Package ‘opticut’

July 14, 2025

Type Package

Title Likelihood Based Optimal Partitioning and Indicator Species
Analysis

Version 0.1-4
Date 2025-07-12
Maintainer Peter Solymos <psolymos@gmail.com>

Description Likelihood based optimal partitioning and indicator
species analysis. Finding the best binary partition for each species
based on model selection, with the possibility to take into account
modifying/confounding variables as described
in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>.
The package implements binary and multi-level response models,
various measures of uncertainty, Lorenz-curve based thresholding,
with native support for parallel computations.

URL https://github.com/psolymos/opticut

BugReports https://github.com/psolymos/opticut/issues
Depends R (>=3.1.0), pbapply (>= 1.3-0)

Imports MASS, pscl, betareg, ResourceSelection (>= 0.3-2), parallel,
mefad

License GPL-2
LazyLoad yes
LazyData true
NeedsCompilation no

Author Peter Solymos [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7337-1740>),
Ermias T. Azeria [ctb] (ORCID: <https://orcid.org/0000-0002-5269-795X>)

Repository CRAN
Date/Publication 2025-07-13 22:50:02 UTC

https://doi.org/10.1556/ComEc.15.2014.2.6
https://github.com/psolymos/opticut
https://github.com/psolymos/opticut/issues
https://orcid.org/0000-0001-7337-1740
https://orcid.org/0000-0002-5269-795X

2 opticut-package

Contents
opticut-package e e e e e e 2
allComb e e 4
bestmodel e 5
beta2i 6
birdrec 7
dolina e 9
lorenz e e e e e e e 10
multicut e e e e e e e 13
OCCOIOTS . . v v o e e e e e e e e e e e e e 19
OCOPLIONS .+« v v v v v e e e e e e e e e e e 21
OPLICUL . .« v v e e e e e e e e e 23
optilevels 31
rankComb e 35
UNCEITAINLY . . . o v o ot v it e e e e e e e e e e e e e e 36
warblers L 42

Index 44

opticut-package Likelihood Based Optimal Partitioning and Indicator Species Analysis
Description

Likelihood based optimal partitioning and indicator species analysis. Finding the best binary par-
tition for each species based on model selection, with the possibility to take into account modify-
ing/confounding variables as described in Kemencei et al. (2014) <doi:10.1556/ComEc.15.2014.2.6>.
The package implements binary and multi-level response models, various measures of uncertainty,
Lorenz-curve based thresholding, with native support for parallel computations.

Details
The DESCRIPTION file:
Package: opticut
Type: Package
Title: Likelihood Based Optimal Partitioning and Indicator Species Analysis
Version: 0.1-4
Date: 2025-07-12

Authors@R: c(person(given = "Peter", family = "Solymos", comment = c(ORCID = "0000-0001-7337-1740"), role = c("aut
Maintainer: ~ Peter Solymos <psolymos @ gmail.com>

Description: Likelihood based optimal partitioning and indicator species analysis. Finding the best binary partition for each
URL: https://github.com/psolymos/opticut

BugReports: https://github.com/psolymos/opticut/issues

Depends: R (>=3.1.0), pbapply (>=1.3-0)

Imports: MASS, pscl, betareg, ResourceSelection (>= 0.3-2), parallel, mefa4

License: GPL-2

opticut-package 3

LazyLoad: yes

LazyData: true

Author: Peter Solymos [aut, cre] (<https://orcid.org/0000-0001-7337-1740>), Ermias T. Azeria [ctb] (<https://orcid.org
Index of help topics:
allComb Finding All Possible Binary Partitions
bestmodel Best model, Partition, and MLE
beta2i Scaling for the Indicator Potential
birdrec Bird Species Detections
dolina Land Snail Data Set
lorenz Lorenz Curve Based Thresholds and Partitions
multicut Multi-level Response Model
occolors Color Palettes for the opticut Package
ocoptions Options for the opticut Package
opticut Optimal Binary Response Model
opticut-package Likelihood Based Optimal Partitioning and

Indicator Species Analysis

optilevels Optimal Number of Factor Levels
rankComb Ranking Based Binary Partitions
uncertainty Quantifying Uncertainty for Fitted Objects
warblers Warblers Data Set

The main user interface are the opticut and multicut functions to find the optimal binary or multi-
level response models. Make sure to evaluate uncertainty. optilevels finds the optimal number
of factor levels.

Author(s)

Peter Solymos [aut, cre] (<https://orcid.org/0000-0001-7337-1740>), Ermias T. Azeria [ctb] (<https://orcid.org/0000-
0002-5269-795X>)

Maintainer: Peter Solymos <psolymos @ gmail.com>

References

Kemencei, Z., Farkas, R., Pall-Gergely, B., Vilisics, F., Nagy, A., Hornung, E. & Solymos, P.,
2014. Microhabitat associations of land snails in forested dolinas: implications for coarse filter
conservation. Community Ecology 15:180-186. <doi:10.1556/ComEc.15.2014.2.6>

Examples

community data

y <= cbind(
Sp1=c(4,6,3,5, 5,6,3,4, 4,1,3,2),
Sp2=c(0,0,0,0, 1,0,0,1, 4,2,3,4),
Sp3=c(9,0,3,0, 2,3,0,5, 5,6,3,4))

stratification

4 allComb

g <= c(1,1,1,1, 2,2,2,2, 3,3,3,3)

find optimal partitions for each species
oc <- opticut(formula =y ~ 1, strata = g, dist = "poisson”)
summary (oc)

visualize the results
plot(oc, cut = -Inf)

quantify uncertainty
uc <- uncertainty(oc, type = "asymp”, B = 999)
summary (uc)

go beyond binary partitions

mc <- multicut(formula =y ~ 1, strata = g, dist = "poisson”)
summary (mc)

ol <- optilevels(y[,"Sp2"], as.factor(g))
ol[c("delta”, "coef”, "rank", "levels")]

allComb Finding All Possible Binary Partitions

Description

These functions are used to find all possible binary partitions. Finding all combinations require a
classification vector with K > 1 strata.

Usage
allComb(x, collapse)
kComb (k)
checkComb (x)
Arguments
X a vector for al1Comb (can be of any type but treated as factor, must have at least
2 unique values); and a numeric matrix for checkComb.
collapse character, what to paste between levels. Defaults to getOption("ocoptions”)$collapse.
k numeric, number of levels (strata) in a given classification (K > 1).
Value

kComb returns a contrast matrix corresponding to all possible binary partitions of the factor with K
levels. Complements are not counted twice, i.e. (0,0,1,1) is equivalent to (1,1,0,0). The number of
such possible combinations is M =2~K - 1) - 1.

bestmodel 5

allComb takes a classification vector with at least 2 levels and returns a model matrix with binary
partitions.

checkComb checks if combinations are unique and non-complementary (misfits are returned as at-
tributes). Returns a logical value.

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

opticut for the user interface.

rankComb and lorenz for alternative partitioning algorithms.

Examples
kComb(k = 2)
kComb(k = 3)
kComb(k = 4)

finding all combinations

(f <- rep(LETTERS[1:4], each=2))

(mc <- allComb(f, collapse = "_"))

checking for complementary entries

checkComb(mc) # TRUE

adding complementary entries to the matrix

mc2 <- cbind(z = 1 - mc[,1]1, mc[,c(1:ncol(mec), 1))
colnames(mc2) <- 1:ncol(mc2)

mc2

checkComb(mc2) # FALSE

bestmodel Best model, Partition, and MLE

Description

Generic functions for accessing best model, best partition, and Maximum Likelihood Estimate from
fitted objects.

Usage

bestmodel (object, ...)
bestpart(object, ...)
getMLE (object, ...)

Arguments

object fitted model object.

other arguments passed to the underlying functions.

6 beta2i

Value

bestmodel returns the best supported model for further manipulation (e.g. prediction).
bestpart returns a matrix with the best supported partitions for each species (species as columns).

getMLE returns a named list corresponding to the best supported model. The list has the follow-
ing elements: coef is the Maximum Likelihood Estimate (MLE), vcov is the variance-covariance
matrix for the MLE, dist is the distribution inherited from input object.

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

opticut, multicut, uncertainty.

beta2i Scaling for the Indicator Potential

Description

Transformation of estimated contrasts to indicator potential.

Usage

beta2i(x, scale = 1)

Arguments
X numeric, real valued coefficients.
scale numeric, scaling constant.

Value

Returns a numeric vector (I = abs(tanh(x * scale))).

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

opticut and multicut use the scaled I values as indicator potential.

ocoptions for setting value for the default scaling factor.

birdrec 7

Examples

x <- seq(-5, 5, 0.1)
Col <- occolors(c("red”, "blue"))(10)
plot(x, beta2i(x), type = "n")
s <- seq(1, 0.1, -0.1)
for (i in 1:10) {
lines(x, beta2i(x, scale = s[i]), col = Col[il)
text(1.5 - 0.2, beta2i(1.5, scale = s[i]), s[il], col = Col[i])

birdrec Bird Species Detections

Description

Data set listing 156 species (mostly birds, few amphibians and mammals) detected at 127 sites
(367 point locations) in Alberta, Canada in 2015, using autonomous recording technology (ARU;
Wildlife Acoustic Song Meter) for sound recordings.

Usage

data("birdrec")

Format

A list with 3 elements with matching ordering: xtab is a sample x species matrix with number of
detections, samp is a data frame with sample level attributes. taxa is a data frame with species level
attributes.

Multiple random recordings at each location were selected according to a stratified random design
(based on combination of TOY and TOD). These recordings were listened to by trained analysts and
species were identified based on auditory cues.

This data set lists detections from the first 1-minute segment of each recording. Dates for the 3967
1-minute segments range between 2015-03-31 and 2015-07-29. Variables in birdrec$samp are the
following:

PKEY: primary key for location/time combinations.

POINT: unique spatial location IDs, each point had its own ARU unit.
SITE: site ID (1-4 ARU units deployed per site).

YEAR: year, 2015.

MONTH: month from 3 (March) to 7 (July).

MDAY: day of month, 1-31.

HOUR: 24-hour of day, values between 0-12.

MINUTE: minute, 0-59.

YDAY: ordinal day of the year, 89-209.

8 birdrec

RAIN, WIND, INDUSTRY, NOISE: level of rain, wind, industrial noise, and background noise. 0 = no;
1 =light; 2 = moderate; 3 = heavy.

