Package ‘optiSolve’

October 14, 2022
Type Package

Title Linear, Quadratic, and Rational Optimization

Version 1.0

Date 2021-10-13

Author Robin Wellmann

Maintainer Robin Wellmann <r.wellmann@uni-hohenheim.de>
Depends R (>=3.4)

Description Solver for linear, quadratic, and rational programs with linear, quadratic, and ratio-
nal constraints. A unified interface to different R packages is provided. Optimization prob-
lems are transformed into equivalent formulations and solved by the respective package. For ex-
ample, quadratic programming problems with linear, quadratic and rational con-
straints can be solved by augmented Lagrangian minimization using package 'alabama’, or by se-
quential quadratic programming using solver 'slsqp'. Alternatively, they can be reformu-
lated as optimization problems with second order cone constraints and solved with package 'cccp'.

License GPL-2

Imports Matrix, shapes, alabama, cccp, nloptr, MASS, methods, plyr,
stringr, stats, Repp (>=0.12.4)

RoxygenNote 7.1.2

NeedsCompilation no

Repository CRAN

Date/Publication 2021-10-13 12:32:04 UTC

R topics documented:

optiSolve-package 2
adjust 3
COP « v v v e e e e e e e e e 4
Ibcon e 5
lincon e e e e e e 7
linfun e 9
myQ . .. e e 10

2 optiSolve-package
myQl . .o e e e 11
myQ2 . .o e e 11
Phenotype L e e e 12
print.copValidation L 12
quadcon e e 14
quadfun e e 16
FAtOCON e 17
ratiofun L 19
SOIVECOD . .« o v o e e e e e 21
ubcon 23
validate L L 25
Index 27
optiSolve-package Linear, Quadratic, and Rational Optimization
Description
Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints.
A unified interface to different R packages is provided. Optimization problems are transformed
into equivalent formulations and solved by the respective package. For example, quadratic pro-
gramming problems with linear, quadratic and rational constraints can be solved by augmented
Lagrangian minimization using package ’alabama’, or by sequential quadratic programming using
solver ’slsqp’. Alternatively, they can be reformulated as optimization problems with second order
cone constraints and solved with package ’cccp’.
Details

The following steps are included in solving a constrained optimization problem (cop):

1) Define the objective with one of the following functions:

linfun defines a linear objective function,
quadfun defines a quadratic objective function,
ratiofun defines a rational objective function.

2) Define the constraints by using the following functions:

lincon defines linear equality and inequality constraints,
quadcon defines quadratic constraints,

ratiocon defines rational constraints,

Ibcon defines lower bounds for the variables,

ubcon defines upper bounds for the variables.

3) Put the objective function and the constraints together to define the optimization problem:

adjust 3

cop defines a constrained optimization problem.

4) Solve the optimization problem:

solvecop solves a constrained optimization problem.

5) Check if the solution fulfils all constraints:

validate checks if the solution fulfils all constraints, and calculates the values of the constraints.

Author(s)

Robin Wellmann

Maintainer: Robin Wellmann <r.wellmann @uni-hohenheim.de>

References

Kraft, D. (1988). A software package for sequential quadratic programming, Technical Report
DFVLR-FB 88-28, Institut fuer Dynamik der Flugsysteme, Oberpfaffenhofen, July 1988.

Lange K, Optimization, 2004, Springer.

Madsen K, Nielsen HB, Tingleff O, Optimization With Constraints, 2004, IMM, Technical Univer-
sity of Denmark.

adjust Adjust Constraints and Objective Functions

Description

Constraints and objective functions are adjusted so that they refer to a larger or smaller set of
variables.

Usage
adjust(x, ids)

Arguments

n n n on

X Constraint or objective function of class "1inFun”, "1inCon", "quadFun”, "quadCon",
"ratioFun”, and "ratioCon”.

ids Vector with ids of the variables.

4 cop

Details
Constraints and objective functions are adjusted so that they refer to a larger or smaller set of
variables. Additional variables do not affect the value of the constraint or objective function.

