Package 'openVA'

January 30, 2024

Type Package

Title Automated Method for Verbal Autopsy

Version 1.1.2

Date 2024-01-28

Author Zehang Richard Li, Jason Thomas, Tyler H. McCormick, Samuel J. Clark

Maintainer Zehang Richard Li <lizehang@gmail.com>

Depends R (>= 3.1)

Imports InterVA5 (>= 1.0.1), InSilicoVA (>= 1.1.3), InterVA4 (>= 1.7.3), Tariff (>= 1.0.1), ggplot2, crayon, cli, methods

Suggests covr, nbc4va, testthat, R.rsp, knitr

Description Implements multiple existing open-source algorithms for coding cause of death from verbal autopsies. The methods implemented include 'InterVA4' by Byass et al (2012) <doi:10.3402/gha.v5i0.19281>, 'InterVA5' by Byass at al (2019) <doi:10.1186/s12916-019-1333-6>, 'InSilicoVA' by Mc-Cormick et al (2016) <doi:10.1080/01621459.2016.1152191>, 'NBC' by Miasnikof et al (2015) <doi:10.1186/s12916-015-0521-2>, and a replication of 'Tariff' method by James et al (2011) <doi:10.1186/1478-7954-9-31> and Serina, et al. (2015) <doi:10.1186/s12916-015-0527-9>. It also provides tools for data manipulation tasks commonly used in Verbal Autopsy analysis and implements easy graphical visualization of individual and population level statistics. The 'NBC' method is implemented by the 'nbc4va' package that can be installed from <https://github.com/rrwen/nbc4va>. Note that this package was not developed by authors affiliated with the Institute for Health Metrics and Evaluation and thus unintentional discrepancies may exist in the implementation of the 'Tariff' method.

License GPL-2

URL https://github.com/verbal-autopsy-software/openVA

BugReports https://github.com/verbal-autopsy-software/openVA/issues RoxygenNote 7.2.3 VignetteBuilder R.rsp, knitr NeedsCompilation no Config/build/clean-inst-doc FALSE Repository CRAN Date/Publication 2024-01-29 23:40:03 UTC

R topics documented:

codeVA	2
ConvertData	5
ConvertData.phmrc	6
getCCC	8
getCSMF	8
getCSMF_accuracy	9
getIndivProb	0
getPHMRC_url	1
getTopCOD	2
interVA_train	3
openVA_status	5
openVA_update	6
plotVA	6
stackplotVA	7
2	0

Index

codeVA

Running automated method on VA data

Description

Running automated method on VA data

Usage

```
codeVA(
  data,
  data.type = c("WH02012", "WH02016", "PHMRC", "customize")[2],
 data.train = NULL,
  causes.train = NULL,
  causes.table = NULL,
 model = c("InSilicoVA", "InterVA", "Tariff", "NBC")[1],
 Nchain = 1,
 Nsim = 10000,
  version = c("4.02", "4.03", "5")[2],
 HIV = "h",
 Malaria = "h",
 phmrc.type = c("adult", "child", "neonate")[1],
 convert.type = c("quantile", "fixed", "empirical")[1],
  . . .
)
```

code VA

Arguments

data	Input VA data, see data.type below for more information about the format.
data.type	There are four data input types currently supported by codeVA function as below.
	 WH02012: InterVA-4 input format using WHO 2012 questionnaire. For example see data(RandomVA1). The first column should be death ID. WH02016: InterVA-5 input format using WHO 2016 questionnaire. For example see data(RandomVA5). The first column should be death ID. PHMRC: PHMRC data format. The raw PHMRC long format data will be processed internally following the steps described in McComirck et al. (2016). For example see ConvertData.phmrc
	• customized: Any dichotomized dataset with "Y" denote "presence", "" denote "absence", and "." denote "missing". The first column should be death ID.
data.train	Training data with the same columns as data, except for an additional column specifying cause-of-death label. It is not used if data.type is "WHO" and model is "InterVA" or "InSilicoVA". The first column also has to be death ID for "WHO" and "customized" types.
causes.train	the column name of the cause-of-death assignment label in training data.
causes.table	list of causes to consider in the training data. Default to be NULL, which uses all the causes present in the training data.
model	Currently supports four models: "InSilicoVA", "InterVA", "Tariff", and "NBC".
Nchain	Parameter specific to "InSilicoVA" model. Currently not used.
Nsim	Parameter specific to "InSilicoVA" model. Number of iterations to run the sampler.
version	Parameter specific to "InterVA" model. Currently supports "4.02", "4.03", and "5". For InterVA-4, "4.03" is strongly recommended as it fixes several major bugs in "4.02" version. "4.02" is only included for backward compatibility. "5" version implements the InterVA-5 model, which requires different data input format.
HIV	Parameter specific to "InterVA" model. HIV prevalence level, can take values "h" (high), "l" (low), and "v" (very low).
Malaria	HIV Parameter specific to "InterVA" model. Malaria prevalence level, can take values "h" (high), "l" (low), and "v" (very low).
phmrc.type	Which PHMRC data format is used. Currently supports only "adult" and "child", "neonate" will be supported in the next release.
convert.type	type of data conversion when calculating conditional probability (probability of each symptom given each cause of death) for InterVA and InSilicoVA models. Both "quantile" and "fixed" usually give similar results empirically.
	• quantile: the rankings of the P(SIC) are obtained by matching the same quantile distributions in the default InterVA P(SIC)
	• fixed: $P(S C)$ are matched to the closest values in the default InterVA $P(S C)$ table.

