
Package ‘nuggets’
January 8, 2025

Title Extensible Data Pattern Searching Framework

Version 1.4.0

Date 2025-01-08

Maintainer Michal Burda <michal.burda@osu.cz>

Description Extensible framework for
subgroup discovery (Atzmueller (2015) <doi:10.1002/widm.1144>),
contrast patterns (Chen (2022) <doi:10.48550/arXiv.2209.13556>),
emerging patterns (Dong (1999) <doi:10.1145/312129.312191>),
association rules (Agrawal (1994) <https://www.vldb.org/conf/1994/P487.PDF>) and
conditional correlations (Hájek (1978) <doi:10.1007/978-3-642-66943-9>).
Both crisp (Boolean, binary) and fuzzy data are supported.
It generates conditions in the form of elementary conjunctions, evaluates
them on a dataset and checks the induced sub-data for interesting statistical
properties. A user-defined function may be defined to evaluate on each generated
condition to search for custom patterns.

URL https://beerda.github.io/nuggets/,

https://github.com/beerda/nuggets

BugReports https://github.com/beerda/nuggets/issues

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Language en-US

Imports cli, lifecycle, methods, purrr, Rcpp, rlang, stats, stringr,
tibble, tidyr, tidyselect

LinkingTo Rcpp, testthat

SystemRequirements C++17

Suggests arules, dplyr, testthat (>= 3.0.0), xml2, withr, knitr,
rmarkdown

Config/testthat/edition 3

VignetteBuilder knitr

1

https://doi.org/10.1002/widm.1144
https://doi.org/10.48550/arXiv.2209.13556
https://doi.org/10.1145/312129.312191
https://www.vldb.org/conf/1994/P487.PDF
https://doi.org/10.1007/978-3-642-66943-9
https://beerda.github.io/nuggets/
https://github.com/beerda/nuggets
https://github.com/beerda/nuggets/issues

2 dig

NeedsCompilation yes

Author Michal Burda [aut, cre] (<https://orcid.org/0000-0002-4182-4407>)

Repository CRAN

Date/Publication 2025-01-08 10:20:01 UTC

Contents
dig . 2
dig_associations . 7
dig_baseline_contrasts . 10
dig_complement_contrasts . 13
dig_correlations . 16
dig_grid . 19
dig_paired_baseline_contrasts . 22
format_condition . 26
is_degree . 27
is_subset . 27
partition . 28
var_grid . 30
var_names . 32
which_antichain . 32

Index 34

dig Search for patterns of custom type

Description

[Experimental]
A general function for searching for patterns of custom type. The function allows for the selection of
columns of x to be used as condition predicates. The function enumerates all possible conditions in
the form of elementary conjunctions of selected predicates, and for each condition, a user-defined
callback function f is executed. The callback function is intended to perform some analysis and
return an object representing a pattern or patterns related to the condition. dig() returns a list of
these returned objects.

The callback function f may have some arguments that are listed in the f argument description. The
algorithm provides information about the generated condition based on the present arguments.

Additionally to condition, the function allows for the selection of the so-called focus predicates.
The focus predicates, a.k.a. foci, are predicates that are evaluated within each condition and some
additional information is provided to the callback function about them.

dig() allows to specify some restrictions on the generated conditions, such as:

• the minimum and maximum length of the condition (min_length and max_length argu-
ments).

https://orcid.org/0000-0002-4182-4407

dig 3

• the minimum support of the condition (min_support argument). Support of the condition is
the relative frequency of the condition in the dataset x.

• the minimum support of the focus (min_focus_support argument). Support of the focus is
the relative frequency of rows such that all condition predicates AND the focus are TRUE on
it. Foci with support lower than min_focus_support are filtered out.

Usage

dig(
x,
f,
condition = everything(),
focus = NULL,
disjoint = var_names(colnames(x)),
min_length = 0,
max_length = Inf,
min_support = 0,
min_focus_support = min_support,
min_conditional_focus_support = 0,
max_support = 1,
filter_empty_foci = FALSE,
t_norm = "goguen",
max_results = Inf,
verbose = FALSE,
threads = 1L,
error_context = list(arg_x = "x", arg_f = "f", arg_condition = "condition", arg_focus =
"focus", arg_disjoint = "disjoint", arg_min_length = "min_length", arg_max_length =
"max_length", arg_min_support = "min_support", arg_min_focus_support =
"min_focus_support", arg_min_conditional_focus_support =
"min_conditional_focus_support", arg_max_support = "max_support",

arg_filter_empty_foci = "filter_empty_foci", arg_t_norm = "t_norm", arg_max_results =
"max_results", arg_verbose = "verbose", arg_threads = "threads",
call =
current_env())

)

Arguments

x a matrix or data frame. The matrix must be numeric (double) or logical. If x is
a data frame then each column must be either numeric (double) or logical.

f the callback function executed for each generated condition. This function may
have some of the following arguments. Based on the present arguments, the
algorithm would provide information about the generated condition:

• condition - a named integer vector of column indices that represent the
predicates of the condition. Names of the vector correspond to column
names;

• support - a numeric scalar value of the current condition’s support;
• indices - a logical vector indicating the rows satisfying the condition;

4 dig

• weights - (similar to indices) weights of rows to which they satisfy the
current condition;

• pp - a value of a contingency table, condition & focus. pp is a named nu-
meric vector where each value is a support of conjunction of the condition
with a foci column (see the focus argument to specify, which columns).
Names of the vector are foci column names.

• pn - a value of a contingency table, condition & neg focus. pn is a
named numeric vector where each value is a support of conjunction of the
condition with a negated foci column (see the focus argument to specify,
which columns are foci) - names of the vector are foci column names.

• np - a value of a contingency table, neg condition & focus. np is a
named numeric vector where each value is a support of conjunction of the
negated condition with a foci column (see the focus argument to specify,
which columns are foci) - names of the vector are foci column names.