Value
A data frame (invisible) containing values and bounds of the constraints, the value of the objective
function, and column valid which is TRUE if all constraints are fulfilled.

See Also

The main function for solving constrained programming problems is solvecop.

cop Constrained Optimization Problem

Description

Define a constrained optimization problem with a linear, quadratic, or rational objective function,
and linear, quadratic, rational, and boundary constraints.

Usage
cop(f, max=FALSE, 1b=NULL, ub=NULL, lc=NULL, ...)
Arguments
f Objective function, defined with function linfun, quadfun, or ratiofun.
max Logical value. Should the function be maximized? This is possible only for
linear objective functions.
1b Lower bounds for the variables, defined with function Ibcon.
ub Upper bounds for the variables, defined with function ubcon.
lc Linear inequality and equality constraints, defined with function lincon.
Quadratic and rational inequality constraints, defined with functions quadcon
and ratiocon.
Details

Define a constrained optimization problem with a linear, quadratic, or rational objective function,
and linear, quadratic, rational, and boundary constraints. The optimization problem can be solved
with function solvecop.

Ibcon

Value

An object of class COP, which may contain the following components

f‘

max
1b
ub
lc
qc
rc
X
id

madeDefinite

Author(s)
Robin Wellmann

See Also

List with S3-class "linFun", "quadFun", or "ratioFun", defining the objective
function

Logical value. Should the objective function be maximized?
List with S3-class "IbCon", defining lower bounds.

List with S3-class "ubCon", defining upper bounds.

List with S3-class "linCon", defining linear constraints

List with S3-class "quadCon", defining quadratic constraints
List with S3-class "ratioCon", defining rational constraints
Vector with NAs

Vector with names of the variables that are to be optimized

Logical variable indicating whether non-positive-semidefinite matrices have al-
ready been approximated by positive-definite matrices.

The main function for solving constrained programming problems is solvecop.

lbcon

Lower Bounds

Description

Define lower bounds for the variables of the form

Usage

val <= x.

lbcon(val=numeric(@), id=seq_along(val))

Arguments

val

id

Numeric vector with lower bounds for the variables. If val is a single value,
then this value will be used for all variables in vector id.

Vector defining the names of the variables to which the constraint applies. Each
variable name corresponds to one component of x. Variable names must be
consistent across constraints.

Details

Define lower bounds for the variables of the form

val <= x.

Vector x contains only the variables included in argument id.

Value

An object of class 1bCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples
Linear programming with linear and quadratic constraints
#i## Example from animal breeding ##HH
The mean breeding value BV is maximized whereas the Hi#
mean kinship in the offspring x'Qx+d is restricted #iH
Lower and upper bounds for females are identical, so #i#HH
their contributions are not optimized. #H##
Lower and upper bounds for some males are defined. #iH
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","==")
Nf <- sum(phenotype$Sex=="female")
id <- phenotype$Indiv
lbval <- setNames(rep(@, 1length(id)), id)
ubval <- setNames(rep(NA, length(id)), id)
lbval[phenotype$Sex=="female"] <- 1/(2*Nf)
ubval[phenotype$Sex=="female"] <- 1/(2*Nf)
1bval["276000102379430"] <- 0.02
ubval["276000121507437"] <- 0.03
mycop <- cop(f = linfun(a=phenotype$BV, id=id, name="BV"),

max= TRUE,

1b = lbcon(lbval, id=id),

ub = ubcon(ubval, id=id),

lc = lincon(A=A, dir=dir, val=val, id=id),

qc = quadcon(Q=myQ, d=0.001, val=0.045,
name="Kinship"”, id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)

Ibcon

lincon

Evaluation <- validate(mycop, res)

valid solver status

TRUE cccp2 optimal

#

Variable Value Bound 0K?