- empirical: no ranking is calculated, but use the empirical conditional probabilities directly, which will force updateCondProb to be FALSE for InSilicoVA algorithm.
- other arguments passed to insilico, InterVA, interVA_train, tariff, and nbc function in the nbc4va package. See respective package documents for details.

Value

a fitted object

References

. . .

Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark (2016) *Probabilistic cause-of-death assignment using verbal autopsies*. https://arxiv.org/abs/1411.3042, *Journal of the American Statistical Association*

James, S. L., Flaxman, A. D., Murray, C. J., & Population Health Metrics Research Consortium. (2011). *Performance of the Tariff Method: validation of a simple additive algorithm for analysis of verbal autopsies. Population Health Metrics*, 9(1), 1-16.

Zehang R. Li, Tyler H. McCormick, Samuel J. Clark (2014) InterVA4: An R package to analyze verbal autopsy data. Center for Statistics and the Social Sciences Working Paper, No.146

http://www.interva.net/

Miasnikof P, Giannakeas V, Gomes M, Aleksandrowicz L, Shestopaloff AY, Alam D, Tollman S, Samarikhalaj, Jha P. *Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths. BMC Medicine. 2015;13:286.*

See Also

insilico in package **InSilicoVA**, InterVA in package **InterVA4**, InterVA5 in package **InterVA5**, interVA_train, tariff in package **Tariff**, and nbc function in package **nbc4va**.

ConvertData

Converting Input data with different coding scheme to standard format

Description

Converting Input data with different coding scheme to standard format

Usage

```
ConvertData(
    input,
    yesLabel = NULL,
    noLabel = NULL,
    missLabel = NULL,
    data.type = c("WHO2012", "WHO2016")[1]
)
```

Arguments

input	matrix input, the first column is ID, the rest of the columns each represent one symptom
yesLabel	The value(s) coding "Yes" in the input matrix.
noLabel	The value(s) coding "No" in the input matrix.
missLabel	The value(s) coding "Missing" in the input matrix.
data.type	The coding scheme of the output. This can be either "WHO2012" or "WHO2016"

Value

a data frame coded as follows. For WHO2012 scheme: "Y" for yes, "" for No, and "." for missing. For WHO2016 scheme: "y" for yes, "n" for No, and "-" for missing.

See Also

Other data conversion: ConvertData.phmrc()

```
# make up a fake 2 by 3 dataset with 2 deaths and 3 symptoms
id <- c("d1", "d2")
x <- matrix(c("Yes", "No", "Don't know",
    "Yes", "Refused to answer", "No"),
byrow = TRUE, nrow = 2, ncol = 3)
x <- cbind(id, x)</pre>
```

```
colnames(x) <- c("ID", "S1", "S2", "S3")
# see possible raw data (or existing data created for other purpose)
x
new <- ConvertData(x, yesLabel = "Yes", noLabel = "No",
missLabel = c("Don't know", "Refused to answer"))
new</pre>
```

ConvertData.phmrc Convert standard PHMRC data into binary indicator format

Description

The PHMRC data and the description of the format could be found at https://ghdx.healthdata. org/record/ihme-data/population-health-metrics-research-consortium-gold-standard-verbal-autopsy-da. This function convert the symptoms into binary indicators of three levels: Yes, No, and Missing. The health care experience (HCE) and free-text columns, i.e., columns named "word_****", are not considered in the current version of data conversion.

