
Package ‘nvmix’
March 4, 2024

Version 0.1-1

Encoding UTF-8

Title Multivariate Normal Variance Mixtures

Description Functions for working with (grouped) multivariate normal variance mixture
distributions (evaluation of distribution functions and densities,
random number generation and parameter estimation), including
Student's t distribution for non-integer degrees-of-freedom as well as the grouped t
distribution and copula with multiple degrees-of-freedom parameters.
See <doi:10.18637/jss.v102.i02> for a high-level description of select functionality.

Author Marius Hofert [aut, cre],
Erik Hintz [aut],
Christiane Lemieux [aut]

Maintainer Marius Hofert <mhofert@hku.hk>

Depends R (>= 3.2.0)

Imports stats, methods, qrng, Matrix, copula, pcaPP, ADGofTest,
mnormt, pracma

Suggests RColorBrewer, lattice, qrmdata, xts, knitr, rmarkdown

Enhances
License GPL (>= 3) | file LICENCE

NeedsCompilation yes

VignetteBuilder knitr

Repository CRAN

Date/Publication 2024-03-04 16:20:10 UTC

R topics documented:
copula . 2
dependencemeasures . 6
dgnvmix . 9
dnvmix . 12
fitnvmix . 14

1

https://doi.org/10.18637/jss.v102.i02

2 copula

gammamix . 18
get_set_param . 20
get_set_qqplot_param . 24
numerical_experiments_data . 25
pgnvmix . 26
pnvmix . 30
qnvmix . 34
qqplot_maha . 36
rgnvmix . 39
riskmeasures . 42
rnvmix . 44
skewstudent . 49

Index 53

copula Functionalities for Normal Variance Mixture Copulas

Description

Evaluate the density / distribution function of normal variance mixture copulas (including Student t
and normal copula) and generate vectors of random variates from normal variance mixture copulas.

Usage

dnvmixcopula(u, qmix, scale = diag(d), factor = NULL, control = list(),
verbose = FALSE, log = FALSE, ...)

pnvmixcopula(upper, lower = matrix(0, nrow = n, ncol = d), qmix, scale = diag(d),
control = list(), verbose = FALSE, ...)

rnvmixcopula(n, qmix, scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0,
control = list(), verbose = FALSE, ...)

dStudentcopula(u, df, scale = diag(d), factor = NULL, log = FALSE, verbose = TRUE)
pStudentcopula(upper, lower = matrix(0, nrow = n, ncol = d), df, scale = diag(d),

control = list(), verbose = TRUE)
rStudentcopula(n, df, scale = diag(2), method = c("PRNG", "sobol", "ghalton"),

skip = 0)

pgStudentcopula(upper, lower = matrix(0, nrow = n, ncol = d), groupings = 1:d,
df, scale = diag(d), control = list(), verbose = TRUE)

dgStudentcopula(u, groupings = 1:d, df, scale = diag(d), factor = NULL,
factor.inv = NULL, control = list(), verbose = TRUE, log = FALSE)

rgStudentcopula(n, groupings = 1:d, df, scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0)

fitgStudentcopula(x, u, df.init = NULL, scale = NULL, groupings = rep(1, d),
df.bounds = c(0.5, 30), fit.method = c("joint-MLE",

copula 3

"groupewise-MLE"), control = list(), verbose = TRUE)
fitStudentcopula(u, fit.method = c("Moment-MLE", "EM-MLE", "Full-MLE"),

df.init = NULL, df.bounds = c(0.1, 30), control = list(),
verbose = TRUE)

Arguments

u (n, d)-matrix of evaluation points or data; Have to be in (0, 1).

upper, lower (n, d)-matrix of upper/lower evaluation limits. Have to be in (0, 1).

n sample size n (positive integer).

qmix specification of the mixing variable W ; see pnvmix() for the ungrouped and
pgnvmix() for the grouped case.

groupings see pgnvmix().

df positive degress of freedom; can also be Inf in which case the copula is inter-
preted as the Gaussian copula.

scale scale matrix (a covariance matrix entering the distribution as a parameter) of di-
mension (d, d) (defaults to d = 2); this equals the covariance matrix of a random
vector following the specified normal variance mixture distribution divided by
the expecation of the mixing variable W if and only if the former exists. Note
that scale must be positive definite; sampling from singular ungrouped normal
variance mixtures can be achieved by providing factor.

factor (d, k)-matrix such that factor %*% t(factor) equals scale; the non-square
case k 6= d can be used to sample from singular normal variance mixtures.
For dnvmixcopula(), this has to be a square matrix. Note that this notation
coincides with McNeil et al. (2015, Chapter 6). If not provided, factor is
internally determined via chol() (and multiplied from the right to an (n, k)-
matrix of independent standard normals to obtain a sample from a multivariate
normal with zero mean vector and covariance matrix scale).

factor.inv inverse of factor; if not provided, computed via solve(factor).

method see rnvmix().

skip see rnvmix().

df.init NULL or vector with initial estimates for df; can contain NAs.

df.bounds 2-vector with the lower/upper bounds on the degree-of-freedom parameter for
the fitting.

fit.method character indicating which fitting method is to be used; see details below.

x (n, d)-matrix data matrix of which the underlying copula is to be estimated.
See also details below.

control list specifying algorithm specific parameters; see get_set_param().

verbose logical indicating whether a warning is given if the required precision abstol
has not been reached.

log logical indicating whether the logarithmic density is to be computed.

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when rmix or qmix is a character string or function.

4 copula

Details

Functionalities for normal variance mixture copulas provided here essentially call pnvmix(), dnvmix()
and rnvmix() as well as qnvmix(), see their documentations for more details.

We remark that computing normal variance mixtures is a challenging task; evaluating normal vari-
ance mixture copulas additionally requires the approximation of a univariate quantile function so
that for large dimensions and sample sizes, these procedures can be fairly slow. As there are approx-
imations on many levels, reported error estimates for the copula versions of pnvmix() and dnvmix()
can be flawed.

The functions [d/p/r]Studentcopula() are user-friendly wrappers for [d/p/r]nvmixcopula(,
qmix = "inverse.gamma"), designed for the imporant case of a t copula with degrees-of-freedom
df.

The function fitgStudentcopula() can be used to estimate the matrix scale and the degrees-of-
freedom for grouped t-copulas. The matrix scale, if not provided, is estimated non-parametrically.
Initial values for the degrees-of-freedom are estimated for each group separately (by fitting the cor-
responding marginal t copula). Using these initial values, the joint likelihood over all (length(unique(groupings))-
many) degrees-of-freedom parameters is optimized via optim(). For small dimensions, the results
are satisfactory but the optimization becomes extremely challenging when the dimension is large,
so care should be taking when interpreting the results.

Value

The values returned by dnvmixcopula(), rnvmixcopula() and pnvmixcopula() are similar to the
ones returned by their non-copula alternatives dnvmix(), rnvmix() and pnvmix().

The function fitgStudentcopula() returns an S3 object of class "fitgStudentcopula", basi-
cally a list which contains, among others, the components

df Estimated degrees-of-freedom for each group.

scale Estimated or provided scale matrix.

max.ll Estimated log-likelihood at reported estimates.

df.init Initial estimate for the degrees-of-freedom.

The methods print() and summary() are defined for the class "fitgStudentcopula".

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

https://doi.org/10.18637/jss.v102.i02

copula 5

Luo, X. and Shevchenko, P. (2010). The t copula with multiple parameters of degrees of freedom:
bivariate characteristics and application to risk management. Quantitative Finance 10(9), 1039-
1054.

Daul, S., De Giorgi, E. G., Lindskog, F. and McNeil, A (2003). The grouped t copula with an
application to credit risk. Available at SSRN 1358956.

See Also

dnvmix(), pnvmix(), qnvmix(), rnvmix()

Examples

Generate a random correlation matrix in d dimensions
d <- 2 # dimension
set.seed(42) # for reproducibility
rho <- runif(1, min = -1, max = 1)
P <- matrix(rho, nrow = d, ncol = d) # build the correlation matrix P
diag(P) <- 1
Generate two random evaluation points:
u <- matrix(runif(2*d), ncol = d)
We illustrate using a t-copula
df = 2.1
Define quantile function which is inverse-gamma here:
qmix. <- function(u) 1/qgamma(1-u, shape = df/2, rate = df/2)

Example for dnvmixcopula()

If qmix = "inverse.gamma", dnvmix() calls qt and dt:
d1 <- dnvmixcopula(u, qmix = "inverse.gamma", scale = P, df = df)
Same can be obtained using 'dStudentcopula()'
d2 <- dStudentcopula(u, scale = P, df = df)
stopifnot(all.equal(d1, d2))
Use qmix. to force the algorithm to use a rqmc procedure:
d3 <- dnvmixcopula(u, qmix = qmix., scale = P)
stopifnot(all.equal(d1, d3, tol = 1e-3, check.attributes = FALSE))

Example for pnvmixcopula()

Same logic as above:
p1 <- pnvmixcopula(u, qmix = "inverse.gamma", scale = P, df = df)
p2 <- pnvmixcopula(u, qmix = qmix., scale = P)
stopifnot(all.equal(p1, p2, tol = 1e-3, check.attributes = FALSE))

Examples for rnvmixcopula()

Draw random variates and compare
n <- 60
set.seed(1)
X <- rnvmixcopula(n, qmix = "inverse.gamma", df = df, scale = P) # with scale

6 dependencemeasures

set.seed(1)
X. <- rnvmixcopula(n, qmix = "inverse.gamma", df = df, factor = t(chol(P))) # with factor
stopifnot(all.equal(X, X.))

Example for the grouped case

d <- 4 # dimension
set.seed(42) # for reproducibility
P <- matrix(runif(1, min = -1, max = 1), nrow = d, ncol = d) # build the correlation matrix P
diag(P) <- 1
groupings <- c(1, 1, 2, 2) # two groups of size two each
df <- c(1, 4) # dof for each of the two groups
U <- rgStudentcopula(n, groupings = groupings, df = df, scale = P)
(fit <- fitgStudentcopula(u = U, groupings = groupings, verbose = FALSE))

dependencemeasures Dependence Measures for grouped normal variance mixture copulas

Description

Computation of rank correlation coefficients Spearman’s rho and Kendall’s tau for grouped normal
variance mixture copulas as well as computation of the (lower and upper) tail dependence coefficient
of a grouped t copula.

Usage

corgnvmix(scale, qmix, method = c("kendall", "spearman"), groupings = 1:2,
ellip.kendall = FALSE, control = list(), verbose = TRUE, ...)

lambda_gStudent(df, scale, control = list(), verbose = TRUE)

Arguments

scale n-vector giving the ρ parameters of the copula.

qmix specification of the mixing variables; see pgnvmix().

method character indicating if Spearman’s rho or Kendall’s tau is to be computed.

groupings vector specifying the grouping structure; either rep(1, 2) (ungrouped) or 1:2
(grouped case).

ellip.kendall logical if the formula for Kendalll’s tau for elliptical copulas shall be used; see
details below.

df either scalar or 2-vector giving the degrees-of- freedoms for the t copula; if pro-
vided as scalar, the copula is an (ungrouped) t copula and lambda_gStudent()
uses a closed formula.

control list specifying algorithm specific parameters; see get_set_param().

verbose logical indicating whether a warning is given if the required precision has not
been reached.

dependencemeasures 7

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function.

Details

For grouped normal variance mixture copulas, including the grouped t, there is no closed formula
for Kendall’s tau and Spearman’s rho. The function corgnvmix() approximates these dependence
measures by numerically approximating an integral representation for these measures.

If no grouping is present (i.e., when groupings = rep(1, 2)), the copula is an elliptical copula for
which the formula τ = 2asin(ρ)/pi holds. This formula holds only approximately in the grouped
case; the quality of the approximation depends on how different the mixing variables for the two
components are. When the mixing distributions are not too far apart and when the copula parameter
is not close to 1, this approximation is “very accurate“, as demonstrated in Daul et al (2003).

In the ungrouped case, lambda_gStudent() computes the tail dependence coefficient lambda
based on the known formula 2 * pt(-sqrt((df + 1)*(1 - rho) / (1 + rho)), df = df + 1) for
the tail dependence coefficient of a t copula.

In the grouped case, RQMC methods are used to efficiently approximate the integral given in Eq.
(26) of Luo and Shevchenko (2010).

Value

lambda_gStudent() and corgnvmix() return a numeric n-vector with the computed dependence
measure with corresponding attributes "abs. error" and "rel. error"(error estimates of the RQMC
estimator) and "numiter" (number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

Luo, X. and Shevchenko, P. (2010). The t copula with multiple parameters of degrees of freedom:
bivariate characteristics and application to risk management. Quantitative Finance 10(9), 1039-
1054.

Daul, S., De Giorgi, E. G., Lindskog, F. and McNeil, A (2003). The grouped t copula with an
application to credit risk. Available at SSRN 1358956.