MICROPHONE: Every recording contains a certain level of background static due to the pre-amplifiers;
however, problems, such as, electrostatic discharge on the microphones, faulty wiring, poorly in-
stalled microphones and/or missing microphones can occur causing excess static or dead channels.
0 = no microphone related issues; 1 = left microphone cuts out intermittently; 2 = right microphone
cuts out intermittently; 3 = both microphones cut out intermittently; 4 = left channel failed; 5 =
right channel failed; 6 = both channels failed (no cases in the data set); 7 = left side extra static; 8 =
right side extra static; 9 = both sides extra static; 10 = other issues; 11 = unbalanced channels.

TOY: time of year intervals used for stratified random selection of dates. 8 intervals divided into 3
major units (early, mid, and late breeding season; YDAY 140 and 180 were used as threshold between
the major units).

TOD: time of day, midnight (HOUR = 0) or morning (HOUR > 0).

Variables in birdrec$taxa are the following: Species, CommonName, ScientificName, Family,
Order, Class, and MigratoryBehaviour.

Methodology and metadata is described in ABMI (2016), and Lankau et al. (2015).

Source

Alberta Biodiversity Monitoring Institute (ABMI, www.abmi.ca)

References

Alberta Biodiversity Monitoring Institute (ABMI), 2016. Terrestrial field data collection proto-
cols (abridged version) 2016-05-18. Alberta Biodiversity Monitoring Institute; Edmonton, Alberta,
Canada.

Lankau, H.E., MacPhail, A., Knaggs, M. & Bayne, E., 2015. Acoustic recording analysis protocol.
Bioacoustic Unit, University of Alberta, and Alberta Biodiversity Monitoring Institute; Edmonton,
Alberta, Canada.

Examples

data(birdrec)
str(birdrec)

aggregate(rowSums(birdrec$xtab),
1list(TOY=birdrec$samp$TOY, TOD=birdrec$samp$TOD), mean)
boxplot(rowSums(birdrec$xtab) ~ TOD + TOY, birdrec$samp,
col=c("gold"”, "tomato"), ylab="# detections")

Not run:

y <- ifelse(birdrec$xtab > 0, 1, @)

g <- paste@(gsub("[[:digit:]]1", "", as.character(birdrec$samp$T0OY)),
substr(as.character(birdrec$samp$TOD), 1, 4))

g <- factor(g, levels=c("EarlyMorn”, "MidMorn”, "LateMorn"”,
"EarlyMidn"”, "MidMidn", "LateMidn"))

binary response model

oc <- opticut(y ~ 1, strata=g, dist="binomial")

multi-level response model

dolina 9

mc <- multicut(y ~ 1, strata=g, dist="binomial")

testing equality of labels

splito <- as.character(summary(oc)$summary$split)
splitm <- as.character(summary(mc)$summary$split)
table(splito == splitm)

seeing how much those differ

bpo <- summary(oc)$bestpart

bpm <- summary(mc)$bestpart

rs <- rowSums(abs(bpo-bpm))

table(rs)

10 *x bpo[rs > 0,1 + bpm[rs > 0,]

End(Not run)

dolina Land Snail Data Set

Description

A comprehensive and micro-scale land snail data set from 16 dolinas of the Aggtelek Karst Area,
Hungary. Data set containing land snail counts as described in Kemecei et al. 2014.

Usage

data("dolina")

Format

A list with 3 elements: xtab is a sample x species matrix with counts, samp is a data frame with
sample level attributes, taxa is a data frame with scientific names and families for the species.

Land snails were sampled during daylight hours between 16 and 18 of August, 2007. Samples
were taken from four microhabitat types (dolina$samp$microhab, dolina$samp$mhab): litter
(LI), trunks of live trees (TL), dead wood (also known as coarse woody debris; DW), and rock
(RO). In each of the 16 dolina (dolina$samp$dolina), seven samples were collected in the litter
microhabitat along a north-south transect. In the case of the other three microhabitat types, sam-
ples were collected from three random locations per microhabitat type in each dolina. A total of
256 samples (dolina$samp$sample) were collected, each consisting 2 sub-samples collected by 2
sampling methods (dolina$samp$method): litter samples (Q) and timed search (T).

One liter of litter samples including topsoil were collected to be examined later in the laboratory.
Litter samples were collected adjacent to live wood, dead wood and rocks, and not from the wood
or rocks themselves. Litter samples in the litter microhabitat were not collected near wood or
rocks (minimum distance of 2 meters). During 5 minutes per site of time-restricted direct search
we investigated microhabitats in a 1 meter radius circle around the litter sample location, but also
including tree or rock surfaces for those microhabitats.

The vertical zone (dolina$samp$stratum, bottom, middle or edge of the dolinas), aspect of these
sample locations (dolina$samp$aspect), along with litter depth (dolina$samp$lthick, cm), and

10 lorenz

litter moisture (dolina$samp$lmoist, scored on an ordinal scale: 1=dry, 2=fresh, 3=moist) were
also recorded.

Distinction of live animals versus fresh empty shells was not feasible due to the method of sorting
dry material and the delay in litter sample processing, so these were combined and constituted the
’fresh’ group. Whitened, disintegrating and broken shells constituted the broken’ group. This
’broken’ group was excluded from the data set presented here.

Source

Solymos et al. 2016 and Kemencei et al. 2014.

References

Kemencei, Z., Farkas, R., Pall-Gergely, B., Vilisics, F., Nagy, A., Hornung, E. & Solymos, P.,
2014. Microhabitat associations of land snails in forested dolinas: implications for coarse filter
conservation. Community Ecology 15:180-186. <doi:10.1556/ComEc.15.2014.2.6>

Solymos, P., Kemencei, Z. Pall-Gergely, B., Farkas, R., Vilisics, F., Nagy, A., Kisfali, M. & Hor-
nung, E., 2016. Public data from the dolina project. Version 1.0. Zenodo, <doi:10.5281/zenodo.53080>

Examples

data(dolina)
str(dolina)

species richness by microhabitat and method

Richness <- rowSums(dolina$xtab > @)

boxplot(Richness ~ mhab + method, dolina$samp,
ylab="Species richness"”, main="Dolina data set”,
col=rep(c("#2C7BB6", "#D7191C"), each=4))

lorenz Lorenz Curve Based Thresholds and Partitions

Description

Lorenz curve based thresholds and partitions.

Usage

lorenz(x, n = rep(1, length(x)), na.last = TRUE)

S3 method for class 'lorenz'
quantile(x, probs = seq(@, 1, 0.25),
type = c("L", "p"), ...)
iquantile(x, ...)
S3 method for class 'lorenz'
iquantile(x, values,
type = c("L", "p"),...)

lorenz 11

S3 method for class 'lorenz'
plot(x, type = c("L", "x"),
tangent = NA, h = NA, v = NA, ...)

S3 method for class 'summary.lorenz'

print(x, digits, ...)
S3 method for class 'lorenz'
summary (object, ...)
Arguments
X a vector of nonnegative numbers for lorenz, or an object to plot or summarized.
n a vector of frequencies, must be same length as x.
na.last logical, for controlling the treatment of NAs. If TRUE, missing values in the data
are put last; if FALSE, they are put first; if NA, they are removed (see order).
probs numeric vector of probabilities with values in [0,1], as in quantile.
values numeric vector of values for which the corresponding population quantiles are

to be returned.

type character. For the plot method it indicates whether to plot the cumulative dis-
tribution quantiles ("L") or ordered but not-cumulated values ("x"). For the
quantile and iquantile methods it indicates which of the quantiles ("L" or

"p") to use.

tangent color value for the Lorenz-curve tangent when plotted. The default NA value
omits the tangent from the plot.

h color value for the horizontal line for the Lorenz-curve tangent when plotted.
The default NA value omits the horizontal line from the plot.

v color value for the vertical line for the Lorenz-curve tangent when plotted. The
default NA value omits the vertical line from the plot.

digits numeric, number of significant digits in output.

object object to summarize.

other arguments passed to the underlying functions.

Details

The Lorenz curve is a continuous piecewise linear function representing the distribution of abun-
dance (income, or wealth). Cumulative portion of the population: p; = i/m (1 = 1,...,m), vs.
cumulative portion of abundance: L; = 22:1 xj*n;/ Z?:1 x; * nj. where z; are indexed in
non-decreasing order (x; <= z;41). By convention, p_0 = L_0 = 0. n can represent unequal
frequencies.

The following charactersitics of the Lorenz curve are calculated: "t": index where tangent (slope
1) touches the curve; "x[t]", "p[t]"”, and "L[t]" are values corresponding to index t, x_t is the
unmodified input. "S": Lorenz asymmetry coefficient (S = p; + L), S = 1 indicates symmetry.
"G": Gini coefficient, 0 is perfect equality, values close to 1 indicate high inequality. "J": Youden
index is the (largest) distance between the anti-diagonal and the curve, distance is largest at the
tangent point (J = max(p — L) = p; — Ly).

12 lorenz

Value

lorenz returns an object of class lorenz. It is a matrix with m+1 rows (m = length(x)) and 3
columns (p, L, x).

The quantile method finds values of x_i corresponding to quantiles L_i or p_i (depending on the
type argument). The iquantile (inverse quantile) method finds quantiles of L_i or p_i correspond-
ing to values of x_i.

The plot method draws a Lorenz curve. Because the object is a matrix, lines and points will
work for adding multiple lines.

The summary method returns characteristics of the Lorenz curve.

Author(s)

Peter Solymos <psolymos @ gmail.com>

References

Damgaard, C., & Weiner, J. (2000): Describing inequality in plant size or fecundity. Ecology
81:1139-1142. <doi:10.2307/177185>

Schisterman, E. F., Perkins, N. J., Liu, A., & Bondell, H. (2005): Optimal cut-point and its cor-
responding Youden index to discriminate individuals using pooled blood samples. Epidemiology
16:73-81. <do0i:10.1097/01.ede.0000147512.81966.ba>

Youden, W. J. (1950): Index for rating diagnostic tests. Cancer 3:32-5. <doi:10.1002/1097-
0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3>

See Also

quantile, order.

