Type Package

Package ‘operators’

October 14, 2022

Title Additional Binary Operators

Version 0.1-8
Date 2015-07-10

Author Romain Francois <romain@r-enthusiasts.com>

Maintainer Romain Francois <romain@r-enthusiasts.com>

Depends R (>=3.1.0)

Imports utils

Suggests testthat

Description A set of binary operators for common tasks such as regex

manipulation.

License MIT + file LICENSE

URL https://github.com/romainfrancois/operators

BugReports https://github.com/romainfrancois/operators/issues

NeedsCompilation no

Repository CRAN

Date/Publication 2015-07-11 18:32:07

R topics documented:

but

pattern . . .

patternDivisiono Lo

patternFilter

patternSubstitution L.

pipe

https://github.com/romainfrancois/operators
https://github.com/romainfrancois/operators/issues

A function with the same body as the fun argument but with a different list of arguments.

2 but
plusEqual e 13
withOptions 14
GoO~%0 e 15
Goof%o 16
Gowithout% 17

Index 18

operators-package Additional binary operators

Description

Additional binary operators for R
Author(s)
Romain Francois <romain @r-enthusiasts.com>
Maintainer: Romain Francois <romain @r-enthusiasts.com>
but Modification of function arguments
Description
Modifies the arguments of a function
Usage
fun %but% x
Arguments
fun Function to modify
X Modifier
Value

character decorator 3

Note

The %but% operator is S3-generic with the following methods:
- A default method which does nothing more than returning the fun function.

- A charactor method. In that case, x describes the logical arguments of the function. x is a single
character string containing one or several token of the form ab where b is the first letter of the
logical argument we wish to modify and a is an optional modifier. a can be empty or +, in which
case the argument will be set to TRUE; - in which case the argument will be set to FALSE; or ! in
which case the argument will be the opposite of the current value in fun

- A list. In that case, arguments that are part of the formal arguments of fun and elements of the list
x are updated to the element in x
Author(s)

Romain Francois <francoisromain @free.fr>

See Also

args, formals

Examples

default method, nothing is done
rnorm %but% 44

character method, operating on logical arguments

grep %but% "pf" # grep, with perl and fixed set to TRUE

grep %but% "i-e” # grep, ignoring the case but not using extended regular expressions
(grep %but% "vp")("blue", colors())

#i## list method
rnorm %but% list(mean = 3)

rnorm %but% list(nonsense = 4)

character decorator Creates string decorators by repeating a pattern

Description

Creates string decorators by repeating a pattern either a given number of times or so that it takes a
given number of character

Usage

txt %x=% n
txt %x=|% length.out
strrep(txt, n, length.out=getOption("width"))

Arguments

txt Pattern to repeat
n Number of times to repeat the pattern

length.out number of character the output should be

Value

A character string

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

paste, sprintf, rep

Examples

"=" %x=% 80
"<=+->" %x=|% 80
strrep(".-", n =10)

strrep(".-", length.out = 50)
strrep(".-")

files

files Read or write an R object to/from a file

Description

A set of functions to quickly redirect output to a file or read character vectors from a file.

Usage
object %>% file
object %>>% file

object %2>% file
object %2>>% file

object %*x>% file
object %*>>% file

object %<% file
object %<<% file

notln 5

Arguments
object R object to print to the file or to read from the file
file file in which to read or write

Details

%>% sends the object to the file. The object is printed to the file according to the function specified
in the operators.print option supplied with this package, most likely to be the print function.
See examples.

%>>% appends the output to the file.

%2>% sends the message stream to the file by sinking the message stream to the file. See sink for
details. %2>>% appends the message stream to the file.

%*>% sends both output and message streams to the file. %*>>% appends them.

%<% reads the content of the file into the object. %<<% appends the content of the file to the object.

Value

NULL, used for the side effects.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also
file

Examples

Not run:
rnorm(30) %>% "test.txt”
stop("problem”) %2>>% "test.txt”
X %<% "test.txt"
X

End(Not run)

notln Not in

Description

Negation of the %in% operator.

6 pattern

Usage

X %!in% table

Arguments

X The values to be matched

table The values to not be matched against
Value

Logical vector, negation of the %in% operators on the same arguments.

