Package 'o2plsda'

July 19, 2024

Type Package

Title Multiomics Data Integration

Version 0.0.25

Description Provides functions to do 'O2PLS-DA' analysis for multiple omics data integration. The algorithm came from ``O2-PLS, a twoblock (X±Y) latent variable regression (LVR) method with an integral OSC filter" which published by Johan Trygg and Svante Wold at 2003 <doi:10.1002/cem.775>. 'O2PLS' is a bidirectional multivariate regression method that aims to separate the covariance between two data sets (it was recently extended to multiple data sets) (Löfstedt and Trygg, 2011 <doi:10.1002/cem.1388>; Löfstedt et al., 2012 <doi:10.1016/j.aca.2013.06.026>) from the systematic sources of variance being specific for each data set separately.

License GPL-3

Imports Rcpp (>= 1.0.7), dplyr, magrittr, parallel, ggplot2, ggrepel, methods, stats

Encoding UTF-8

Suggests knitr, markdown, rmarkdown

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.3.1

NeedsCompilation yes

Repository CRAN

Author Kai Guo [aut, cre], Junguk Hur [aut], Eva Feldman [aut]

Maintainer Kai Guo <guokai8@gmail.com>

Date/Publication 2024-07-18 22:40:02 UTC

Contents

loadings			•					•	2
loadings.o2plsda									3
loadings.plsda									3
o2cv									4
o2pls									5
O2pls-class									7
oplsda									7
plot.O2pls			•						8
plot.o2plsda			•					•	10
plot.plsda			•						11
plsda			•					•	12
print.O2pls			•						14
print.plsda			•					•	14
scores			•	•		•	•	•	15
scores.O2pls			•	•		•			15
scores.o2plsda	•	• •	•	•			•		16
scores.plsda	•	• •	•	•		•	•	•	16
summary.O2pls	•	• •	•	•	•	•	•	•	17
summary.plsda	•	• •	•	•			•		18
vip	•	• •	•	•	•	•	•	•	18
									20

Index

loadings

Extract the loadings from an O2PLS fit

Description

This function extracts loading parameters from an O2PLS fit

This function extracts loading parameters from an O2PLS fit

Usage

loadings(x, ...)

S3 method for class '02pls'
loadings(x, loading = c("Xjoint", "Yjoint", "Xorth", "Yorth"), ...)

х	Object of class 02pls
	For consistency
loading	the loadings for one of "Xjoint", "Yjoint", "Xorth", "Yorth"

loadings.o2plsda

Value

Loading matrix Loading matrix

loadings.o2plsda extract the loading value from the O2PLSDA analysis

Description

extract the loading value from the O2PLSDA analysis

Usage

```
## S3 method for class 'o2plsda'
loadings(x, loading = "Xloading", ...)
```

Arguments

х	Object of class o2p1sda
loading	the loadings for one of "Xjoint", "Yjoint", "Xorth", "Yorth"
	For consistency

loadings.plsda extract the loading value from the PLSDA analysis

Description

extract the loading value from the PLSDA analysis

Usage

S3 method for class 'plsda'
loadings(x, ...)

х	Object of class plsda
	For consistency

o2cv

Description

Cross validation for O2PLS

Usage

```
o2cv(
 X,
 Y,
 nc,
 nx,
 ny,
 group = NULL,
 nr_folds = 5,
 ncores = 1,
 scale = FALSE,
 center = FALSE
)
```

Arguments

Х	a Numeric matrix (input)
Υ	a Numeric matrix (input)
nc	Integer. Number of joint PLS components.
nx	Integer. Number of orthogonal components in X
ny	Integer. Number of orthogonal components in Y
group	a vector to indicate the group for Y
nr_folds	Integer to indicate the folds for cross validation
ncores	Integer. Number of CPUs to use for cross validation
scale	boolean values determining if data should be scaled or not
center	boolean values determining if data should be centered or not

Value

a data frame with the Q and RMSE values

Author(s)

Kai Guo

o2pls

Examples

```
set.seed(123)
X = matrix(rnorm(500),50,10)
Y = matrix(rnorm(500),50,10)
X = scale(X, scale = TRUE)
Y = scale(Y, scale = TRUE)
# group factor could be omitted if you don't have any group
group <- rep(c("Ctrl", "Treat"), each = 25)
cv <- o2cv(X, Y, 1:2, 1:2, 1:2, group=group, nr_folds = 2, ncores=1)</pre>
```

o2pls

fit O2PLS model with best nc, nx, ny

Description

fit O2PLS model with best nc, nx, ny

Usage

o2pls(X, Y, nc, nx, ny, scale = FALSE, center = FALSE)