BV 0.5502 max

lower bounds all x >= 1b : TRUE
upper bounds all x <= ub : TRUE
Sexfemale 0.5 == 0.5 : TRUE
Sexmale 0.5 == 0.5 : TRUE
Kinship 0.045 <= 0.045 : TRUE

res$x["276000102379430"]

res$x["276000121507437"]

lincon

Linear Constraints

Description

Define linear equality and inequality constraints of the form

Usage

Ax + ddirval

lincon(A, d=rep(@, nrow(A)), dir=rep("==",nrow(A)), val=rep(@, nrow(A)),
id=1:ncol(A), use=rep(TRUE,nrow(A)), name=rownames(A))

Arguments

A
d
dir

val
id

use

name

Numeric matrix of the constraint coefficients.
Numeric vector.

Character vector with the directions of the constraints. Each element must be
one of "<=", "=="_and ">=".

Numeric vector with threshold values.

Vector (if present), defining the names of the variables to which the constraint
applies. Each variable name corresponds to one component of x. Variable names
must be consistent across constraints.

Logical vector indicating the constraints to be included in the optimization prob-
lem. If use[1]=FALSE, then linear constraint i does not affect the result, but the
value of the linear function A[i,] x + d[i] will be reported by function validate.
Vector with names of the constraints.

8 lincon
Details
Define linear inequality and equality constraints of the form
Ax + ddirval
(component wise). If parameter id is specified, then vector x contains only the indicated variables.

Value

An object of class 1inCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples
Quadratic programming with linear constraints #it#
#i## Example from animal breeding i
The mean kinship in the offspring x'Qx+d is minized #i##
and the mean breeding value is restricted. #it#
data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex+BV-1, data=phenotype))

A[,1:5]
val <- c(0.5, 0.5, 0.40)
dir <- ¢ "::",”zz"’">=u)

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship”, id=rownames(myQ)),

1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solvecop(mycop, solver="cccp”, quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE cccp optimal

#

Variable Value Bound 0K?

Kinship 0.0322 min

lower bounds all x >= 1b : TRUE
Sexfemale 0.5 = 0.5 : TRUE
Sexmale 0.5 = 0.5 : TRUE
BV 0.4 >= 0.4 : TRUE

linfun 9

linfun Linear Objective Function

Description

Define a linear objective function of the form

flx)=dx+d

Usage

linfun(a, d=0, id=1:length(a), name="lin.fun")

Arguments

a Numeric vector of the coefficients.

d Numeric value.

id Vector defining the names of the variables to which the function applies. Each
variable name corresponds to one component of x. Variable names must be
consistent across constraints.

name Name for the objective function.

Details

Define linear objective function of the form

flx)=dr+d

Value

An object of class 1inFun.

See Also

The main function for solving constrained programming problems is solvecop.

10 myQ

Examples

Linear programming with linear and quadratic constraints

#i## Example from animal breeding Hi#
The mean breeding value BV is maximized whereas the #iH
mean kinship in the offspring x'Qx+d is restricted #iH
data(phenotype)

data(myQ)

A <- t(model.matrix(~Sex-1, data=phenotype))

A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","==")

mycop <- cop(f = linfun(a=phenotype$BV, id=phenotype$Indiv, name="BV"),
max= TRUE,
1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
qc = quadcon(Q=myQ, d=0.001, val=0.035, name="Kinship"”, id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE cccp2 optimal

#

Variable Value Bound 0K?

BV 0.7667 max

lower bounds all x >= 1b : TRUE

Sexfemale 0.5 = 0.5 : TRUE

Sexmale 0.5 = 0.5 : TRUE

Kinship 0.035 <= 0.035 : TRUE

myQ Kinship Matrix

Description

Kinship matrix of the cattle listed in data frame phenotype. This is an (almost) positive semidefinite
matrix.

myQlI 11

Usage
data(myQ)

Format

Matrix

myQ1 Kinship Matrix

Description

Matrix needed to compute kinship at native alleles for the cattle listed in data frame phenotype.
This is an (almost) positive semidefinite matrix.

Usage

data(myQ1)

Format

Matrix

myQ2 Kinship Matrix

Description

Matrix needed to compute kinship at native alleles for the cattle listed in data frame phenotype.
This is an (almost) positive semidefinite matrix.