Examples

set.seed(1)
x <= c(rexp(100, 10), rexp(200, 1))

1 <- lorenz(x)
head(1)

tail(l)

summary (1)

summary (unclass(1))

(q <- c(0.05, 0.5, 0.95))

(p_i <- quantile(l, probs=q, type="p"))
iquantile(l, values=p_i, type="p")

(p_i <- quantile(l, probs=q, type="L"))

iquantile(l, values=p_i, type="L")

op <- par(mfrow=c(2,1))

plot(l, lwd=2, tangent=2, h=3, v=4)
abline(@, 1, lty=2, col="grey")
abline(1, -1, 1lty=2, col="grey")

multicut 13

plot(l, type="x", lwd=2, h=3, v=4)
par(op)

Lorenz-tangent approach to binarize a multi-level problem

n <- 100

g <- as.factor(sort(sample(LETTERS[1:4], n, replace=TRUE, prob=4:1)))
x <- rpois(n, exp(as.integer(g)))

mu <- aggregate(x, list(g), mean)

(1 <- lorenz(mu$x, table(g)))

(s <= summary(1l))

plot(l)
abline(@, 1, lty=2)
lines(rep(sC"pLt]1"]1, 2), c(s["pL[t]1"]1, s["LL[t]1"1), col=2)

multicut Multi-level Response Model

Description
The functions fits the multi-level response model for each species, possibly controlling for modify-
ing/confounding variables.

Usage

multicut1(Y, X, Z, dist = "gaussian”, sset=NULL, ...)

multicut(...)
Default S3 method:

multicut(Y, X, strata, dist = "gaussian”,
sset=NULL, cl = NULL, ...)

S3 method for class 'formula'

multicut(formula, data, strata, dist = "gaussian”,
sset=NULL, cl = NULL, ...)

S3 method for class 'multicut'

bestmodel (object, which = NULL, ...)
S3 method for class 'multicut'
bestpart(object, ...)

S3 method for class 'multicut’
strata(object, ...)

S3 method for class 'multicut'
getMLE (object, which, vcov=FALSE, ...)
S3 method for class 'multicut'
subset(x, subset=NULL, ...)

S3 method for class 'multicut'
fitted(object, ...)

S3 method for class 'multicut’

14

multicut

predict(object, gnew=NULL, xnew=NULL, ...)

S3 method for class 'multicut'
plot(x, which = NULL, cut, sort,
las, ylab = "Relative abundance”, xlab = "Strata”,
show_I = TRUE, show_S = TRUE, hr = TRUE, tick = TRUE,
theme, mar = c(5, 4, 4, 4) + 0.1, bty = "0",
lower = @, upper = 1, pos = @, horizontal=TRUE, ...)
S3 method for class 'multicutl’

plot(x,

ylab = "Relative abundance”, xlab = "Strata”, ...)

leplot(x,

S3 method for class 'multicutl’

lcplot(x,

ylab="Cumulative abundance"”, xlab="Strata”,

bty = "o

, theme, ...)

S3 method for class 'multicutl'

print(x, digits,

>

S3 method for class 'multicut'

print(x, digits, ...)
S3 method for class 'summary.multicut'
print(x, cut, sort, digits, ...)

S3 method for class 'multicut'

summary (object,

D)

S3 method for class 'multicut’
as.data.frame(x,

row.names

NULL, optional = FALSE, cut, sort, ...)

S3 method for class 'summary.multicut'
as.data.frame(x,

row.names

Arguments

formula

data

strata, Z

NULL, optional = FALSE, cut, sort, ...)

two sided model formula, response species data (matrix, or possible a vector for
single species case) in the left-hand side, model terms for modifying effects in
the right-hand side (its structure depending on the underlying functions). For
example, in the most basic Gaussian case it can be y ~ 1 (no modifying vari-
ables) or y ~ x (with modifying variables). Centering the modifying terms (or
choosing the origin wisely) is generally recommended (especially for Gaussian
distribution where linear predictors are additive on the response scale) because
the relative abundance contrasts are estimated at the origin (0).

an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from parent. frame(), typically the
environment from which multicut is called.

a factor, unique values define strata (must have at least 2 unique levels, empty
levels are dropped).

multicut

dist

sset

cl

X, object

cut

sort

show_I

show_S
hr, tick

theme
mar

ylab, xlab, las
bty

lower, upper
pos
horizontal
digits

which
row.names

optional

subset

15

character or function, a distribution to fit. If character, it can follow one of
these patterns: "family”, or "family:1link" when appropriate (there is a 1ink
argument in the underlying function, or the link can be specified via the family
argument). See Details on opticut page and Examples.

an optional vector specifying a subset of observations (rows) to be used in the
fitting process. NULL means no subset taken.

a cluster object, or an integer for multiple cores in parallel computations (integer
value for forking is ignored on Windows).

numeric vector of observations for multicut1, vector or community matrix for
multicut.default.

numeric, design matrix for possible confounding/modifier variables. Can be
missing, in which case an intercept-only model is assumed.

object to plot, print, summarize.

log likelihood ratio value to be used as a cut-off for showing species whose log
likelihood ratio is not less than the cut-off.

logical value indicating if species/partitions should be meaningfully sorted, the
default is TRUE. It can take numeric value when only species (1) or partitions (2)
are to be sorted (1: 2 is equivalent to TRUE).

logical, if indicator potential (I) should be shown.
logical, if number of indicator species should be shown.

logical, if horizontal rules (hr) and ticks to the axis legends (tick) should be
added. Default is TRUE for both.

color theme as defined by occolors.
numeric, graphical parameters for plot margin par.

graphical arguments, see plot. By default, las is 1 when horizontal = TRUE
and 2 when horizontal = FALSE.

Character, determines the type of box which is drawn around plots, see par.

numeric (between 0 and 1), lower is the minimum and upper is the maximum
height for rectangles drawn in the plot. Both need to be in [0, 1] and higher
cannot be smaller than lower.

numeric, position of rectangles in the plot relative to the baseline. Value must
be in the [-1, 1] range (below vs. above baseline).

logical, plot orientation: species as rows (TRUE) or as columns (FALSE).
numeric, number of significant digits in output.

numeric or character (can be a vector) defining a subset of species from the fitted
object, or NULL (all species, default).

NULL or a character vector giving the row names for the data frame. Missing
values are not allowed. See as.data. frame.

logical. If TRUE, setting row names and converting column names (to syntactic
names: see make.names) is optional. See as.data. frame.

logical, numeric, or character index indicating species to keep, missing values
are not accepted. The default NULL returns the original object without subsetting.

16 multicut

vcov logical, if variance-covariance matrix is to be returned.
gnew, xnew new values for strata and modifiers (right-hand-side of formula) to predict for,
or NULL.

other arguments passed to the underlying functions.

Value

multicut1 returns an object of class 'multicutl’.

multicut returns an object of class ‘multicut’, that is a list with the following components:

"call” the function call.

"species” alist of species specific multicutl objects.
"X" modifying variables as model matrix.

"Y" response, single species vector or matrix.
"strata” defines the stratification.

"nobs"” sample size.

"sset” subset, if specified.

"dist” distribution.

"failed"” IDs for failed species models dropped from results list.

The strata method extracts the strata argument as factor.

The print and summary methods are called for their side effects showing expected values, and log
likelihood ratio (logLR). Optimal binary partitions are determined as part of the summary based on
Lorenz-tangent based thresholding, which requires nonnegative expected values. Indicator potential
(D) is based on largest the contrast (difference) between the minimum and maximum estimates on
the linear predictor (link) scale.

The subset method subsets the species in the multicut object.

The plot method presents the estimates by species and strata. The 1cplot method plots the Lorenz
curve for a single species “multicutl’ object.

bestpart returns a matrix with the best supported partitions for each species (samples and rows,
species as columns). Binary partitions are based on Lorenz-tangent based optimal threshold (see
lorenz). lorenz requires nonnegative fitted values which is not guaranteed under dist = "gaussian”
with identity link, see fix_fitted ocoptions setting for how to resolve this (choosing a different
link function, distribution, or centering modified variables is advised).

bestmodel returns the best supported model for further manipulation (e.g. prediction). Note: cus-
tom distribution functions are designed to return only point estimates, thus the best model cannot
be returned. In this case, use the best partition returned by bestpart to refit the model. getMLE
returns a named list corresponding to the best supported model. The list has the following elements:
coef is the Maximum Likelihood Estimate (MLE), vcov is the variance-covariance matrix for the
MLE or NULL, dist is the distribution inherited from input object.

fitted returns expected values on the predictor scale for the observations as a matrix (number of
observations by number of species). predict returns fitted values when both gnew and xnew are
NULL, or corresponding point predictions (expected values) on the predictor scale.

The coercion methods as.data. frame return a data frame.

multicut 17

Warning

The use of the multicutl function is generally discouraged: some of the internal checks are not
guaranteed to flag issues when the formula-to-model-matrix translation is side-stepped (this is what
is happening when the modifier variables are supplied as X argument in multicut1). Use the
multicut function with a single species instead.

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

lorenz Examples for how multi-level partitions are binarized using the Lorenz-tangent approach.

opticut for optimal binary response model, optilevels for finding the optimal number of factor
levels.

beta2i for indicator potential (I) calculations in summaries.
bestmodel, bestpart, and uncertainty for manipulating fitted objects.

ocoptions on how to set some of the global options related to the presentation of the results in the
package and how errors encountered during model fitting are handled.