Arguments

Х	a Numeric matrix (input)
Y	a Numeric matrix (input)
nc	Integer. Number of joint PLS components.
nx	Integer. Number of orthogonal components in X
ny	Integer. Number of orthogonal components in Y
scale	boolean values determining if data should be scaled or not
center	boolean values determining if data should be centered or not

Value

An object containing

Joint X scores
Joint X loadings
Joint Y scores
Joint Y loadings
Orthogonal X scores
Orthogonal X loadings
Orthogonal X weights
Orthogonal Y scores
Orthogonal Y loadings

BURegression coefficient in Tt ~ UBTRegression coefficient in U ~ TtKhatPrediction of X with YYhatPrediction of Y with XR2XhatVariation of the predicted X as proportion of variation in XR2YhatVariation of the predicted Y as proportion of variation in YR2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in YR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in XR2XcorrVariation of the joint part in Y
XhatPrediction of X with YYhatPrediction of Y with XR2XhatVariation of the predicted X as proportion of variation in XR2YhatVariation of the predicted Y as proportion of variation in YR2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
YhatPrediction of Y with XR2XhatVariation of the predicted X as proportion of variation in XR2YhatVariation of the predicted Y as proportion of variation in YR2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
R2XhatVariation of the predicted X as proportion of variation in XR2YhatVariation of the predicted Y as proportion of variation in YR2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
R2YhatVariation of the predicted Y as proportion of variation in YR2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
R2XVariation of the modeled part in X (defined by Joint + Orthogonal variation) as proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
proportion of total variation in XR2YVariation of the modeled part in Y (defined by Joint + Orthogonal variation) as proportion of total variation in YR2XcorrVariation of the joint part in X
proportion of total variation in YR2XcorrVariation of the joint part in X
R2Ycorr Variation of the joint part in Y
R2Xo Variation of the orthogonal part in X as proportion of variation in X
R2Yo Variation of the orthogonal part in Y as proportion of variation in Y
R2Xp Variation in X joint part predicted by Y Joint part
R2Yp Variation in Y joint part predicted by X Joint part
varXj Variation in each Latent Variable (LV) in X Joint part
varYj Variation in each Latent Variable (LV) in Y Joint part
varXorth Variation in each Latent Variable (LV) in X Orthogonal part
varYorth Variation in each Latent Variable (LV) in Y Orthogonal part
Exy Residuals in X
FxyResiduals in Y

Author(s)

Kai Guo

```
set.seed(123)
X = matrix(rnorm(500),50,10)
Y = matrix(rnorm(500),50,10)
X = scale(X, scale = TRUE)
Y = scale(Y, scale = TRUE)
fit <- o2pls(X, Y, 1, 2, 2)
summary(fit)</pre>
```

02pls-class

Description

Class "O2pls" This class represents the Annotation information

Slots

X a Numeric matrix (input)Y a Numeric matrix (input)params paramaters ysed in o2pls analysisresults list of o2pls results

Author(s)

Kai Guo

oplsda

Orthogonal partial least squares discriminant analysis

Description

Computes orthogonal scores partial least squares regressions with the NIPALS algorithm. It return a comprehensive set of pls outputs (e.g. scores and vip).

Usage

oplsda(X, Y, nc, scale = FALSE, center = TRUE, maxiter = 100, tol = 1e-05)

a O2pls object or a matrix of predictor variables.
a single vector indicate the group
the number of pls components (the one joint components + number of orthogonal components).
logical indicating whether X must be scaled (suggest TRUE).
boolean values determining if data should be centered or not
maximum number of iterations.
limit for convergence of the algorithm in the nipals algorithm.