See Also

dgStudentcopula(), pgStudentcopula(), rgStudentcopula()

https://doi.org/10.18637/jss.v102.i02

8 dependencemeasures

Examples

Examples for corgnvmix()

Create a plot displaying Spearman's rho for a grouped t copula as a function
of the copula parameter for various choices of the degrees-of-freedom
qmix <- "inverse.gamma"
df <- matrix(c(1, 2, 1, 5, 1, Inf), ncol = 2, byrow = TRUE)
l.df <- nrow(df)
scale <- seq(from = 0, to = 1, length.out = 99)
set.seed(1) # for reproducibility
kendalls <- sapply(seq_len(l.df), function(i)

corgnvmix(scale, qmix = qmix, method = "kendall", df = df[i,]))
Include the elliptical approximation (exact when df1 = df2)
kendall_ell <- corgnvmix(scale, method = "kendall", ellip.kendall = TRUE)
Plot
lgnd <- character(l.df + 1)
lgnd[1] <- "elliptical (equal df)"
plot(NA, xlim = c(0, 1), ylim = c(0, 1), xlab = expression(rho),

ylab = "Kendall's tau")
lines(scale, kendall_ell, lty = 1)
for(i in 1:l.df){

lines(scale, kendalls[, i], col = i + 1, lty = i + 1)
lgnd[i+1] <- paste0("df1 = ", df[i, 1], ", df2 = ", df[i, 2])

}
legend("topleft", lgnd, col = 1:(l.df + 1), lty = 1:(l.df + 1), bty = 'n')

Examples for lambda_gStudent()

Create a plot displaying 'lambda' as a function of the copula parameter
for various choices of the degrees-of-freedom
df <- c(3, 6, 9)
df_ <- list(rep(df[1], 2), rep(df[2], 2), rep(df[3], 2), # ungrouped

c(df[1], df[2]), c(df[1], df[3]), c(df[2], df[3])) # grouped
l.df_ <- length(df_)
scale <- seq(from = -0.99, to = 0.99, length.out = 112) # scale parameters
set.seed(1) # for reproducibilty
lambdas <-

sapply(seq_len(l.df_), function(i) lambda_gStudent(df_[[i]], scale = scale))
lgnd <- character(length(df_))
plot(NA, xlim = range(scale), ylim = range(lambdas), xlab = expression(rho),

ylab = expression(lambda))
for(i in seq_len(l.df_)){

lines(scale, lambdas[, i], col = i, lty = i)
lgnd[i] <- if(df_[[i]][1] == df_[[i]][2]) paste0("df = ", df_[[i]][1]) else

paste0("df1 = ", df_[[i]][1], ", df2 = ", df_[[i]][2])
}
legend("topleft", lgnd, col = seq_len(l.df_), lty = seq_len(l.df_),

bty = 'n')
If called with 'df' a 1-vector, closed formula for lambda is used => check
lambda.true <- sapply(1:3, function(i) lambda_gStudent(df_[[i]][1], scale = scale))
stopifnot(max(abs(lambda.true - lambdas[, 1:3])) < 4e-4)

dgnvmix 9

dgnvmix Density of Grouped Normal Variance Mixtures

Description

Evaluating grouped normal variance mixture density functions (including Student t with multiple
degrees-of-freedom).

Usage

dgnvmix(x, groupings = 1:d, qmix, loc = rep(0, d), scale = diag(d), factor = NULL,
factor.inv = NULL, control = list(), log = FALSE, verbose = TRUE, ...)

dgStudent(x, groupings = 1:d, df, loc = rep(0, d), scale = diag(d), factor = NULL,
factor.inv = NULL, control = list(), log = FALSE, verbose = TRUE)

Arguments

x see dnvmix().

groupings see pgnvmix().

qmix specification of the mixing variables Wi via quantile functions; see pgnvmix().

loc see pnvmix().

scale see pnvmix(); must be positive definite.

factor (d, d) lower triangular matrix such that factor %*% t(factor) equals scale.
Internally used is factor.inv.

factor.inv inverse of factor; if not provided, computed via solve(factor).

df vector of length length(unique(groupings)) so that variable i has degrees-
of-freedom df[groupings[i]]; all elements must be positive and can be Inf,
in which case the corresponding marginal is normally distributed.

control list specifying algorithm specific parameters; see get_set_param().

log logical indicating whether the logarithmic density is to be computed.

verbose see pnvmix().

... additional arguments (for example, parameters) passed to the underlying mix-
ing distribution when qmix is a character string or an element of qmix is a
function.

Details

Internally used is factor.inv, so factor and scale are not required to be provided (but allowed
for consistency with other functions in the package).

dgStudent() is a wrapper of dgnvmix(, qmix = "inverse.gamma", df = df). If there is no group-
ing, the analytical formula for the density of a multivariate t distribution is used.

Internally, an adaptive randomized Quasi-Monte Carlo (RQMC) approach is used to estimate the
log-density. It is an iterative algorithm that evaluates the integrand at a randomized Sobol’ point-set

10 dgnvmix

(default) in each iteration until the pre-specified error tolerance control$dnvmix.reltol in the
control argument is reached for the log-density. The attribute "numiter" gives the worst case
number of such iterations needed (over all rows of x). Note that this function calls underlying C
code.

Algorithm specific parameters (such as above mentioned control$dnvmix.reltol) can be passed
as a list via the control argument, see get_set_param() for details and defaults.

If the error tolerance cannot be achieved within control$max.iter.rqmc iterations and fun.eval[2]
function evaluations, an additional warning is thrown if verbose=TRUE.

Value

dgnvmix() and dgStudent() return a numeric n-vector with the computed density values and
corresponding attributes "abs. error" and "rel. error" (error estimates of the RQMC estimator)
and "numiter" (number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

See Also

rgnvmix(), pgnvmix(), get_set_param()

Examples

n <- 100 # sample size to generate evaluation points

1. Inverse-gamma mixture
1.1. Grouped t with mutliple dof

d <- 3 # dimension
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A)) # random scale matrix
df <- c(1.1, 2.4, 4.9) # dof for margin i
groupings <- 1:d
x <- rgStudent(n, df = df, scale = P) # evaluation points for the density

Call 'dgnvmix' with 'qmix' a string:

https://doi.org/10.18637/jss.v102.i02

dgnvmix 11

set.seed(12)
dgt1 <- dgnvmix(x, qmix = "inverse.gamma", df = df, scale = P)
Version providing quantile functions of the mixing distributions as list
qmix_ <- function(u, df) 1 / qgamma(1-u, shape = df/2, rate = df/2)
qmix <- list(function(u) qmix_(u, df = df[1]), function(u) qmix_(u, df = df[2]),

function(u) qmix_(u, df = df[3]))
set.seed(12)
dgt2 <- dgnvmix(x, groupings = groupings, qmix = qmix, scale = P)
Similar, but using ellipsis argument:
qmix <- list(function(u, df1) qmix_(u, df1), function(u, df2) qmix_(u, df2),

function(u, df3) qmix_(u, df3))
set.seed(12)
dgt3 <- dgnvmix(x, groupings = groupings, qmix = qmix, scale = P, df1 = df[1],

df2 = df[2], df3 = df[3])
Using the wrapper 'dgStudent()'
set.seed(12)
dgt4 <- dgStudent(x, groupings = groupings, df = df, scale = P)
stopifnot(all.equal(dgt1, dgt2, tol = 1e-5, check.attributes = FALSE),

all.equal(dgt1, dgt3, tol = 1e-5, check.attributes = FALSE),
all.equal(dgt1, dgt4, tol = 1e-5, check.attributes = FALSE))

1.2 Classical multivariate t

df <- 2.4
groupings <- rep(1, d) # same df for all components
x <- rStudent(n, scale = P, df = df) # evaluation points for the density
dt1 <- dStudent(x, scale = P, df = df, log = TRUE) # uses analytical formula
If 'qmix' provided as string and no grouping, dgnvmix() uses analytical formula
dt2 <- dgnvmix(x, qmix = "inverse.gamma", groupings = groupings, df = df, scale = P, log = TRUE)
stopifnot(all.equal(dt1, dt2))
Provide 'qmix' as a function to force estimation in 'dgnvmix()'
dt3 <- dgnvmix(x, qmix = qmix_, groupings = groupings, df = df, scale = P, log = TRUE)
stopifnot(all.equal(dt1, dt3, tol = 5e-4, check.attributes = FALSE))

2. More complicated mixutre

Let W1 ~ IG(1, 1), W2 = 1, W3 ~ Exp(1), W4 ~ Par(2, 1), W5 = W1, all comonotone
=> X1 ~ t_2; X2 ~ normal; X3 ~ Exp-mixture; X4 ~ Par-mixture; X5 ~ t_2

d <- 5
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))
b <- 3 * runif(d) * sqrt(d) # random upper limit
groupings <- c(1, 2, 3, 4, 1) # since W_5 = W_1
qmix <- list(function(u) qmix_(u, df = 2), function(u) rep(1, length(u)),

list("exp", rate=1), function(u) (1-u)^(-1/2)) # length 4 (# of groups)
x <- rgnvmix(n, groupings = groupings, qmix = qmix, scale = P)
dg <- dgnvmix(x, groupings = groupings, qmix = qmix, scale = P, log = TRUE)

12 dnvmix

dnvmix Density of Multivariate Normal Variance Mixtures

Description

Evaluating multivariate normal variance mixture densities (including Student t and normal densi-
ties).

Usage

dnvmix(x, qmix, loc = rep(0, d), scale = diag(d),
factor = NULL, control = list(), log = FALSE, verbose = TRUE,...)

dStudent(x, df, loc = rep(0, d), scale = diag(d), factor = NULL,
log = FALSE, verbose = TRUE, ...)

dNorm(x, loc = rep(0, d), scale = diag(d), factor = NULL,
log = FALSE, verbose = TRUE, ...)

Arguments

x (n, d)-matrix of evaluation points.

qmix specification of the mixing variable W ; see pnvmix() for details and examples.

df positive degress of freedom; can also be Inf in which case the distribution is
interpreted as the multivariate normal distribution with mean vector loc and
covariance matrix scale).

loc location vector of dimension d; this equals the mean vector of a random vector
following the specified normal variance mixture distribution if and only if the
latter exists.

scale scale matrix (a covariance matrix entering the distribution as a parameter) of
dimension (d, d); this equals the covariance matrix of a random vector following
the specified normal variance mixture distribution divided by the expecation of
the mixing variable W if and only if the former exists. Needs to be full rank for
the density to exist.

factor (d, d) lower triangular matrix such that factor %*% t(factor) equals scale;
note that for performance reasons, this property is not tested. If not provided,
factor is internally determined via t(chol()).

control list specifying algorithm specific parameters; see get_set_param().

log logical indicating whether the logarithmic density is to be computed.

verbose logical indicating whether a warning is given if the required precision abstol
has not been reached.

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function.

dnvmix 13

Details

For the density to exist, scale must be full rank. Internally used is factor, so scale is not required
to be provided if factor is given. The default factorization used to obtain factor is the Cholesky
decomposition via chol().

dStudent() and dNorm() are wrappers of dnvmix(, qmix = "inverse.gamma", df = df) and dnvmix(,
qmix = "constant"), respectively. In these cases, dnvmix() uses the analytical formulas for the
density of a multivariate Student t and normal distribution, respectively.

Internally, an adaptive randomized Quasi-Monte Carlo (RQMC) approach is used to estimate the
log-density. It is an iterative algorithm that evaluates the integrand at a randomized Sobol’ point-set
(default) in each iteration until the pre-specified error tolerance control$dnvmix.reltol in the
control argument is reached for the log-density. The attribute "numiter" gives the worst case
number of such iterations needed (over all rows of x). Note that this function calls underlying C
code.

Algorithm specific parameters (such as above mentioned control$dnvmix.reltol) can be passed
as a list via the control argument, see get_set_param() for details and defaults.

If the error tolerance cannot be achieved within control$max.iter.rqmc iterations and fun.eval[2]
function evaluations, an additional warning is thrown if verbose=TRUE.

Value

dnvmix(), dStudent() and dNorm() return a numeric n-vector with the computed (log-)density
values and attributes "abs. error" and "rel. error" (containing the absolute and relative error
estimates of the of the (log-)density) and "numiter" (containing the number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux.

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

See Also

pnvmix(), rnvmix(), fitnvmix(), get_set_param().

Examples

Examples for dnvmix()

Generate a random correlation matrix in three dimensions
d <- 3

https://doi.org/10.18637/jss.v102.i02

14 fitnvmix

set.seed(271)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))

Evaluate a t_{3.5} density
df <- 3.5
x <- matrix(1:12/12, ncol = d) # evaluation points
dt1 <- dnvmix(x, qmix = "inverse.gamma", df = df, scale = P)
stopifnot(all.equal(dt1, c(0.013266542, 0.011967156, 0.010760575, 0.009648682),

tol = 1e-7, check.attributes = FALSE))

Here is a version providing the quantile function of the mixing distribution
qW <- function(u, df) 1 / qgamma(1-u, shape = df/2, rate = df/2)
dt2 <- dnvmix(x, qmix = qW, df = df, scale = P)

Compare
stopifnot(all.equal(dt1, dt2, tol = 5e-4, check.attributes = FALSE))

Evaluate a normal density
dn <- dnvmix(x, qmix = "constant", scale = P)
stopifnot(all.equal(dn, c(0.013083858, 0.011141923, 0.009389987, 0.007831596),

tol = 1e-7, check.attributes = FALSE))

Case with missing data
x. <- x
x.[3,2] <- NA
x.[4,3] <- NA
dt <- dnvmix(x., qmix = "inverse.gamma", df = df, scale = P)
stopifnot(is.na(dt) == rep(c(FALSE, TRUE), each = 2))

Univariate case
x.. <- cbind(1:10/10) # (n = 10, 1)-matrix; vectors are considered rows in dnvmix()
dt1 <- dnvmix(x.., qmix = "inverse.gamma", df = df, factor = 1)
dt2 <- dt(as.vector(x..), df = df)
stopifnot(all.equal(dt1, dt2, check.attributes = FALSE))

Examples for dStudent() and dNorm()

Evaluate a t_{3.5} density
dt <- dStudent(x, df = df, scale = P)
stopifnot(all.equal(dt, c(0.013266542, 0.011967156, 0.010760575, 0.009648682),

tol = 1e-7, check.attributes = FALSE))

Evaluate a normal density
x <- x[1,] # use just the first point this time
dn <- dNorm(x, scale = P)
stopifnot(all.equal(dn, 0.013083858, tol = 1e-7, check.attributes = FALSE))

fitnvmix Fitting Multivariate Normal Variance Mixtures

fitnvmix 15

Description

Functionalities for fitting multivariate normal variance mixtures (in particular also Multivariate t
distributions) via an ECME algorithm.