• nn - a value of a contingency table, neg condition & neg focus. nn
is a named numeric vector where each value is a support of conjunction of
the negated condition with a negated foci column (see the focus argument
to specify, which columns are foci) - names of the vector are foci column
names.

• foci_supports - (deprecated, use pp instead) a named numeric vector of
supports of foci columns (see focus argument to specify, which columns
are foci) - names of the vector are foci column names.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

focus a tidyselect expression (see tidyselect syntax) specifying the columns to use as
focus predicates

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

max_length The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

min_focus_support

the minimum support of a focus, for the focus to be passed to the callback func-
tion. The support of the focus is the relative frequency of rows such that all
condition predicates AND the focus are TRUE on it. For numerical (double)

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

dig 5

input, the support is computed as the mean (over all rows) of multiplications of
predicate values.

min_conditional_focus_support

the minimum relative support of a focus within a condition. The conditional
support of the focus is the relative frequency of rows with focus being TRUE
within rows where the condition is TRUE.

max_support the maximum support of a condition to trigger the callback
filter_empty_foci

a logical scalar indicating whether to skip conditions, for which no focus re-
mains available after filtering by min_focus_support. If TRUE, the condition
is passed to the callback function only if at least one focus remains after filter-
ing. If FALSE, the condition is passed to the callback function regardless of the
number of remaining foci.

t_norm a t-norm used to compute conjunction of weights. It must be one of "goedel"
(minimum t-norm), "goguen" (product t-norm), or "lukas" (Lukasiewicz t-
norm).

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

error_context a list of details to be used in error messages. This argument is useful when
dig() is called from another function to provide error messages, which refer to
arguments of the calling function. The list must contain the following elements:

• arg_x - the name of the argument x as a character string
• arg_f - the name of the argument f as a character string
• arg_condition - the name of the argument condition as a character string
• arg_focus - the name of the argument focus as a character string
• arg_disjoint - the name of the argument disjoint as a character string
• arg_min_length - the name of the argument min_length as a character

string
• arg_max_length - the name of the argument max_length as a character

string
• arg_min_support - the name of the argument min_support as a character

string
• arg_min_focus_support - the name of the argument min_focus_support

as a character string
• arg_max_support - the name of the argument max_support as a character
• arg_filter_empty_foci - the name of the argument filter_empty_foci

as a character string
• arg_t_norm - the name of the argument t_norm as a character string
• arg_threads - the name of the argument threads as a character string
• call - an environment in which to evaluate the error messages.

6 dig

Value

A list of results provided by the callback function f.

Author(s)

Michal Burda

See Also

partition(), var_names(), dig_grid()

Examples

library(tibble)

Prepare iris data for use with dig()
d <- partition(iris, .breaks = 2)

Call f() for each condition with support >= 0.5. The result is a list
of strings representing the conditions.
dig(x = d,

f = function(condition) {
format_condition(names(condition))

},
min_support = 0.5)

Create a more complex pattern object - a list with some statistics
res <- dig(x = d,

f = function(condition, support) {
list(condition = format_condition(names(condition)),

support = support)
},
min_support = 0.5)

print(res)

Format the result as a data frame
do.call(rbind, lapply(res, as_tibble))

Within each condition, evaluate also supports of columns starting with
"Species"
res <- dig(x = d,

f = function(condition, support, pp) {
c(list(condition = format_condition(names(condition))),

list(condition_support = support),
as.list(pp / nrow(d)))

},
condition = !starts_with("Species"),
focus = starts_with("Species"),
min_support = 0.5,
min_focus_support = 0)

Format the result as a tibble

dig_associations 7

do.call(rbind, lapply(res, as_tibble))

For each condition, create multiple patterns based on the focus columns
res <- dig(x = d,

f = function(condition, support, pp) {
lapply(seq_along(pp), function(i) {

list(condition = format_condition(names(condition)),
condition_support = support,
focus = names(pp)[i],
focus_support = pp[[i]] / nrow(d))

})
},
condition = !starts_with("Species"),
focus = starts_with("Species"),
min_support = 0.5,
min_focus_support = 0)

As res is now a list of lists, we need to flatten it before converting to
a tibble
res <- unlist(res, recursive = FALSE)

Format the result as a tibble
do.call(rbind, lapply(res, as_tibble))

dig_associations Search for association rules

Description

[Experimental]
Association rules identify conditions (antecedents) under which a specific feature (consequent) is
present very often.

Scheme: A => C

If condition A is satisfied, then the feature C is present very often.
Example: university_edu & middle_age & IT_industry => high_income

People in middle age with university education working in IT industry have very likely a
high income.

Antecedent A is usually a set of predicates, and consequent C is a single predicate.

For the following explanations we need a mathematical function supp(I), which is defined for a
set I of predicates as a relative frequency of rows satisfying all predicates from I . For logical data,
supp(I) equals to the relative frequency of rows, for which all predicates i1, i2, . . . , in from I are
TRUE. For numerical (double) input, supp(I) is computed as the mean (over all rows) of truth
degrees of the formula i_1 AND i_2 AND ... AND i_n, where AND is a triangular norm selected
by the t_norm argument.

8 dig_associations

Association rules are characterized with the following quality measures.

Length of a rule is the number of elements in the antecedent.

Coverage of a rule is equal to supp(A).

Consequent support of a rule is equal to supp({c}).
Support of a rule is equal to supp(A ∪ {c}).
Confidence of a rule is the fraction supp(A)/supp(A ∪ {c}).