Examples

--- Gaussian

simple example from Legendre 2013

Indicator Species: Computation, in

Encyclopedia of Biodiversity, Volume 4

https://dx.doi.org/10.1016/B978-0-12-384719-5.00430-5

gr <- as.factor(paste@("X", rep(1:5, each=5)))

spp <- cbind(Speciesi=rep(c(4,6,5,3,2), each=5),
Species2=c(rep(c(8,4,6), each=5), 4,4,2, rep(0,7)),
Species3=rep(c(18,2,0,0,0), each=5))

rownames(spp) <- gr

must add some noise to avoid perfect fit

spp[6, "Species1"] <- 7

sppl1, "Species3"] <- 17

spp

negative expected values are not good

oco <- ocoptions(fix_fitted=TRUE)

summary(ocall <- multicut(spp ~ 1, strata=gr, dist="gaussian"))
summary (multicut(spp, strata=gr, dist="gaussian")) # alternative
ocoptions(oco) # reset options

--- Binomial

simulated binary data
set.seed(1234)

n <- 200

x0 <- sample(1:4, n, TRUE)
x1 <- ifelse(x@ <= 2, 1, 0)
x2 <= rnorm(n, 0.5, 1)

18

p1 <- plogis(-0.5 + 2xx1 + -0.8*x2)

Y1 <- rbinom(n, 1, p1)

p2 <- plogis(-0.1 + 2xifelse(x0==4,1,0) + -0.8*x2)
Y2 <= rbinom(n, 1, p2)

p3 <- plogis(-0.1 + -0.8%x2)

Y3 <- rbinom(n, 1, p3)

Y <- cbind(SPP1=Y1, SPP2=Y2, SPP3=Y3)

X <- model.matrix(~x2)

(m@ <- multicut1(Y1, X, as.factor(x@), dist="binomial”))
lcplot(m@)

summary(ml <- multicut(Y ~ x2, strata=x0, dist="poisson"))
plot(m1)

subset results
summary (subset(m1, 1:2))

best partition
head(bestpart(mi1))

best model

mods <- bestmodel(m1)
mods

explore further
confint(mods[[1]])

MLE and variance-covariance matrix (species 1)
getMLE(m1, which = 1, vcov=TRUE)

fitted values

head(fitted(m1))

prediction for new data

head(predict(ml, gnew=x@, xnew=data.frame(x2=x2)))

Not run:

--- Zero-inflated Negative Binomial

dolina example

data(dolina)

stratum as ordinal

dolina$samp$stratum <- as.integer(dolina$samp$stratum)

filter species to speed up things a bit

Y <- dolina$xtab[,colSums(dolina$xtab > @) >= 20]

opticut results, note the cloglog link function

dol <- multicut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb:cloglog")

summary (dol)

vertical plot orientation

plot(dol, horizontal=FALSE, pos=1, upper=0.8)

parallel
library(parallel)
cl <- makeCluster(2)

multicut

occolors 19

multicut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zip",cl=cl)
stopCluster(cl)

--- Customizing distributions
we may want to expand the Zero-inflation component in a ZIP model
see how the return value needs to be structured

fun <- function(Y, X, linkinv, zi_term, ...) {
X <- as.matrix(X)
mod <- pscl::zeroinfl(Y ~ X-1 | zi_term, dist = "poisson”, ...)

list(coef=coef(mod),
logLik=logLik(mod),
linkinv=mod$linkinv)
3
Xdol <- model.matrix(~ stratum + lmoist + method, data=dolina$samp)
this fits the null model (i.e. no partitions added)
fun(Y[,"amin"], Xdol, zi_term=dolina$samp$method)
now we can use dist=fun
multicut1(Y[,"amin"], Xdol, Z=dolina$samp$mhab,
dist=fun, zi_term=dolina$samp$method)
dol2 <- multicut(Y ~ stratum + 1lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist=fun, zi_term=dolina$samp$method)
summary (dol2)

End(Not run)

occolors Color Palettes for the opticut Package

Description

A convenient way of setting color palettes for the opticut package.

Usage

occolors(theme)
col2gray(col, method="BT.709")

Arguments
theme character value, character vector, or a function used to interpolate the colors.
The built-in values are "br" (default, blue-red divergent palette, colorblind safe),
"gr" (green-red divergent palette), "bw" (black and white: grayscale converted
"br" settings). See colorRampPalette, gray and the Examples.
col vector of color specification as described on the help page for the col2rgb func-

tion. This is converted to grayscale.

method character, the method used for grayscale conversion. See Details.

20 occolors

Details

Grayscale conversion methods in col2gray calculate gray levels based on red (R), green (G), and
blue (B) color channels as follows:

"BT.709" 0.2126 * R + 0.7152 * G + 0.0722 * B, luminosity correction following the ITU-R
BT.709 recommendation;

"BT.601" 0.299 * R + 0.587 * G + 0.114 * B, luminosity correction following the ITU-R BT.601
recommendation;

"desaturate” (max(R, G, B) + min(R, G, B)) / 2, also called lightness;
"average” (R+G+B)/3;
"maximum” max(R, G, B);

"minimum” min(R, G, B);

”red” R;
"green" G;
"blue” B.

Value

occolors returns a function, see colorRampPalette.

col2gray returns a vector of gray colors based on the conversion method and gray.

Author(s)

Peter Solymos <psolymos @ gmail.com>
Hexadecimal values for the built-in palettes are taken from https://colorbrewer2.org/.

Converting color to grayscale: https://en.wikipedia.org/wiki/Grayscale

See Also

colorRampPalette for a general description of palettes.

ocoptions for setting the color theme option in the opticut package.

Examples

using palettes
plot(1:100, rep(2, 100), pch = 15,
ylim = c(@, 21), axes = FALSE, ann = FALSE,
col = occolors()(100)) # default 'bg'
text(50, 1, "theme = 'br'")

points(1:100, rep(5, 100), pch = 15,
col=occolors("gr")(100))

text(50, 4, "theme = 'gr'")

points(1:100, rep(8, 100), pch = 15,

col=occolors("bw") (100))
text(50, 7, "theme = 'bw'")
points(1:100, rep(11, 100), pch = 15,

https://colorbrewer2.org/
https://en.wikipedia.org/wiki/Grayscale

ocoptions 21

col=occolors(terrain.colors)(100))
text(50, 10, "theme = terrain.colors”)
points(1:100, rep(14, 100), pch = 15,
col=occolors(c("purple”, "pink", "orange"))(100))
text(50, 13, "theme = c('purple', 'pink', 'orange')")
points(1:100, rep(17, 100), pch = 15,
col=occolors(c("#a6611a", "#ffffbf", "#018571"))(100))
text(50, 16, "theme = c('#a6611a', '#ffffbf', '#018571')")
points(1:100, rep(20, 100), pch = 15,
col=occolors(c("#7b3294", "#ffffbf", "#008837"))(100))
text(50, 19, "theme = c('#7b3294', '#ffffbf', '#008837')")

grayscale conversions
n <- 25
col <- occolors("br”)(n)
method <- c("BT.709", "BT.601",
"desaturate”, "average"”, "maximum”, "minimum”,
"red"”, "green", "blue")
plot(@, type="n", ann=FALSE, axes=FALSE,
xlim=c(@, n), ylim=c(3*length(method), 0))
for (j in 1:length(method)) {
for (i in 1:n) {
polygon(c(i-1, i, i, i-1), c(0, @, 1, 1)+((j-1)*3),
col=col[i], border=coll[il])
polygon(c(i-1, i, i, i-1), c(1, 1, 2, 2)+((j-1)*3),
col=col2gray(col[i], method=method[j]),
border=col2gray(col[i], method=method[j]))
text(n/2, 1+((j-1)*3), method[j])

ocoptions Options for the opticut Package

Description

A convenient way of handling options related to the opticut package.

Usage

ocoptions(...)

Arguments

arguments in tag = value form, or a list of tagged values. The tags must come
from the parameters described below.

22 ocoptions

Value

When parameters are set by ocoptions, their former values are returned in an invisible named list.
Such a list can be passed as an argument to ocoptions to restore the parameter values. Tags are the

following:

collapse character value to be used when merging factor levels, the default is "+".

cut log likelihood ratio value, model/species with lower values are excluded from
summaries and plots, the default is 2.

sort logical value indicating if species/partitions should be meaningfully sorted, the
default is TRUE. It can take numeric value when only species (1) or partitions (2)
are to be sorted (1: 2 is equivalent to TRUE).

theme the color theme to be used based on occolors, the default is "br".

check_comb check the design matrices for complementary partitions using checkComb, the
default is TRUE.

try_error if opticut and multicut should try to exclude species where the models failed
(TRUE), the default is to stop when an error is encountered (FALSE).

scale the scaling factor used to calculate indicator potential (I) based on the estimated
contrast (x): I = abs(tanh(x*scale)), the default is 0.5.

fix_fitted bestpart.multicut uses lorenz which requires nonnegative fitted values, how-

ever models with identity link can lead to negative expected values. When TRUE
the fitted values (x) are adjusted as X’ = x + abs(min(x)) to ensure nonnegativity.
The default is FALSE.

robust_loglik if ill-defined models resulting in perfect fit (infinite log likelihood, or NA, NaN)
should be allowed. The default TRUE makes such ill-defined log likelihoods a
very small real number -(.Machine$double.xmax”(1/3)). FALSE is equiva-
lent to allowing every model to safeguard against such cases or not.

Author(s)

Peter Solymos <psolymos @ gmail.com>

Examples

simple example from Legendre 2013

Indicator Species: Computation, in

Encyclopedia of Biodiversity, Volume 4

https://dx.doi.org/10.1016/B978-0-12-384719-5.00430-5

gr <- as.factor(paste@("X", rep(1:5, each=5)))

spp <- cbind(Speciesi=rep(c(4,6,5,3,2), each=5),
Species2=c(rep(c(8,4,6), each=5), 4,4,2, rep(0,7)),
Species3=rep(c(18,2,0,0,0), each=5))

rownames(spp) <- gr

must add some noise to avoid perfect fit

sppl6, "Speciesl1"] <- 7

sppl1, "Species3"] <- 17

spp

opticut 23

current settings

print(unlist(ocoptions())) # these give identical answers
unlist(getOption("ocoptions”))

summary(ocall <- opticut(spp ~ 1, strata=gr, dist="gaussian”, comb="all"))

resetting pboptions and checking new settings

ocop <- ocoptions(collapse="&", sort=FALSE)

unlist(getOption("ocoptions”))

running again with new settings

summary(ocall <- opticut(spp ~ 1, strata=gr, dist="gaussian”, comb="all"))

resetting original
ocoptions(ocop)
unlist(getOption("ocoptions”))

opticut Optimal Binary Response Model

Description

The functions fits the multi-level response model for each species by finding the best binary partition
based on model selection. Possibly controlling for modifying/confounding variables. The general
algorithm is described in Kemencei et al. 2014.

Usage
opticut1(Y, X, Z, dist = "gaussian"”, sset=NULL, ...)
opticut(...)
Default S3 method:
opticut(Y, X, strata, dist = "gaussian",
comb = c("rank”, "all"), sset=NULL, cl = NULL, ...)
S3 method for class 'formula'
opticut(formula, data, strata, dist = "gaussian”,
comb = c("rank”, "all"), sset=NULL, cl = NULL, ...)
fix_levels(x, sep = "_")
strata(object, ...)
S3 method for class 'opticut'
strata(object, ...)