Usage

fitnvmix(x, qmix, mix.param.bounds, nu.init = NA, loc = NULL, scale = NULL,
init.size.subsample = min(n, 100), size.subsample = n,
control = list(), verbose = TRUE)

fitStudent(x, loc = NULL, scale = NULL, mix.param.bounds = c(1e-3, 1e2), ...)
fitNorm(x)

Arguments

x (n, d)-data matrix.

qmix specification of the mixing variable W ; see McNeil et al. (2015, Chapter 6).
Supported are the following types of specification (see also the examples below):

character: character string specifying a supported distribution; currently
available are "constant" (in which case W = 1 and thus the multivari-
ate normal distribution with mean vector loc and covariance matrix scale
results), "inverse.gamma" (in which case W is inverse gamma distributed
with shape and rate parameters df/2 and thus the multivariate Student t dis-
tribution with df degrees of freedom results) and "pareto" (in which case
W is Pareto distributed with scale equal to unity and shape equal to alpha).

function: function interpreted as the quantile function of the mixing vari-
able W . In this case, qmix must have the form qmix = function(u, nu),
where the argument nu corresponds to the parameter (vector) specifying the
distribution of the mixing variable.

mix.param.bounds

either numeric(2) or a matrix with two columns. The first/second column
corresponds to the lower/upper bound of nui, the ith component of the parameter
vector nu of the mixing variable W . All elements need to be finite, numeric
values. Note: The algorithm tends to converge quicker if the parameter ranges
supplied are smaller.

nu.init either NA or an initial guess for the parameter (vector) nu. In the former case
an initial estimate is calculated by the algorithm. If nu.init is provided, the
algorithm often converges faster; the better the starting value, the faster conver-
gence.

loc d-vector; if provided, taken as the ’true’ location vector in which case loc is
not estimated.

scale positive definite (d, d)-matrix; if provided, taken as the ’true’ scale matrix in
which case scale is not estimated.

init.size.subsample

numeric, non-negative, giving the sub-samplesize used to get an initial estimate
for nu. Only used if is.na(nu.init), otherwise ignored.

16 fitnvmix

size.subsample numeric, non-negative, specifying the size of the subsample that is being used
in the ECME iterations to optimize the log-likelihood over nu. Defaults to n,
so that the full sample is being used. Decreasing this number can lead to faster
run-times (as fewer log-densities need to be estimated) but also to an increase in
bias and variance.

control list specifying algorithm specific parameters; see below under ’Details’ and
get_set_param().

verbose numeric or logical (in which case it is converted to numeric) specifying the
amount of tracing to be done. If 0 or FALSE, neither tracing nor warnigns are
communicated; if 1, only warnigns are communicated, if 2 or 3, warnings and
(shorter or longer) tracing information is provided.

... additional arguments passed to the underlying fitnvmix().

Details

The function fitnvmix() uses an ECME algorithm to approximate the MLEs of the parameters
nu, loc and scale of a normal variance mixture specified by qmix. The underlying procedure
successively estimates nu (with given loc and scale) by maximizing the likelihood which is ap-
proximated by dnvmix() (unless qmix is a character string, in which case analytical formulas for
the log-densities are used) and scale and loc (given nu) using weights (which again need to be
approximated) related to the posterior distribution, details can be found in the first reference below.

It should be highlighted that (unless unless qmix is a character string), every log-likelihood and
every weight needed in the estimation is numerically approximated via RQMC methods. For large
dimensions and sample sizes this procedure can therefore be slow.

Various tolerances and convergence criteria can be changed by the user via the control argument.
For more details, see get_set_param().

Value

The function fitnvmix() returns an S3 object of class "fitnvmix", basically a list which con-
tains, among others, the components

nu Estimated mixing parameter (vector) nu.

loc Estimated or provided loc vector.

scale Estimated or provided scale matrix.

max.ll Estimated log-likelihood at reported estimates.

x Input data matrix x.

The methods print(), summary() and plot() are defined for the class "fitnvmix".

fitStudent() is a wrapper to fitnvmix() for parameter estimation of multivariate Student t dis-
tributions; it also returns an S3 object of class "fitnvmix" where the fitted degrees of freedom are
called "df" instead of "nu" (to be consistent with the other wrappers for the Student t distributions).

fitNorm() just returns a list with components loc (columnwise sample means) and scale (sam-
ple covariance matrix).

fitnvmix 17

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Liu, C. and Rubin, D. (1994). The ECME algorithm: a simple extension of EM and ECM with
faster monotone convergence. Biometrika 81(4), 633–648.

See Also

dnvmix(), rnvmix(), pnvmix(), qqplot_maha(), get_set_param().

Examples

Sampling parameters
set.seed(274) # for reproducibility
nu <- 2.8 # parameter used to sample data
d <- 4 # dimension
n <- 75 # small sample size to have examples run fast
loc <- rep(0, d) # location vector
A <- matrix(runif(d * d), ncol = d)
diag_vars <- diag(runif(d, min = 2, max = 5))
scale <- diag_vars %*% cov2cor(A %*% t(A)) %*% diag_vars # scale matrix
mix.param.bounds <- c(1, 5) # nu in [1, 5]

Example 1: Fitting a multivariate t distribution

if(FALSE){
Define 'qmix' as the quantile function of an IG(nu/2, nu/2) distribution
qmix <- function(u, nu) 1 / qgamma(1 - u, shape = nu/2, rate = nu/2)
Sample data using 'rnvmix'
x <- rnvmix(n, qmix = qmix, nu = nu, loc = loc, scale = scale)
Call 'fitvnmix' with 'qmix' as a function (so all densities/weights are estimated)
(MyFit11 <- fitnvmix(x, qmix = qmix, mix.param.bounds = mix.param.bounds))
Call 'fitnvmix' with 'qmix = "inverse.gamma"' in which case analytical formulas
for weights and densities are used:
(MyFit12 <- fitnvmix(x, qmix = "inverse.gamma",

mix.param.bounds = mix.param.bounds))
Alternatively, use the wrapper 'fitStudent()'
(MyFit13 <- fitStudent(x))
Check
stopifnot(all.equal(MyFit11$nu, MyFit12$nu, tol = 5e-2),

all.equal(MyFit11$nu, MyFit13$nu, tol = 5e-2))
Can also provide 'loc' and 'scale' in which case only 'nu' is estimated

https://doi.org/10.18637/jss.v102.i02

18 gammamix

(MyFit13 <- fitnvmix(x, qmix = "inverse.gamma", mix.param.bounds = mix.param.bounds,
loc = loc, scale = scale))

(MyFit14 <- fitStudent(x, loc = loc, scale = scale))
stopifnot(all.equal(MyFit13$nu, MyFit14$df, tol = 1e-6))

}

Example 2: Fitting a Pareto mixture

Define 'qmix' as the quantile function of a Par(nu, 1) distribution
qmix <- function(u, nu) (1-u)^(-1/nu)
Sample data using 'rnvmix':
x <- rnvmix(n, qmix = qmix, nu = nu, loc = loc, scale = scale)
Call 'fitvnmix' with 'qmix' as function (=> densities/weights estimated)
(MyFit21 <- fitnvmix(x, qmix = qmix, mix.param.bounds = mix.param.bounds))
Call 'fitnvmix' with 'qmix = "pareto"' in which case an analytical formula
for the density is used
(MyFit22 <- fitnvmix(x, qmix = "pareto", mix.param.bounds = mix.param.bounds))
stopifnot(all.equal(MyFit21$nu, MyFit22$nu, tol = 5e-2))

gammamix Functionalities for Gamma Scale Mixture Models

Description

Evaluating density-, distribution- and quantile-function of Gamma scale mixtures as well as random
variate generation.

Usage

dgammamix(x, qmix, d, control = list(), verbose = TRUE, log = FALSE, ...)
pgammamix(x, qmix, d, lower.tail = TRUE, control = list(), verbose = TRUE, ...)
qgammamix(u, qmix, d, control = list(), verbose = TRUE, q.only = TRUE,

stored.values = NULL, ...)
rgammamix(n, rmix, qmix, d, method = c("PRNG", "sobol", "ghalton"),

skip = 0, ...)

Arguments

x n-vector of evaluation points.

u n-vector of probabilities.

qmix see pnvmix().

rmix see rnvmix().

d dimension of the underlying normal variance mixture, see also details below.

n sample size n (positive integer).

lower.tail logical; if TRUE (default), probabilities are P (X <= x), otherwise P (X > x).

log logical indicating whether the log-density shall be returned.

gammamix 19

q.only see qnvmix().

stored.values see qnvmix().

method see rnvmix().

skip see rnvmix().

control list specifying algorithm specific parameters; see get_set_param().

verbose logical indicating whether a warning is given if the required precision has not
been reached.

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function.

Details

We define a Gamma mixture as a random variable Dsq satisfying, in distribution, Dsq = W ∗
Gamma(d/2, 2) where W is specified via qmix. If X follows a d−dimensional normal variance
mixture, the squared Mahalanobis distance (X − µ)TSigma−1(X − µ) has the same distribution
as Dsq.

The functions presented here are similar to the corresponding functions for normal variance mix-
tures (d/p/q/rnvmix()), details can be found in the corresponding help-files there.

Value

pgammamix() and dgammamix() return a numeric n-vector with the computed probabilities/densities
and corresponding attributes "abs. error" and "rel. error" (error estimates of the RQMC esti-
mator) and "numiter" (number of iterations).

If q.only = TRUE, qgammamix() a vector of the same length as u with entries qi where qi satisfies
qi = infxF (x) >= ui where F (x) the df of the Gamma mixture specified via qmix; if q.only =
FALSE, see qnvmix.

rgammamix() returns a n-vector containing n samples of the specified (via mix) Gamma mixture.

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

See Also

dnvmix(), pnvmix(), qnvmix(), rnvmix(), get_set_param(), qqplot_maha(), fitnvmix()

https://doi.org/10.18637/jss.v102.i02

20 get_set_param

Examples

Specify inverse-gamma mixture => results in d * F(d, nu) dist'n,
handled correctly when 'qmix = "inverse.gamma"' is specified
qmix <- function(u, nu) 1/qgamma(1 - u, shape = nu/2, rate = nu/2)

Example for rgammamix()
set.seed(271) # for reproducibility
n <- 25
nu <- 3
d <- 5
x <- rgammamix(n, qmix = qmix, d = d, nu = nu)

Evaluate distribution function at 'x'
p.true_1 <- pgammamix(x, qmix = "inverse.gamma", d = d, df = nu) # calls pf(...)
p.true_2 <- pf(x/d, df1 = d, df2 = nu)
p.estim <- pgammamix(x, qmix = qmix, d = d, nu = nu)
stopifnot(all.equal(p.true_1, p.true_2, tol = 1e-3,

check.attributes = FALSE),
all.equal(p.true_1, p.estim, tol = 1e-3,

check.attributes = FALSE))

Evaluate density function at 'x'
d.true_1 <- dgammamix(x, qmix = "inverse.gamma", d = d, df = nu)
d.true_2 <- df(x/d, df1 = d, df2 = nu)/d
d.est <- dgammamix(x, qmix = qmix, d = d, nu = nu)
stopifnot(all.equal(d.true_1, d.true_2, tol = 5e-4,

check.attributes = FALSE),
all.equal(d.true_1, d.est, tol = 5e-4,

check.attributes = FALSE))

Evaluate quantile function
u <- seq(from = 0.5, to = 0.9, by = 0.1)
q.true_1 <- qgammamix(u, qmix = "inverse.gamma", d = d, df = nu)
q.true_2 <- qf(u, df1 = d, df2 = nu) * d
q.est <- qgammamix(u, qmix = qmix, d = d, nu = nu)
stopifnot(all.equal(q.true_1, q.true_2, tol = 5e-4,

check.attributes = FALSE),
all.equal(q.true_1, q.est, tol = 5e-4,

check.attributes = FALSE))

get_set_param Algorithm-specific Parameters

Description

Algorithm specific parameters for functionalities in the nvmix package, notably for fitnvmix(),
dnvmix(), pnvmix(), qnvmix(), pgammamix(), dgammamix() and ES_nvmix() as well as the cor-
responding functions for grouped mixtures.

get_set_param 21

Usage

get_set_param(control = list())

Arguments

control list specifying algorithm specific parameters to beset; see below under details.

Details

For most functions in the nvmix package, internally, an iterative randomized Quasi-Monte Carlo
(RQMC) approach is used to estimate probabilities, weights and (log-)densities. There are various
parameters of underlying methods than can be changed.

Algorithm specific parameters can be passed as a list via control. It can contain any of the follow-
ing:

For all algorithms: method character string indicating the method to be used to compute the
integral. Available are:
"sobol": Sobol’ sequence (default),
"ghalton": generalized Halton sequence,
"PRNG": plain Monte Carlo based on a pseudo-random number generator.

increment character string indicating how the sample size should be increased in each
iteration. Available are:
"doubling": next iteration has as many sample points as all the previous iterations com-

bined,
"num.init": all iterations use an additional fun.eval[1]-many points (default for most

functions).
CI.factor multiplier of the Monte Carlo confidence interval bounds. The algorithm runs un-

til CI.factor times the estimated standard error is less than abstol or reltol (whichever
is provided). If CI.factor = 3.5 (the default), one can expect the actual absolute error
to be less than abstol in 99.9% of the cases.

fun.eval numeric(2) providing the size of the first point set to be used to estimate integrals
(typically a power of 2) and the maximal number of function evaluations. fun.eval
defaults to c(2^7, 1e12).

max.iter.rqmc numeric, providing the maximum number of iterations allowed in the RQMC
approach; the default is 15 if increment = "doubling" and 1250 otherwise.