Usage

data(myQ2)

Format

Matrix

12 print.cop Validation

phenotype Phenotypes of Genotyped Cattle

Description

Phenotypes of cattle.

Usage

data(phenotype)

Format

Data frame containing information on genotyped cattle. The columns contain the IDs of the indi-
viduals (Indiv), simulated breeding values (BV), simulated sexes (Sex), and genetic contributions
from other breeds (MC).

print.copValidation Print Validation of a Solution

Description

Print the validation results for the solution of an optimization problem.

Usage
S3 method for class 'copValidation'
print(x, ...)
Arguments
X The result of function validate.
Unused additional arguments.
Details

Print the validation results for the solution of an optimization problem.

print.cop Validation 13

Value

A list of class copValidation (invisible) with components:

summary

info

var

obj.fun

See Also

Data frame containing one row for each constraint with the value of the con-
straint in column Val, the bound for the constraint in column Bound, and col-
umn OK states if the constraint is fulfilled. The value of the objective function
is shown in the first row. Additional rows contain the values of disabled con-
straints.

Data frame with component valid indicating if all constraints are fulfilled, com-
ponent solver containing the name of the solver used for optimization, and
component status describing the solution as reported by the solver.

Data frame with the values of the objective function and constraints at the opti-
mum.

Named numeric value with value and name of the objective function at the opti-
mum.

The main function for solving constrained programming problems is solvecop.

Examples
Quadratic programming with linear constraints H#it#
Example from animal breeding #iH#

where the mean kinship in the offspring is minized #i##

data(phenotype)

data(myQ)

A <- t(model.matrix(~Sex+BV-1, data=phenotype))

rownames(A) <- c("male.cont”,"”female.cont”, "Breeding.Value")
val <- c(0.5, 0.5, 0.40)
dir <_ c VI=:VI,II==II’II>=II)

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship”, id=rownames(myQ)),

1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solvecop(mycop, solver="cccp"”, quiet=FALSE, trace=FALSE)

head(res$x)

Evaluation <- validate(mycop, res, quiet=TRUE)

print(Evaluation)

#
#

valid solver status
TRUE cccp optimal

14 quadcon

#

Variable Value Bound 0K?

Kinship 0.0322 min

lower bounds all x >= 1b . TRUE
male.cont 0.5 = 0.5 : TRUE
female.cont 0.5 == 0.5 : TRUE
Breeding.Value 0.4 >= 0.4 : TRUE

quadcon Quadratic Constraint

Description

Define a quadratic constraint of the form

2'Qr +ad'z+d < wval

Usage

quadcon(Q, a=rep(@, nrow(Q)), d=0, dir="<=", val,
id=1:nrow(Q), name="quadratic”, use=TRUE)

Arguments
Q Numeric symmetric matrix of the constraint coefficients.
a Numeric vector.
d Numeric value.
dir Character string "<="".
val Numeric threshold value, which is the upper bound for the quadratic function.
id Vector defining the names of the variables to which the constraint applies. Each
variable name corresponds to one component of x. Variable names must be
consistent across constraints.
name Name for the constraint.
use Logical value indicating if the constraint should be included in the optimization
problem. If use=FALSE, then constraint does not affect the result, but the value
of the quadratic function will be reported by function validate.
Details

Define a quadratic inequality constraint of the form
Qx4+ d'z+d < val.

Vector x contains only the variables included in argument id.

quadcon 15

Value

An object of class quadCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

Linear programming with linear and quadratic constraints

#i## Example from animal breeding Hi#
The mean breeding value BV is maximized whereas the #iH
mean kinship in the offspring x'Qx+d is restricted Hit#
data(phenotype)

data(myQ)

A <- t(model.matrix(~Sex-1, data=phenotype))

A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","=="

mycop <- cop(f = linfun(a=phenotype$BV, id=phenotype$Indiv, name="BV"),
max= TRUE,
1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),
gc = quadcon(Q=myQ, d=0.001, val=0.035, name="Kinship", id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE cccp2 optimal

#

Variable Value Bound 0K?