Usage

dig_associations(
x,
antecedent = everything(),
consequent = everything(),
disjoint = var_names(colnames(x)),
min_length = 0L,
max_length = Inf,
min_coverage = 0,
min_support = 0,
min_confidence = 0,
contingency_table = FALSE,
measures = NULL,
t_norm = "goguen",
max_results = Inf,
verbose = FALSE,
threads = 1

)

Arguments

x a matrix or data frame with data to search in. The matrix must be numeric
(double) or logical. If x is a data frame then each column must be either numeric
(double) or logical.

antecedent a tidyselect expression (see tidyselect syntax) specifying the columns to use in
the antecedent (left) part of the rules

consequent a tidyselect expression (see tidyselect syntax) specifying the columns to use in
the consequent (right) part of the rules

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

min_length the minimum length, i.e., the minimum number of predicates in the antecedent,
of a rule to be generated. Value must be greater or equal to 0. If 0, rules with
empty antecedent are generated in the first place.

max_length The maximum length, i.e., the maximum number of predicates in the antecedent,
of a rule to be generated. If equal to Inf, the maximum length is limited only by
the number of available predicates.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

dig_associations 9

min_coverage the minimum coverage of a rule in the dataset x. (See Description for the defi-
nition of coverage.)

min_support the minimum support of a rule in the dataset x. (See Description for the defini-
tion of support.)

min_confidence the minimum confidence of a rule in the dataset x. (See Description for the
definition of confidence.)

contingency_table

a logical value indicating whether to provide a contingency table for each rule.
If TRUE, the columns pp, pn, np, and nn are added to the output table. These
columns contain the number of rows satisfying the antecedent and the conse-
quent, the antecedent but not the consequent, the consequent but not the an-
tecedent, and neither the antecedent nor the consequent, respectively.

measures a character vector specifying the additional quality measures to compute. If
NULL, no additional measures are computed. Possible values are "lift", "conviction",
"added_value". See https://mhahsler.github.io/arules/docs/measures
for a description of the measures.

t_norm a t-norm used to compute conjunction of weights. It must be one of "goedel"
(minimum t-norm), "goguen" (product t-norm), or "lukas" (Lukasiewicz t-
norm).

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical value indicating whether to print progress messages.
threads the number of threads to use for parallel computation.

Value

A tibble with found patterns and computed quality measures.

Author(s)

Michal Burda

See Also

partition(), var_names(), dig()

Examples

d <- partition(mtcars, .breaks = 2)
dig_associations(d,

antecedent = !starts_with("mpg"),
consequent = starts_with("mpg"),
min_support = 0.3,
min_confidence = 0.8,
measures = c("lift", "conviction"))

https://mhahsler.github.io/arules/docs/measures

10 dig_baseline_contrasts

dig_baseline_contrasts

Search for conditions that yield in statistically significant one-sample
test in selected variables.

Description

[Experimental]
Baseline contrast patterns identify conditions under which a specific feature is significantly different
from a given value by performing a one-sample statistical test.

Scheme: var != 0 | C

Variable var is (in average) significantly different from 0 under the condition C.
Example: (measure_error != 0 | measure_tool_A

If measuring with measure tool A, the average measure error is significantly different from
0.

The baseline contrast is computed using a one-sample statistical test, which is specified by the
method argument. The function computes the contrast between all variables specified by the vars
argument. Baseline contrasts are computed in sub-data corresponding to conditions generated from
the condition columns. Function dig_baseline_contrasts() supports crisp conditions only,
i.e., the condition columns in x must be logical.

Usage

dig_baseline_contrasts(
x,
condition = where(is.logical),
vars = where(is.numeric),
disjoint = var_names(colnames(x)),
min_length = 0L,
max_length = Inf,
min_support = 0,
max_support = 1,
method = "t",
alternative = "two.sided",
h0 = 0,
conf_level = 0.95,
max_p_value = 0.05,
wilcox_exact = FALSE,
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,

dig_baseline_contrasts 11

threads = 1
)

Arguments

x a matrix or data frame with data to search the patterns in.
condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as

condition predicates
vars a tidyselect expression (see tidyselect syntax) specifying the columns to use for

computation of contrasts
disjoint an atomic vector of size equal to the number of columns of x that specifies

the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

max_length The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

max_support the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

method a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox", for non-parametric test on equality in position.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". "greater" corresponds to positive association, "less" to negative
association.

h0 a numeric value specifying the null hypothesis for the test. For the "t" method,
it is the value of the mean. For the "wilcox" method, it is the value of the
median. The default value is 0.

conf_level a numeric value specifying the level of the confidence interval. The default value
is 0.95.

max_p_value the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

wilcox_exact (used for the "wilcox" method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

12 dig_baseline_contrasts

wilcox_correct (used for the "wilcox" method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

wilcox_tol_root

(used for the "wilcox" method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() and its tol.root argument for more information.

wilcox_digits_rank

(used for the "wilcox" method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() and its digits.rank argument
for more information.

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

Value

A tibble with found patterns in rows. The following columns are always present:

condition the condition of the pattern as a character string in the form {p1 & p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

support the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

var the name of the contrast variable.

estimate the estimated mean or median of variable var.

statistic the statistic of the selected test.

p_value the p-value of the underlying test.

n the number of rows in the sub-data corresponding to the condition.

conf_int_lo the lower bound of the confidence interval of the estimate.

conf_int_hi the upper bound of the confidence interval of the estimate.

alternative a character string indicating the alternative hypothesis. The value must be one
of "two.sided", "greater", or "less".

method a character string indicating the method used for the test.

comment a character string with additional information about the test (mainly error mes-
sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.

stderr the standard error of the mean.

dig_complement_contrasts 13

Author(s)

Michal Burda

See Also

dig_paired_baseline_contrasts(), dig_complement_contrasts(), dig(), dig_grid(), stats::t.test(),
stats::wilcox.test()

dig_complement_contrasts

Search for conditions that provide significant differences in selected
variables to the rest of the data table

Description

[Experimental]
Complement contrast patterns identify conditions under which there is a significant difference in
some numerical variable between elements that satisfy the identified condition and the rest of the
data table.