Usage

```
ConvertData.phmrc(
    input,
    input.test = NULL,
    cause = NULL,
    phmrc.type = c("adult", "child", "neonate")[1],
    cutoff = c("default", "adapt")[1],
    ...
)
```

Arguments

input	standard PHMRC data format
input.test	standard PHMRC data format to be transformed in the same way as input
cause	the column name for the cause-of-death variable to use. For example, "va34", "va46", or "va55". It is used if adaptive cut-offs are to be calculated for continuous variables. See below for details.
phmrc.type	which data input format it is. The three data formats currently available are "adult", "child", and "neonate".
cutoff	This determines how the cut-off values are to be set for continuous variables. "default" sets the cut-off values proposed in the original paper published with the dataset. "adapt" sets the cut-off values using the rules described in the origi- nal paper, which calculates the cut-off as being two median absolute deviations above the median of the mean durations across causes. However, we are not able to replicate the default cut-offs following this rule. So we suggest users to use this feature with caution.
	not used

6

Value

converted dataset with only ID and binary symptoms. Notice that when applying this function to the raw PHMRC data, the returned ID variable corresponds to the row index of the raw PHMRC data (i.e., cleaned data with ID = 10 correspond to the 10th row of the raw dataset), and does not correspond to the "newid" column in the PHMRC data.

References

James, S. L., Flaxman, A. D., Murray, C. J., & Population Health Metrics Research Consortium. (2011). *Performance of the Tariff Method: validation of a simple additive algorithm for analysis of verbal autopsies. Population Health Metrics*, *9*(1), 1-16.

See Also

Other data conversion: ConvertData()

Examples

```
## Not run:
# Starting from Jan 2024, PHMRC data requires registration at the GHDx website
# to doload. The following commands assume the user has download the file for
# PHMRC VA adult data from the website after logging in.
# For more details on the download process, see ?getPHMRC_url.
raw <- read.csv("IHME_PHMRC_VA_DATA_ADULT_Y2013M09D11_0.csv", nrows = 100)</pre>
head(raw[, 1:20])
# default way of conversion
clean <- ConvertData.phmrc(raw, phmrc.type = "adult")</pre>
head(clean$output[, 1:20])
# using cut-offs calculated from the data (caution)
clean2 <- ConvertData.phmrc(raw, phmrc.type = "adult",</pre>
cause = "va55", cutoff = "adapt")
head(clean2$output[, 1:20])
# Now using the first 100 rows of data as training dataset
# And the next 100 as testing dataset
test <- read.csv("IHME_PHMRC_VA_DATA_ADULT_Y2013M09D11_0.csv", nrows = 200)</pre>
test <- test[-(1:100), ]</pre>
# For the default transformation it does matter
clean <- ConvertData.phmrc(raw, test, phmrc.type = "adult")</pre>
head(clean$output[, 1:20])
head(clean$output.test[, 1:20])
# For adaptive transformation, need to make sure both files use the same cutoff
clean2 <-ConvertData.phmrc(raw, test, phmrc.type = "adult",</pre>
cause = "va55", cutoff = "adapt")
head(clean2$output[, 1:20])
head(clean2$output.test[, 1:20])
```

End(Not run)

getCCC

Description

Denote the cause-specific accuracy for the j-th cause to be (# of deaths correctly assigned to cause j) / (# of death due to cause j). For causes 1, 2, ..., C, the cause-specific CCC is computed for the j-th cause is defined to be (j-th cause-specific accuracy - 1 / C) / (1 - 1 / C) and the overall CCC is the average of each cause-specific CCC.

Usage

getCCC(cod, truth, C = NULL)

Arguments

cod	a data frame of estimated cause of death. The first column is the ID and the second column is the estimated cause.
truth	a data frame of true causes of death. The first column is the ID and the second column is the estimated cause.
С	the number of possible causes to assign. If unspecified, the number of unique causes in cod and truth will be used.