B number of randomizations for obtaining an error estimate in the RQMC approach; the de-
fault is 15.

For pnvmix() and pgnvmix(): pnvmix.abstol, pnvmix.reltol non-negative numeric provid-
ing the relative/absolute precision required for the distribution function. Relative pre-
cision via pnvmix.reltol is only used when pnvmix.abstol = NA; in all other cases,
absolute precision will be used. pnvmix.abstol defaults to 1e-3. If pnvmix.abstol
= 0 and pnvmix.reltol = 0, the algorithm will typically run until the total number of
function evaluations exceeds fun.eval[2] or until the total number of iterations exeeds
max.iter.rqmc, whichever happens first. If n > 1 (so upper has more than one row), the
algorithm runs until the precision requirement is reached for all n probability estimates.

22 get_set_param

mean.sqrt.mix expectation of the square root
√

(W) of the mixing variable W . If NULL,
it will be estimated via QMC; this is only needed for determining the reordering of the
integration bounds, so a rather crude approximation is fine.

precond logical indicating whether preconditioning is applied, that is, reordering of the
integration variables. If TRUE, integration limits lower, upper as well as scale are inter-
nally re-ordered in a way such that the overall variance of the integrand is usually smaller
than with the original ordering; this usually leads smaller run-times.

cholesky.tol non-negative numeric providing lower threshold for non-zero elements in the
computation of the cholesky factor: If calculated C(i, i)2 < |cholesky.tol ∗ Scale(i, i)|,
the diagonal element (and all other elements in column i) of the cholesky factor C are set
to zero, yielding a singular matrix. cholesky.tol defaults to 1e-9.

For dnvmix() and dgnvmix(): dnvmix.reltol, dnvmix.abstol non-negative numeric provid-
ing the relative/absolute precision for the *log-* density required. Absolute precision
via dnvmix.abstol is only used when dnvmix.reltol = NA; in all other cases, rela-
tive precision will be used. dnvmix.reltol defaults to 1e-2. If dnvmix.reltol=0
and dnvmix.abstol=0, the algorithm will typically run until the total number of func-
tion evaluations exceeds fun.eval[2] or until the total number of iterations exeeds
max.iter.rqmc, whichever happens first. If n > 1 (so x has more than one row), the
algorithm runs until the precision requirement is reached for all n log-density estimates.

dnvmix.doAdapt logical indicating if an adaptive integration procedure shall be used that
only samples in relevant subdomains of the mixing variable; defaults to TRUE.

dnvmix.max.iter.rqmc.pilot numeric, providing the maximum number of unstratified,
non-adaptive pilot runs the internal integration procedure performs. Defaults to 6.

dnvmix.tol.int.lower, dnvmix.order.lower both numeric and nonnegative. RQMC in-
tegration is only performed where the integrand is > than the maximum of dnvmix.tol.int.lower
and 10−cgmax, where gmax is the theoretical maximum of the integrand and c is the spec-
ified dnvmix.order.lower. Default to 1e-100 and 5, respectively.

dnvmix.tol.bisec numeric vector of length 3 specifying bisection tolerances in the adap-
tive RQMC algorithm. First/second/third element specify the tolerance on u, W and the
log-integrand and default to 1e-6, 1e-1 and 1e-1, respectively.

dnvmix.max.iter.bisec numeric, maximum number of iterations in the internal bisection
procedure to find good cutting points allowed, defaults to 15.

dnvmix.tol.stratlength numeric, nonnegative. If the stratum found by the adaptive inte-
gration method has length > dnvmix.tol.stratlength RQMC integration is used there;
otherwise a crude approximation. Defaults to 1e-50.

For fitnvmix(): ECMEstep logical, if TRUE (default), ECME iteration is performed; if FALSE,
no ECME step is performed so that fitnvmix() performs between zero and two opti-
mizations over nu, depending on laststep.do.nu and whether nu.init was provided.

ECMEstep.do.nu logical, if TRUE (default), the likelihood is maximized over nu in each
ECME iteration; if FALSE, this step is omitted.

laststep.do.nu logical, if TRUE another last maximization of the likelihood over nu is
performed using all observations after the ECME iterations. Only makes sense if either
ECMEstep.do.nu=FALSE or if size.subsample is smaller than the number of observa-
tions. Defaults to FALSE.

resample logical, if TRUE, a different subsample of x is taken in each optimization over nu
in the ECME iterations. Only relevant when size.subsample is smaller than the number
of observations. Defaults to FALSE.

get_set_param 23

ECME.miniter, ECME.maxiter numeric positive, minimum and maximum number of ECME
iterations. Default to 5 and 200, respectively.

max.iter.locscaleupdate numeric positive. Maximum number of location-scale updates
(while helding nu fixed) in each individual ECME iteration; defaults to 50.

weights.reltol numeric non-negative. Relative tolerance to estimate internal weights used
to update loc and scale estimates in the ECME iterations. Defaults to 1e-2.

weights.interpol.reltol numeric non-negative. Some weights can be obtained by in-
terpolating previously calculated weights; if the maximal relative interpolation error is
smaller than weights.interpol.reltol, this is done. Defaults to 1e-2.

ECME.rel.conv.tol numeric(3) vector specifying relative convergence tolerances for loc,
scale and nu (in this order). Defaults to c(1e-2, 1e-2, 1e-3).

control.optim list of control parameters passed to the underlying optim in the initial step
as well as in the ECME iterations. See optim() for details; defaults to list(maxit=75).

control.optim.laststep like control.optim; this list of control arguments is passed to
optim in the last-step. Only relevant when laststep.do.nu = TRUE and defaults to
list() (so no defaults of optim() changed).

For qnvmix(): max.iter.newton numeric, maximum number of Newton iterations allowed to
approximate the quantile; defaults to 45.

newton.conv.abstol numeric, convergence tolerance for the Newton proceudre; conver-
gence is detected once the difference of estimated quantiles in two successive iterations
is smaller than newton.conv.abstol; defaults to 5e-4.

newton.df.reltol numeric, relative error tolerance for estimating the univariate distribu-
tion function; defaults to 2.5e-4.

newton.logdens.abstol numeric, absolute error tolerance for the internal estimation of the
log-density needed for the update; defaults to 1e-2.

newton.df.max.iter.rqmc numeric, maximum number of iterations to estimate the uni-
variate distribution function required in the Newton update; defaults to 350. Note that
internally used is increment = "doubling", no matter what.

For qqplot_maha(): qqplot.df.reltol numeric, with the same meaning as newton.df.reltol
for the function qnvmix(). Defaults to 5e-3.

For ES_nvmix(): riskmeasures.abstol, riskmeasures.reltol numeric, absolute or relative
error tolerance for estimating riskmeasures, notably for ES_nvmix(). By default, riskmeasures.reltol=5e-2
and riskmeasures.abstol=NA, so that a relative tolerance is used.

Care should be taken when changing algorithm specific parameters, notably tolerances, as the ac-
curacy of the result is heavily influenced by those.

Value

get_set_param() returns a list with more than 30 elements specifying algorithm specific param-
eters for the functions fitnvmix(), dnvmix(), pnvmix(), qnvmix(), pgammamix(), dgammamix()
and ES_nvmix(), as well as the corresponding functions for grouped mixtures such as pgnvmix()
and dgnvmix(). Parameter values passed to get_set_param() via the control argument over-
write the defaults; for parameters not specified in the control argument, the default values are
being returned.

24 get_set_qqplot_param

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

See Also

fitnvmix(), dnvmix(), pnvmix(), qnvmix(), pgammamix(), dgammamix(), ES_nvmix()

Examples

get_set_param() # obtain defaults

get_set_qqplot_param Plotting parameters for QQ Plots

Description

Plotting parameters for the method plot() of the class qqplot_maha.

Usage

get_set_qqplot_param(plot.pars = list(log = ""))

Arguments

plot.pars list specifying plotting parameters to be set; see below under details.

Details

This function provides a convenient way to set plotting parameters in the argument plot.pars of
the function qqplot_maha() (more precisely, the underlying plot() method), such as logarithmic
plotting, colors, linetypes and more.

The input list plot.pars can contain any of the following:

log character specifying the logarithmic axes. Just like for the generic plot, must be one of "",
"x", "y" or "xy".

xlim, ylim The x- and y-limits for plotting.

xlab, ylab character specifying the x- and y-axis labels. Default to "Theoretical quantiles"
and "Sample quantiles", respectively.

https://doi.org/10.18637/jss.v102.i02

numerical_experiments_data 25

sub, main character specifying title and subtitle of the plot; default to "", so no titles.

plot_legend, plot_test, plot_line logical specifying if a legend should be plotted; if the
test result of the GoF test should be displayed on the 3rd axis and if the plot should contain a
fitted line. All default to TRUE.

pch specification of the plotting symbol; see ?points(). Defaults to 1.

lty 3-vector containing the specification of the linetypes for i) the diagonal, ii) the asymptotic CI
and iii) the bootstrap CI; see also ?par(). Defaults to 1:3.

col 4-vector specifying the colors to be used for i) the points in the QQ plot; ii) the diagonal;
iii) the asymptotic CI and iv) the bootstrap CI. Defaults to c("black", "red", "azure4",
"chocolate4").

Value

get_set_qqplot_param() returns a list with 13 elements that is passed to qqplot_maha(), more
specifically, to the underlying plot() method. Parameter values passed to get_set_qqplot_param()
via the plot.pars argument overwrite the defaults; for parameters not specified in the plot.pars
argument, the default values are being returned.

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

See Also

qqplot_maha()

Examples

get_set_qqplot_param(plot.pars = list()) # obtain defaults

See ?qqplot_maha() for more examples.

numerical_experiments_data

Data Generated by the Demo ’numerical_experiments’

Description

Data generated by the demo('numerical_experiments') of the nvmix package.

Usage

data(numerical_experiments_data, package = "nvmix")

26 pgnvmix

Format

A list with 10 elements:

$pnvmix.abserrors Array as returned by the function pnvmix_testing_abserr(), see Section
1.1 of the demo('numerical_experiments').

$pnvmix.t.variances Array as returned by the function precond_testing_variance(), see
Section 1.1 of the demo('numerical_experiments').

$pnvmix.t.sobolind Array as returned by the function pnvmix_estimate_sobolind(), see Sec-
tion 1.1 of the demo('numerical_experiments').

$pnvmix.t.timing Array as returned by the function pnvmix_timing_mvt(), see Section 1.1 of
the demo('numerical_experiments').

$dnvmix.results Array as returned by the function dnvmix_testing(), see Section 1.2 of the
demo('numerical_experiments').

$fitnvmix.results Array as returned by the function fitnvmix_testing(), see Section 1.3 of
the demo('numerical_experiments').

$fit.dj30.anaylytical Array containing results of fitnvmix() applied to DJ30 data using an-
alytical weights/densities, see Section 5 of demo('numerical_experiments').

$fit.dj30.estimated Array containing results of fitnvmix() applied to DJ30 data using esti-
mated weights/densities, see Section 5 of demo('numerical_experiments').

$qqplots.dj30 Array containing results of qqplot.maha() applied to DJ30 data, see Section 5
of the demo('numerical_experiments').

$tailprobs.dj30 Array containing estimated quantile shortfall probabilities of models fitted to
DJ30 data, see Section 5 of demo('numerical_experiments').

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

pgnvmix Distribution Function of Grouped Multivariate Normal Variance Mix-
tures

Description

Evaluating grouped and generalized multivariate normal variance mixture distribution functions
(including Student t with multiple degrees-of-freedom).

Usage

pgnvmix(upper, lower = matrix(-Inf, nrow = n, ncol = d), groupings = 1:d, qmix,
rmix, loc = rep(0, d), scale = diag(d), standardized = FALSE,
control = list(), verbose = TRUE, ...)

pgStudent(upper, lower = matrix(-Inf, nrow = n, ncol = d), groupings = 1:d, df,
loc = rep(0, d), scale = diag(d), standardized = FALSE,
control = list(), verbose = TRUE)

pgnvmix 27

Arguments

upper see pnvmix().

lower see pnvmix().

groupings d-vector. Specification of the groupings so that variable i has mixing variable
Wk where k = groupings[i]. If groupings = 1:d, each variable has a different
mixing distribution.

qmix specification of the mixing variables Wi via quantile functions; see McNeil et
al. (2015, Chapter 6) and Hintz et al. (2020). Supported are the following types
of specification (see also the examples below):

character: character string specifying a supported distribution; currently
available are "inverse.gamma" (in which case Wi is inverse gamma dis-
tributed with shape and rate parameters df[groupings[i]]/2 and a mul-
tivariate Student t distribution multiple degreess-of-freedom results) and
"pareto" (in which case Wi is Pareto distributed with scale equal to unity
and shape equal to alpha[groupings[i]]. alpha and df must be of length
length(unique(groupings)) and need to be provided via the ellipsis ar-
gument).

list: list of length length(unique(groupings)) (number of different mix-
ing distributions). Element i of this list specifies the mixing variable for
component groupings[i]. Each element of this list can be

list: a list of length at least one, where the first component is a character
string specifying the base name of a distribution whose quantile func-
tion can be accessed via the prefix "q". An example "exp" for which
"qexp" exists. If the list is of length larger than one, the remaining
elements contain additional parameters of the distribution; for "exp",
for example, this can be the parameter rate.

function: function interpreted as the quantile function or random num-
ber generator of the mixing variable Wi

rmix only allowed when groupings = rep(1, d) in which case pgnvmix() is equiv-
alent to pnvmix(); see pnvmix().

df vector of length length(unique(groupings)) so that variable i has degrees-
of-freedom df[groupings[i]]; all elements must be positive and can be Inf,
in which case the corresponding marginal is normally distributed.

loc see pnvmix().

scale see pnvmix(); must be positive definite.

standardized see pnvmix().

control list specifying algorithm specific parameters; see get_set_param().

verbose see pnvmix().