Scheme: (var | C) != (var | not C)

There is a statistically significant difference in variable var between group of elements that
satisfy condition C and a group of elements that do not satisfy condition C.

Example: (life_expectancy | smoker) < (life_expectancy | non-smoker)

The life expectancy in people that smoke cigarettes is in average significantly lower than in
people that do not smoke.

The complement contrast is computed using a two-sample statistical test, which is specified by
the method argument. The function computes the complement contrast in all variables specified
by the vars argument. Complement contrasts are computed based on sub-data corresponding to
conditions generated from the condition columns and the rest of the data table. Function #’
dig_complement_contrasts() supports crisp conditions only, i.e., the condition columns in x
must be logical.

Usage

dig_complement_contrasts(
x,
condition = where(is.logical),
vars = where(is.numeric),
disjoint = var_names(colnames(x)),
min_length = 0L,
max_length = Inf,
min_support = 0,

14 dig_complement_contrasts

max_support = 1 - min_support,
method = "t",
alternative = "two.sided",
h0 = if (method == "var") 1 else 0,
conf_level = 0.95,
max_p_value = 0.05,
t_var_equal = FALSE,
wilcox_exact = FALSE,
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,
threads = 1L

)

Arguments

x a matrix or data frame with data to search the patterns in.
condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as

condition predicates
vars a tidyselect expression (see tidyselect syntax) specifying the columns to use for

computation of contrasts
disjoint an atomic vector of size equal to the number of columns of x that specifies

the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

max_length The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

max_support the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

method a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox", for non-parametric test on equality in position, and "var"
for F-test on comparison of variances of two populations.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". "greater" corresponds to positive association, "less" to negative
association.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

dig_complement_contrasts 15

h0 a numeric value specifying the null hypothesis for the test. For the "t" method,
it is the difference in means. For the "wilcox" method, it is the difference in
medians. For the "var" method, it is the hypothesized ratio of the population
variances. The default value is 1 for "var" method, and 0 otherwise.

conf_level a numeric value specifying the level of the confidence interval. The default value
is 0.95.

max_p_value the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

t_var_equal (used for the "t" method only) a logical value indicating whether the variances
of the two samples are assumed to be equal. If TRUE, the pooled variance is used
to estimate the variance in the t-test. If FALSE, the Welch (or Satterthwaite) ap-
proximation to the degrees of freedom is used. See t.test() and its var.equal
argument for more information.

wilcox_exact (used for the "wilcox" method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

wilcox_correct (used for the "wilcox" method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

wilcox_tol_root

(used for the "wilcox" method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() and its tol.root argument for more information.

wilcox_digits_rank

(used for the "wilcox" method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() and its digits.rank argument
for more information.

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

Value

A tibble with found patterns in rows. The following columns are always present:

condition the condition of the pattern as a character string in the form {p1 & p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

support the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

16 dig_correlations

var the name of the contrast variable.
estimate the estimate value (see the underlying test.
statistic the statistic of the selected test.
p_value the p-value of the underlying test.
n_x the number of rows in the sub-data corresponding to the condition.
n_y the number of rows in the sub-data corresponding to the negation of the condi-

tion.
conf_int_lo the lower bound of the confidence interval of the estimate.
conf_int_hi the upper bound of the confidence interval of the estimate.
alternative a character string indicating the alternative hypothesis. The value must be one

of "two.sided", "greater", or "less".
method a character string indicating the method used for the test.
comment a character string with additional information about the test (mainly error mes-

sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.
stderr the standard error of the mean difference.

Author(s)

Michal Burda

See Also

dig_baseline_contrasts(), dig_paired_baseline_contrasts(), dig(), dig_grid(), stats::t.test(),
stats::wilcox.test(), stats::var.test()

dig_correlations Search for conditional correlations

Description

[Experimental]
Conditional correlations are patterns that identify strong relationships between pairs of numeric
variables under specific conditions.

Scheme: xvar ~ yvar | C

xvar and yvar highly correlates in data that satisfy the condition C.
Example: study_time ~ test_score | hard_exam

For hard exams, the amount of study time is highly correlated with the obtained exam’s test
score.

The function computes correlations between all combinations of xvars and yvars columns of x in
multiple sub-data corresponding to conditions generated from condition columns.

dig_correlations 17

Usage

dig_correlations(
x,
condition = where(is.logical),
xvars = where(is.numeric),
yvars = where(is.numeric),
disjoint = var_names(colnames(x)),
method = "pearson",
alternative = "two.sided",
exact = NULL,
min_length = 0L,
max_length = Inf,
min_support = 0,
max_support = 1,
max_results = Inf,
verbose = FALSE,
threads = 1

)

Arguments

x a matrix or data frame with data to search in.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

xvars a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of correlations

yvars a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of correlations

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman"

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". "greater" corresponds to positive association, "less" to negative
association.

exact a logical indicating whether an exact p-value should be computed. Used for
Kendall’s tau and Spearman’s rho. See stats::cor.test() for more informa-
tion.

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

18 dig_correlations

max_length The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

max_support the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

Value

A tibble with found patterns.

Author(s)

Michal Burda

See Also

dig(), stats::cor.test()

Examples

convert iris$Species into dummy logical variables
d <- partition(iris, Species)

find conditional correlations between all pairs of numeric variables
dig_correlations(d,

condition = where(is.logical),
xvars = Sepal.Length:Petal.Width,
yvars = Sepal.Length:Petal.Width)

With `condition = NULL`, dig_correlations() computes correlations between
all pairs of numeric variables on the whole dataset only, which is an
alternative way of computing the correlation matrix
dig_correlations(iris,

condition = NULL,
xvars = Sepal.Length:Petal.Width,
yvars = Sepal.Length:Petal.Width)

dig_grid 19

dig_grid Search for grid-based rules

Description

[Experimental]
This function creates a grid column names specified by xvars and yvars (see var_grid()). Af-
ter that, it enumerates all conditions created from data in x (by calling dig()) and for each such
condition and for each row of the grid of combinations, a user-defined function f is executed on
each sub-data created from x by selecting all rows of x that satisfy the generated condition and by
selecting the columns in the grid’s row.