Author(s)

Romain Francois <francoisromain @free.fr>

Examples

1:10 %!in% c(1,3,5,9)

pattern Pattern matching operators

Description
Set of convenience functions to handle strings and pattern matching. These are basically companion
binary operators for the classic R function grep and regexpr.

Usage

X %~% rx
X %!'~% rx

X %~*% rx
X %!~x% rx

X %~t% rx
X %!~+% rx

Arguments

X text to manipulate

rx regular expression

pattern 7

Value

%~% : gives a logical vector indicating which elements of x match the regular expression rx. %!~%
is the negation of %~%

%~*% : gives a single logical indicating if all the elements of x are matching the regular expression
rx. %!~*% is the negation of %~*%.

%~+% : gives a single logical indicating if any element of x matches the regular expression rx. %! ~+%
is the negation of %~+%.

Note

The matching is done using a modified version of the regexpr function. The modification is per-
formed by applying the operators.regexpr option to the regexpr function via the %but% operator.

The default version of regexpr enables the perl and extended options. See %but% for details.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

grep, gsub, %~|% for regular expression filters

Examples

txt <- c("arm”,"foot”,"lefroo”, "bafoobar”)
txt %~% "foo"

txt %!~% "foo"

txt %~*% "foo"

txt %~+% "foo"

txt %!~*% "foo"

txt %!~+% "foo"

txt %~% "[a-z]1"
txt %!'~% "[a-z]"
txt %~*% "[a-z]"
txt %~+% "[a-z]1"
txt %!~*% "[a-z]"
txt %!~+% "[a-z]"

cols <- colors()
cols[cols %% "*blue”"]
see also %~|%

needs perl regular expression for the \\d, see %but%
with(options(operators.regexpr = "p"), {

cols[cols %!~% "\\d$"]

)

patternDivision

patternDivision Divide by a pattern

Description

split a character vector by a regular expression

Usage

txt %/~% rx

Arguments
txt text to manipulate
rx regular expression
Value

A character vector. For convenience, this function does not return a list as strsplit does.

Note

%/~% uses strsplit to split the strings. Logical arguments of strsplit can be indirectly modified
using the operators.strsplit option declared as part of this package. For example, it uses perl

regular expressions by default. See %but% for a description.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

grep, gsub

Examples

"Separate these words by spaces” %/~% " +"

From ?strsplit
unlist(strsplit("a.b.c”, "\\."))
"a.b.c" %/~% "\\."

patternFilter 9

patternFilter Regular expression filters

Description

Filters a character vector by a regular expression.

Usage

X %~|% rx
X %!~|% rx

Arguments
X text to manipulate
rx regular expression
Value

’%~|% : a character vector containing all the elements of x that match the regular expression rx or
NULL if there is no match.

’%!~|% : acharacter vector containing all the elements of x that do not match the regular expression
rx.

Note

The filtering is done using the regexpr function. Logical arguments of regexpr can be indirectly
used by %~|% or %!~|% by using the operators.regexpr option declared with this package. See
%but% for a description of this mecanism.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

grep, gsub

Examples

cols <- colors()
cols %~|% "*blue”

blue colors that don't finish with a digit
(a1l <= cols %~|% "blue"” %!~|% "\\d$")

10 patternSubstitution

(a2 <- cols %~|% "blue[*0-9]*$")
(a3 <- grep("blue["0-9]*", cols, value = TRUE))

using perl regular expressions

not necessary since p is in the default of the package

with(options(operators.regexpr = "p"), {

(a4 <- grep("blue[*\\d]*", cols, value = TRUE, perl = TRUE))
(a5 <- cols %~|% "blue[*\\dI*$")

b))

blue colors that contain a r
cols %~|% "blue" %~|% "r"
grep("r", grep("blue"”, cols, value = TRUE), value = TRUE)

blue colors that don't contain a r
cols %~|% "blue” %!~|% "r"
cols %~|% "~[*r]*blue[*r]x$"

grep("*[*r1x$", grep("blue”, cols, value = TRUE), value = TRUE) # tricky and verbose

or in two steps, ... laborious
bluecols <- grep("blue”, cols, value = TRUE)
bluecols[-grep("r", bluecols)]

patternSubstitution Remove a pattern from a character vector

Description

Removes a pattern from a character vector.