Value

a list containing the following elements:

- nc the number of components used(one joint components + number of orthogonal components
- scores a matrix of scores corresponding to the observations in X, The components retrieved correspond to the ones optimized or specified.
- Xloadings a matrix of loadings corresponding to the explanatory variables. The components retrieved correspond to the ones optimized or specified.
- · Yloadings a matrix of partial least squares loadings corresponding to Y
- vip the VIP matrix.
- xvar a matrix indicating the standard deviation of each component (sd), the variance explained by each single component (explained_var) and the cumulative explained variance (cumulative_explained_var). These values are computed based on the data used to create the projection matrices.
- projection_matrix the matrix of projection matrix
- weight a matrix of partial least squares ("pls") weights.

Author(s)

Kai Guo

Examples

```
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
yy <- rep(c(0,1),5)
fit0 <- oplsda(fit,yy,2)</pre>
```

plot.02pls

Score or loading plot for the O2PLS results

Description

Score or loading plot for the O2PLS results

Usage

```
## S3 method for class '02pls'
plot(
    x,
    type = "score",
    var = "Xjoint",
    group = NULL,
    ind = c(1, 2),
```

plot.O2pls

```
color = NULL,
top = 20,
ellipse = TRUE,
order = FALSE,
pt.size = 3,
label = TRUE,
label.size = 4,
repel = TRUE,
rotation = FALSE,
...
```

Arguments

х	an O2pls object
type	score or loading
var	specify Xjoint
group	color used for score plot
ind	which components to be used for score plot or loading plot
color	color used for score or loading plot
top	the number of largest loading value to plot
ellipse	TRUE/FALSE
order	order by the value or not
pt.size	point size
label	plot label or not (TRUE/FALSE)
label.size	label size
repel	use ggrepel to show the label or not
rotation	flip the figure or not (TRUE/FALSE)
	For consistency

Value

a ggplot2 object

Author(s)

Kai Guo

```
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
plot(fit, type="score")</pre>
```

plot.o2plsda

Description

Score, VIP or loading plot for the O2PLS results

Usage

```
## S3 method for class 'o2plsda'
plot(
 х,
  type = "score",
 group = NULL,
  ind = c(1, 2),
  color = NULL,
  top = 20,
  ellipse = TRUE,
 order = FALSE,
 pt.size = 3,
 label = TRUE,
 label.size = 4,
 repel = FALSE,
 rotation = FALSE,
  . . .
)
```

х	an o2plsda object
type	score, vip or loading
group	color used for score plot
ind	which components to be used for score plot or loading plot
color	color used for score or loading plot
top	the number of largest loading value to plot
ellipse	TRUE/FALSE
order	order by the value or not
pt.size	point size
label	plot label or not (TRUE/FALSE)
label.size	label size
repel	use ggrepel to show the label or not
rotation	flip the figure or not (TRUE/FALSE)
	For consistency

plot.plsda

Value

a ggplot2 object

Author(s)

Kai Guo

Examples

```
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
fit <- o2pls(X,Y,2,1,1)
yy <- rep(c(0,1),5)
fit0 <- oplsda(fit,yy,2)
plot(fit0, type="score", group = factor(yy))</pre>
```

plot.plsda

Score, VIP or loading plot for the plsda results

Description

Score, VIP or loading plot for the plsda results

Usage

```
## S3 method for class 'plsda'
plot(
  х,
  type = "score",
  group = NULL,
  ind = c(1, 2),
  color = NULL,
  top = 20,
  ellipse = TRUE,
 order = FALSE,
  pt.size = 3,
  label = TRUE,
  label.size = 4,
  repel = FALSE,
  rotation = FALSE,
  . . .
)
```

12

Arguments

х	an plsda object
type	score, vip or loading
group	color used for score plot
ind	which components to be used for score plot or loading plot
color	color used for score or loading plot
top	the number of largest loading value to plot
ellipse	TRUE/FALSE
order	order by the value or not
pt.size	point size
label	plot label or not (TRUE/FALSE)
label.size	label size
repel	use ggrepel to show the label or not
rotation	flip the figure or not (TRUE/FALSE)
	For consistency

Value

a ggplot2 object

Author(s)

Kai Guo

Examples

```
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit0 <- plsda(X,Y,2)
plot(fit0, type = "score", group = factor(Y))</pre>
```

plsda

```
Partial least squares discriminant analysis
```

Description

Perform a PLS discriminant analysis

Usage

```
plsda(X, Y, nc, scale = TRUE, center = TRUE, cv = TRUE, nr_folds = 5)
```

plsda

Arguments

Х	a matrix of predictor variables.
Υ	a single vector indicate the group
nc	the number of pls components (the one joint components + number of orthogonal components).
scale	logical indicating whether X must be scaled (suggest TRUE).
center	logical indicating whether X must be centered (suggest TRUE).
cv	logical indicating whether cross-validation will be performed or not (suggest TRUE).
nr_folds	nr_folds Integer to indicate the folds for cross validation.