Function is useful for searching for patterns that are based on the relationships between pairs of
columns, such as in dig_correlations().

Usage

dig_grid(
x,
f,
condition = where(is.logical),
xvars = where(is.numeric),
yvars = where(is.numeric),
disjoint = var_names(colnames(x)),
allow = "all",
na_rm = FALSE,
type = "crisp",
min_length = 0L,
max_length = Inf,
min_support = 0,
max_support = 1,
max_results = Inf,
verbose = FALSE,
threads = 1L,
error_context = list(arg_x = "x", arg_f = "f", arg_condition = "condition", arg_xvars =

"xvars", arg_yvars = "yvars", arg_disjoint = "disjoint", arg_allow = "allow",
arg_na_rm = "na_rm", arg_type = "type", arg_min_length = "min_length", arg_max_length
= "max_length", arg_min_support = "min_support", arg_max_support = "max_support",
arg_max_results = "max_results", arg_verbose = "verbose", arg_threads = "threads",
call = current_env())

)

Arguments

x a matrix or data frame with data to search in.
f the callback function to be executed for each generated condition. The argu-

ments of the callback function differ based on the value of the type argument
(see below):

20 dig_grid

• If type = "crisp" (that is, boolean), the callback function f must accept a
single argument pd of type data.frame with single (if yvars == NULL) or
two (if yvars != NULL) columns, accessible as pd[[1]] and pd[[2]]. Data
frame pd is a subset of the original data frame x with all rows that satisfy
the generated condition. Optionally, the callback function may accept an
argument nd that is a subset of the original data frame x with all rows that
do not satisfy the generated condition.

• If type = "fuzzy", the callback function f must accept an argument d
of type data.frame with single (if yvars == NULL) or two (if yvars !=
NULL) columns, accessible as d[[1]] and d[[2]], and a numeric argument
weights with the same length as the number of rows in d. The weights
argument contains the truth degree of the generated condition for each row
of d. The truth degree is a number in the interval [0, 1] that represents the
degree of satisfaction of the condition in the original data row.

In all cases, the function must return a list of scalar values, which will be con-
verted into a single row of result of final tibble.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use
as condition predicates. The selected columns must be logical or numeric. If
numeric, fuzzy conditions are considered.

xvars a tidyselect expression (see tidyselect syntax) specifying the columns of x, whose
names will be used as a domain for combinations use at the first place (xvar)

yvars NULL or a tidyselect expression (see tidyselect syntax) specifying the columns
of x, whose names will be used as a domain for combinations use at the second
place (yvar)

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

allow a character string specifying which columns are allowed to be selected by xvars
and yvars arguments. Possible values are:

• "all" - all columns are allowed to be selected
• "numeric" - only numeric columns are allowed to be selected

na_rm a logical value indicating whether to remove rows with missing values from
sub-data before the callback function f is called

type a character string specifying the type of conditions to be processed. The "crisp"
type accepts only logical columns as condition predicates. The "fuzzy" type ac-
cepts both logical and numeric columns as condition predicates where numeric
data are in the interval [0, 1]. The callback function f differs based on the value
of the type argument (see the description of f above).

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

max_length the maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

dig_grid 21

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

max_support the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

error_context a list of details to be used in error messages. This argument is useful when
dig_grid() is called from another function to provide error messages, which
refer to arguments of the calling function. The list must contain the following
elements:

• arg_x - the name of the argument x as a character string
• arg_condition - the name of the argument condition as a character string
• arg_xvars - the name of the argument xvars as a character string
• arg_yvars - the name of the argument yvars as a character string
• call - an environment in which to evaluate the error messages.

Value

A tibble with found patterns. Each row represents a single call of the callback function f.

Author(s)

Michal Burda

See Also

dig(), var_grid(); see also dig_correlations() and dig_paired_baseline_contrasts(), as
they are using this function internally.

Examples

*** Example of crisp (boolean) patterns:
dichotomize iris$Species
crispIris <- partition(iris, Species)

a simple callback function that computes mean difference of `xvar` and `yvar`
f <- function(pd) {

list(m = mean(pd[[1]] - pd[[2]]),
n = nrow(pd))

}

22 dig_paired_baseline_contrasts

call f() for each condition created from column `Species`
dig_grid(crispIris,

f,
condition = starts_with("Species"),
xvars = starts_with("Sepal"),
yvars = starts_with("Petal"),
type = "crisp")

*** Example of fuzzy patterns:
create fuzzy sets from Sepal columns
fuzzyIris <- partition(iris,

starts_with("Sepal"),
.method = "triangle",
.breaks = 3)

a simple callback function that computes a weighted mean of a difference of
`xvar` and `yvar`
f <- function(d, weights) {

list(m = weighted.mean(d[[1]] - d[[2]], w = weights),
w = sum(weights))

}

call f() for each fuzzy condition created from column fuzzy sets whose
names start with "Sepal"
dig_grid(fuzzyIris,

f,
condition = starts_with("Sepal"),
xvars = Petal.Length,
yvars = Petal.Width,
type = "fuzzy")

dig_paired_baseline_contrasts

Search for conditions that provide significant differences between
paired variables

Description

[Experimental]

Paired baseline contrast patterns identify conditions under which there is a significant difference in
some statistical feature between two paired numeric variables.

Scheme: (xvar - yvar) != 0 | C

There is a statistically significant difference between paired variables xvar and yvar under
the condition C.

dig_paired_baseline_contrasts 23

Example: (daily_ice_cream_income - daily_tea_income) > 0 | sunny

Under the condition of sunny weather, the paired test shows that daily ice-cream income is
significantly higher than the daily tea income.