See Also

Other output extraction: getCSMF_accuracy(), getCSMF(), getIndivProb(), getTopCOD()

Examples

```
est <- data.frame(ID = c(1, 2, 3), cod = c("C1", "C2", "C1"))
truth <- data.frame(ID = c(1, 2, 3), cod = c("C1", "C3", "C3"))
# If there are only three causes
getCCC(est, truth)
# If there are 20 causes that can be assigned
getCCC(est, truth, C = 20)</pre>
```

getCSMF

Obtain CSMF from fitted model

Description

Obtain CSMF from fitted model

Usage

getCSMF(x, CI = 0.95, interVA.rule = TRUE)

Arguments

х	a fitted object from codeVA.
CI	For insilico object only, specifying the credible interval to return. Default value to be 0.95.
interVA.rule	Logical indicator for interVA object only. If TRUE, it means only up to top 3 causes for each death are used to calculate CSMF and the rest are categorized as "undetermined"

Value

a vector or matrix of CSMF for all causes.

See Also

Other output extraction: getCCC(), getCSMF_accuracy(), getIndivProb(), getTopCOD()

Examples

End(Not run)

getCSMF_accuracy Calculate CSMF accuracy

Description

Calculate CSMF accuracy

Usage

```
getCSMF_accuracy(csmf, truth, undet = NULL)
```

Arguments

csmf	a CSMF vector from getCSMF or a InSilicoVA fitted object.
truth	a CSMF vector of the true CSMF.
undet	name of the category denoting undetermined causes. Default to be NULL. If undetermined cause is present, it will be removed and the rest of the CSMF will
	be re-normalized to sum to 1.

Value

a number (or vector if input is InSilicoVA fitted object) of CSMF accuracy as 1 - sum(abs(CSMF - CSMF_true)) / (2 * (1 - min(CSMF_true))).

See Also

Other output extraction: getCCC(), getCSMF(), getIndivProb(), getTopCOD()

Examples

```
csmf1 <- c(0.2, 0.3, 0.5)
csmf0 <- c(0.3, 0.3, 0.4)
names(csmf0) <- names(csmf1) <- c("c1", "c2", "c3")
getCSMF_accuracy(csmf1, csmf0)
getCSMF_accuracy(csmf1, rev(csmf0))
```

getIndivProb	Extract individual distribution of cause of death

Description

Extract individual distribution of cause of death

Usage

```
getIndivProb(x, CI = NULL, ...)
```

Arguments

х	a fitted object from codeVA.
CI	Credible interval for posterior estimates. If CI is set to TRUE, a list is returned instead of a data frame.
	additional arguments that can be passed to get.indiv from InSilicoVA package.

Value

a data frame of COD distribution for each individual specified by row names.

getPHMRC_url

See Also

Other output extraction: getCCC(), getCSMF_accuracy(), getCSMF(), getTopCOD()

Examples

getPHMRC_url

Get the URL to the PHMRC dataset

Description

Get the URL to the PHMRC dataset

Usage

```
getPHMRC_url(type)
```

Arguments

type adult, child, or neonate

Value

URL of the corresponding dataset

Examples

getPHMRC_url("adult")

getTopCOD

Description

Extract the most likely cause(s) of death

Usage

```
getTopCOD(x, interVA.rule = TRUE, n = 1, include.prob = FALSE)
```

Arguments

х	a fitted object from codeVA.
interVA.rule	Logical indicator for interVA object only. If TRUE and (the parameter) $n \le 3$, then the InterVA thresholds are used to determine the top causes.
n	Number of top causes to include (if $n > 3$, then the parameter interVA.rule is treated as FALSE).
include.prob	Logical indicator for including the probabilities (for insilico) or indicator of how likely the cause is (for interVA) in the results

Value

a data frame of ID, most likely cause assignment(s), and corresponding probability (for insilico) or indicator of how likely the cause is (for interVA)

See Also

Other output extraction: getCCC(), getCSMF_accuracy(), getCSMF(), getIndivProb()