... additional arguments (for example, parameters) passed to the underlying mix-
ing distribution when qmix is a character string or an element of qmix is a
function.

28 pgnvmix

Details

One should highlight that evaluating grouped normal variance mixtures is a non-trivial tasks which,
at the time of development of nvmix, was not available in R before, not even the special case of a
multivariate Student t distribution for non-integer degrees of freedoms, which frequently appears in
applications in finance, insurance and risk management after estimating such distributions.

Internally, an iterative randomized Quasi-Monte Carlo (RQMC) approach is used to estimate the
probabilities. It is an iterative algorithm that evaluates the integrand at a point-set (with size as speci-
fied by control$increment in the control argument) in each iteration until the pre-specified abso-
lute error tolerance control$pnvmix.abstol (or relative error tolerance control$pnvmix.reltol
which is used only when control$pnvmix.abstol = NA) is reached. The attribute "numiter" gives
the number of such iterations needed. Algorithm specific parameters (such as the above mentioned
control$pnvmix.abstol) can be passed as a list via control, see get_set_param() for more
details. If specified error tolerances are not reached and verbose = TRUE, a warning is thrown.

pgStudent() is a wrapper of pgnvmix(, qmix = "inverse.gamma", df = df).

Value

pgnvmix() and pgStudent() return a numeric n-vector with the computed probabilities and cor-
responding attributes "abs. error" and "rel. error" (error estimates of the RQMC estimator)
and "numiter" (number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Genz, A. and Bretz, F. (1999). Numerical computation of multivariate t-probabilities with applica-
tion to power calculation of multiple contrasts. Journal of Statistical Computation and Simulation
63(4), 103–117.

Genz, A. and Bretz, F. (2002). Comparison of methods for the computation of multivariate t proba-
bilities. Journal of Computational and Graphical Statistics 11(4), 950–971.

See Also

rgnvmix(), dgnvmix(), get_set_param()

https://doi.org/10.18637/jss.v102.i02

pgnvmix 29

Examples

Examples for pgnvmix()

1. Inverse-gamma mixture (=> distribution is grouped t with mutliple dof)
d <- 3
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))
a <- -3 * runif(d) * sqrt(d) # random lower limit
b <- 3 * runif(d) * sqrt(d) # random upper limit
df <- c(1.1, 2.4, 4.9) # dof for margin i
groupings <- 1:d

Call 'pgnvmix' with 'qmix' a string:
set.seed(12)
(pgt1 <- pgnvmix(b, lower = a, groupings = groupings, qmix = "inverse.gamma",

df = df, scale = P))
Version providing quantile functions of the mixing distributions as list
qmix_ <- function(u, df) 1 / qgamma(1-u, shape = df/2, rate = df/2)
qmix <- list(function(u) qmix_(u, df = df[1]), function(u) qmix_(u, df = df[2]),

function(u) qmix_(u, df = df[3]))
set.seed(12)
(pgt2 <- pgnvmix(b, lower = a, groupings = groupings, qmix = qmix, scale = P))
Similar, but using ellipsis argument:
qmix <- list(function(u, df1) qmix_(u, df1), function(u, df2) qmix_(u, df2),

function(u, df3) qmix_(u, df3))
set.seed(12)
(pgt3 <- pgnvmix(b, lower = a, groupings = groupings, qmix = qmix,

scale = P, df1 = df[1], df2 = df[2], df3 = df[3]))
Version using the user friendly wrapper 'pgStudent()'
set.seed(12)
(pgt4 <- pgStudent(b, lower = a, groupings = groupings, scale = P, df = df))
stopifnot(all.equal(pgt1, pgt2, tol = 1e-4, check.attributes = FALSE),

all.equal(pgt2, pgt3), all.equal(pgt1, pgt4))

2. More complicated mixutre
Let W1 ~ IG(1, 1), W2 = 1, W3 ~ Exp(1), W4 ~ Par(2, 1), W5 = W1, all comonotone
=> X1 ~ t_2; X2 ~ normal; X3 ~ Exp-mixture; X4 ~ Par-mixture; X5 ~ t_2

d <- 5
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))
b <- 3 * runif(d) * sqrt(d) # random upper limit
groupings <- c(1, 2, 3, 4, 1) # since W_5 = W_1
qmix <- list(function(u) qmix_(u, df = 2), function(u) rep(1, length(u)),

list("exp", rate=1), function(u) (1-u)^(-1/2)) # length 4 (# of groups)
pg1 <- pgnvmix(b, groupings = groupings, qmix = qmix, scale = P)
stopifnot(all.equal(pg1, 0.78711, tol = 5e-6, check.attributes = FALSE))

30 pnvmix

pnvmix Distribution Function of Multivariate Normal Variance Mixtures

Description

Evaluating multivariate normal variance mixture distribution functions (including Student t and
normal distributions).

Usage

pnvmix(upper, lower = matrix(-Inf, nrow = n, ncol = d), qmix, rmix,
loc = rep(0, d), scale = diag(d), standardized = FALSE,
control = list(), verbose = TRUE, ...)

pStudent(upper, lower = matrix(-Inf, nrow = n, ncol = d), df, loc = rep(0, d),
scale = diag(d), standardized = FALSE, control = list(), verbose = TRUE)

pNorm(upper, lower = matrix(-Inf, nrow = n, ncol = d), loc = rep(0, d),
scale = diag(d), standardized = FALSE, control = list(), verbose = TRUE)

Arguments

upper (n, d)-matrix of upper integration limits; each row represents a d-vector of up-
per integration limits.

lower (n, d)-matrix of lower integration limits (componentwise less than or equal to
upper); each row represents a d-vector of lower integration limits.

qmix, rmix specification of the mixing variable W via a quantile function (qmix) (recom-
mended, see details below) *or* random number generator (rmix); see McNeil
et al. (2015, Chapter 6) and Hintz et al. (2020). Supported are the following
types of specification (see also the examples below):

character: character string specifying a supported distribution; currently
available are "constant" (in which case W = 1 and thus the multivari-
ate normal distribution with mean vector loc and covariance matrix scale
results), "inverse.gamma" (in which case W is inverse gamma distributed
with shape and rate parameters df/2 and thus the multivariate Student t
distribution with df degrees of freedom (required to be provided via the
ellipsis argument) results) and "pareto" (in which case W is Pareto dis-
tributed with scale equal to unity and shape equal to alpha, which needs to
be provided via the ellipsis argument).

list: list of length at least one, where the first component is a character
string specifying the base name of a distribution whose quantile function
or random number generator can be accessed via the prefix "q" and "r",
respectively. an example is "exp" for which "qexp" exists. If the list is of
length larger than one, the remaining elements contain additional parame-
ters of the distribution; for "exp", for example, this can be the parameter
rate.

pnvmix 31

function: function interpreted as the quantile function or random number
generator of the mixing variable W .

df positive degress of freedom; can also be Inf in which case the distribution is
interpreted as the multivariate normal distribution with mean vector loc and
covariance matrix scale.

loc location vector of dimension d; this equals the mean vector of a random vector
following the specified normal variance mixture distribution if and only if the
latter exists.

scale scale matrix (a covariance matrix entering the distribution as a parameter) of
dimension (d, d); this equals the covariance matrix of a random vector following
the specified normal variance mixture distribution divided by the expecation of
the mixing variable W if and only if the former exists. scale is allowed to be
singular in which case the distribution function of the singular normal variance
mixture is returned.

standardized logical indicating whether scale is assumed to be a correlation matrix.

control list specifying algorithm specific parameters; see get_set_param().

verbose logical indicating whether a warning is thrown if the required precision pnvmix.abstol
or pnvmix.reltol as specified in the control argument has not been reached;
can also be an integer in which case 0 is FALSE, 1 is TRUE and 2 stands for pro-
ducing a more verbose warning (for each set of provided integration bounds).

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function.

Details

One should highlight that evaluating normal variance mixtures is a non-trivial tasks which, at the
time of development of nvmix, was not available in R before, not even the special case of a mul-
tivariate Student t distribution for non-integer degrees of freedom, which frequently appears in
applications in finance, insurance and risk management after estimating such distributions.

Note that the procedures call underlying C code. Currently, dimensions d ≥ 16510 are not sup-
ported for the default method sobol.

Internally, an iterative randomized Quasi-Monte Carlo (RQMC) approach is used to estimate the
probabilities. It is an iterative algorithm that evaluates the integrand at a point-set (with size as speci-
fied by control$increment in the control argument) in each iteration until the pre-specified abso-
lute error tolerance control$pnvmix.abstol (or relative error tolerance control$pnvmix.reltol
which is used only when control$pnvmix.abstol = NA) is reached. The attribute "numiter" gives
the number of such iterations needed. Algorithm specific parameters (such as the above mentioned
control$pnvmix.abstol) can be passed as a list via control, see get_set_param() for more
details. If specified error tolerances are not reached and verbose = TRUE, a warning is thrown.

If provided scale is singular, pnvmix() estimates the correct probability but throws a warning if
verbose = TRUE.

It is recommended to supply a quantile function via qmix, if available, as in this case efficient
RQMC methods are used to approximate the probability. If rmix is provided, internally used is
plain MC integration, typically leading to slower convergence. If both qmix and rmix are provided,
the latter is ignored.

32 pnvmix

pStudent() and pNorm() are wrappers of pnvmix(, qmix = "inverse.gamma", df = df) and pnvmix(,
qmix = "constant"), respectively. In the univariate case, the functions pt() and pnorm() are used.

Value

pnvmix(), pStudent() and pNorm() return a numeric n-vector with the computed probabilities
and corresponding attributes "abs. error" and rel. error (error estimates of the RQMC estima-
tor) and "numiter" (number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Genz, A. and Bretz, F. (1999). Numerical computation of multivariate t-probabilities with applica-
tion to power calculation of multiple contrasts. Journal of Statistical Computation and Simulation
63(4), 103–117.

Genz, A. and Bretz, F. (2002). Comparison of methods for the computation of multivariate t proba-
bilities. Journal of Computational and Graphical Statistics 11(4), 950–971.

Genz, A. and Kwong, K. (2000). Numerical evaluation of singular multivariate normal distributions.
Journal of Statistical Computation and Simulation 68(1), 1–21.

See Also

dnvmix(), rnvmix(), fitnvmix(), pgnvmix(), get_set_param()

Examples

Examples for pnvmix()

Generate a random correlation matrix in d dimensions
d <- 3
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))

Evaluate a t_{1/2} distribution function
a <- -3 * runif(d) * sqrt(d) # random lower limit
b <- 3 * runif(d) * sqrt(d) # random upper limit
df <- 1.5 # note that this is *non-integer*
set.seed(123)
pt1 <- pnvmix(b, lower = a, qmix = "inverse.gamma", df = df, scale = P)

https://doi.org/10.18637/jss.v102.i02

pnvmix 33

Here is a version providing the quantile function of the mixing distribution
qmix <- function(u, df) 1 / qgamma(1-u, shape = df/2, rate = df/2)
mean.sqrt.mix <- sqrt(df) * gamma(df/2) / (sqrt(2) * gamma((df+1) / 2))
set.seed(123)
pt2 <- pnvmix(b, lower = a, qmix = qmix, df = df, scale = P,

control = list(mean.sqrt.mix = mean.sqrt.mix))

Compare
stopifnot(all.equal(pt1, pt2, tol = 7e-4, check.attributes = FALSE))

mean.sqrt.mix will be approximated by QMC internally if not provided,
so the results will differ slightly.
set.seed(123)
pt3 <- pnvmix(b, lower = a, qmix = qmix, df = df, scale = P)
stopifnot(all.equal(pt3, pt1, tol = 7e-4, check.attributes = FALSE))

Here is a version providing a RNG for the mixing distribution
Note the significantly larger number of iterations in the attribute 'numiter'
compared to when 'qmix' was provided (=> plain MC versus RQMC)
set.seed(123)
pt4 <- pnvmix(b, lower = a,

rmix = function(n, df) 1/rgamma(n, shape = df/2, rate = df/2),
df = df, scale = P)

stopifnot(all.equal(pt4, pt1, tol = 8e-4, check.attributes = FALSE))

Case with missing data and a matrix of lower and upper bounds
a. <- matrix(rep(a, each = 4), ncol = d)
b. <- matrix(rep(b, each = 4), ncol = d)
a.[2,1] <- NA
b.[3,2] <- NA
pt <- pnvmix(b., lower = a., qmix = "inverse.gamma", df = df, scale = P)
stopifnot(is.na(pt) == c(FALSE, TRUE, TRUE, FALSE))

Case where upper = (Inf,..,Inf) and lower = (-Inf,...,-Inf)
stopifnot(all.equal(pnvmix(upper = rep(Inf, d), qmix = "constant"), 1,

check.attributes = FALSE))

An example with singular scale:
A <- matrix(c(1, 0, 0, 0,

2, 1, 0, 0,
3, 0, 0, 0,
4, 1, 0, 1), ncol = 4, nrow = 4, byrow = TRUE)

scale <- A%*%t(A)
upper <- 2:5

pn <- pnvmix(upper, qmix = "constant", scale = scale) # multivariate normal
pt <- pnvmix(upper, qmix = "inverse.gamma", scale = scale, df = df) # multivariate t

stopifnot(all.equal(pn, 0.8581, tol = 1e-3, check.attributes = FALSE))
stopifnot(all.equal(pt, 0.7656, tol = 1e-3, check.attributes = FALSE))

Evaluate a Exp(1)-mixture

34 qnvmix

Specify the mixture distribution parameter
rate <- 1.9 # exponential rate parameter

Method 1: Use R's qexp() function and provide a list as 'mix'
set.seed(42)
(p1 <- pnvmix(b, lower = a, qmix = list("exp", rate = rate), scale = P))

Method 2: Define the quantile function manually (note that
we do not specify rate in the quantile function here,
but conveniently pass it via the ellipsis argument)
set.seed(42)
(p2 <- pnvmix(b, lower = a, qmix = function(u, lambda) -log(1-u)/lambda,

scale = P, lambda = rate))

Check
stopifnot(all.equal(p1, p2))

Examples for pStudent() and pNorm()

Evaluate a t_{3.5} distribution function
set.seed(271)
pt <- pStudent(b, lower = a, df = 3.5, scale = P)
stopifnot(all.equal(pt, 0.6180, tol = 7e-5, check.attributes = FALSE))

Evaluate a normal distribution function
set.seed(271)
pn <- pNorm(b, lower = a, scale = P)
stopifnot(all.equal(pn, 0.7001, tol = 1e-4, check.attributes = FALSE))

pStudent deals correctly with df = Inf:
set.seed(123)
p.St.dfInf <- pStudent(b, df = Inf, scale = P)
set.seed(123)
p.Norm <- pNorm(b, scale = P)
stopifnot(all.equal(p.St.dfInf, p.Norm, check.attributes = FALSE))

qnvmix Quantile Function of a univariate Normal Variance Mixture Distribu-
tion

Description

Evaluating multivariate normal variance mixture distribution functions (including normal and Stu-
dent t for non-integer degrees of freedom).