The paired baseline contrast is computed using a paired version of a statistical test, which is speci-
fied by the method argument. The function computes the paired contrast between all pairs of vari-
ables, where the first variable is specified by the xvars argument and the second variable is specified
by the yvars argument. Paired baseline contrasts are computed in sub-data corresponding to con-
ditions generated from the condition columns. Function dig_paired_baseline_contrasts()
supports crisp conditions only, i.e., the condition columns in x must be logical.

Usage

dig_paired_baseline_contrasts(
x,
condition = where(is.logical),
xvars = where(is.numeric),
yvars = where(is.numeric),
disjoint = var_names(colnames(x)),
min_length = 0L,
max_length = Inf,
min_support = 0,
max_support = 1,
method = "t",
alternative = "two.sided",
h0 = 0,
conf_level = 0.95,
max_p_value = 1,
t_var_equal = FALSE,
wilcox_exact = FALSE,
wilcox_correct = TRUE,
wilcox_tol_root = 1e-04,
wilcox_digits_rank = Inf,
max_results = Inf,
verbose = FALSE,
threads = 1

)

Arguments

x a matrix or data frame with data to search the patterns in.

condition a tidyselect expression (see tidyselect syntax) specifying the columns to use as
condition predicates

xvars a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

yvars a tidyselect expression (see tidyselect syntax) specifying the columns to use for
computation of contrasts

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

24 dig_paired_baseline_contrasts

disjoint an atomic vector of size equal to the number of columns of x that specifies
the groups of predicates: if some elements of the disjoint vector are equal,
then the corresponding columns of x will NOT be present together in a single
condition. If x is prepared with partition(), using the var_names() function
on x’s column names is a convenient way to create the disjoint vector.

min_length the minimum size (the minimum number of predicates) of the condition to be
generated (must be greater or equal to 0). If 0, the empty condition is generated
in the first place.

max_length The maximum size (the maximum number of predicates) of the condition to be
generated. If equal to Inf, the maximum length of conditions is limited only by
the number of available predicates.

min_support the minimum support of a condition to trigger the callback function for it. The
support of the condition is the relative frequency of the condition in the dataset
x. For logical data, it equals to the relative frequency of rows such that all
condition predicates are TRUE on it. For numerical (double) input, the support
is computed as the mean (over all rows) of multiplications of predicate values.

max_support the maximum support of a condition to trigger the callback function for it. See
argument min_support for details of what is the support of a condition.

method a character string indicating which contrast to compute. One of "t", for para-
metric, or "wilcox", for non-parametric test on equality in position.

alternative indicates the alternative hypothesis and must be one of "two.sided", "greater"
or "less". "greater" corresponds to positive association, "less" to negative
association.

h0 a numeric value specifying the null hypothesis for the test. For the "t" method,
it is the difference in means. For the "wilcox" method, it is the difference in
medians. The default value is 0.

conf_level a numeric value specifying the level of the confidence interval. The default value
is 0.95.

max_p_value the maximum p-value of a test for the pattern to be considered significant. If the
p-value of the test is greater than max_p_value, the pattern is not included in the
result.

t_var_equal (used for the "t" method only) a logical value indicating whether the variances
of the two samples are assumed to be equal. If TRUE, the pooled variance is used
to estimate the variance in the t-test. If FALSE, the Welch (or Satterthwaite) ap-
proximation to the degrees of freedom is used. See t.test() and its var.equal
argument for more information.

wilcox_exact (used for the "wilcox" method only) a logical value indicating whether the
exact p-value should be computed. If NULL, the exact p-value is computed for
sample sizes less than 50. See wilcox.test() and its exact argument for more
information. Contrary to the behavior of wilcox.test(), the default value is
FALSE.

wilcox_correct (used for the "wilcox" method only) a logical value indicating whether the con-
tinuity correction should be applied in the normal approximation for the p-value,
if wilcox_exact is FALSE. See wilcox.test() and its correct argument for
more information.

dig_paired_baseline_contrasts 25

wilcox_tol_root

(used for the "wilcox" method only) a numeric value specifying the toler-
ance for the root-finding algorithm used to compute the exact p-value. See
wilcox.test() and its tol.root argument for more information.

wilcox_digits_rank

(used for the "wilcox" method only) a numeric value specifying the number of
digits to round the ranks to. See wilcox.test() and its digits.rank argument
for more information.

max_results the maximum number of generated conditions to execute the callback function
on. If the number of found conditions exceeds max_results, the function stops
generating new conditions and returns the results. To avoid long computations
during the search, it is recommended to set max_results to a reasonable posi-
tive value. Setting max_results to Inf will generate all possible conditions.

verbose a logical scalar indicating whether to print progress messages.

threads the number of threads to use for parallel computation.

Value

A tibble with found patterns in rows. The following columns are always present:

condition the condition of the pattern as a character string in the form {p1 & p2 & ... &
pn} where p1, p2, ..., pn are x’s column names.

support the support of the condition, i.e., the relative frequency of the condition in the
dataset x.

xvar the name of the first variable in the contrast.

yvar the name of the second variable in the contrast.

estimate the estimated difference of variable var.

statistic the statistic of the selected test.

p_value the p-value of the underlying test.

n the number of rows in the sub-data corresponding to the condition.

conf_int_lo the lower bound of the confidence interval of the estimate.

conf_int_hi the upper bound of the confidence interval of the estimate.

alternative a character string indicating the alternative hypothesis. The value must be one
of "two.sided", "greater", or "less".

method a character string indicating the method used for the test.

comment a character string with additional information about the test (mainly error mes-
sages on failure).

For the "t" method, the following additional columns are also present (see also t.test()):

df the degrees of freedom of the t test.

stderr the standard error of the mean difference.

