignore file at the root of your orderly project
that will prevent files from being added to git. This is only really useful if you are using (or will
use) git, but it is harmless at worst.

Value

Invisibly, this function returns information about the file it would edit. This information is primarily
for debugging purposes and the format is subject to change.

Examples

path <- orderly::orderly_example("minimal")

Suppose we wanted to use the mtcars data within our report.
First, the file must exist:

write.csv(mtcars, file.path(path, "src", "example”, "mtcars.csv"),
row.names = FALSE)

Preview expected changes

orderly::orderly_use_resource("mtcars.csv”, "example”, path, edit = FALSE)

Modify the orderly.yml file within src/example:
orderly::orderly_use_resource("mtcars.csv”, "example", path, prompt = FALSE)

The result is a file that now has a 'resources' section
containing our new file

writeLines(readLines(file.path(path,

n n

src”, "example”, "orderly.yml"”)))

(of course, we'd still need to modify the script to use it).

Index

data.frame(), 26

orderly_batch, 3
orderly_bundle_import
(orderly_bundle_pack), 3
orderly_bundle_import_remote
(orderly_bundle_pack_remote), 6
orderly_bundle_list
(orderly_bundle_pack), 3
orderly_bundle_pack, 3
orderly_bundle_pack(), 6
orderly_bundle_pack_remote, 6
orderly_bundle_run
(orderly_bundle_pack), 3
orderly_bundle_run(), 7
orderly_cleanup, 7
orderly_commit, 8, 20
orderly_commit(), 7, 22, 38
orderly_config, 9
orderly_config_(orderly_config), 9
orderly_db, 11, 20
orderly_deduplicate, 12
orderly_default_remote_get
(orderly_default_remote_set),
14
orderly_default_remote_set, 14
orderly_develop_clean
(orderly_develop_start), 15
orderly_develop_start, 15
orderly_develop_start(), 49
orderly_develop_status
(orderly_develop_start), 15
orderly_example, 17
orderly_graph, 18
orderly_graph_out_of_date, 20
orderly_info, 21
orderly_init, 21
orderly_init(), 30
orderly_latest, 23
orderly_latest(), 25

51

orderly_list, 23,24
orderly_list(), 3, 4,6, 15,25, 39,47
orderly_list_archive, 23
orderly_list_archive
(orderly_list_drafts), 25
orderly_list_archive(), 24, 26
orderly_list_drafts, 25
orderly_list_drafts(), 24
orderly_list_metadata, 26
orderly_log (orderly_log_on), 27
orderly_log(), 40
orderly_log_off (orderly_log_on), 27
orderly_log_on, 27
orderly_migrate, 28
orderly_migrate(), 32
orderly_new, 29
orderly_new(), 22
orderly_pull_archive
(orderly_pull_dependencies), 31
orderly_pull_archive(), 26, 37
orderly_pull_dependencies, 31
orderly_pull_dependencies(), 5, 16, 35,
37,40, 47
orderly_push_archive
(orderly_pull_dependencies), 31
orderly_rebuild, 33
orderly_remote, 35
orderly_remote_path, 36
orderly_remote_path(), 7, 32, 35, 38, 43
orderly_remote_status, 38
orderly_run, 38
orderly_run(), 3, 16, 22, 27,44
orderly_run_info, 41
orderly_run_remote, 42
orderly_search, 43
orderly_test_check
(orderly_test_start), 46
orderly_test_start, 46
orderly_test_start(), 8, 41

52

orderly_use_gitignore
(orderly_use_resource), 48
orderly_use_package
(orderly_use_resource), 48
orderly_use_resource, 48
orderly_use_source
(orderly_use_resource), 48

INDEX

	orderly_batch
	orderly_bundle_pack
	orderly_bundle_pack_remote
	orderly_cleanup
	orderly_commit
	orderly_config
	orderly_db
	orderly_deduplicate
	orderly_default_remote_set
	orderly_develop_start
	orderly_example
	orderly_graph
	orderly_graph_out_of_date
	orderly_info
	orderly_init
	orderly_latest
	orderly_list
	orderly_list_drafts
	orderly_list_metadata
	orderly_log_on
	orderly_migrate
	orderly_new
	orderly_pull_dependencies
	orderly_rebuild
	orderly_remote
	orderly_remote_path
	orderly_remote_status
	orderly_run
	orderly_run_info
	orderly_run_remote
	orderly_search
	orderly_test_start
	orderly_use_resource
	Index

