Package 'ofpetrial'

December 12, 2024

Type Package

Title Design on-Farm Precision Field Agronomic Trials

Version 0.1.2

Maintainer Taro Mieno <tmieno2@unl.edu>

URL https://difm-brain.github.io/ofpetrial/

BugReports https://github.com/DIFM-Brain/ofpetrial/issues

Description A comprehensive system for designing and implementing on-farm precision field agronomic trials. You provide field data, tell 'ofpetrial' how to design a trial, and get readilyusable trial design files and a report checks the validity and reliability of the trial design.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Imports data.table, ggplot2, sf, lwgeom, purrr, tidyr, tibble, ggpubr, ggExtra, terra, zip, rmarkdown, tmap, magrittr, dplyr, bookdown, leaflet

VignetteBuilder knitr

Depends R (>= 2.10)

Suggests knitr

NeedsCompilation no

Author Taro Mieno [aut, cre, cph] (<https://orcid.org/0000-0002-0614-0771>), Brittani Edge [aut, ctb] (<https://orcid.org/0009-0005-2051-1048>)

Repository CRAN

Date/Publication 2024-12-11 23:00:02 UTC

Contents

add_blocks																									2
assign_rates				•			•		•	•						•	•	•	•	•					3

add_blocks

4
5
6
7
7
8
9
0
1
2
3
5
5
6
7
7
8
0

Index

add_blocks

Add blocks to trial design

Description

Delineate blocks on a trial design and assign block id to all the plots

Usage

add_blocks(td)

Arguments

td

trial design made by applying assign_rates() to experimental plots made by make_exp_plots()

Value

trial design with block_id added

Examples

```
#--- load rate information ---#
data(td_single_input)
#--- add blocks ---#
td_with_blocks <- add_blocks(td_single_input)</pre>
```

#--- take a look ---#

assign_rates

```
td_with_blocks$trial_design
#--- visualize ---#
viz(td_with_blocks, type = "block_id")
```

assign_rates

Assign rates to the plots of experimental plots

Description

This functions assign input rates for the plots created by make_exp_plots() according to the rate designs specified by the user in rate_info, which can be created by prep_rateingle().

Usage

assign_rates(exp_data, rate_info)

Arguments

exp_data	experiment plots created by make_exp_plots()
rate_info	rate information created by prep_rate()

Value

trial design as sf (experiment plots with rates assigned)

```
#--- load experiment plots made by make_exp_plots() ---#
data(exp_data)
exp_data
#--- load rate information ---#
data(rate_info)
rate_info
#--- assign rates ---#
td <- assign_rates(exp_data, rate_info)
#--- visualization of the assigned rates ---#
viz(td)</pre>
```

```
assign_rates_conditional
```

Assign rates to the plots of experimental plots for a single input based on existing trial designs created by assign_rates()

Description

This functions assign input rates for the plots created by make_exp_plots() for a single input according to the rate design specified by the user in rate_info. It assigns rates to the input so that the resulting design avoids significant correlation with the rate of another input specified as existing_design.

Usage

```
assign_rates_conditional(exp_data, rate_info, existing_design)
```

Arguments

exp_data	experiment plots created by make_exp_plots()						
rate_info	rate information created by prep_rate()						
existing_design							
	trial design of another input created with assign_rates()						

Value

trial design as sf (experiment plots with rates assigned)

```
#--- load experiment plots made by make_exp_plots() ---#
data(td_single_input)
exp_data
seed_plot_info <-</pre>
prep_plot(
  input_name = "seed",
  unit_system = "imperial",
  machine_width = 60,
  section_num = 24,
  harvester_width = 30,
  plot_width = 30
)
exp_data <-
make_exp_plots(
  input_plot_info = seed_plot_info,
  boundary_data = system.file("extdata", "boundary-simple1.shp", package = "ofpetrial"),
  abline_data = system.file("extdata", "ab-line-simple1.shp", package = "ofpetrial"),
```

```
abline_type = "free"
)
seed_rate_info <-</pre>
prep_rate(
  plot_info = seed_plot_info,
  gc_rate = 32000,
  unit = "seed",
  min_rate = 16000,
  max_rate = 40000,
  num_rates = 5,
  design_type = "ls"
)
assign_rates_conditional(
exp_data = exp_data,
rate_info = seed_rate_info,
existing_design = td_single_input
)
```

change_rates Change the assigned rates

Description

Change the assigned rates by plot and strip

Usage

```
change_rates(
   td,
   input_name = NA,
   strip_ids,
   plot_ids = NULL,
   new_rates,
   rate_by = "all"
)
```