Author(s)

Michal Burda

26 format_condition

See Also

dig_baseline_contrasts(), dig_complement_contrasts(), dig(), dig_grid(), stats::t.test(),
stats::wilcox.test()

Examples

Compute ratio of sepal and petal length and width for iris dataset
crispIris <- iris
crispIris$Sepal.Ratio <- iris$Sepal.Length / iris$Sepal.Width
crispIris$Petal.Ratio <- iris$Petal.Length / iris$Petal.Width

Create predicates from the Species column
crispIris <- partition(crispIris, Species)

Compute paired contrasts for ratios of sepal and petal length and width
dig_paired_baseline_contrasts(crispIris,

condition = where(is.logical),
xvars = Sepal.Ratio,
yvars = Petal.Ratio,
method = "t",
min_support = 0.1)

format_condition Format a vector of predicates into a string with a condition

Description

Function takes a character vector of predicates and returns a formatted condition. The format of the
condition is a string with predicates separated by commas and enclosed in curly braces.

Usage

format_condition(condition)

Arguments

condition a character vector of predicates to be formatted

Value

a character scalar with a formatted condition

Author(s)

Michal Burda

Examples

format_condition(NULL) # returns {}
format_condition(c("a", "b", "c")) # returns {a,b,c}

is_degree 27

is_degree Tests whether the given argument is a numeric value from the interval
[0, 1]

Description

Tests whether the given argument is a numeric value from the interval [0, 1]

Usage

is_degree(x, na_rm = FALSE)

Arguments

x the value to be tested

na_rm whether to ignore NA values

Value

TRUE if x is a numeric vector, matrix or array with values between 0 and 1, otherwise, FALSE is
returned. If na_rm is TRUE, NA values are treated as valid values. If na_rm is FALSE and x contains
NA values, FALSE is returned.

Author(s)

Michal Burda

is_subset Determine whether the first vector is a subset of the second vector

Description

Determine whether the first vector is a subset of the second vector

Usage

is_subset(x, y)

Arguments

x the first vector

y the second vector

28 partition

Value

TRUE if x is a subset of y, or FALSE otherwise. x is considered a subset of y if all elements of x are
also in y, i.e., if setdiff(x, y) is a vector of length 0.

Author(s)

Michal Burda

partition Convert columns of data frame to Boolean or fuzzy sets

Description

Convert the selected columns of the data frame into either dummy logical columns, or into member-
ship degrees of fuzzy sets, while leaving the remaining columns untouched. Each column selected
for transformation typically yields in multiple columns in the output.

Usage

partition(
.data,
.what = everything(),
...,
.breaks = NULL,
.labels = NULL,
.na = TRUE,
.keep = FALSE,
.method = "crisp",
.right = TRUE

)

Arguments

.data the data frame to be processed

.what a tidyselect expression (see tidyselect syntax) specifying the columns to be trans-
formed

... optional other tidyselect expressions selecting additional columns to be pro-
cessed

.breaks for numeric columns, this has to be either an integer scalar or a numeric vector.
If .breaks is an integer scalar, it specifies the number of resulting intervals to
break the numeric column to (for .method="crisp") or the number of target
fuzzy sets (for .method="triangle" or .method="raisedcos). If .breaks is
a vector, the values specify the borders of intervals (for .method="crisp") or
the breaking points of fuzzy sets.

.labels character vector specifying the names used to construct the newly created col-
umn names. If NULL, the labels are generated automatically.

https://tidyselect.r-lib.org/articles/syntax.html

partition 29

.na if TRUE, an additional logical column is created for each source column that
contains NA values. For column named x, the newly created column’s name will
be x=NA.

.keep if TRUE, the original columns being transformed remain present in the resulting
data frame.

.method The method of transformation for numeric columns. Either "crisp", "triangle",
or "raisedcos" is required.

.right If .method="crisp", this argument specifies if the intervals should be closed
on the right (and open on the left) or vice versa.

Details

Transformations performed by this function are typically useful as a preprocessing step before using
the dig() function or some of its derivatives (dig_correlations(), dig_paired_baseline_contrasts(),
dig_associations()).

The transformation of selected columns differ based on the type. Concretely:

• logical column x is transformed into pair of logical columns, x=TRUE andx=FALSE;

• factor column x, which has levels l1, l2, and l3, is transformed into three logical columns
named x=l1, x=l2, and x=l3;

• numeric columnx is transformed accordingly to .method argument:

– if .method="crisp", the column is first transformed into a factor with intervals as factor
levels and then it is processed as a factor (see above);

– for other .method (triangle or raisedcos), several new columns are created, where
each column has numeric values from the interval [0, 1] and represents a certain fuzzy set
(either triangular or raised-cosinal). Details of transformation of numeric columns can be
specified with additional arguments (.breaks, .labels, .right).

Value

A tibble created by transforming .data.

Author(s)

Michal Burda

Examples

transform logical columns and factors
d <- data.frame(a = c(TRUE, TRUE, FALSE),

b = factor(c("A", "B", "A")),
c = c(1, 2, 3))

partition(d, a, b)

transform numeric columns to logical columns (crisp transformation)
partition(CO2, conc:uptake, .method = "crisp", .breaks = 3)

transform numeric columns to fuzzy sets (triangle transformation)

30 var_grid

partition(CO2, conc:uptake, .method = "triangle", .breaks = 3)

complex transformation with different settings for each column
CO2 |>

partition(Plant:Treatment) |>
partition(conc,

.method = "raisedcos",

.breaks = c(-Inf, 95, 175, 350, 675, 1000, Inf)) |>
partition(uptake,

.method = "triangle",

.breaks = c(-Inf, 7.7, 28.3, 45.5, Inf),

.labels = c("low", "medium", "high"))

var_grid Create a tibble of combinations of selected column names

Description

xvars and yvars arguments are tidyselect expressions (see tidyselect syntax) that specify the
columns of x whose names will be used as a domain for combinations.