Usage

qnvmix(u, qmix, control = list(),
verbose = TRUE, q.only = TRUE, stored.values = NULL, ...)

qnvmix 35

Arguments

u vector of probabilities .

qmix specification of the mixing variable W ; see pnvmix() for details and examples.

control list specifying algorithm specific parameters; see get_set_param().

verbose logical, if TRUE a warning is printed if one of the error tolerances is not met.

q.only logical. If TRUE, only the quantiles are returned; if FALSE, see Section ’value’
below.

stored.values matrix with 3 columns of the form [x, F (x), logf(x)] where F () and logf() are
the distribution- and log-density function of the distribution specified in qmix. If
provided it is used to determine starting values for internal newton proceudures.
Only very basic checking is done.

... additional arguments containing parameters of mixing distributions when qmix
is a character string.

Details

This function uses a Newton procedure to estimate the quantile of the specified univariate normal
variance mixture distribution. Internally, a randomized quasi-Monte Carlo (RQMC) approach is
used to estimate the distribution and (log)density function; the method is similar to the one in
pnvmix() and dnvmix(). The result depends slightly on .random.seed.

Internally, symmetry is used for u ≤ 0.5. Function values (i.e., df and log-density values) are
stored and reused to get good starting values. These values are returned if q.only = FALSE and
can be re-used by passing it to qnvmix() via the argument stored.values; this can significantly
reduce run-time.

Accuracy and run-time depend on both the magnitude of u and on how heavy the tail of the under-
lying distributions is. Numerical instabilities can occur for values of u close to 0 or 1, especially
when the tail of the distribution is heavy.

If q.only = FALSE the log-density values of the underlying distribution evaluated at the estimated
quantiles are returned as well: This can be useful for copula density evaluations where both quanti-
ties are needed.

Underlying algorithm specific parameters can be changed via the control argument, see get_set_param()
for details.

Value

If q.only = TRUE a vector of the same length as u with entries qi where qi satisfies qi = infxF (x) ≥ ui
where F (x) the univariate df of the normal variance mixture specified via qmix;

if q.only = FALSE a list of four:

$q: Vector of quantiles,

$log.density: vector log-density values at q,

$computed.values: matrix with 3 columns [x, F(x), logf(x)]; see details above,

$newton.iterations: vector giving the number of Newton iterations needed for u[i].

36 qqplot_maha

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R., and Embrechts, P. (2015). Quantitative Risk Management: Concepts,
Techniques, Tools. Princeton University Press.

See Also

dnvmix(), rnvmix(), pnvmix()

Examples

Evaluation points
u <- seq(from = 0.05, to = 0.95, by = 0.025)
set.seed(271) # for reproducibility

Evaluate the t_{1.4} quantile function
df <- 1.4
qmix. <- function(u) 1/qgamma(1-u, shape = df/2, rate = df/2)
If qmix = "inverse.gamma", qt() is being called
qt1 <- qnvmix(u, qmix = "inverse.gamma", df = df)
Estimate quantiles (without using qt())
qt1. <- qnvmix(u, qmix = qmix., q.only = FALSE)
stopifnot(all.equal(qt1, qt1.$q, tolerance = 2.5e-3))
Look at absolute error:
abs.error <- abs(qt1 - qt1.$q)
plot(u, abs.error, type = "l", xlab = "u", ylab = "Absolute error")
Now do this again but provide qt1.$stored.values, in which case at most
one Newton iteration will be needed:
qt2 <- qnvmix(u, qmix = qmix., stored.values = qt1.$computed.values, q.only = FALSE)
stopifnot(max(qt2$newton.iterations) <= 1)

qqplot_maha QQ Plot for Multivariate Normal Variance Mixtures

Description

Visual goodness-of-fit test for multivariate normal variance mixtures: Plotting squared Mahalanobis
distances against their theoretical quantiles.

https://doi.org/10.18637/jss.v102.i02

qqplot_maha 37

Usage

qqplot_maha(x, qmix, loc, scale, fitnvmix_object,
trafo.to.normal = FALSE, test = c("KS.AD", "KS", "AD", "none"),
boot.pars = list(B = 500, level = 0.95),
plot = TRUE, verbose = TRUE, control = list(),
digits = max(3, getOption("digits") - 4), plot.pars = list(), ...)

Arguments

x (n, d)-data matrix.

qmix see pnvmix().

loc see pnvmix().

scale see pnvmix().
fitnvmix_object

Optional. Object of class "fitnvmix" typically returned by fitnvmix(); if
provided, x, qmix, loc and scale are ignored.

trafo.to.normal

logical. If TRUE, the underlying Mahalanobis distances are mapped to normals
by a probability- quantile-transform so that the resulting QQ plot is essentially
a normal QQ plot. Defaults to FALSE.

test character specifying if (and which) GoF test shall be performed. "KS" per-
forms a Kolmogorov-Smirnoff (see ks.test()), "AD" an Anderson-Darling test
(see ad.test() from the package ADGofTest and "none" performs no test. By
default, test = "KS.AD" in which case both tests are performed.

boot.pars list with elements B (Bootstrap sample size for computing CIs; if B <= 1, no
Bootstrap is performed) and level specifying the confidence level.

plot logical specifying if the results should be plotted.

verbose see pnvmix().

control see get_set_param().

digits integer specifying the number of digits of the test statistic and the p-value to be
displayed.

plot.pars list specifying plotting parameters such as logarithmic axes; see get_set_qqplot_param().

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function.

Details

If X follows a multivariate normal variance mixture, the distribution of the Mahalanobis distance
D2 = (X−µ)T Σ−1(X−µ) is a gamma mixture whose distribution function can be approximated.

The function qqplot_maha() first estimates the theoretical quantiles by calling qgammamix() and
then plots those against the empirical squared Mahalanobis distances from the data in x (with
µ =loc and Σ =scale). Furthermore, the function computes asymptotic standard errors of the
sample quantiles by using an asymptotic normality result for the order statistics which are used to
plot the asymptotic CI; see Fox (2008, p. 35 – 36).+

38 qqplot_maha

If boot.pars$B > 1 (which is the default), the function additionally performs Bootstrap to construct
a CI. Note that by default, the plot contains both the asymptotic and the Bootstrap CI.

Finally, depending on the parameter test, the function performs a univariate GoF test of the ob-
served Mahalanobis distances as described above. The test result (i.e., the value of the statistic
along with a p-value) are typically plotted on the second y-axis.

The return object of class "qqplot_maha" contains all computed values (such as p-value, test-
statistics, Bootstrap CIs and more). We highlight that storing this return object makes the QQ plot
quickly reproducible, as in this case, the theoretical quantiles do not need to be recomputed.

For changing plotting parameters (such as logarithmic axes or colors) via the argument plot.pars,
see get_set_qqplot_param().

Value

qqplot_maha() (invisibly) returns an object of the class "qqplot_maha" for which the methods
plot() and print() are defined. The return object contains, among others, the components

maha2 Sorted, squared Mahalanobis distances of the data from loc wrt to scale.

theo_quant The theoretical quantile function evaluated at ppoints(length(maha2)).

boot_CI (2, length(maha2)) matrix containing the Bootstrap CIs for the empirical quantiles.

asymptSE vector of length length(maha2) with estimated, asympotic standard errors for the em-
pirical quantiles.

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

See Also

fitnvmix(), get_set_qqplot_param(), rnvmix(), pnvmix(), dnvmix()

Examples

Sample from a heavy tailed multivariate t and construct QQ plot
set.seed(1)
d <- 2
n <- 1000
df <- 3.1
rho <- 0.5
loc <- rep(0, d)

https://doi.org/10.18637/jss.v102.i02

rgnvmix 39

scale <- matrix(c(1, rho, rho, 1), ncol = 2)
qmix <- "inverse.gamma"
Sample data
x <- rnvmix(n, qmix = qmix, loc = loc, scale = scale, df = df)
Construct QQ Plot with 'true' parameters and store result object
qq1 <- qqplot_maha(x, qmix = qmix, df = df, loc = loc, scale = scale)
... which is an object of class "qqplot_maha" with two methods
stopifnot(class(qq1) == "qqplot_maha", "plot.qqplot_maha" %in% methods(plot),

"print.qqplot_maha" %in% methods(print))
plot(qq1) # reproduce the plot
plot(qq1, plotpars = list(log = "xy")) # we can also plot on log-log scale

In fact, with the 'plotpars' argument, we can change a lot of things
plot(qq1, plotpars = list(col = rep("black", 4), lty = 4:6, pch = "*",

plot_test = FALSE, main = "Same with smaller y limits",
sub = "MySub", xlab = "MyXlab", ylim = c(0, 1.5e3)))

What about estimated parameters?
myfit <- fitStudent(x)
We can conveniently pass 'myfit', rather than specifying 'x', 'loc', ...
set.seed(1)
qq2.1 <- qqplot_maha(fitnvmix_object = myfit, test = "AD", trafo_to_normal = TRUE)
set.seed(1)
qq2.2 <- qqplot_maha(x, qmix = "inverse.gamma", loc = myfit$loc,

scale = myfit$scale, df = myfit$df,
test = "AD", trafo_to_normal = TRUE)

stopifnot(all.equal(qq2.1$boot_CI, qq2.2$boot_CI)) # check
qq2.2 # it mentions here that the Maha distances were transformed to normal

Another example where 'qmix' is a function, so quantiles are internally
estimated via 'qgammamix()'
n <- 15 # small sample size to have examples run fast
Define the quantile function of an IG(nu/2, nu/2) distribution
qmix <- function(u, df) 1 / qgamma(1 - u, shape = df/2, rate = df/2)
Sample data
x <- rnvmix(n, qmix = qmix, df = df, loc = loc, scale = scale)
QQ Plot of empirical quantiles vs true quantiles, all values estimated
via RQMC:
set.seed(1)
qq3.1 <- qqplot_maha(x, qmix = qmix, loc = loc, scale = scale, df = df)
Same could be obtained by specifying 'qmix' as string in which case
qqplot_maha() calls qf()
set.seed(1)
qq3.2 <- qqplot_maha(x, qmix = "inverse.gamma", loc = loc, scale = scale, df = df)

rgnvmix (Quasi-)Random Number Generator for Grouped Normal Variance
Mixtures

40 rgnvmix

Description

Generate vectors of random variates from grouped normal variance mixtures (including Student t
with multiple degrees-of-freedom).

Usage

rgnvmix(n, qmix, groupings = 1:d, loc = rep(0, d), scale = diag(2),
factor = NULL, method = c("PRNG", "sobol", "ghalton"), skip = 0, ...)

rgStudent(n, groupings = 1:d, df, loc = rep(0, d), scale = diag(2),
factor = NULL, method = c("PRNG", "sobol", "ghalton"), skip = 0)

Arguments

n sample size n (positive integer).

qmix specification of the mixing variables Wi; see pgnvmix().

groupings vector specifying the group structure; see pgnvmix().

df vector specifying the degrees-of-freedom; see see pgStudent().

loc see pgnvmix().

scale see pgnvmix(). scale must be positive definite; sampling from singular normal
variance mixtures can be achieved by providing factor.

factor see rnvmix().

method see rnvmix().

skip see rnvmix().

... additional arguments (for example, parameters) passed to the underlying mix-
ing distribution when qmix is a character string or an element of qmix is a
function.

Details

Internally used is factor, so scale is not required to be provided if factor is given.

The default factorization used to obtain factor is the Cholesky decomposition via chol(). To this
end, scale needs to have full rank.

rgStudent() is a wrapper of rgnvmix(, qmix = "inverse.gamma", df = df).

Value

rgnvmix() returns an (n, d)-matrix containing n samples of the specified (via qmix) d-dimensional
grouped normal variance mixture with location vector loc and scale matrix scale (a covariance
matrix).

rgStudent() returns samples from the d-dimensional multivariate t distribution with multiple
degrees-of-freedom specified by df, location vector loc and scale matrix scale.

