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bin.sample Bin Sample a Vector, Matrix, or Data Frame

Description

Bin elements of a vector (or rows of a matrix/data frame) and randomly sample a specified number
of elements from each bin. Returns sampled data and (optionally) indices of sampled data and/or
breaks for defining bins.

Usage

bin.sample(x, nbin = 5, size = 1, equidistant = FALSE,

index.return = FALSE, breaks.return = FALSE)
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Arguments
X Vector, matrix, or data frame to bin sample. Factors are allowed.
nbin Number of bins for each variable (defaults to 5 bins for each dimension of x). If
length(bins) !=ncol(x), then nbin[1] is used for each variable.
size Size of sample to randomly draw from each bin (defaults to 1).

equidistant Should bins be defined equidistantly for each predictor? If FALSE (default),
sample quantiles define bins for each predictor. If length(equidistant) !=
ncol (x), then equidistant[1] is used for each variable.

index.return If TRUE, returns the (row) indices of the bin sampled observations.

breaks.return If TRUE, returns the (lower bounds of the) breaks for the binning.

Details

For a single variable, the unidimensional bins are defined using the . bincode function. For multiple
variables, the multidimensional bins are defined using the algorithm described in the appendix of
Helwig et al. (2015), which combines the unidimensional bins (calculated via .bincode) into a
multidimensional bin code.

Value

If index.return = FALSE and breaks.return = FALSE, returns the bin sampled x observations.

If index.return = TRUE and/or breaks. return = TRUE, returns a list with elements:

X bin sampled x observations.

ix row indices of bin sampled observations (if index.return = TRUE).

bx lower bounds of breaks defining bins (if breaks.return = TRUE).
Note

For factors, the number of bins is automatically defined to be the number of levels.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E., Gao, Y., Wang, S., & Ma, P. (2015). Analyzing spatiotemporal trends in social media
data via smoothing spline analysis of variance. Spatial Statistics, 14(C), 491-504. doi:10.1016/
j-spasta.2015.09.002

See Also

.bincode for binning a numeric vector


https://doi.org/10.1016/j.spasta.2015.09.002
https://doi.org/10.1016/j.spasta.2015.09.002
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Examples

H##t###FHHH#E EXAMPLE 1 A
### unidimensional binning

# generate data
x <- seq(@, 1, length.out = 101)

# bin sample (default)
set.seed(1)
bin.sample(x)

# bin sample (return indices)
set.seed(1)

xs <- bin.sample(x, index.return = TRUE)
xs$x # sampled data

x[xs$ix] # indexing sampled data

# bin sample (return indices and breaks)
set.seed(1)
xs <- bin.sample(x, index.return = TRUE, breaks.return = TRUE)

xs$x # sampled data
x[xs$ix] # indexing sampled data
xs$bx # breaks

HHHHAEE EXAMPLE 2 HHHHAEE
### bidimensional binning

# generate data
x <- expand.grid(x1 = seq(@, 1, length.out = 101),
x2 = seq(@, 1, length.out = 101))

# bin sample (default)
set.seed(1)
bin.sample(x)

# bin sample (return indices)
set.seed(1)

xs <- bin.sample(x, index.return = TRUE)
xs$x # sampled data

x[xs$ix, ] # indexing sampled data

# bin sample (return indices and breaks)
set.seed(1)
xs <- bin.sample(x, index.return = TRUE, breaks.return = TRUE)

xs$x # sampled data
x[xs$ix, ] # indexing sampled data
xs$bx # breaks

# plot breaks and 25 bins
plot(xs$bx, xlim = c(@, 1), ylim = c(0, 1),
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xlab = "x1", ylab = "x2", main = "25 bidimensional bins")
grid()
text(xs$bx + 0.1, labels = 1:25)

boot Bootstrap a Fit Smooth

Description

Bootstraps a fit nonparametric regression model to form confidence intervals (BCa or percentile)
and standard error estimates.

Usage

## S3 method for class 'ss'

boot(object, statistic, ..., R = 9999, level = 0.95, bca = TRUE,
method = c("cases”, "resid”, "param”), fix.lambda = TRUE, cov.mat = FALSE,
boot.dist = FALSE, verbose = TRUE, parallel = FALSE, cl = NULL)

## S3 method for class 'sm'

boot(object, statistic, ..., R = 9999, level = 0.95, bca = TRUE,
method = c("cases”, "resid”, "param"), fix.lambda = TRUE,
fix.thetas = TRUE, cov.mat = FALSE, boot.dist = FALSE,
verbose = TRUE, parallel = FALSE, cl = NULL)