S3 method for class 'opticut'
bestmodel (object, which = NULL, ...)
S3 method for class 'opticut'
bestpart(object, pos_only = FALSE, ...)
S3 method for class 'opticut'

getMLE (object, which, vcov=FALSE, ...)
S3 method for class 'opticut'

24 opticut
subset(x, subset=NULL, ...)
S3 method for class 'opticut'
fitted(object, ...)
S3 method for class 'opticut'
predict(object, gnew=NULL, xnew=NULL, ...)
wplot(x, ...)
S3 method for class 'opticutl'
wplot(x, cut, ylim = c(-1, 1),
las=1, ylab = "Model weight * Association”, xlab = "Partitions”,
theme, mar = c(5, 4, 4, 4) + 0.1, bty = "0", ...)
S3 method for class 'opticut'
wplot(x, which = NULL, cut, sort,
las = 1, ylab = "Model weight * Association”, xlab = "Partitions”,
theme, mar = c(5, 4, 4, 4) + 0.1, bty = "0", ...)
S3 method for class 'opticut'
plot(x, which = NULL, cut, sort,
las, ylab = "Relative abundance”, xlab = "Strata”,
show_I = TRUE, show_S = TRUE, hr = TRUE, tick = TRUE,
theme, mar = c(5, 4, 4, 4) + 0.1, bty = "0",
lower = @, upper = 1, pos = @, horizontal=TRUE, ...)
S3 method for class 'opticutl'
print(x, cut, sort, digits, ...)
S3 method for class 'opticut'
print(x, digits, ...)
S3 method for class 'summary.opticut'
print(x, cut, sort, digits, ...)
S3 method for class 'opticut'
summary (object, ...)
S3 method for class 'opticut'
as.data.frame(x,
row.names = NULL, optional = FALSE, cut, sort, ...)
S3 method for class 'summary.opticut'
as.data.frame(x,
row.names = NULL, optional = FALSE, cut, sort, ...)
Arguments
formula two sided model formula, response species data (matrix, or possible a vector for

single species case) in the left-hand side, model terms for modifying effects in
the right-hand side (its structure depending on the underlying functions). For
example, in the most basic Gaussian case it can be y ~ 1 (no modifying vari-
ables) or y ~ x (with modifying variables). Centering the modifying terms (or
choosing the origin wisely) is generally recommended (especially for Gaussian
distribution where linear predictors are additive on the response scale) because
the relative abundance contrast is estimated at the origin (0).

opticut

data

strata

dist

comb

sset

cl

X, object

cut

sort

show_I

show_S
hr, tick

theme

mar

25

an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from parent. frame(), typically the
environment from which opticut is called.

vector (usually a factor), unique values define partitions (must have at least 2
unique levels, empty levels are dropped). It can also be a matrix with rows as
observations and binary partitions as columns.

character or function, a distribution to fit. If character, it can follow one of
these patterns: "family"”, or "family:link" when appropriate (there is a 1ink
argument in the underlying function, or the link can be specified via the family
argument). See Details and Examples.

character, how to define the binary partitions. "rank” uses rankComb, "all”
uses allComb.

an optional vector specifying a subset of observations (rows) to be used in the
fitting process. NULL means no subset taken.

a cluster object, or an integer for multiple cores in parallel computations (integer
value for forking is ignored on Windows).

numeric vector of observations for opticut1, vector or community matrix for
opticut.default.

numeric, design matrix. Can be missing, in which case an intercept-only model
is assumed.

factor (must have at least 2 unique levels, this triggers rankComb), or a design
matrix (custom matrix or as returned by allComb.

object to plot, print, summarize. For fix_levels it needs to be a factor.

log likelihood ratio value to be used as a cut-off for showing species whose log
likelihood ratio is not less than the cut-off.

logical value indicating if species/partitions should be meaningfully sorted, the
default is TRUE. It can take numeric value when only species (1) or partitions (2)
are to be sorted (1: 2 is equivalent to TRUE).

logical, if indicator potential (I) should be shown.
logical, if number of indicator species should be shown.

logical, if horizontal rules (hr) and ticks to the axis legends (tick) should be
added. Default is TRUE for both.

color theme as defined by occolors.

numeric, graphical parameters for plot margin par.

ylab, xlab, las, ylim

bty

lower, upper

pos

graphical arguments, see plot. By default, las is 1 when horizontal = TRUE
and 2 when horizontal = FALSE.

Character, determines the type of box which is drawn around plots, see par.

numeric (between 0 and 1), lower is the minimum and upper is the maximum
height for rectangles drawn in the plot. Both need to be in [0, 1] and higher
cannot be smaller than lower.

numeric, position of rectangles in the plot relative to the baseline. Value must
be in the [-1, 1] range (below vs. above baseline).

26 opticut

horizontal logical, plot orientation: species as rows (TRUE) or as columns (FALSE).

digits numeric, number of significant digits in output.

which numeric or character (can be a vector) defining a subset of species from the fitted
object, or NULL (all species, default).

sep a character string to separate the sub-strings in factor levels.

row.names NULL or a character vector giving the row names for the data frame. Missing

values are not allowed. See as.data. frame.

optional logical. If TRUE, setting row names and converting column names (to syntactic
names: see make.names) is optional. See as.data.frame.

pos_only logical, best partition normally returns the original variable without recognizing
the direction of the association. pos_only = TRUE returns values where negative
associations are taken into account and 1 indicates strata of positive association.
This is only important when comb is not "rank”.

subset logical, numeric, or character index indicating species to keep, missing values
are not accepted. The default NULL returns the original object without subsetting.

vcov logical, if variance-covariance matrix is to be returned.

gnew, xnew new values for strata and modifiers (right-hand-side of formula) to predict for,

or NULL. Predicting for new strata available for comb = "rank” models only.

other arguments passed to the underlying functions.

Details

Currently available distributions:

"gaussian” real valued continuous observations, e.g. biomass, uses 1m of the stats package. Iden-
tity link is assumed. Centering modified variables is generally advised to avoid negative ex-
pected values when the response is nonnegative.

"poisson” Poisson count data, uses glm of the stats package. Exponential (log) link is assumed.

"binomial” presence-absence (detection-nondetection) type data, uses glm of the stats package.
Logistic (logit) link is assumed.

"negbin” overdispersed Negative Binomial count data, uses glm. nb of the MASS package. Expo-
nential (log) link is assumed.

"beta” continuous response in the unit interval (0-1), e.g. percent cover, uses betareg of the
betareg package. Logistic (logit) link for the mean model is assumed.

"zip" zero-inflated Poisson counts, indicative properties are tested as part of the abundance model,
uses zeroinfl of the pscl package. Exponential (log) link is used for count based analysis,
the second part of the dist argument following the colon is used as link function for the zero
component (logistic link assumed).

"zinb" zero-inflated Negative Binomial counts, indicative properties are tested as part of the abun-
dance model, uses zeroinfl of the pscl package. The zero-inflation component refers to the
probability of 0. Exponential (log) link is used for count based analysis, the second part of the
dist argument following the colon is used as link function for the zero component (logistic
link assumed).

opticut 27

"zip2" zero-inflated Poisson counts, indicative properties are tested as part of the zero-model,
uses zeroinfl of the pscl package. The zero-inflation component refers to the probability of
1 to be consistent with other methods regarding positive and negative effects. Logistic (logit)
link is assumed for zero-nonzero based analysis, only symmetric link functions (logit, probit)
allowed. Exponential (log) link is used for the count data part which cannot be changed.

"zinb2" zero-inflated Negative Binomial counts, indicative properties are tested as part of the
zero-model, uses zeroinfl of the pscl package. The zero-inflation component refers to the
probability of 1 to be consistent with other methods regarding positive and negative effects.
Logistic (logit) link is assumed for zero-nonzero based analysis, only symmetric link functions
(logit, probit) allowed. Exponential (log) link is used for the count data part which cannot be
changed.

"rsf" presence-only data using resource selection functions (RSF) as explained in rsf in the Re-
sourceSelection package, assuming global availability (m=0). The "rsf" works only for
single species using opticutl because ’presence-only’ type data cannot be kept in a single
matrix-like object for multiple species. Intercept only model (i.e. no modifier variables in
right-hand-side of the formula) is accepted for "rsf"”. Exponential (log) link is assumed.

"rspf” presence-only data using resource selection probability functions (RSPF) as explained in
rspf in the ResourceSelection package, assuming global availability (m=@). The "rspf”
works only for single species using opticutl because "presence-only’ type data cannot be
kept in a single matrix-like object for multiple species. Intercept only model is not accepted for
"rspf"”, need to have at least one continuous modifier variable for identifiability (see Solymos
& Lele 2016). Logistic (logit) link is assumed.

Custom distributions can be defined, see Examples. Note: not all downstream algorithms and
methods work with custom distributions.

fix_levels is a utility function for replacing characters in factor levels that are identical to the
value of the getOption(”ocoptions”)$collapse value. This case can lead to an error when
specifying the strata argument, and the fix_levels can help.

Value

opticutl returns an object of class opticutl, that is a modified data frame with additional attributes.

opticut returns an object of class opticut, that is a list with the following components:

"call” the function call.

"species” alist of species specific opticutl objects.
"X" modifying variables as model matrix.

"Y" response, single species vector or matrix.
"strata"” defines the partitions.

"nobs"” sample size.

"sset” subset, if specified.

"nsplit” number of binary splits considered.
"dist" distribution.

"comb” combination type.

"failed"” IDs for failed species models dropped from results list.

28 opticut

"collapse” character used for combining partition labels.

fix_levels returns a factor with modified levels.

The strata method extracts the strata argument as factor. The method finds unique row combi-
nations when custom matrix is supplied for strata.

The print and summary methods are called for their side effects. The summary shows the following
information: best supported split, strength and sign of association, indicator potential (I), expected
values (mu0, mul), log likelihood ratio (logLR), and model weights(w).

The subset method subsets the species in the opticut object.
The plot method presents the contrasts by species and strata.
The wplot (weight plot) shows model weights for partitions.

bestpart returns a matrix with the best supported partitions for each species (samples and rows,
species as columns).

bestmodel returns the best supported model for further manipulation (e.g. prediction). Note: cus-
tom distribution functions are designed to return only point estimates, thus the best model cannot
be returned. In this case, use the best partition returned by bestpart to refit the model. getMLE
returns a named list corresponding to the best supported model. The list has the following elements:
coef is the Maximum Likelihood Estimate (MLE), vcov is the variance-covariance matrix for the
MLE or NULL, dist is the distribution inherited from input object.

fitted returns expected values on the predictor scale for the observations as a matrix (number of
observations by number of species). predict returns fitted values when both gnew and xnew
are NULL, or corresponding point predictions (expected values) on the predictor scale (available for
comb = "rank"” models only).