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

rgnvmix 41

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

See Also

rnvmix(), pgnvmix()

Examples

n <- 1000 # sample size

Generate a random correlation matrix in d dimensions
d <- 2
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
scale <- cov2cor(A %*% t(A))

Example 1: Exponential mixture
Let W_1 ~ Exp(1), W_2 ~ Exp(10)
rates <- c(1, 10)
#qmix <- list(list("exp", rate = rates[1]), list("exp", rate = rates[2]))
qmix <- lapply(1:2, function(i) list("exp", rate = rates[i]))
set.seed(1)
X.exp1 <- rgnvmix(n, qmix = qmix, scale = scale)
For comparison, consider NVM distribution with W ~ Exp(1)
set.seed(1)
X.exp2 <- rnvmix(n, qmix = list("exp", rate = rates[1]), scale = scale)
Plot both samples with the same axes
opar <- par(no.readonly = TRUE)
par(mfrow=c(1,2))
plot(X.exp1, xlim = range(X.exp1, X.exp2), ylim = range(X.exp1, X.exp2),

xlab = expression(X[1]), ylab = expression(X[2]))
mtext("Two groups with rates 1 and 10")
plot(X.exp2, xlim = range(X.exp1, X.exp2), ylim = range(X.exp1, X.exp2),

xlab = expression(X[1]), ylab = expression(X[2]))
mtext("One group with rate 1")
par(opar)

Example 2: Exponential + Inverse-gamma mixture
Let W_1 ~ Exp(1), W_2 ~ IG(1.5, 1.5) (=> X_2 ~ t_3 marginally)
df <- 3
qmix <- list(list("exp", rate = rates[1]),

function(u, df) 1/qgamma(1-u, shape = df/2, rate = df/2))
set.seed(1)

https://doi.org/10.18637/jss.v102.i02

42 riskmeasures

X.mix1 <- rgnvmix(n, qmix = qmix, scale = scale, df = df)
plot(X.mix1, xlab = expression(X[1]), ylab = expression(X[2]))

Example 3: Mixtures in d > 2
d <- 5
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
scale <- cov2cor(A %*% t(A))

Example 3.1: W_i ~ Exp(i), i = 1,...,d
qmix <- lapply(1:d, function(i) list("exp", rate = i))
set.seed(1)
X.mix2 <- rgnvmix(n, qmix = qmix, scale = scale)

Example 3.2: W_1, W_2 ~ Exp(1), W_3, W_4, W_5 ~ Exp(2)
=> 2 groups, so we need two elements in 'qmix'
qmix <- lapply(1:2, function(i) list("exp", rate = i))
groupings <- c(1, 1, 2, 2, 2)
set.seed(1)
X.mix3 <- rgnvmix(n, qmix = qmix, groupings = groupings, scale = scale)

Example 3.3: W_1, W_3 ~ IG(1, 1), W_2, W_4 ~ IG(2, 2), W_5 = 1
=> X_1, X_3 ~ t_2; X_2, X_4 ~ t_4, X_5 ~ N(0, 1)
qmix <- list(function(u, df1) 1/qgamma(1-u, shape = df1/2, rate = df1/2),

function(u, df2) 1/qgamma(1-u, shape = df2/2, rate = df2/2),
function(u) rep(1, length(u)))

groupings = c(1, 2, 1, 2, 3)
df = c(2, 4, Inf)
set.seed(1)
X.t1 <- rgnvmix(n, qmix = qmix, groupings = groupings, scale = scale,

df1 = df[1], df2 = df[2])

This is equivalent to calling 'rgnmvix' with 'qmix = "inverse.gamma"'
set.seed(1)
X.t2 <- rgnvmix(n, qmix = "inverse.gamma", groupings = groupings, scale = scale,

df = df)

Alternatively, one can use the user friendly wrapper 'rgStudent()'
set.seed(1)
X.t3 <- rgStudent(n, df = df, groupings = groupings, scale = scale)

stopifnot(all.equal(X.t1, X.t2), all.equal(X.t1, X.t3))

riskmeasures Risk measures for normal variance mixtures

Description

Estimation of value-at-risk and expected shortfall for univariate normal variance mixtures

riskmeasures 43

Usage

VaR_nvmix(level, qmix, loc = 0, scale = 1, control = list(), verbose = TRUE, ...)
ES_nvmix(level, qmix, loc = 0, scale = 1, control = list(), verbose = TRUE, ...)

Arguments

level n-vector of confidence levels.

qmix see pnvmix().

loc numeric location, see also pnvmix()

scale numeric scale, see also pnvmix()

control list specifying algorithm specific parameters; see get_set_param().

verbose logical indicating whether a warning is given if the required precision has not
been reached.

... additional arguments (for example, parameters) passed to the underlying mixing
distribution when qmix is a character string or function, see also pnvmix()

Details

VaR_nvmix calls qnvmix().

The function ES_nvmix() estimates the expected shortfall using a randomized quasi Monte Carlo
procedure by sampling from the mixing variable specified via qmix and and using the identity∫∞
k
xφ(x)dx = φ(k) where φ(x) denotes the density of a standard normal distribution. Algorithm

specific paramaters (such as tolerances) can be conveniently passed via the control argument, see
get_set_param() for more details.

Value

VaR_nvmix() and ES_nvmix() return a numeric n-vector with the computed risk measures and in
case of ES_nvmix() corresponding attributes "abs. error" and "rel. error"(error estimates of
the RQMC estimator) and "numiter" (number of iterations).

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

See Also

dnvmix(), pnvmix(), qnvmix(), rnvmix(), get_set_param()

https://doi.org/10.18637/jss.v102.i02

44 rnvmix

Examples

Example for inverse-gamma mixture (resulting in a t distribution) for
which the expected shortfall admits a closed formula
set.seed(42) # reproducibility
level <- seq(from = 0.9, to = 0.95, by = 0.01)
df <- 4
If 'qmix' is provided as string, ES_nvmix() uses the closed formula
ES1 <- ES_nvmix(level, qmix = "inverse.gamma", df = df)
If 'qmix' is provided as function, the expected shortfall is estimated
ES2 <- ES_nvmix(level, qmix = function(u, df) 1/qgamma(1-u, shape = df/2, rate = df/2),

df = df)
stopifnot(all.equal(ES1, ES2, tol = 1e-2, check.attributes = FALSE))

rnvmix (Quasi-)Random Number Generation for Multivariate Normal Vari-
ance Mixtures

Description

Generate vectors of random variates from multivariate normal variance mixtures (including Student
t and normal distributions).

Usage

rnvmix(n, rmix, qmix, loc = rep(0, d), scale = diag(2),
factor = NULL, method = c("PRNG", "sobol", "ghalton"),
skip = 0, ...)

rStudent(n, df, loc = rep(0, d), scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0)

rNorm(n, loc = rep(0, d), scale = diag(2), factor = NULL,
method = c("PRNG", "sobol", "ghalton"), skip = 0)

rNorm_sumconstr(n, weights, s, method = c("PRNG", "sobol", "ghalton"), skip = 0)

Arguments

n sample size n (positive integer).

rmix specification of the mixing variable W , see McNeil et al. (2015, Chapter 6) and
Hintz et al. (2020), via a random number generator. This argument is ignored
for method = "sobol" and method = "ghalton". Supported are the following
types of specification (see also the examples below):

character: character string specifying a supported distribution; currently
available are "constant" (in which case W = 1 and thus a sample from
the multivariate normal distribution with mean vector loc and covariance
matrix scale results) and "inverse.gamma" (in which case W is inverse
gamma distributed with shape and rate parameters df/2 and thus the mul-
tivariate Student t distribution with df degrees of freedom (required to be
provided via the ellipsis argument) results).

rnvmix 45

list: list of length at least one, where the first component is a character
string specifying the base name of a distribution which can be sampled via
prefix "r"; an example is "exp" for which "rexp" exists for sampling. If
the list is of length larger than one, the remaining elements contain addi-
tional parameters of the distribution; for "exp", for example, this can be the
parameter rate.

function: function interpreted as a random number generator of the mixing
variable W ; additional arguments (such as parameters) can be passed via
the ellipsis argument.

numeric: numeric vector of length n providing a random sample of the mixing
variable W .

qmix specification of the mixing variable W via a quantile function. This argument
is required for method = "sobol" and method = "ghalton". Supported are the
following types of specification (see also the examples below):

character: character string specifying a supported distribution; currently
available are "constant" (in which case W = 1 and thus a sample from
the multivariate normal distribution with mean vector loc and covariance
matrix scale results) and "inverse.gamma" (in which case W is inverse
gamma distributed with shape and rate parameters df/2 and thus the mul-
tivariate Student t distribution with df degrees of freedom (required to be
provided via the ellipsis argument) results).

list: list of length at least one, where the first component is a character
string specifying the base name of a distribution which can be sampled via
prefix "q"; an example is "exp" for which "qexp" exists for sampling. If
the list is of length larger than one, the remaining elements contain addi-
tional parameters of the distribution; for "exp", for example, this can be the
parameter rate.

function: function interpreted as the quantile function of the mixing variable
W ; internally, sampling is then done with the inversion method by applying
the provided function to U(0,1) random variates.

df positive degress of freedom; can also be Inf in which case the distribution is
interpreted as the multivariate normal distribution with mean vector loc and
covariance matrix scale).

loc location vector of dimension d; this equals the mean vector of a random vector
following the specified normal variance mixture distribution if and only if the
latter exists.

scale scale matrix (a covariance matrix entering the distribution as a parameter) of di-
mension (d, d) (defaults to d = 2); this equals the covariance matrix of a random
vector following the specified normal variance mixture distribution divided by
the expecation of the mixing variable W if and only if the former exists. Note
that scale must be positive definite; sampling from singular normal variance
mixtures can be achieved by providing factor.

factor (d, k)-matrix such that factor %*% t(factor) equals scale; the non-square
case k 6= d can be used to sample from singular normal variance mixtures.
Note that this notation coincides with McNeil et al. (2015, Chapter 6). If not
provided, factor is internally determined via chol() (and multiplied from the

46 rnvmix

right to an (n, k)-matrix of independent standard normals to obtain a sample
from a multivariate normal with zero mean vector and covariance matrix scale).

method character string indicating the method to be used to obtain the sample. Avail-
able are:
"PRNG": pseudo-random numbers,
"sobol": Sobol’ sequence,
"ghalton": generalized Halton sequence.
If method = "PRNG", either qmix or rmix can be provided. If both are provided,
rmix is used and qmix ignored. For the other two methods, sampling is done via
inversion, hence qmix has to be provided and rmix is ignored.

skip integer specifying the number of points to be skipped when method = "sobol",
see also example below.

weights d-numeric vector of weights.
s numeric vector of length 1 or n giving the value of the constrained sum; see

below under details.
... additional arguments (for example, parameters) passed to the underlying mixing

distribution when rmix or qmix is a character string or function.

Details

Internally used is factor, so scale is not required to be provided if factor is given.
The default factorization used to obtain factor is the Cholesky decomposition via chol(). To this
end, scale needs to have full rank.
Sampling from a singular normal variance mixture distribution can be achieved by providing factor.
The number of rows of factor equals the dimension d of the sample. Typically (but not necessar-
ily), factor is square.
rStudent() and rNorm() are wrappers of rnvmix(, qmix = "inverse.gamma", df = df) and rnvmix(,
qmix = "constant", df = df), respectively.
The function rNorm_sumconstr() can be used to sample from the multivariate standard normal
distribution under a weighted sum constraint; the implementation is based on Algorithm 1 in Vrins
(2018). Let Z = (Z1, . . . , Zd) Nd(0, Id). The function rNorm_sumconstr() then samples from
Z|wTZ = s where w and s correspond to the arguments weights and s. If supplied s is a vector
of length n, the i’th row of the returned matrix uses the constraint wTZ = si where si is the i’th
element in s.

Value

rnvmix() returns an (n, d)-matrix containing n samples of the specified (via mix) d-dimensional
multivariate normal variance mixture with location vector loc and scale matrix scale (a covariance
matrix).
rStudent() returns samples from the d-dimensional multivariate Student t distribution with loca-
tion vector loc and scale matrix scale.
rNorm() returns samples from the d-dimensional multivariate normal distribution with mean vector
loc and covariance matrix scale.
rNorm_sumconstr() returns samples from the d-dimensional multivariate normal distribution con-
ditional on the weighted sum being constrained to s.

rnvmix 47

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Vrins, E. (2018) Sampling the Multivariate Standard Normal Distribution under a Weighted Sum
Constraint. Risks 6(3), 64.

See Also

dnvmix(), pnvmix()

Examples

Examples for rnvmix()

Generate a random correlation matrix in d dimensions
d <- 3
set.seed(157)
A <- matrix(runif(d * d), ncol = d)
P <- cov2cor(A %*% t(A))

Draw random variates and compare
df <- 3.5
n <- 1000
set.seed(271)
X <- rnvmix(n, rmix = "inverse.gamma", df = df, scale = P) # with scale
set.seed(271)
X. <- rnvmix(n, rmix = "inverse.gamma", df = df, factor = t(chol(P))) # with factor
stopifnot(all.equal(X, X.))

Checking df = Inf
set.seed(271)
X <- rnvmix(n, rmix = "constant", scale = P) # normal
set.seed(271)
X. <- rnvmix(n, rmix = "inverse.gamma", scale = P, df = Inf) # t_infinity
stopifnot(all.equal(X, X.))