BV 0.7667 max

lower bounds all x >= 1b : TRUE
Sexfemale 0.5 = 0.5 : TRUE
Sexmale 0.5 = 0.5 : TRUE
Kinship 0.035 <= 0.035 : TRUE

16 quadfun

quadfun Quadratic Objective Function

Description

Define a quadratic objective function of the form
fx)=2TQx+aTz+d

Usage
quadfun(Q, a=rep(@, nrow(Q)), d=0, id=1:nrow(Q), name="quad.fun")

Arguments

Q Numeric symmetric matrix of the constraint coefficients.

a Numeric vector.

d Numeric value.

id Vector (if present), defining the names of the variables to which the function
applies. Each variable name corresponds to one component of x. Variable names
must be consistent across constraints.

name Name for the objective function.

Details

Define a quadratic objective function of the form
fx)=2"Qx+a"x+d

Value

An object of class quadFun.

See Also

The main function for solving constrained programming problems is solvecop.

Examples
Quadratic programming with linear constraints H#iH#
Example from animal breeding #it#
The mean kinship in the offspring x'Qx+d is minized
and the mean breeding value is restricted. #it#
data(phenotype)

data(myQ)

ratiocon 17

A <~ t(model.matrix(~Sex+BV-1, data=phenotype))

A[,1:5]
val <= c(0.5, 0.5, 0.40)
dir <- c(”::”,"::n’u>:u)

mycop <- cop(f quadfun(Q=myQ, d=0.001, name="Kinship”, id=rownames(myQ)),

1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solvecop(mycop, solver="cccp”, quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE cccp optimal

#

Variable Value Bound 0K?

Kinship 0.0322 min

lower bounds all x >= 1b : TRUE

Sexfemale 0.5 == 0.5 : TRUE

Sexmale 0.5 = 0.5 : TRUE

BV 0.4 >= 0.4 TRUE

ratiocon Rational Constraint

Description

Define a rational constraint of the form

2TQua + afw + dy
.fTQQl‘ + Gfgx + d2 -

val

Usage

ratiocon(Q1, al=rep(@, nrow(Q1)), d1=0, Q2, a2=rep(@, nrow(Q2)), d2=0, dir="<=", val,
id=1:nrow(Q1), name="rational”, use=TRUE)

Arguments
Q1 Numeric quadratic matrix.
al Numeric vector.
d1 Numeric value.
Q2 Numeric quadratic matrix.

a2 Numeric vector.

18 ratiocon

d2 Numeric value.

dir Character string "<=".

val Numeric threshold value, which is the upper bound for the rational function.

id Vector defining the names of the variables to which the constraint applies. Each

variable name corresponds to one component of x. Variable names must be
consistent across constraints.

name Name for the constraint.

use Logical value indicating if the constraint should be included in the optimization
problem. If use=FALSE, then the constraint does not affect the result, but the
value of the rational function will be reported by function validate.

Details

Define a rational inequality constraint of the form

2TQuw +alx +dy
2T Qox +alz +dy ~

val.

Vector x contains only the variables included in argument id.

For rational constraints it is required that there is a linear constraint ensuring that sum(x) is a
constant. Furthermore, the denominator must be non-negative.

Value

An object of class ratioCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

Constrained optimization with rational objective #iH
function and linear and quadratic constraints i
Example from animal breeding HiH#
The mean kinship at native alleles in the offspring is minimized
The mean breeding value and the mean kinship are constrained it
data(phenotype)

data(myQ)

data(myQ1)

data(myQ2)

A <- t(model.matrix(~Sex+BV+MC-1, data=phenotype))
AL,1:5]

val <- c(0.5, 0.5, 0.4, 0.5)

dir <= c("==", "==", ">=" "<=")

ratiofun 19

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship”, id=rownames(myQ)),

1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv),

rc = ratiocon(Q1=myQ1, Q2=myQ2, d1=0.0004, d2=0.00025, val=0.040,
id=rownames(myQ1), name="nativeKinship")
)

res <- solvecop(mycop, solver="slsqgp"”, quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE slsgp successful completion

#

Variable Value Bound 0K?