The coercion methods as.data. frame return a data frame.

Warning

The use of the opticut1 function is generally discouraged: some of the internal checks are not
guaranteed to flag issues when the formula-to-model-matrix translation is side-stepped (this is what
is happening when the modifier variables are supplied as X argument in opticut1). Use the opticut
with a single species instead.

Author(s)

Peter Solymos <psolymos @gmail.com> and Ermias T. Azeria

References

Kemencei, Z., Farkas, R., Pall-Gergely, B., Vilisics, F., Nagy, A., Hornung, E. & Solymos, P.
(2014): Microhabitat associations of land snails in forested dolinas: implications for coarse filter
conservation. Community Ecology 15:180-186. <doi:10.1556/ComEc.15.2014.2.6>

Solymos, P. & Lele, S. R. (2016): Revisiting resource selection probability functions and single-
visit methods: clarification and extensions. Methods in Ecology and Evolution 7:196-205. <doi:10.1111/2041-
210X.12432>

opticut 29

See Also

allComb, and rankComb for partitioning algorithms.
beta2i for indicator potential (I) calculations in summaries.
bestmodel, bestpart, and uncertainty for manipulating fitted objects.

ocoptions on how to set some of the global options related to the presentation of the results in the
package and how errors encountered during model fitting are handled.

multicut for multinomial-response model, optilevels for finding the optimal number of factor
levels.

Examples

--- Gaussian

simple example from Legendre 2013

Indicator Species: Computation, in

Encyclopedia of Biodiversity, Volume 4

https://dx.doi.org/10.1016/B978-0-12-384719-5.00430-5

gr <- as.factor(paste@("X", rep(1:5, each=5)))

spp <- cbind(Speciesli=rep(c(4,6,5,3,2), each=5),
Species2=c(rep(c(8,4,6), each=5), 4,4,2, rep(0,7)),
Species3=rep(c(18,2,0,0,0), each=5))

rownames(spp) <- gr

must add some noise to avoid perfect fit

sppl6, "Species1"] <- 7

spp[1, "Species3"] <- 17

spp

all partitions
summary (ocall <- opticut(spp ~ 1, strata=gr, dist="gaussian”, comb="all"))
summary (opticut(spp, strata=gr, dist="gaussian”, comb="all")) # alternative

rank based partitions
summary (ocrank <- opticut(spp ~ 1, strata=gr, dist="gaussian"”, comb="rank"))
summary (opticut(spp, strata=gr, dist="gaussian”, comb="rank")) # alternative

--- Binomial

simulated binary data
set.seed(1234)

n <- 200

x0 <- sample(1:4, n, TRUE)

x1 <- ifelse(x0 <= 2, 1, 0)

x2 <= rnorm(n, 0.5, 1)

p1 <- plogis(-0.5 + 2xx1 + -0.8*x2)
Y1 <- rbinom(n, 1, p1)

p2 <- plogis(-0.1 + 2xifelse(x0==4,1,0) + -0.8*x2)
Y2 <- rbinom(n, 1, p2)

p3 <- plogis(-0.1 + -0.8%x2)

Y3 <- rbinom(n, 1, p3)

Y <- cbind(SPP1=Y1, SPP2=Y2, SPP3=Y3)
X <- model.matrix(~x2)

30

all partitions, single species
Z <- allComb(x@)
opticut1(Y1, X, Z, dist="binomial")

rank based partitions, single species
opticut1(Y1, X, as.factor(x@), dist="binomial")

all partitions, multiple species

(m1 <- opticut(Y ~ x2, strata=x@, dist="poisson”, comb="all"))
summary (m1)

show all species

summary(m1, cut=0)

plot best partitions and indicator values

plot(m1)

model weights for all species

wplot(m1)

different ways of plotting weights for single species
wplot(mi1$species[[111)

wplot(m1, which = 1)

rank based partitions, multiple species

summary(m2 <- opticut(Y ~ x2, strata=x@, dist="poisson”, comb="rank"))
subset results

summary (subset(m2, 1:2))

best partition
head(bestpart(m2))

best model

mods <- bestmodel(m2)
mods

explore further
confint(mods[[111)

MLE and variance-covariance matrix (species 1)
getMLE(m2, which=1, vcov=TRUE)

fitted values

head(fitted(m2))

prediction for new data

head(predict(m2, gnew=x@, xnew=data.frame(x2=x2)))

Not run:

--- Zero-inflated Negative Binomial

dolina example

data(dolina)

stratum as ordinal

dolina$samp$stratum <- as.integer(dolina$samp$stratum)

filter species to speed up things a bit

Y <- dolina$xtab[,colSums(dolina$xtab > @) >= 20]

opticut results, note the cloglog link function

dol <- opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb:cloglog")

opticut

optilevels 31

summary (dol)
vertical plot orientation
plot(dol, horizontal=FALSE, pos=1, upper=9.8)

parallel computing comparisons

library(parallel)

cl <- makeCluster(2)

sequential, all combinations (2*(K-1) - 1)

system.time(opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb", comb="all", cl=NULL))

sequential, rank based combinations (K - 1)

system.time(opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb", comb="rank"”, cl=NULL))

parallel, all combinations (2*(K-1) - 1)

system.time(opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb", comb="all", cl=cl))

parallel, rank based combinations (K - 1)

system.time(opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="zinb", comb="rank", cl=cl))

stopCluster(cl)

--- Customizing distributions
we may want to expand the Zero-inflation component in a ZIP model
see how the return value needs to be structured

fun <- function(Y, X, linkinv, zi_term, ...) {
X <- as.matrix(X)
mod <- pscl::zeroinfl(Y ~ X-1 | zi_term, dist = "poisson”, ...)

list(coef=coef (mod),
loglLik=loglLik(mod),
linkinv=mod$linkinv)
3
Xdol <- model.matrix(~ stratum + lmoist + method, data=dolina$samp)
this fits the null model (i.e. no partitions added)
fun(Y[,"amin"], Xdol, zi_term=dolina$samp$method)
now we can use dist=fun
opticut1(YL,"amin"], Xdol, Z=dolina$samp$mhab,
dist=fun, zi_term=dolina$samp$method)
dol2 <- opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist=fun, zi_term=dolina$samp$method)
summary (dol2)

End(Not run)

current collapse value
getOption("ocoptions”)$collapse

factor levels sometimes need to be manipulated
before feeding it to opticut
fix_levels(as.factor(c("A b", "C d")), sep=":")
fix_levels(as.factor(c("A b", "C d")), sep="")

optilevels Optimal Number of Factor Levels

32 optilevels

Description

Finds the optimal number of factor levels given the data and a model using a likelihood-based
agglomerative algorithm.

Usage

optilevels(y, x, z = NULL, alpha = @, dist = "gaussian”, ...)

S3 method for class 'optilevels'

bestmodel (object, ...)
Arguments
y vector of observations.
X a factor or a matrix of proportions (i.e. the values 0 and 1 should have consistent

meaning across the columns, often through a unit sum constraint). It is the user’s
responsibility to ensure that values supplied for x are sensible. x is not expected
to include an intercept.

z a design matrix with predictor variables besides the one(s) defined via the ar-
gument x. It is the user’s responsibility to ensure that values supplied for z are
sensible and it also makes sense to bind x and z together. Variables in z should
be centered (mean 0) (and possibly normalized by SD), because the design ma-
trix from x is not expected to include an intercept.

alpha numeric [0-1], weighting factor for calculating information criteria for model
selection (i.e. IC = (1-alpha)*AIC + alpha*BIC, also referred to as CAIC: con-
sistent AIC).

dist character, distribution argument passed to underlying functions, see listed on

the help page of opticut (except for dist = "zip2”, dist = "zinb2" dist =
"rsf”,and dist = "rspf").

object fitted object.

other arguments passed to the underlying functions, see opticutl.

Value

An object of class *optilevels’ that is a list with the following elements:

"delta"” delta IC values along the selection path considering best models.
"ic" IC values along the selection path considering best models.

"coef” matrix of coefficients (linear predictor scale) corresponding to argument x along the selec-
tion path considering best models.

"zcoef” matrix of coefficients (linear predictor scale) corresponding to argument z when not NULL
along the selection path considering best models, or NULL.

"rank” matrix ranks based on the coefficients along the selection path considering best models.
Ranking uses the default ties.method = "average" in rank.

"deltalist"” delta IC values along the selection path considering all competing models.

optilevels 33

"iclist” IC values along the selection path considering all competing models.

"coeflist” matrix of coefficients (linear predictor scale) corresponding to argument x along the
selection path considering all competing models.

"zcoeflist” matrix of coefficients (linear predictor scale) corresponding to argument z when not
NULL along the selection path considering all competing models, or NULL.

"ranklist” matrix ranks based on the coefficients along the selection path considering all com-
peting models.

"levels” list of (merged) factor levels along the selection path considering best models.
"Y" vector of observations (argument y).

"X" design matrix component corresponding to argument X.

"Z" design matrix component corresponding to argument z.

"alpha" weighting argument.

"dist” distribution argument.

"factor” logical, indicating if argument x is a factor (TRUE) or a matrix (FALSE).

bestmodel returns the best supported model for further manipulation (e.g. prediction).

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

opticut and multicut for fitting best binary and multi-level response models.