Arguments

td	trial design
input_name	(character) input name
strip_ids	(numeric) vector of strip_ids
plot_ids	(numeric) vector of plot_ids
new_rates	(numeric) single numeric number for 'rate_by = "all"", a vector of numeric values for 'rate_by = "strip"", a matrix of numeric numbers for 'rate_by = "plot".
rate_by	(character) default is "all". The other options are "plot" and "strip".

Value

trial design with changed rates

Examples

```
#--- load rate information ---#
data(td_single_input)
#--- change rates of some strips ---#
strip_ids <- 1:5
plot_ids <- 5:10
new_rates <- 200
td_modified <- change_rates(td_single_input, "NH3", strip_ids, plot_ids, new_rates)
#--- visualize ---#
viz(td_modified)</pre>
```

check_alignment Check the alignment of harvester and applicator/planter

Description

Check the alignment of harvester and applicator/planter for mixed treatment problems where multiple input rates are associated with yield monitor data

Usage

check_alignment(td)

Arguments

td

trial design data created by make_exp_plots() and assign_rates()

Value

a tibble

Examples

#--- load trial design ---#
data(td_single_input)

#--- check the alignment of harvester and applicator/planter ---#
machine_alignment <- check_alignment(td_single_input)</pre>

#--- check the degree of mixed treatment problem ---#
machine_alignment\$overlap_data

check_ortho_inputs

```
#--- visualize the degree of mixed treatment problem ---#
machine_alignment$g_overlap[[1]]
```

check_ortho_inputs Check the correlation of the two inputs

Description

Check the correlation between the rates of the two inputs for a two-input experiment.

Usage

```
check_ortho_inputs(td)
```

Arguments td

trial design for a two-input experiment with rates assigned

Value

table

Examples

#--- load a trial design for a two-input experiment ---#
data(td_two_input)

#--- check correlation ---#
check_ortho_inputs(td_two_input)

check_ortho_with_chars

Check the orthogonality with field/topographic characteristics

Description

Check the orthogonality of the trial input rates and observed characteristics provided by the user

Usage

```
check_ortho_with_chars(td, sp_data_list, vars_list)
```

Arguments

td	(tibble) trial design data created by make_exp_plots() and assign_rates()
sp_data_list	(list) list of spatial datasets as 'sf' from the 'sf' package or 'SpatRaster' from the 'terra' package
vars_list	(list) list of character vectors indicating the name of the variables to be used in the datasets specified in sp_data_list

Value

a list

Examples

```
data(td_single_input)
yield_sf <- sf::st_read(system.file("extdata", "yield-simple1.shp", package = "ofpetrial"))</pre>
ssurgo_sf <-</pre>
  sf::st_read(system.file("extdata", "ssurgo-simple1.shp", package = "ofpetrial")) %>%
  dplyr::mutate(mukey = factor(mukey))
topo_rast <-
  c(
    terra::rast(system.file("extdata", "slope.tif", package = "ofpetrial")),
    terra::rast(system.file("extdata", "twi.tif", package = "ofpetrial"))
  )
checks <-
  check_ortho_with_chars(
    td = td_single_input,
    sp_data_list = list(yield_sf, ssurgo_sf, topo_rast),
    vars_list = list("Yld_Vol_Dr", c("mukey", "clay"), names(topo_rast))
  )
checks$summary_data[[1]]
checks$summary_fig[[1]]
```

exp_data

Experiment data

Description

Data on the experiment created by running the 'make_exp_plot()' function, which includes various sf objects (e.g., experiment plots, ab-line, headland, etc). This data exists only for the purpose of making examples in some function references succinct.