interVA_train

```
getTopCOD(fit_interva, n = 5)
getTopCOD(fit_interva, n = 5, include.prob = TRUE)
# InterVA5 & Example
data(RandomVA5)
fit_interva5 <- codeVA(RandomVA5[1:50,], data.type = "WHO2016", model = "InterVA",</pre>
                        version = "5", HIV = "1", Malaria = "1", write = FALSE)
getTopCOD(fit_interva5, n = 1)
getTopCOD(fit_interva5, n = 3)
getTopCOD(fit_interva5, n = 3, include.prob = TRUE)
getTopCOD(fit_interva5, interVA.rule = FALSE, n = 3)
getTopCOD(fit_interva5, n = 5)
getTopCOD(fit_interva5, n = 5, include.prob = TRUE)
# InSilicoVA Example
data(RandomVA5)
fit_insilico <- codeVA(RandomVA5[1:100,], data.type = "WH02016",</pre>
                        auto.length = FALSE)
getTopCOD(fit_insilico, n = 1)
getTopCOD(fit_insilico, n = 3)
getTopCOD(fit_insilico, n = 3, include.prob = TRUE)
# Tariff Example (only top cause is returned)
data(RandomVA3)
test <- RandomVA3[1:200, ]</pre>
train <- RandomVA3[201:400, ]</pre>
allcauses <- unique(train$cause)</pre>
fit_tariff <- tariff(causes.train = "cause", symps.train = train,</pre>
                     symps.test = test, causes.table = allcauses)
getTopCOD(fit_tariff, n = 1)
# NBC Example
library(nbc4va)
data(nbc4vaData)
train <- nbc4vaData[1:50, ]</pre>
test <- nbc4vaData[51:100, ]</pre>
fit_nbc <- nbc(train, test, known=TRUE)</pre>
getTopCOD(fit_nbc, n = 1)
getTopCOD(fit_nbc, n = 3)
getTopCOD(fit_nbc, n = 3, include.prob = TRUE)
## End(Not run)
```

interVA_train Extended InterVA method for non-standard input

Description

Extended InterVA method for non-standard input

Usage

```
interVA_train(
   data,
   train,
   causes.train,
   causes.table = NULL,
   thre = 0.95,
   type = c("quantile", "fixed", "empirical")[1],
   prior = c("uniform", "train")[1],
   ...
)
```

Arguments

data	A matrix input, or data read from csv files. Sample input is included as data(RandomVA3).
train	A matrix input, or data read from csv files in the same format as data, but with an additional column specifying cause-of-death. Sample input is included as data(RandomVA3).
causes.train	the column name of the cause-of-death assignment label in training data.
causes.table	list of causes to consider in the training data. Default to be NULL, which uses all the causes present in the training data.
thre	numerical number between 0 and 1. Symptoms with missing rate higher than thre in the training data will be dropped from both training and testing data.
type	type of data conversion when calculating conditional probability (probability of each symptom given each cause of death) for InterVA and InSilicoVA models. Both "quantile" and "fixed" usually give similar results empirically.
	• quantile: the rankings of the P(SIC) are obtained by matching the same quantile distributions in the default InterVA P(SIC)
	• fixed: $P(S C)$ are matched to the closest values in the default InterVA $P(S C)$ table.
	• empirical: no ranking is calculated, but use the empirical conditional probabilities directly.
prior	The prior distribution of CSMF. "uniform" uses no prior information, i.e., 1/C for all C causes and "train" uses the CSMF in the training data as prior distribution of CSMF.
	not used

Value

fitted interVA object

References

Tyler H. McCormick, Zehang R. Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel J. Clark (2016) *Probabilistic cause-of-death assignment using verbal autopsies*. https://arxiv.org/abs/1411.3042, *To appear, Journal of the American Statistical Association*

14

Zehang R. Li, Tyler H. McCormick, Samuel J. Clark (2014) InterVA4: An R package to analyze verbal autopsy data., Center for Statistics and the Social Sciences Working Paper, No.146

http://www.interva.net/

Examples

openVA_status

Check openVA packages status

Description

This will print the current versions of all openVA packages (and optionally, their dependencies) are up-to-date, and will install after an interactive confirmation.

Usage

openVA_status()

See Also

Other package status: openVA_update()

Examples

Not run:
openVA_status()

End(Not run)

openVA_update

Description

This will check to see if all openVA packages (and optionally, their dependencies) are up-to-date, and will install after an interactive confirmation.

Usage

```
openVA_update()
```

See Also

Other package status: openVA_status()

Examples

Not run:
openVA_update()

End(Not run)

plotVA

Plot top CSMF for a fitted model

Description

Plot top CSMF for a fitted model

Usage

```
plotVA(object, top = 10, title = NULL, ...)
```

Arguments

object	a fitted object using codeVA
top	number of top causes to plot
title	title of the plot
	additional arguments passed to plot.insilico, plot.tariff, CSMF, or plot.nbc function in the nbc4va package.

stackplotVA

See Also

plot.insilico in package InSilicoVA, CSMF in package InterVA4, CSMF5 in package InterVA5,
plot.tariff in package Tariff.