Usage

txt %—~% pattern
txt %-~|% pattern
txt %0~|% pattern

Arguments
txt text to manipulate
pattern regular expression
Value

%-~% : Removes the pattern rx from the character vector x. It is equivalent of using gsub(rx,

X).

nn

’

patternSubstitution 11

%-~|% does a two-step operation. First, it selects the elements of x that match the pattern rx and
then it removes the pattern from the rest.

%0~|% does a slightly more complicated two-step operation. It first gets the elements of txt that
match the pattern and then keeps only the part that matches the pattern. Similar to the grep -o in
recent versions of unix.

Note

%-~% does the substitution via the gsub function. One can pass arguments to the gsub function
using the operators.gsub option declared by this package. See %but% for a description of this
mechanism.

The filtering in %-~|% is performed by %~|% and therefore options can be passed to regexpr using
the operators.regexpr option.

For %o~|%, if the pattern given does not contain opening and closing round brackets, the entire
matching space is retained, otherwise only the part that is contained between the brackets is retained,
see the example below.

%s~% is an attempt to provide some of the functionnality of the unix’s sed. The pattern is split by
"/" and used as follows: the first part is the regular expression to replace, the second is the replace-
ment, and the (optional) third gives modifiers to the gsub function used to perform the replacement.
Modifiers are passed to gsub with the %but% operator. The "g" modifier can also be used in order to
control if the gsub function is used for global replacement or the sub function to only replace the

first match. At the moment "/" cannot be used in the regular expressions.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

grep, gsub
Examples

txt <- c("arm”,"foot","lefroo”, "bafoobar")
txt %-~% "foo"
txt %-~|% "foo"

Email of the R core team members
rcore <- readLines(file.path(R.home("doc"),"AUTHORS"))
rcore

or this way

angle brackets are retained here
rcore %0~ |% "<.x@.*>"

rcore %0~|% "<.x@.*x>" %-~% "[<>]"

allows to perform the match using < and > but strips them from the result

12 pipe

rcore %0~|% "<(.*@.%)>"

really silly english to french translator
pinks <- colors() %~|% "pink”

pinks %s~% "/pink/rose/"

gsub("pink", "rose", pinks)

perl regex pink shouter
pinks %s~% "/(pink)/\\U\\1/p"
gsub("(pink)", "\\U\\1", pinks, perl = TRUE)

see ?gsub
gsub (" (O\N\w) (\\w*) " "\\UNNTNAL\\2", "a test of capitalizing”, perl=TRUE)
"a test of capitalizing” %s~% "/(\\w) (\\w*)/\\U\\T\\L\\2/gp"

pipe Pipe an R object to a unix command

Description
The operator prints the R object into a temporay file and then executes the unix command though
apipe

Usage

r %% u

Arguments

r Any R object

u character string representing the unix command

Value

An object of S3-class unixoutput. The print method for unixoutput objects simply cat the
string.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

pipe

plusEqual

Examples

Not run:
rnorm(30) %|% 'head -n2'
rnorm(30) %|% 'sed "s/* *\\[[0-91*x\\1//g" '

if(require(R4X)){
X <= xml('<root>
<child id="1">
<subchild id = "sub1" >foo</subchild>
<subchild id = "sub2" >bar</subchild>
</child>
<child id="2">
<subchild id="a">blah</subchild>
<subchild id="b">bob</subchild>
<something id="c" />
</child>
<fruits>
<fruit>banana</fruit>
<fruit>mango</fruit>
</fruits>
</root>')
X %|% "xml_pp | highlight -S xml -A"

}

End(Not run)

plusEqual Plus Equal Operators

Description

Plus equal operator

Usage

object %+=% value

Arguments
object object to which to add something
value object to add

Value

NULL. Used for the side effect of changing the value of object

Note

The operator %+=% is S3-generic with a single default method implemented at the moment.

14 withOptions

Author(s)

Romain Francois <francoisromain @free.fr>

Examples

standard examples
x <-4

X %t=% 4

X

XML examples with the R4X package
Not run:

require("R4X")

x <- xmlNode("test")

X %t+=% '<foo><bar/></foo>'

X

End(Not run)

withOptions Alternative option mechanism

Description

options is a slight rework on options that gives a S3 class options to the result. This allows the
definition of a with method for the options. This is useful to execute a block of code with a set of
options.