Usage

exp_data

make_exp_plots

Format

tbl_df tbl data.frame 'exp_data' A data frame with 1 rows and 9 columns:

input_name input name

harvester_width width of the harvester

plot_width width of the plots to be made

field_sf field boundary as an sf object

headland headland as an sf object

exp_plots experiment plots as an sf object

ab_lines ab-lines for the applicator/planter as an sf object

harvest_ab_lines ab-lines for the harvester as an sf object

abline_type (character) one of "free", "lock", "none" indicating the way ab-line is (or not) created

make_exp_plots

Make experimental plots/strips inside the field boundary

Description

Make experimental plots/strips inside the field boundary, harvester ab-line, and applicator/planter ab-line.

Usage

```
make_exp_plots(
    input_plot_info,
    boundary_data,
    abline_data = NA,
    abline_type = "free"
)
```

Arguments

input_plot_info

	(data.fram or a list of two data.frames) list of plot information created by make_input_plot()
boundary_data	(character) path of the field boundary file or boundary as an sf
abline_data	(character or sf) path of the ab-line file or ab-line as an sf
abline_type	(character) the type of ab-line generation. Select from "free", "lock", and "none"

Value

a tibble that include experimental plots as sf

Examples

```
n_plot_info <-</pre>
  prep_plot(
    input_name = "NH3",
    unit_system = "imperial",
    machine_width = 30,
    section_num = 1,
    harvester_width = 20,
    headland_length = 30,
     side_length = 60
  )
exp_data <-
  make_exp_plots(
    input_plot_info = n_plot_info,
   boundary_data = system.file("extdata", "boundary-simple1.shp", package = "ofpetrial"),
    abline_data = system.file("extdata", "ab-line-simple1.shp", package = "ofpetrial"),
    abline_type = "free"
  )
exp_data$exp_plots
```

make_trial_report Create trial design report

Description

This function creates an html report describing the trial design created by the user with assign_rates() and includes figures showing machine alignment

Usage

```
make_trial_report(td, folder_path, trial_name = NA, keep_rmd = FALSE)
```

Arguments

td	trial design created by assign_rates()
folder_path	(character) path to the folder in which the report will be saved
trial_name	(character) name of trial to be used in report
keep_rmd	(logical) If FALSE (Default), the original rmd file will be deleted upon creating an html report. Otherwise, the rmd file will be saved in the folder specified by 'folder_path'.

Value

path to the resulting html file (invisible)

10

plot_info

Examples

```
#--- load experiment made by assign_rates() ---#
data(td_single_input)
make_trial_report(
   td = td_single_input,
   folder_path = tempdir()
)
```

plot_info

Plot information

Description

Plot information for creating experiment plots using 'make_exp_plot()'. This data exists only for the purpose of making examples in some function references succinct.

Usage

plot_info

Format

data.frame 'plot_info' A data frame with 1 rows and 10 columns:

input_name input name unit_system measurement system (metric or imperial) machine_width width of the applicator/planter section_num number of the sections of the machine section_width width of a section of the machine harvester_width width of the harvester plot_width width of the plots to be made headland_length length of the headland side_length length of the side min_plot_length minimum plot length allowed max_plot_length maximum plot length allowed prep_plot

Description

Prepare plot information for a single-input experiment case. All the length values need to be specified in meter.

Usage

```
prep_plot(
    input_name,
    unit_system,
    machine_width,
    section_num,
    harvester_width,
    plot_width = NA,
    headland_length = NA,
    side_length = NA,
    max_plot_width = NA,
    min_plot_length = NA,
    max_plot_length = NA
```

Arguments

input_name	(character) Input name					
unit_system	(character) A character of either 'metric' or 'imperial' indicating the system of measurement used					
machine_width	(numeric) A numeric number in units specified in unit_system that indicates the width of the applicator or planter of the input					
section_num	(numeric) A numeric number that indicates the number of sections of the appli- cator or planter of the input					
harvester_width						
	(numeric) A numeric number that indicates the width of the harvester					
plot_width	(numeric) Default is c(NA, NA).					
headland_length						
	(numeric) A numeric number that indicates the length of the headland (how long the non-experimental space is in the direction machines drive). Default is NA.					
side_length	(numeric) A numeric number that indicates the length of the two sides of the field (how long the non-experimental space is in the direction perpendicular to the direction of machines). Default is NA.					
<pre>max_plot_width</pre>	(numeric) Maximum width of the plots. Default is 36.576 meter (120 feet).					