Value

a list containing the following elements:

- nc the number of components used(one joint components + number of orthogonal components
- scores a matrix of scores corresponding to the observations in X, The components retrieved correspond to the ones optimized or specified.
- Xloadings a matrix of loadings corresponding to the explanatory variables. The components retrieved correspond to the ones optimized or specified.
- vip the VIP matrix.
- xvar variance explained of X by each single component.
- R2Y variance explained of Y by each single component.
- PRESS The residual sum of squares for the samples which were not used to fit the model
- Q2 quality of cross-validation

Author(s)

Kai Guo

```
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)</pre>
```

print.02pls

Description

Print the summary of O2PLS results.

Usage

S3 method for class '02pls'
print(x, ...)

Arguments

Х	An O2pls object
	For consistency

Author(s)

Kai Guo

Examples

X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
object <- o2pls(X,Y,1,1,1)
print(object)</pre>

print.plsda

Print the summary of plsda results.

Description

Print the summary of plsda results.

Usage

S3 method for class 'plsda'
print(x, ...)

х	An plsda object
	For consistency

scores

Author(s)

Kai Guo

Examples

```
X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)
print(fit)</pre>
```

scores

Extract the scores from an O2PLS fit

Description

This function extracts score matrices from an O2PLS fit

Usage

scores(x, ...)

Arguments

Х	Object of class 02p1s
	For consistency

Value

Scores matrix

scores.02pls Extract the scores from an O2PLS fit

Description

This function extracts scores parameters from an O2PLS fit

Usage

```
## S3 method for class '02pls'
scores(x, score = c("Xjoint", "Yjoint", "Xorth", "Yorth"), ...)
```

х	Object of class 02pls
score	the scores matrix for one of "Xjoint", "Yjoint", "Xorth", "Yorth"
	Other arguments

Value

score matrix

scores.o2plsda Extract the scores from an O2PLS DA analysis

Description

Extract the scores from an O2PLS DA analysis

Usage

S3 method for class 'o2plsda'
scores(x, ...)

Arguments

х	Object of class o2p1sda
	Other arguments

Value

score matrix

Author(s)

Kai Guo

scores.plsda

Extract the scores PLSDA analysis

Description

Extract the scores PLSDA analysis

Usage

S3 method for class 'plsda'
scores(x, ...)

Arguments

Х	Object of class plsda
	Other arguments

16

summary.O2pls

Value

score matrix

Author(s)

Kai Guo

summary.02pls

Summary of an O2PLS object

Description

Summary of an O2PLS object

Usage

S3 method for class 'O2pls'
summary(object, ...)

Arguments

object	a O2pls object
	For consistency

Value

Detail of O2PLS results

Author(s)

Kai Guo

```
X <- matrix(rnorm(50),10,5)
Y <- matrix(rnorm(50),10,5)
object <- o2pls(X,Y,1,1,1)
summary(object)</pre>
```

summary.plsda

Description

Summary of an plsda object

Usage

S3 method for class 'plsda'
summary(object, ...)

Arguments

object	a plsda object
	For consistency

Value

Detail of plsda results

Author(s)

Kai Guo

Examples

X <- matrix(rnorm(500),10,50)
Y <- rep(c("a","b"),each=5)
fit <- plsda(X,Y,2)
summary(fit)</pre>

vip

Extract the VIP values from the O2PLS-DA object

Description

Extract the VIP values from the O2PLS-DA object

Usage

vip(x)

Arguments

х

the o2plsda object or plsda object

vip

Value

a data frame

Index

* classes 02pls-class, 7 loadings, 2loadings.o2plsda, 3loadings.plsda,3 o2cv, 4 o2pls,5 02pls-class,7 oplsda,7 plot.02pls, 8 plot.o2plsda, 10 plot.plsda, 11 plsda, 12 print.02pls, 14 print.plsda, 14 scores, 15 scores.02pls, 15scores.o2plsda, 16 scores.plsda, 16 summary.02pls, 17 summary.plsda, 18

vip, **18**