Other visualization: stackplotVA()

Examples

```
stackplotVA
```

plot grouped CSMF from a "insilico" object

Description

Produce bar plot of the CSMFs for a fitted object in broader groups. This function extends the stackplot() function in the InSilicoVA package to allow for the same visualization for results from InterVA, NBC, and Tariff algorithms.

Usage

```
stackplotVA(
    x,
    grouping = NULL,
    type = c("stack", "dodge")[1],
    group_order = NULL,
    err = TRUE,
    CI = 0.95,
    sample_size_print = FALSE,
    xlab = "",
```

```
ylab = "CSMF",
ylim = NULL,
title = "CSMF by broader cause categories",
horiz = FALSE,
angle = 0,
err_width = 0.4,
err_size = 0.6,
border = "black",
bw = FALSE,
filter_legend = FALSE,
....)
```

Arguments

х	one or a list of fitted object from codeVA function
grouping	C by 2 matrix of grouping rule. If set to NULL, make it default.
type	type of the plot to make
group_order	list of grouped categories. If set to NULL, make it default.
err	indicator of inclusion of error bars
CI	Level of posterior credible intervals.
sample_size_print	
	Logical indicator for printing also the sample size for each sub-population labels.
xlab	Labels for the causes.
ylab	Labels for the CSMF values.
ylim	Range of y-axis.
title	Title of the plot.
horiz	Logical indicator indicating if the bars are plotted horizontally.
angle	Angle of rotation for the texts on x axis when horiz is set to FALSE
err_width	Size of the error bars.
err_size	Thickness of the error bar lines.
border	The color for the border of the bars.
bw	Logical indicator for setting the theme of the plots to be black and white.
filter_legend	Logical indicator for including all broad causes in the plot legend (default; FALSE) or filtering to only the broad causes in the data being plotted
	Not used.

Author(s)

Zehang Li, Tyler McCormick, Sam Clark Maintainer: Zehang Li <lizehang@uw.edu>

18

stackplotVA

See Also

Other visualization: plotVA()

```
data(RandomVA3)
test <- RandomVA3[1:200, ]</pre>
train <- RandomVA3[201:400, ]</pre>
fit1 <- codeVA(data = test, data.type = "customize", model = "InSilicoVA",</pre>
                     data.train = train, causes.train = "cause",
                    Nsim=1000, auto.length = FALSE)
fit2 <- codeVA(data = test, data.type = "customize", model = "InterVA",</pre>
               data.train = train, causes.train = "cause", write=FALSE,
               version = "4.02", HIV = "h", Malaria = "l")
fit3 <- codeVA(data = test, data.type = "customize", model = "Tariff",</pre>
               data.train = train, causes.train = "cause",
               nboot.sig = 100)
data(SampleCategory)
stackplotVA(fit1, grouping = SampleCategory, type ="dodge",
            ylim = c(0, 1), title = "InSilicoVA")
stackplotVA(fit2, grouping = SampleCategory, type = "dodge",
            ylim = c(0, 1), title = "InterVA4.02")
stackplotVA(fit3, grouping = SampleCategory, type = "dodge",
            ylim = c(0, 1), title = "Tariff")
```

Index

* InSilicoVA codeVA, 2 * InterVA4 codeVA, 2 interVA_train, 13 * NBC4VA codeVA, 2 * Tariff codeVA, 2 * data conversion ConvertData, 5 ConvertData.phmrc, 6 * output extraction getCCC, 8 getCSMF, 8 getCSMF_accuracy, 9 getIndivProb, 10 getTopCOD, 12 * package status openVA_status, 15 openVA_update, 16 * visualization plotVA, 16 stackplotVA, 17 codeVA, 2, 16 ConvertData, 5, 7 ConvertData.phmrc, 3, 5, 6 CSMF, 16, 17 CSMF5, 17 getCCC, 8, 9-12 getCSMF, 8, 8, 10-12 getCSMF_accuracy, 8, 9, 9, 11, 12 getIndivProb, 8-10, 10, 12 getPHMRC_url, 11 getTopCOD, 8-11, 12

insilico,4 InterVA,4 InterVA5, 4 interVA_train, 4, 13 openVA_status, 15, 16 openVA_update, 15, 16 plot.insilico, 16, 17 plot.tariff, 16, 17 plotVA, 16, 19 stackplotVA, 17, 17 tariff, 4