Usage
S3 method for class 'options'
with(data, expr, ...)
options(...)

Arguments

Options to use. See options for details.
data Options to use. This is typically a call to the options function

expr Code to execute.

%0~% 15

Details

The result of the expression that is evaulated is modified in order to keep the option context it
is associated with. The class of the object created by the expression is expanded to include the
withOptions class and the withOptions attribute that keeps the context in which the object has
been created.

This mechanism has been implemented specially for the automatic printing of objects that happens
outside the call to the with.options function and not reflect the options requested by the user when
the object is printed.

Value
For the function with.options, the result of the expression given in expr is returned. See details
below.

Author(s)

Romain Francois <francoisromain @free.fr>

See Also

The original options function in the base package.

Examples

part of ?glm
counts <- ¢(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())

summary(glm.D93)

with(options(show.signif.stars = FALSE, show.coef.Pvalues=FALSE),
summary(glm.D93))

a <- try(

with(options(warn = 2) , warning("more than a warning”)),
silent = TRUE)

class(a)

%0~% Only keeps the macthing part of a regular expression

Description

The operator %0~% is used to retain the only the part of the txt that matches the regular expression.

16 %0f%

Usage

txt %0~% pattern

Arguments
txt Character vector
pattern Regular expression
Value

In case where parts of the regular expression are surrounded by brackets, the operator returns a
matrix with as many lines as the length of txt and as many columns as chunks of regular expressions.

Author(s)

Romain Francois <francoisromain@free.fr>

Examples

x <= c("foobar"”,"barfooooooooooooobar")
x %0~% "fo+"

%0f% Is an object of a given class

Description

Operator to check if an object is of a given class

Usage

x %of% y

Arguments

X R object

y Character string, the class to check against.
Value

Logical value indicating the result

Author(s)

Romain Francois <francoisromain @free.fr>

%without%

See Also

inherits

Examples

iris %of% "data.frame”

17

%without% Remove certain elements from a vector

Description

Remove the elements in table from s

Usage

X %without% table

Arguments

X Vector

table Elements to remove from x
Value

x without the elements of table

Author(s)

Romain Francois <francoisromain @free.fr>

Examples

letters %without% "a"

Index

* character %<% (files), 4
%without%, 17 %>>% (files), 4
* file %>% (files), 4
files, 4 %~*% (pattern), 6
pipe, 12 %~+% (pattern), 6
* manip %~% (pattern), 6
%0~%, 15 %but% (but), 2
%0f%, 16 %s~% (patternSubstitution), 10
character decorator, 3 %x=% (character decorator), 3
pipe, 12 %butkh, 7-9, 11
+ package %0~%, 15
operators-package, 2 %of%, 16
* programming %without%, 17

withOptions, 14

« utilities args, 3
but, 2 but, 2
files, 4
notln, 5 cat, 12
pattern, 6 character decorator, 3
patternDivision, 8
patternFilter, 9 file, 5
patternSubstitution, 10 files, 4
plusEqual, 13 formals, 3
%!~*% (pattern), 6
%! ~+% (pattern), 6 grep, 6-9, 11
%!~% (pattern), 6 gsub, 7-9, 11
%!in% (notIn), 5))
%x>>% (files), 4 inherits, 17
%x>% (files), 4 notIn. 5

%+=% (plusEqual), 13
%-~% (patternSubstitution), 10
%/~% (patternDivision), 8

operators (operators-package), 2
operators-package, 2

%2>>% (files), 4 options, 14, 15

%2>% (files), 4 options (withOptions), 14
%<x% (files), 4

%<2% (files), 4 paste, 4

%w<<x% (files), 4 pattern, 6

%<<2% (files), 4 patternDivision, 8

%<<% (files), 4 patternFilter, 9

18

INDEX

patternSubstitution, 10
pipe, 12,12
plusEqual, 13
print, 5, 12

regexpr, 6, 7
rep, 4

sink, 5

sprintf, 4

strrep (character decorator), 3
strsplit, 8

with.options (withOptions), 14
withOptions, 14

19

	operators-package
	but
	character decorator
	files
	notIn
	pattern
	patternDivision
	patternFilter
	patternSubstitution
	pipe
	plusEqual
	withOptions
	%o~%
	%of%
	%without%
	Index