Univariate case (dimension = number of rows of 'factor' = 1 here)
set.seed(271)
X.1d <- rnvmix(n, rmix = "inverse.gamma", df = df, factor = 1/2)
set.seed(271)
X.1d. <- rnvmix(n, rmix = "inverse.gamma", df = df, factor = 1)/2 # manual scaling
stopifnot(all.equal(X.1d, X.1d.))

https://doi.org/10.18637/jss.v102.i02

48 rnvmix

Checking different ways of providing 'mix'
1) By providing a character string (and corresponding ellipsis arguments)
set.seed(271)
X.mix1 <- rnvmix(n, rmix = "inverse.gamma", df = df, scale = P)
2) By providing a list; the first element has to be an existing distribution
with random number generator available with prefix "r"
rinverse.gamma <- function(n, df) 1 / rgamma(n, shape = df/2, rate = df/2)
set.seed(271)
X.mix2 <- rnvmix(n, rmix = list("inverse.gamma", df = df), scale = P)
3) The same without extra arguments (need the extra list() here to
distinguish from Case 1))
rinverseGamma <- function(n) 1 / rgamma(n, shape = df/2, rate = df/2)
set.seed(271)
X.mix3 <- rnvmix(n, rmix = list("inverseGamma"), scale = P)
4) By providing a quantile function
Note: P(1/Y <= x) = P(Y >= 1/x) = 1-F_Y(1/x) = y <=> x = 1/F_Y^-(1-y)
set.seed(271)
X.mix4 <- rnvmix(n, qmix = function(p) 1/qgamma(1-p, shape = df/2, rate = df/2),

scale = P)
5) By providing random variates
set.seed(271) # if seed is set here, results are comparable to the above methods
W <- rinverse.gamma(n, df = df)
X.mix5 <- rnvmix(n, rmix = W, scale = P)
Compare (note that X.mix4 is not 'all equal' with X.mix1 or the other samples)
since rgamma() != qgamma(runif()) (or qgamma(1-runif()))
stopifnot(all.equal(X.mix2, X.mix1),

all.equal(X.mix3, X.mix1),
all.equal(X.mix5, X.mix1))

For a singular normal variance mixture:
Need to provide 'factor'
A <- matrix(c(1, 0, 0, 1, 0, 1), ncol = 2, byrow = TRUE)
stopifnot(all.equal(dim(rnvmix(n, rmix = "constant", factor = A)), c(n, 3)))
stopifnot(all.equal(dim(rnvmix(n, rmix = "constant", factor = t(A))), c(n, 2)))

Using 'skip'. Need to reset the seed everytime to get the same shifts in "sobol".
Note that when using method = "sobol", we have to provide 'qmix' instead of 'rmix'.
set.seed(271)
X.skip0 <- rnvmix(n, qmix = "inverse.gamma", df = df, scale = P, method = "sobol")
set.seed(271)
X.skip1 <- rnvmix(n, qmix = "inverse.gamma", df = df, scale = P, method = "sobol",

skip = n)
set.seed(271)
X.wo.skip <- rnvmix(2*n, qmix = "inverse.gamma", df = df, scale = P, method = "sobol")
X.skip <- rbind(X.skip0, X.skip1)
stopifnot(all.equal(X.wo.skip, X.skip))

Examples for rStudent() and rNorm()

Draw N(0, P) random variates by providing scale or factor and compare
n <- 1000

skewstudent 49

set.seed(271)
X.n <- rNorm(n, scale = P) # providing scale
set.seed(271)
X.n. <- rNorm(n, factor = t(chol(P))) # providing the factor
stopifnot(all.equal(X.n, X.n.))

Univariate case (dimension = number of rows of 'factor' = 1 here)
set.seed(271)
X.n.1d <- rNorm(n, factor = 1/2)
set.seed(271)
X.n.1d. <- rNorm(n, factor = 1)/2 # manual scaling
stopifnot(all.equal(X.n.1d, X.n.1d.))

Draw t_3.5 random variates by providing scale or factor and compare
df <- 3.5
n <- 1000
set.seed(271)
X.t <- rStudent(n, df = df, scale = P) # providing scale
set.seed(271)
X.t. <- rStudent(n, df = df, factor = t(chol(P))) # providing the factor
stopifnot(all.equal(X.t, X.t.))

Univariate case (dimension = number of rows of 'factor' = 1 here)
set.seed(271)
X.t.1d <- rStudent(n, df = df, factor = 1/2)
set.seed(271)
X.t.1d. <- rStudent(n, df = df, factor = 1)/2 # manual scaling
stopifnot(all.equal(X.t.1d, X.t.1d.))

Check df = Inf
set.seed(271)
X.t <- rStudent(n, df = Inf, scale = P)
set.seed(271)
X.n <- rNorm(n, scale = P)
stopifnot(all.equal(X.t, X.n))

Examples for rNorm_sumconstr()
set.seed(271)
weights <- c(1, 1)
Z.constr <- rNorm_sumconstr(n, weights = c(1, 1), s = 2)
stopifnot(all(rowSums(Z.constr) == 2))
plot(Z.constr , xlab = expression(Z[1]), ylab = expression(Z[2]))

skewstudent Functionalities for the skew-t distribution and copula

Description

Sampling and density evaluation for the multivariate skew-t distribution and copula.

50 skewstudent

Usage

rskewt(n, loc = rep(0, d), scale = diag(2), factor = NULL, gamma = rep(0, d),
df = Inf, method = c("PRNG", "sobol", "ghalton"), skip = 0)

dskewt(x, loc = rep(0, d), scale = diag(2), gamma = rep(0, d), df,
log = FALSE, scale.inv, ldet)

rskewtcopula(n, scale = diag(2), factor = NULL, gamma = rep(0, d), df = Inf,
pseudo = TRUE, method = c("PRNG", "sobol", "ghalton"), skip = 0)

dskewtcopula(u, scale = diag(2), gamma = rep(0, d), df, log = FALSE,
scale.inv, ldet)

Arguments

u (n, d)-matrix of evaluation points or data; Have to be in (0, 1).

x (n, d)-matrix of evaluation points or data

n sample size n (positive integer).

df positive degress of freedom; can also be Inf in which case the copula is inter-
preted as the Gaussian copula.

loc location of length d.

gamma Skewness-vector of dimension d; if all(gamma == 0), the classical t distribution
or copula results.

scale scale matrix (a covariance matrix entering the distribution as a parameter) of
dimension (d, d) (defaults to d = 2). Note that scale must be positive definite,

factor (d, d)-matrix such that factor %*% t(factor) equals scale. If not provided,
factor is internally determined via chol()

scale.inv inverse of scale; if not provided, computed via pd.solve(scale).

ldet log(det(scale)); if not provided, computed via pd.solve(scale).

log logical indicating whether the logarithmic density is to be computed.

pseudo logical; if TRUE, copula samples are computed via pobs() from a multivariate
skew-t sample. If FALSE, the univariate skew t distribution functions are inter-
nally approximated via integrate(); see details below.

method see rnvmix().

skip see rnvmix().

Details

Functionalities for sampling from the multivariate skew-t distribution and copula; the former has
stochastic representation µ + Wγ +

√
WAZ where AAT = scale, W follows an inverse-gamma

distrubution with parameters df/2 and is independent of the d-dimensional vector Z following a
standard multivariate normal distribution. When gamma is the null-vector, the distribution be-
comes the multivariate t distribution.

A major computational challenge when working with the skew t copula is the lack of an avail-
able distribution and quantile function of the univariate skew t distribution. These are required in

skewstudent 51

rskewtcopula(, pobs = FALSE) and in dskewtcopula(). The unviarate skew t distribution and
quantile functions are currently implemented as described Yoshiba, T. (2018).

The functions described here are currently being further developed to improve stability, accuracy
and speed, so that arguments may change in subsequent versions of nvmix.

Value

n-vector of (log-)density values and (n, d)-matrix of samples, respectively.

Author(s)

Erik Hintz, Marius Hofert and Christiane Lemieux

References

Hintz, E., Hofert, M. and Lemieux, C. (2020), Grouped Normal Variance Mixtures. Risks 8(4), 103.

Hintz, E., Hofert, M. and Lemieux, C. (2021), Normal variance mixtures: Distribution, density and
parameter estimation. Computational Statistics and Data Analysis 157C, 107175.

Hintz, E., Hofert, M. and Lemieux, C. (2022), Multivariate Normal Variance Mixtures in R: The R
Package nvmix. Journal of Statistical Software, doi:10.18637/jss.v102.i02.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Tech-
niques, Tools. Princeton University Press.

Yoshiba, T. (2018). Maximum Likelihood Estimation of Skew-t Copulas with Its Applications to
Stock Returns. Journal of Statistical Computation and Simulation 88 (13): 2489–2506.

See Also

rStudent(), dStudent(), rStudentcopula(), dStudentcopula()

Examples

Sampling from the skew-t copula

n <- 100 # sample size
d <- 10 # dimension
rho <- 0.5
scale <- matrix(rho, ncol = d, nrow = d)
diag(scale) <- 1 # scale
gamma <- rep(1, d) # skewness
df <- 7 # degrees-of-freedom parameter
set.seed(1) # same random numbers for both runs
system.time(samplecop_pobs <- rskewtcopula(n, scale = scale, gamma = gamma,

df = df, pseudo = TRUE))
set.seed(1)
system.time(samplecop_pskewt <- rskewtcopula(n, scale = scale, gamma = gamma,

df = df, pseudo = FALSE))
Plot first two coordinates
layout(rbind(1:2))
plot(samplecop_pobs, xlab = expression(U[1]), ylab = expression(U[2]))
mtext("pobs = TRUE")

https://doi.org/10.18637/jss.v102.i02

52 skewstudent

plot(samplecop_pskewt, xlab = expression(U[1]), ylab = expression(U[2]))
mtext("pobs = FALSE")
layout(1)

Index

∗ datasets
numerical_experiments_data, 25

∗ distribution
copula, 2
dependencemeasures, 6
dgnvmix, 9
dnvmix, 12
fitnvmix, 14
gammamix, 18
get_set_param, 20
get_set_qqplot_param, 24
pgnvmix, 26
pnvmix, 30
qnvmix, 34
qqplot_maha, 36
rgnvmix, 39
riskmeasures, 42
rnvmix, 44
skewstudent, 49

ad.test, 37

character, 3, 6, 7, 9, 12, 15, 19, 21, 24, 25,
27, 30, 31, 35, 37, 40, 43–46

chol, 3, 12, 13, 40, 45, 46, 50
class, 4, 16
copula, 2
corgnvmix (dependencemeasures), 6

dependencemeasures, 6
dgammamix, 20, 23, 24
dgammamix (gammamix), 18
dgnvmix, 9, 23, 28
dgStudent (dgnvmix), 9
dgStudentcopula, 7
dgStudentcopula (copula), 2
dNorm (dnvmix), 12
dnvmix, 4, 5, 9, 12, 16, 17, 19, 20, 23, 24, 32,

35, 36, 38, 43, 47
dnvmixcopula (copula), 2

dskewt (skewstudent), 49
dskewtcopula (skewstudent), 49
dStudent, 51
dStudent (dnvmix), 12
dStudentcopula, 51
dStudentcopula (copula), 2

ES_nvmix, 20, 23, 24
ES_nvmix (riskmeasures), 42

fitgStudentcopula (copula), 2
fitNorm (fitnvmix), 14
fitnvmix, 13, 14, 19, 20, 23, 24, 32, 37, 38
fitStudent (fitnvmix), 14
fitStudentcopula (copula), 2
function, 3, 7, 9, 12, 15, 19, 27, 31, 37, 40,

43, 45, 46

gammamix, 18
get_set_param, 3, 6, 9, 10, 12, 13, 16, 17, 19,

20, 27, 28, 31, 32, 35, 37, 43
get_set_qqplot_param, 24, 37, 38

integer, 31, 46

ks.test, 37

lambda_gStudent (dependencemeasures), 6
list, 3, 4, 6, 9, 10, 12, 13, 16, 19, 21, 23–25,

27, 30, 31, 35, 37, 43, 45
logical, 3, 6, 9, 12, 16, 18, 19, 22, 25, 31, 35,

37, 43, 50

matrix, 3, 9, 12, 15, 30, 35, 37, 40, 45, 46, 50

NULL, 3
numeric, 7, 10, 13, 15, 16, 19, 21–23, 28, 32,

43, 45, 46
numerical_experiments_data, 25

optim, 4, 23

53

54 INDEX

par, 25
pgammamix, 20, 23, 24
pgammamix (gammamix), 18
pgnvmix, 3, 6, 9, 10, 23, 26, 32, 40, 41
pgStudent, 40
pgStudent (pgnvmix), 26
pgStudentcopula, 7
pgStudentcopula (copula), 2
pNorm (pnvmix), 30
pnorm, 32
pnvmix, 3–5, 9, 12, 13, 17–20, 23, 24, 27, 30,

35–38, 43, 47
pnvmixcopula (copula), 2
points, 25
pStudent (pnvmix), 30
pStudentcopula (copula), 2
pt, 32

qgammamix, 37
qgammamix (gammamix), 18
qnvmix, 4, 5, 19, 20, 23, 24, 34, 43
qqplot_maha, 17, 19, 24, 25, 36

rgammamix (gammamix), 18
rgnvmix, 10, 28, 39
rgStudent (rgnvmix), 39
rgStudentcopula, 7
rgStudentcopula (copula), 2
riskmeasures, 42
rNorm (rnvmix), 44
rNorm_sumconstr (rnvmix), 44
rnvmix, 3–5, 13, 17–19, 32, 36, 38, 40, 41, 43,

44, 50
rnvmixcopula (copula), 2
rskewt (skewstudent), 49
rskewtcopula (skewstudent), 49
rStudent, 51
rStudent (rnvmix), 44
rStudentcopula, 51
rStudentcopula (copula), 2

skewstudent, 49

VaR_nvmix (riskmeasures), 42
vector, 3, 6, 9, 15, 18, 19, 25, 27, 38, 40, 43

	copula
	dependencemeasures
	dgnvmix
	dnvmix
	fitnvmix
	gammamix
	get_set_param
	get_set_qqplot_param
	numerical_experiments_data
	pgnvmix
	pnvmix
	qnvmix
	qqplot_maha
	rgnvmix
	riskmeasures
	rnvmix
	skewstudent
	Index