Kinship 0.0324 min

lower bounds all x >= 1b : TRUE

Sexfemale 0.5 = 0.5 TRUE

Sexmale 0.5 = 0.5 . TRUE

BV 0.4 >= 0.4 : TRUE

MC 0.4668 <= 0.5 : TRUE

nativeKinship 0.04 <= 0.04 TRUE

ratiofun Rational Objective Function

Description

Define a rational objective function of the form

2T Qi+ a1z + di
2T Qox + asx + do

fz) =

Usage

ratiofun(Q1, al=rep(@, nrow(Q1)), d1=0, Q2, a2=rep(@, nrow(Q2)), d2=0,
id=1:nrow(Q1), name="ratio.fun")

Arguments
Q1 Numeric quadratic matrix.
al Numeric vector.
di Numeric value.

Q2 Numeric quadratic matrix.

20

ratiofun
a2 Numeric vector.
d2 Numeric value.
id Vector defining the names of the variables to which the constraint applies. Each

variable name corresponds to one component of x. Variable names must be
consistent across constraints.

name Name for the constraint.

Details

Define a rational ofjective function of the form

2TQiz + a1z + di
2T Qox + asx + do

fz) =

Reasonable bounds for the variables should be provided because the function can have several local
optima. Solvers 'slsqp' (the default) and 'alabama' are recommended.

Value

An object of class ratioFun.

See Also

The main function for solving constrained programming problems is solvecop.

Examples

Constrained optimization with rational objective HiH#
function and linear and quadratic constraints #iH
#i## Example from animal breeding H#H#H#
The mean kinship at native alleles in the offspring is minimized
The mean breeding value and the mean kinship are constrained #iH
data(phenotype)

data(myQ)

data(myQ1)

data(myQ2)

Ax <- t(model.matrix(~Sex+BV+MC-1, data=phenotype))

AX[,1:5]
val <- c(0.5, 0.5, 0.4, 0.5)
dir <_ C H::“, II::”’ II>:”, Il<:H)

mycop <- cop(f ratiofun(Q1=myQ1, Q2=myQ2, d1=0.0004, d2=0.00025,
id=rownames(myQ1), name="nativeKinship"),
1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=Ax, dir=dir, val=val, id=phenotype$Indiv),
qc = quadcon(Q=myQ, d=0.001, val=0.035,
name="Kinship"”, id=rownames(myQ)))

solvecop

21

res <- solvecop(mycop, quiet=FALSE)

validate(mycop, res)

valid solver status

TRUE slsgp successful completion

#

Variable Value Bound 0oK?

nativeKinship 0.0366 min

lower bounds all x >= 1b : TRUE

Sexfemale 0.5 == 0.5 : TRUE

Sexmale 0.5 == 0.5 TRUE

BV 0.4 >= 0.4 TRUE

MC 0.4963 <= 0.5 TRUE

Kinship 0.035 <= 0.035 TRUE

solvecop Solve a Constrained Optimization Problem

Description

Solve a constrained optimization problem with a linear, quadratic, or rational objective function,
and linear, quadratic, rational, and boundary constraints.

Usage

solvecop(op, solver="default”, make.definite=FALSE, X=NULL, quiet=FALSE, ...)
Arguments

op An optimization problem, usually created with function cop.

solver Character string with the name of the solver. Available solvers are "alabama”,

make.definite

quiet

non

"ccep”, "ceep2”, and "slsqgp”. Solver "csdp” is temporarily disabled because
the package Rcsdp has been removed from Cran. The default means that the
solver is chosen automatically. The solvers are described in the Details section.

Logical variable indicating whether non-positive-semidefinite matrices should
be approximated by positive-definite matrices. This is always done for solvers
that are known not to convergue otherwise.

Starting vector of parameter values (not needed). Any initial vector, even those
violating linear inequality constraints, may be specified. Ignored by solvers
"ccep” and "csdp”. For "slsqgp” the lower and upper bounds must not be
violated.