prep_rate

Value

a tibble with plot information necessary to create experiment plots

Examples

```
input_name <- "seed"
unit_system <- "metric"
machine_width <- 12
section_num <- 12
plot_width <- NA
harvester_width <- 24
prep_plot(input_name, unit_system, machine_width, section_num, harvester_width)</pre>
```

prep_rate

Description

Create data of input rate information for a single input with some checks on the validity of the information provided by the user. This can be used to assign rates to experiment plots using assign_rates().

Usage

```
prep_rate(
    plot_info,
    gc_rate,
    unit,
    rates = NULL,
    min_rate = NA,
    max_rate = NA,
    num_rates = 5,
    design_type = NA,
    rank_seq_ws = NULL,
    rank_seq_as = NULL,
    rate_jump_threshold = NA
)
```

Arguments

plot_info	(data.frame) plot information created by make_input_plot_data				
gc_rate	(numeric) Input rate the grower would have chosen if not running an experiment. This rate is assigned to the non-experiment part of the field. This rate also becomes one of the trial input rates unless you specify the trial rates directly using rates argument				
unit	(string) unit of input				
rates	(numeric vector) Default is NULL. Sequence of trial rates in the ascending order.				
min_rate	(numeric) minimum input rate. Ignored if rates are specified.				
max_rate	(numeric) maximum input rate. Ignored if rates are specified				
num_rates	(numeric) Default is 5. It has to be an even number if design_type is "ejca". Ignored if rates are specified.				
design_type	(string) type of trial design. available options are Latin Square ("ls"), Strip ("str"), Randomized Strip ("rstr"), Randomized Block ("rb"), Sparse ("sparse"), and Extra Jump-conscious Alternate "ejca". See the article on trial design for more details.				
rank_seq_ws	(integer) vector of integers indicating the order of the ranking of the rates, which will be repeated "within" a strip.				
rank_seq_as	(integer) vector of integers indicating the order of the ranking of the rates, which will be repeated "across" strip for their first plots.				
rate_jump_threshold					
	(integer) highest jump in rate rank acceptable				

Value

data.frame of input rate information

```
plot_info <-
    prep_plot(
        input_name = "seed",
        unit_system = "imperial",
        machine_width = 60,
        section_num = 24,
        harvester_width = 30,
        plot_width = 30
    )

prep_rate(
    plot_info,
    gc_rate = 30000,
    unit = "seeds",
    rates = c(20000, 25000, 30000, 35000, 40000)
)</pre>
```

rate_info

Description

Rate information for assigning rates to the experiment plots using the 'assign_rates()' function. This data exists only for the purpose of making examples in some function references succinct.

Usage

rate_info

Format

data.frame 'rate_info' A data frame with 1 rows and 7 columns:

input_name input name

design_type type of the trial design to be created

gc_rate normal rate the grower would have used if not running an experiment

unit unit of the input

rates_data data.frame of rates and their ranks

rank_seq_ws vector of the ranking of rates that will repeated within a strip

rank_seq_as vector of the ranking of rates that will repeated as the first rate of the strips

td_curved

Trial design (single-input) for a curved field

Description

Trial design data created by assigning rates to experiment plots running the 'assign_rates()' function. This data exists only for the purpose of making examples in some function references succinct.

Usage

td_curved

Format

tbl_df tbl data.frame 'td_curved' A data frame with 1 rows and 9 columns:

input_name input name
input_type shorthand for the type of the input: "N" for nitrogen, "S" for seed, etc.
trial_design experiment plots with input rats assigned as an sf object
design_type type of the trial design used
unit unit of the input
abline_type (character) one of "free", "lock", "none" indicating the way ab-line is (or not) created
ab_lines ab-lines for the applicator/planter as an sf object
harvest_ab_lines ab-lines for the harvester as an sf object
field_sf field boundary as an sf object
harvest_width width of the harvester

td_single_input Trial design (single-input)

Description

Trial design data created by assigning rates to experiment plots running the 'assign_rates()' function. This data exists only for the purpose of making examples in some function references succinct.