Examples

--- Factor levels with Gaussian distribution

simple example from Legendre 2013

Indicator Species: Computation, in

Encyclopedia of Biodiversity, Volume 4

https://dx.doi.org/10.1016/B978-0-12-384719-5.00430-5

gr <- as.factor(paste@("X", rep(1:5, each=5)))

spp <- cbind(Speciesli=rep(c(4,6,5,3,2), each=5),
Species2=c(rep(c(8,4,6), each=5), 4,4,2, rep(0,7)),
Species3=rep(c(18,2,0,0,0), each=5))

rownames(spp) <- gr

must add some noise to avoid perfect fit

sppl6, "Species1"] <- 7

sppl1, "Species3"] <- 17

spp

ol <- optilevels(spp[,"Species3”], gr)
ol[c("delta”, "coef”, "rank”, "levels")]

get the final factor level
grl <- gr
levels(grl) <- ol$level[[length(ol$level)]]

34

table(gr, gri)

compare the models

00 <- 1lm(sppl,"Species3”] ~ gr - 1)

ol <- 1lm(sppL,"Species3”] ~ gr1 - 1)

data.frame(AIC(00, o1), delta=AIC(0@, 01)$AIC - AIC(0@))
ol$delta # should be identical

--- Proportions with Poisson distribution
simulation

set.seed(123)

n <- 500 # number of observations

k <= 5 # number of habitat types

b <- ¢(-1, -0.2, -0.2, 0.5, 1)

names(b) <- LETTERS[1:k]

x <- replicate(k, exp(rnorm(n)))

X <= x / rowSums(x) # proportions

X <- model.matrix(~.-1, data=data.frame(x))
lam <- exp(drop(crossprod(t(X), b)))

y <- rpois(n, lam)

z <- optilevels(y, x, dist="poisson")

best model refit
bestmodel (z)

estimates
plogis(z$coef)

plogis(b)

optimal classification
z$rank

get the final matrix

x1 <- mefa4::groupSums(x, 2, z$levels[[length(z$levels)]])
head(x)

head(x1)

compare the models

mo <- glm(y ~ x - 1, family="poisson")

ml <- glm(y ~ x1 - 1, family="poisson")
data.frame(AIC(m@, m1), delta=AIC(m@, m1)$AIC - AIC(mQ))
z$delta # should be identical

Not run:

dolina example with factor

data(dolina)

dolina$samp$stratum <- as.integer(dolina$samp$stratum)

y <- dolina$xtab[dolina$samp$method == "Q", "ppyg"]

x <- dolina$samp$mhab[dolina$samp$method == "Q"]

z <- scale(model.matrix(~ stratum + Imoist - 1,
dolina$sampldolina$samp$method == "Q",1))

without additional covariates

optilevels

rankComb 35

doll <- optilevels(y, x, z=NULL, dist="poisson")
dol1$rank
summary (bestmodel(dol1))

with additional covariates

dol2 <- optilevels(y, x, z, dist="poisson")
dol2$rank

summary (bestmodel (dol12))

compare the two models
AIC(bestmodel(dol1), bestmodel(dol2))

End(Not run)

rankComb Ranking Based Binary Partitions

Description

Blindly fitting a model to all possible partitions is wasteful use of resources. Instead, one can rank
the K levels (strata) based on expected response values to explore only K-1 binary partitions along
the gradient defined by the ranks of the expected values.

Usage
oComb(x, collapse)
rankComb(Y, X, Z, dist = "gaussian"”, collapse, ...)
Arguments
Y numeric, vector of observations.
X numeric, design matrix.
z factor, must have at least 2 unique levels.
dist character, distribution argument passed to underlying functions, see listed on the
help page of opticut.
X and a numeric vector.
collapse character, what to paste between levels. Defaults to getOption("ocoptions”)$collapse.

other arguments passed to the underlying functions, see opticut.

Value

oComb returns the ’contrast’ matrix based on the rank vector as input. Ranked from lowest to highest
expected value among the partitions.

The function rankComb fits the model with multiple (K > 2) factor levels to find out the ranking,
and returns a binary classification matrix as returned by oComb corresponding to the ranking.

36 uncertainty

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

allComb for alternative partitioning algorithm.

opticut for the user interface.

Examples

simulate some data
set.seed(1234)

n <- 200

x@ <- sample(1:4, n, TRUE)

x1 <- ifelse(x@ %in% 1:2, 1, @)

x2 <= rnorm(n, 0.5, 1)

lam <- exp(0.5 + 0.5xx1 + -0.2%x2)
Y <- rpois(n, lam)

binary partitions

head(rc <- rankComb(Y, model.matrix(~x2), as.factor(x@), dist="poisson"))
attr(rc, "est") # expected values in factor levels

aggregate(exp(0.5 + 0.5%x1), list(x@=x0@), mean) # true values

simple example
oComb(1:4, "+")

using estimates
oComb(attr(rc, "est"))

uncertainty Quantifying Uncertainty for Fitted Objects

Description

Quantifying uncertainty for fitted objects.

Usage

uncertainty(object, ...)

S3 method for class 'opticut'

uncertainty(object,
which = NULL, type = c("asymp", "boot”, "multi"),
B =99, cl = NULL, ...)

S3 method for class 'multicut'

uncertainty(object,

which = NULL, type = c("asymp", "boot"),
B =99, cl = NULL, ...)

uncertainty

check_strata(x, mat)
S3 method for class
strata(object, ...)
S3 method for class
subset(x, subset=NULL,

S3 method for class

bestpart(object, ...)
S3 method for class
bestpart(object, ...)

S3 method for class

print(x, ...)
S3 method for class
print(x, ...)

S3 method for class
print(x, sort, digits,
S3 method for class

'uncertainty'

'uncertainty'

.2

'uncertainty'

'uncertaintyl

"uncertaintyl
'uncertainty'
"summary.uncertainty'

.2

'uncertainty'’

37

summary(object, level = 0.95, ...)

S3 method for class 'uncertainty'
as.data.frame(x,

row.names = NULL, optional = FALSE, sort, ...)
S3 method for class 'summary.uncertainty'
as.data.frame(x,

row.names = NULL, optional = FALSE, sort, ...)

S3 method for class 'uncertaintyl'

bsmooth(object, ...)
S3 method for class 'uncertainty'
bsmooth(object, ...)
Arguments
object fitted model object (which should not contain extra arguments as part of . ..),

or an output from uncertainty for the summary method.

which numeric or character (can be a vector) defining a subset of species from the fitted
object, or or NULL (all species, default).

type character, describing the type of uncertainty calculation. See Details.

B numeric, number of iterations. For type = "boot” and type = "multi” it can
be a user-supplied matrix with indices for resampling with dimensions length of
observations times B.

cl a cluster object, or an integer for multiple cores in parallel computations (integer
value for forking is ignored on Windows).

X an object to be printed.

level the confidence level required.

38

uncertainty

sort logical value indicating if species should be meaningfully sorted, the default is
TRUE.

digits numeric, number of significant digits in output.

mat a matrix with resampling indices (rows as samples, columns as iterations).

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed. See as.data. frame.

optional logical. If TRUE, setting row names and converting column names (to syntactic
names: see make.names) is optional. See as.data.frame.

subset logical, numeric, or character index indicating species to keep, missing values

are not accepted.

other arguments passed to the underlying functions.

Details

Uncertainty is calculated for indicator potential I, and expected values (mu@, and mu1 for opticut,
and mu_* for multicut objects).

"asymp”: asymptotic distribution is based on best supported model (this option is unavailable for
custom distribution functions because it requires the Hessian matrix). This type is available for both
opticut and multicut objects.

"boot”: non-parametric bootstrap distribution based on best partition found for the input object.
This type is available for both opticut and multicut objects.

"multi”: non-parametric bootstrap distribution based on best partition found for the bootstrap data
(i.e. the model ranking is re-evaluated each time). "multi” works only if comb = "rank” in the
opticut call. This type is not available for multicut objects.

Value

uncertainty returns an object of class "uncertainty’. The uncertainty element of the object is
a list with species specific output as elements (object class "uncertaintyl’). Each ’uncertaintyl’
output is a data frame with columns: best partition, indicator potential I, and expected values
(mu@, and mu1 for opticut, and mu_x for multicut objects).

check_strata returns a logical vector checking if all original strata from the input object are rep-
resented by resampling indices. Number of strata are attached as attributes for further diagnostics.

The summary method prints the name of the best supported split, selection frequency (R, reliability),
indicator values (I, based on the distribution of values within the best supported split with highest
reliability) and confidence interval for I (based on level).

The subset method subsets the species in the uncertainty object.

bestpart finds the selection frequencies for strata as best partitions (number of strata x number of
species).

The coercion method as.data. frame returns a data frame.

The bsmooth method returns bootstrap smoothed results for each strata (not available for multicut
based uncertainty objects, check uncertainty results instead).

uncertainty 39

Warning

Resampling methods can lead to complete exclusion of certain strata when sample size is small.
Try revising the stratification of the input object, or provide custom resampling indices via the B ar-
gument using stratified (block) bootstrap, jackknife (leave-one-out), or similar techniques. Finding
a suitable random seed via set. seed or dropping unsuitable iterations can also resolve the issue.

Author(s)

Peter Solymos <psolymos @ gmail.com>

See Also

opticut and multicut for the user interface of the input objects.

Examples

set.seed(2345)

n <- 50

X0 <- sample(1:4, n, TRUE)

x1 <- ifelse(x@ %in% 1:2, 1, @)
x2 <- rnorm(n, 0.5, 1)

x3 <- ifelse(x@ %in% 2:4, 1, Q)
laml <- exp(0.5 + 1*x1 + -0.2*xx2)
Y1 <- rpois(n, laml)

lam2 <- exp(1 + 0.5%x3)

Y2 <- rpois(n, lam2)

Y3 <- rpois(n, exp(@))

Y <- cbind(Spp1=Y1, Spp2=Y2, Spp3=Y3)

oc <- opticut(Y ~ x2, strata=x@, dist="poisson"”, comb="rank")

asymptotic confidence intervals

(ucl <- uncertainty(oc, type="asymp”, B=999))
summary (uctl)

bootstrap-based confidence intervals

(uc2 <- uncertainty(oc, type="boot"”, B=19))
summary (uc2)

use user-supplied indices

multi-model bootstrap based uncertainties

B <- replicate(25, sample.int(n, replace=TRUE))
check_strata(oc, B) # check representation

(uc3 <- uncertainty(oc, type="multi”, B=B))
summary (uc3)

best partitions:

selection frequencies for strata and species
bestpart(uc3)

heatmap(bestpart(uc3), scale="none", col=occolors()(25))

bootstrap smoothed predictions per strata
bsmooth(uc3)

40

heatmap(bestpart(uc3), scale="none", col=occolors()(25))

individual species results
uc3$uncertainty

bestpart(uc3$uncertainty[[1]])
bsmooth(uc3$uncertainty[[1]1])

Not run:
block bootstrap
block_fun <- function()

unlist(lapply(unique(x@), function(z) if (sum(x@==z) < 2)

which(x0==z) else sample(which(x@==z), sum(x@==z), replace=TRUE)))