If yvars is NULL, the function creates a tibble with one column var enumerating all column names
specified by the xvars argument.

If yvars is not NULL, the function creates a tibble with two columns, xvar and yvar, whose rows
enumerate all combinations of column names specified by the xvars and yvars argument.

It is allowed to specify the same column in both xvars and yvars arguments. In such a case, the
combinations of the same column with itself are removed from the result.

In other words, the function creates a grid of all possible pairs (xx, yy) where xx ∈ xvars, yy ∈
yvars, and xx ̸= yy.

Usage

var_grid(
x,
xvars = everything(),
yvars = everything(),
allow = "all",
xvar_name = if (quo_is_null(enquo(yvars))) "var" else "xvar",
yvar_name = "yvar",
error_context = list(arg_x = "x", arg_xvars = "xvars", arg_yvars = "yvars", arg_allow =

"allow", arg_xvar_name = "xvar_name", arg_yvar_name = "yvar_name", call =
current_env())

)

https://tidyselect.r-lib.org/articles/syntax.html

var_grid 31

Arguments

x either a data frame or a matrix

xvars a tidyselect expression (see tidyselect syntax) specifying the columns of x, whose
names will be used as a domain for combinations use at the first place (xvar)

yvars NULL or a tidyselect expression (see tidyselect syntax) specifying the columns
of x, whose names will be used as a domain for combinations use at the second
place (yvar)

allow a character string specifying which columns are allowed to be selected by xvars
and yvars arguments. Possible values are:

• "all" - all columns are allowed to be selected
• "numeric" - only numeric columns are allowed to be selected

xvar_name the name of the first column in the resulting tibble.

yvar_name the name of the second column in the resulting tibble. The column does not exist
if yvars is NULL.

error_context A list of details to be used in error messages. This argument is useful when
var_grid() is called from another function to provide error messages, which
refer to arguments of the calling function. The list must contain the following
elements:

• arg_x - the name of the argument x as a character string
• arg_xvars - the name of the argument xvars as a character string
• arg_yvars - the name of the argument yvars as a character string
• arg_allow - the name of the argument allow as a character string
• arg_xvar_name - the name of the xvar column in the output tibble
• arg_yvar_name - the name of the yvar column in the output tibble
• call - an environment in which to evaluate the error messages.

Value

if yvars is NULL, the function returns a tibble with a single column (var). If yvars is a non-
NULL expression, the function returns two columns (xvar and yvar) with rows enumerating all
combinations of column names specified by tidyselect expressions in xvars and yvars arguments.

Author(s)

Michal Burda

Examples

Create a grid of combinations of all pairs of columns in the CO2 dataset:
var_grid(CO2)

Create a grid of combinations of all pairs of columns in the CO2 dataset
such that the first, i.e., `xvar` column is `Plant`, `Type`, or
`Treatment`, and the second, i.e., `yvar` column is `conc` or `uptake`:
var_grid(CO2, xvars = Plant:Treatment, yvars = conc:uptake)

https://tidyselect.r-lib.org/articles/syntax.html
https://tidyselect.r-lib.org/articles/syntax.html

32 which_antichain

var_names Extract variable names from predicates

Description

The function assumes that x is a vector of predicate names, i.e., a character vector with elements
compatible with pattern <varname>=<value>. The function returns the <varname> part of these
elements. If the string does not correspond to the pattern <varname>=<value>, i.e., if the equal
sign (=) is missing in the string, the whole string is returned.

Usage

var_names(x)

Arguments

x A character vector of predicate names.

Value

A <varname> part of predicate names in x.

Author(s)

Michal Burda

Examples

var_names(c("a=1", "a=2", "b=x", "b=y")) # returns c("a", "a", "b", "b")

which_antichain Return indices of first elements of the list, which are incomparable
with preceding elements.

Description

The function returns indices of elements from the given list x, which are incomparable (i.e., it is
neither subset nor superset) with any preceding element. The first element is always selected. The
next element is selected only if it is incomparable with all previously selected elements.

Usage

which_antichain(x, distance = 0)

which_antichain 33

Arguments

x a list of integerish vectors

distance a non-negative integer, which specifies the allowed discrepancy between com-
pared sets

Value

an integer vector of indices of selected (incomparable) elements.

Author(s)

Michal Burda

Index

dig, 2
dig(), 2, 9, 13, 16, 18, 19, 21, 26, 29
dig_associations, 7
dig_associations(), 29
dig_baseline_contrasts, 10
dig_baseline_contrasts(), 16, 26
dig_complement_contrasts, 13
dig_complement_contrasts(), 13, 26
dig_correlations, 16
dig_correlations(), 19, 21, 29
dig_grid, 19
dig_grid(), 6, 13, 16, 26
dig_paired_baseline_contrasts, 22
dig_paired_baseline_contrasts(), 13, 16,

21, 29

format_condition, 26

is_degree, 27
is_subset, 27

partition, 28
partition(), 4, 6, 8, 9, 11, 14, 17, 20, 24

stats::cor.test(), 17, 18
stats::t.test(), 13, 16, 26
stats::var.test(), 16
stats::wilcox.test(), 13, 16, 26

t.test(), 12, 15, 16, 24, 25

var_grid, 30
var_grid(), 19, 21
var_names, 32
var_names(), 4, 6, 8, 9, 11, 14, 17, 20, 24

which_antichain, 32
wilcox.test(), 11, 12, 15, 24, 25

34

	dig
	dig_associations
	dig_baseline_contrasts
	dig_complement_contrasts
	dig_correlations
	dig_grid
	dig_paired_baseline_contrasts
	format_condition
	is_degree
	is_subset
	partition
	var_grid
	var_names
	which_antichain
	Index