Usage

td_single_input

Format

tbl_df tbl data.frame 'td_single_input' A data frame with 1 rows and 9 columns:

input_name input name

input_type shorthand for the type of the input: "N" for nitrogen, "S" for seed, etc.

trial_design experiment plots with input rats assigned as an sf object

design_type type of the trial design used

unit unit of the input

abline_type (character) one of "free", "lock", "none" indicating the way ab-line is (or not) created

ab_lines ab-lines for the applicator/planter as an sf object

harvest_ab_lines ab-lines for the harvester as an sf object

field_sf field boundary as an sf object

harvest_width width of the harvester

16

td_two_input

Description

Trial design data created by assigning rates to experiment plots running the 'assign_rates()' function. This data exists only for the purpose of making examples in some function references succinct.

Usage

td_two_input

Format

tbl_df tbl data.frame 'td_two_input' A data frame with 1 rows and 9 columns:

input_name input name input_type shorthand for the type of the input: "N" for nitrogen, "S" for seed, etc. trial_design experiment plots with input rats assigned as an sf object design_type type of the trial design used unit unit of the input abline_type (character) one of "free", "lock", "none" indicating the way ab-line is (or not) created ab_lines ab-lines for the applicator/planter as an sf object harvest_ab_lines ab-lines for the harvester as an sf object field_sf field boundary as an sf object harvest_width width of the harvester

viz

Visualize various aspects of a trial design

Description

Create plots of experiment rates, plot layout, plot_id, strip_id, and block_id, which can be specified by the 'type' argument.

Usage

```
viz(
  td,
  type = "rates",
  input_index = c(1, 2),
  text_size = 3,
  abline = FALSE,
  leaflet = FALSE
)
```

Arguments

td	(tibble) experiment plots made by make_exp_plots()
type	(character) type of plots to create. Available options are "rates", "layout", "plot_id", "strip_id", "block_id", "ab_line"
<pre>input_index</pre>	(numeric) a vector of length 1 or 2. 1 means the 1st input of the td, 2 means the second input of the td, and $c(1, 2)$ means both of the inputs, which is the DEFAULT
<pre>text_size</pre>	(numeric) the size of plot ID, strip ID, and block ID numbers printed in the plots
abline	(logical) If TRUE, ab-lines are displayed as well. Default = FALSE. This applies only ton type = "rates" and type = "layout".
leaflet	(logical) If TRUE, the plot will be superimposed on a satellite imagery of the field. Default is FALSE. This option is effective only for type = "rates".

Value

ggplot or leaflet (if leaflet == TRUE) object

Examples

```
#--- load trial design ---#
data(td_two_input)
viz(td_two_input)
```

write_trial_files Write trial design files for field implementation

Description

Write out all the necessary files to implement the trial design created. Exported files include

Usage

```
write_trial_files(td, folder_path, ext = "shp", zip = FALSE, zip_name = NA)
```

Arguments

td	(tibble) a tibble of a trial design created by applying assign_rate() to experimen- tal plots made by make_exp_plots().
folder_path	(character) path to the folder in which the files will be saved
ext	(character) Default = "shp". Extension to use to save the files, "geojson" or any other extension supported by sf::st_write()
zip	(logical) Default = FALSE. If TRUE, all the files that are being written will be zipped.
zip_name	(character) name of the zip file created when zip = TRUE.

write_trial_files

Value

nothing

```
#--- load trial design ---#
data(td_two_input)
write_trial_files(
   td = td_two_input,
   folder_path = tempdir(),
   zip = FALSE
)
```

Index

* datasets exp_data, 8 plot_info, 11 rate_info, 15 td_curved, 15 td_single_input, 16 td_two_input, 17 add_blocks, 2 $assign_rates, 3$ assign_rates_conditional,4 change_rates, 5 check_alignment, 6 check_ortho_inputs,7 check_ortho_with_chars,7 exp_data, 8 make_exp_plots, 9 make_trial_report, 10 $plot_info, 11$ prep_plot, 12 prep_rate, 13 rate_info, 15 td_curved, 15 td_single_input, 16 td_two_input, 17 viz, 17 write_trial_files, 18