B <- replicate(25, block_fun())
check_strata(oc, B) # check representation
summary (uncertainty(oc, type="multi”, B=B))

jackknife

B <- sapply(1:n, function(i) which((1:n) != 1))
check_strata(oc, B) # check representation
summary (uncertainty(oc, type="multi”, B=B))

multicut based uncertainty
mc <- multicut(Y ~ x2, strata=x0, dist="poisson")

asymptotic confidence intervals

(mucl <- uncertainty(mc, type="asymp"”, B=999))
summary (muct)

bestpart(mucil)

bootstrap-based confidence intervals
(muc2 <- uncertainty(mc, type="boot"”, B=19))
summary (muc2)

bestpart(muc2)

dolina example

data(dolina)

stratum as ordinal

dolina$samp$stratum <- as.integer(dolina$samp$stratum)

filter species to speed up things a bit

Y <- ifelse(dolina$xtab[,colSums(dolina$xtab > @) >= 20] > o, 1, @)

opticut results, note the cloglog link function

dol <- opticut(Y ~ stratum + lmoist + method, data=dolina$samp,
strata=dolina$samp$mhab, dist="binomial:cloglog")

parallel computing for uncertainty
library(parallel)

cl <- makeCluster(2)

ucdol <- uncertainty(dol, type="multi"”, B=25, cl=cl)
stopCluster(cl)

bestpart(ucdol)
heatmap(t(bestpart(ucdol)), scale="none", col=occolors()(25),
distfun=function(x) dist(x, "manhattan"))

uncertainty

uncertainty

See how indicator value changes with different partitions
(and why it is the wrong metric to use in this calse)
with(ucdol$uncertainty[["pvic"]],
boxplot(I ~ best, col="gold"”, ylab="Indicator value"))
What we should calculate is the bootstrap smoothed mean of the
expected value and its confidence intervals
bs <- bsmooth(ucdol$uncertainty[["pvic”]1])
boxplot(t(bs), ylab="Expected value")
cbind(Mean=rowMeans(bs), t(apply(bs, 1, quantile, probs=c(@.025, 0.975))))

A more interesting simulated example for bootstrap smoothing
and comparing opticut vs. multicut
set.seed(1)
<- 2000
<- sort(runif(n, -8, 8))
<- plogis(0.5 + -0.1 * x + -0.2 * x*2)
<- rbinom(n, 1, p)
<- diff(range(x))/10
br <- seq(min(x), max(x), by=d)
g <- cut(x, br, include.lowest=TRUE)
levels(g) <- LETTERS[1:nlevels(g)]
o <- opticut(y ~ 1, strata=g, dist="binomial")
m <- multicut(y ~ 1, strata=g, dist="binomial")
library(parallel)
cl <- makeCluster(2)
uo <- uncertainty(o, type="multi”, B=99, cl=cl)
um <- uncertainty(m, type="boot", B=99, cl=cl)
stopCluster(cl)
bootstrap average for opticut
bs <- bsmooth(uo$uncertainty[[1]1])
stat <- cbind(Mean=rowMeans(bs),
t(apply(bs, 1, quantile, probs=c(0.025, 0.975))))
bootstrap average for multicut
bsm <- as.matrix(um$uncertainty[[1]1]1[,-(1:2)1)
statm <- cbind(Mean=colMeans(bsm),
t(apply(bsm, 2, quantile, probs=c(0.025, 0.975))))

O < T X >

op <- par(mfrow=c(2,1))

plot(p ~ x, type="1", ylim=c(@,1), main="Binary partitions (opticut)")

abline(v=br, col="grey", 1lty=3)

lines(br[-1]-0.5%d, stat[,1], col=4)

lines(br[-1]-0.5*d, stat[,2], col=4, 1lty=2)

lines(br[-1]-0.5xd, stat[,3], col=4, 1lty=2)

lines(br[-1]-0.5%d, bs[,1], col=2)

legend("topright”, bty="n", lty=c(1,1,2,1), col=c(1,4,4,2),
legend=c("True response”,"bsmooth”,"”0.95 CI","Best partition"))

plot(p ~ x, type="1", ylim=c(@,1), main="Multi-level model (multicut)")
abline(v=br, col="grey", 1lty=3)

lines(br[-1]-0.5%d, statm[,1], col=4)

lines(br[-1]-0.5*d, statm[,2], col=4, lty=2)

lines(br[-1]-0.5%d, statm[,3], col=4, 1ty=2)

42 warblers

legend("topright”, bty="n", lty=c(1,1,2), col=c(1,4,4),
legend=c("True response”,"bsmooth”,"”0.95 CI"))
par(op)

End(Not run)

warblers Warblers Data Set

Description

Five species of warblers were studied to determine the factors controlling the species abundances
and competition (MacArthur 1958).

Usage

data("warblers")

Format

A list with 3 elements: xtab is a list of sample x species matrices (sec_prc: percentages of to-
tal number of seconds of observations, num_prc: percentages of total number of observations in
seconds, sec_cnt: counts based on percentages and totals of seconds, num_cnt: counts based on
percentages and totals), samp is a data frame with sample level attributes such as height (6 is the
base, 1 is the top of trees, most trees were 50—60 feet tall) and depth of branches in the canopy (B:
bare or lichen- covered base, M: middle zone of old needles, T: terminal zone of new, less than 1.5
years old, needles or buds) , taxa is a data frame with scientific and common names for the species.

Source

MacArthur 1958.

References

MacArthur, R. H., 1958. Population ecology of some warblers of northeastern coniferous forests.
Ecology 39:599-619. <doi:10.2307/1931600>

Examples

data(warblers)
str(warblers)

warbh <- mefa4::groupSums(warblers$xtab$num_cnt, 1, warblers$samp$height)
warbd <- mefa4::groupSums(warblers$xtab$num_cnt, 1, warblers$samp$depth)
op <- par(mfrow=c(1,2))

matplot(rownames(warbh), warbh, type="b", xlab="height")

matplot(warbd, type="b", axes=FALSE, xlab="depth")

box ()

axis(2)

warblers

axis(1, 1:3, rownames(warbd))
par(op)

43

Index

+ datasets
birdrec, 7
dolina, 9
warblers, 42

* manip
allComb, 4
lorenz, 10
optilevels, 32
rankComb, 35
uncertainty, 36

+ methods
bestmodel, 5

* misc
allComb, 4
lorenz, 10
rankComb, 35

+* models
multicut, 13
opticut, 23
optilevels, 32
uncertainty, 36

* package
opticut-package, 2

* utilities
beta2i, 6
multicut, 13
occolors, 19
ocoptions, 21
opticut, 23

allComb, 4, 25, 29, 36
as.data.frame, 15, 16, 26, 28, 38
as.data.frame.multicut (multicut), 13
as.data.frame.opticut (opticut), 23
as.data.frame.summary.multicut
(multicut), 13
as.data.frame.summary.opticut
(opticut), 23
as.data.frame.summary.uncertainty
(uncertainty), 36

44

as.data.frame.uncertainty
(uncertainty), 36

bestmodel, 5, 16, 17, 28, 29
bestmodel.multicut (multicut), 13
bestmodel .opticut (opticut), 23
bestmodel.optilevels (optilevels), 32
bestpart, 16, 17, 28, 29, 38

bestpart (bestmodel), 5
bestpart.multicut, 22
bestpart.multicut (multicut), 13
bestpart.opticut (opticut), 23
bestpart.uncertainty (uncertainty), 36

bestpart.uncertaintyl (uncertainty), 36

beta2i, 6, 17,29
betareg, 26

birdrec, 7

bsmooth (uncertainty), 36

check_strata (uncertainty), 36
checkComb, 22

checkComb (allComb), 4
col2gray (occolors), 19
col2rgb, 19
colorRampPalette, 19, 20

dolina, 9

fitted, 16, 28
fitted.multicut (multicut), 13
fitted.opticut (opticut), 23
fix_levels (opticut), 23

getMLE (bestmodel), 5
getMLE .multicut (multicut), 13
getMLE.opticut (opticut), 23

glm, 26
glm.nb, 26
gray, 19, 20

iquantile (lorenz), 10

INDEX

kComb (allComb), 4

lcplot (multicut), 13
lines, 12

1m, 26
lorenz, 5, 10, 16, 17,22

make.names, 15, 26, 38
multicut, 3, 6, 13, 22, 29, 33, 39
multicutl (multicut), 13

occolors, 15,19, 22, 25

oComb (rankComb), 35

ocoptions, 6, 16, 17, 20, 21, 29

opticut, 3, 5, 6, 15, 17,22, 23, 32, 33, 35, 36,
38, 39

opticut-package, 2

opticutl, 32

opticutl (opticut), 23

optilevels, 3, 17, 29, 31

order, 11, 12

par, 15,25
plot, 15,25
plot.lorenz (lorenz), 10
plot.multicut (multicut), 13
plot.multicutl (multicut), 13
plot.opticut (opticut), 23
points, 12
predict, 16, 28
predict.multicut (multicut), 13
predict.opticut (opticut), 23
print.multicut (multicut), 13
print.multicutl (multicut), 13
print.opticut (opticut), 23
print.opticutl (opticut), 23
print.summary.lorenz (lorenz), 10
print.summary.multicut (multicut), 13
print.summary.opticut (opticut), 23
print.summary.uncertainty
(uncertainty), 36
print.uncertainty (uncertainty), 36
print.uncertaintyl (uncertainty), 36

quantile, 11, 12
quantile.lorenz (lorenz), 10

rank, 32
rankComb, 5, 25, 29, 35
rsf, 27

45

rspf, 27

set.seed, 39

strata (opticut), 23

strata.multicut (multicut), 13
strata.uncertainty (uncertainty), 36
subset.multicut (multicut), 13
subset.opticut (opticut), 23
subset.uncertainty (uncertainty), 36
summary.lorenz (lorenz), 10
summary.multicut (multicut), 13
summary.opticut (opticut), 23
summary.uncertainty (uncertainty), 36

try, 22
uncertainty, 3,6, 17, 29, 36

warblers, 42
wplot (opticut), 23

zeroinfl, 26, 27

	opticut-package
	allComb
	bestmodel
	beta2i
	birdrec
	dolina
	lorenz
	multicut
	occolors
	ocoptions
	opticut
	optilevels
	rankComb
	uncertainty
	warblers
	Index