Logical variable indicating whether output to console should be switched off.

22 solvecop

Tuning parameters of the solver. The available parameters depend on the solver
and will be printed when the function is used with quiet=FALSE. In section
Details it is mentioned where descriptions of these parameters can be found.

Details

Solve a constrained optimization problem with a linear, quadratic, or rational objective function,
and linear, quadratic, rational, and boundary constraints.

Solver

"alabama": The augmented lagrangian minimization algorithm auglag from package alabama is
called. The method combines the objective function and a penalty for each constraint into a single
function. This modified objective function is then passed to another optimization algorithm with
no constraints. If the constraints are violated by the solution of this sub-problem, then the size of
the penalties is increased and the process is repeated. The default methods for the uncontrained
optimization in the inner loop is the quasi-Newton method called BFGS. Tuning parameters used
for the outer loop are described in the details section of the help page of function auglag. Tuning
parameters used for the inner loop are described in the details section of the help page of function
optim.

"ccep” and "cccp2”: Function ccep from package ccep for solving cone constrained convex pro-
grams is called. For solver "cccp”, quadratic constraints are converted into second order cone
constraints, which requires to approximate non-positive-semidefinite matrices by positive-definite
matrices. For solver "cccp2"”, quadratic constraints are defined by functions. The implemented
algorithms are partially ported from CVXOPT. Tuning parameters are those from function ctrl.

"slsqp”: The sequential (least-squares) quadratic programming (SQP) algorithm slsqp for gradient-

based optimization from package nloptr. The algorithm optimizes successive second-order (quadratic/least-
squares) approximations of the objective function, with first-order (affine) approximations of the
constraints. Available parameters are described in nl.opts

Value

A list with the following components:

X Named numeric vector with parameters optimizing the objective function while
satisfying constraints, if convergence is successful.
solver Name of the solver used for optimization.
status Message indicating type of convergence as reported by the solver.
Author(s)

Robin Wellmann

Examples
Quadratic programming with linear constraints H#it#
#i## Example from animal breeding #i#H#

where the mean kinship in the offspring is minized

ubcon 23

data(phenotype)
data(myQ)

A <- t(model.matrix(~Sex+BV-1, data=phenotype))

rownames(A) <- c("male.cont”,"female.cont”, "Breeding.Value")
val <- c(0.5, 0.5, 0.40)
dir <_ C(H::”,II::H’II>:II)

mycop <- cop(f = quadfun(Q=myQ, d=0.001, name="Kinship”, id=rownames(myQ)),
1b = lbcon(@, id=phenotype$Indiv),
ub = ubcon(NA, id=phenotype$Indiv),
lc = lincon(A=A, dir=dir, val=val, id=phenotype$Indiv))

res <- solvecop(mycop, solver="cccp”, quiet=FALSE, trace=FALSE)
head(res$x)

hist(res$x,breaks=50,x1im=c(0,0.5))

Evaluation <- validate(mycop, res)

Evaluation$summary

Evaluation$info

Evaluation$obj. fun

Evaluation$var

EvaluationvarBreeding.Value

ubcon Upper Bounds

Description

Define upper bounds for the variables of the form

r <=wval.

Usage

ubcon(val=numeric(@), id=seq_along(val))

Arguments

val Numeric vector with upper bounds for the variables. If val is a single value,
then this value will be used for all variables in vector id.

24

id

Details

ubcon

Vector defining the names of the variables to which the constraint applies. Each
variable name corresponds to one component of x. Variable names must be

consistent across constraints.

Define upper bounds for the variables of the form

T <=wal.

Vector x contains only the variables included in argument id.

Value

An object of class ubCon.

See Also

The main function for solving constrained programming problems is solvecop.

Examples
Linear programming with linear and quadratic constraints
#i## Example from animal breeding #i#H
The mean breeding value BV is maximized whereas the Hi#
mean kinship in the offspring x'Qx+d is restricted #iH
Lower and upper bounds for females are identical, so #i#H#
#i## their contributions are not optimized. #H##
Lower and upper bounds for some males are defined. #iH
data(phenotype)
data(myQ)
A <- t(model.matrix(~Sex-1, data=phenotype))
A[,1:5]
val <- c(0.5, 0.5)
dir <- c("==","==")
Nf <- sum(phenotype$Sex=="female")
id <- phenotype$Indiv
lbval <- setNames(rep(@, 1length(id)), id)
ubval <- setNames(rep(NA, length(id)), id)
lbval[phenotype$Sex=="female"] <- 1/(2*Nf)
ubval[phenotype$Sex=="female"] <- 1/(2*Nf)
1bval["276000102379430"] <- 0.02
ubval["276000121507437"] <- 0.03
mycop <- cop(f = linfun(a=phenotype$BV, id=id, name="BV"),

max= TRUE,
1b = lbcon(lbval, id=id),

validate 25

ub = ubcon(ubval, id=id),

lc = lincon(A=A, dir=dir, val=val, id=id),

qc = quadcon(Q=myQ, d=0.001, val=0.045,
name="Kinship"”, id=rownames(myQ)))

res <- solvecop(mycop, solver="cccp2", quiet=FALSE)

Evaluation <- validate(mycop, res)

valid solver status

TRUE cccp2 optimal

#

Variable Value Bound 0K?

BV 0.5502 max

lower bounds all x >= 1b : TRUE

upper bounds all x <= ub : TRUE

Sexfemale 0.5 = 0.5 : TRUE

Sexmale 0.5 == 0.5 : TRUE

Kinship 0.045 <= 0.045 : TRUE

validate Validate a Solution

Description

Validate a solution of an optimization problem.

Usage

validate(op, sol, quiet=FALSE, t0l1=0.0001)

Arguments
op The constrained optimization problem defined with function cop.
sol The solution of the optimization problem obtained with function solvecop.
quiet Logical variable indicating whether output to console should be switched off.
tol The tolerance. A constraint is considered fulfilled even if the value exceeds (falls
below) the thresshold value by tol.
Details

Validate a solution of an optimization problem by checking if the constraints are fulfilled.

Values and bounds of the constraints are printed.

26

Value

validate

A list of class copValidation with components:

summary

info

var

obj.fun

Author(s)

Robin Wellmann

See Also

Data frame containing one row for each constraint with the value of the con-
straint in column Val, the bound for the constraint in column Bound, and col-
umn OK states if the constraint is fulfilled. The value of the objective function
is shown in the first row. Additional rows contain the values of disabled con-
straints.

Data frame with component valid indicating if all constraints are fulfilled, com-
ponent solver containing the name of the solver used for optimization, and
component status describing the solution as reported by the solver.

Data frame with the values of the objective function and constraints at the opti-
mum.

Named numeric value with value and name of the objective function at the opti-
mum.

The main function for solving constrained programming problems is solvecop.

Index

* datasets ubcon, 2, 4, 23
myQ, 10
myQ1, 11 validate, 3,7, 12, 14, 18, 25
myQ2, 11
phenotype, 12
* package
optiSolve-package, 2

adjust, 3
auglag, 22

ccep, 22
cop, 3,4,21,25
ctrl, 22

lbcon, 2,4, 5
lincon, 2, 4,7
linfun, 2,4,9

myQ, 10
myQ1, 11
myQ2, 11

nl.opts, 22

optim, 22
optiSolve (optiSolve-package), 2
optiSolve-package, 2

phenotype, 10, 11, 12
print (print.copValidation), 12
print.copValidation, 12

quadcon, 2, 4, 14
quadfun, 2,4, 16

ratiocon, 2,4, 17
ratiofun, 2,4, 19

slsqp, 22

solvecop, 3-6, 8, 9, 13, 15, 16, 18, 20, 21,
24-26

27

	optiSolve-package
	adjust
	cop
	lbcon
	lincon
	linfun
	myQ
	myQ1
	myQ2
	phenotype
	print.copValidation
	quadcon
	quadfun
	ratiocon
	ratiofun
	solvecop
	ubcon
	validate
	Index