## S3 method for class 'gsm'

boot(object, statistic, ..., R = 9999, level = 0.95, bca = TRUE,
method = c("cases”, "resid”, "param"), fix.lambda = TRUE,
fix.thetas = TRUE, cov.mat = FALSE, boot.dist = FALSE,
verbose = TRUE, parallel = FALSE, cl = NULL)

Arguments

object a fit from ss (smoothing spline), sm (smooth model), or gsm (generalized smooth
model)

statistic a function to compute the statistic (see Details)
additional arguments to statistic function (optional)

R number of bootstrap resamples used to form bootstrap distribution

level confidence level for bootstrap confidence intervals

bca logical indicating whether to calculate BCa (default) or percentile intervals

method resampling method used to form bootstrap distribution

fix.lambda logical indicating whether the smoothing parameter should be fixed (default) or

re-estimated for each bootstrap sample
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fix.thetas logical indicating whether the "extra" smoothing parameters should be fixed (de-
fault) or re-estimated for each bootstrap sample. Only applicable to sm and gsm
objects with multiple penalized terms.

cov.mat logical indicating whether the bootstrap estimate of the covariance matrix should
be returned

boot.dist logical indicating whether the bootstrap distribution should be returned
verbose logical indicating whether the bootstrap progress bar should be printed
parallel logical indicating if the parallel package should be used for parallel com-

puting (of the bootstrap distribution). Defaults to FALSE, which implements
sequential computing.

cl cluster for parallel computing, which is used when parallel = TRUE. Note that
if parallel = TRUE and c1 = NULL, then the cluster is defined as makeCluster(detectCores()).

Details

The statistic function must satisfy the following two requirements:
(1) the first input must be the object of class ss, sm, or gsm
(2) the output must be a scalar or vector calculated from the object

In most applications, the statistic function will be the model predictions at some user-specified
newdata, which can be passed to statistic using the ... argument.

If statistic is not provided, then the function is internally defined to be the model predictions
at an equidistance sequence (for ss objects) or the training data predictor scores (for sm and gsm
objects).

Value

Produces an object of class *boot.ss’, *boot.sm’, or *boot.gsm’, with the following elements:

t0 Observed statistic, computed using statistic(object, ...)
se Bootstrap estimate of the standard error

bias Bootstrap estimate of the bias

cov Bootstrap estimate of the covariance (if cov.mat = TRUE)

ci Bootstrap estimate of the confidence interval

boot.dist Bootstrap distribution of statistic (if boot.dist = TRUE)

bias.correct Bias correction factor for BCa confidence interval.

acceleration Acceleration parameter for BCa confidence interval.

The output list also contains the elements object, R, level, bca, method, fix.lambda, and fix. thetas,
all of which are the same as the corresponding input arguments.
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Note

For gsm objects, requesting method = "resid” uses a variant of the one-step technique described in
Moulton and Zeger (1991), which forms the bootstrap estimates of the coefficients without refitting
the model.

As a result, when bootstrapping gsm objects with method = "resid":
(1) it is necessary to set fix.lambda = TRUE and fix.thetas = TRUE

(2) any logical statistic must depend on the model coefficients, e.g., through the model pre-
dictions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge
University Press. doi:10.1017/CB0O9780511802843

Efron, B., & Tibshirani, R. J. (1994). An Introduction to the Boostrap. Chapman & Hall/CRC.
doi:10.1201/9780429246593

Moulton, L. H., & Zeger, S. L. (1991). Bootstrapping generalized linear models. Computational
Statistics & Data Analysis, 11(1), 53-63. doi:10.1016/01679473(91)900524

See Also

ss for fitting "ss" (smoothing spline) objects
sm for fitting "sm" (smooth model) objects

gsm for fitting "gsm" (generalized smooth model) objects

Examples

## Not run:

H#iHHEHHA EXAMPLE 1 HHHE
### smoothing spline

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <=2+ 3 x x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit smoothing spline
ssfit <- ss(x, y, nknots = 10)

# nonparameteric bootstrap cases
set.seed(0)
boot.cases <- boot(ssfit)


https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.1201/9780429246593
https://doi.org/10.1016/0167-9473%2891%2990052-4

# nonparameteric bootstrap residuals
set.seed(0)
boot.resid <- boot(ssfit, method = "resid")

# parameteric bootstrap residuals
set.seed(Q)
boot.param <- boot(ssfit, method = "param")

# plot results

par(mfrow = c(1, 3))

plot(boot.cases, main = "Cases”)
plot(boot.resid, main = "Residuals”)
plot(boot.param, main = "Parametric")

S EXAMPLE 2 W
### smooth model

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 x x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit smoothing spline
smfit <- sm(y ~ x, knots = 10)

# define statistic (to be equivalent to boot.ss default)
newdata <- data.frame(x = seq(@, 1, length.out = 201))
statfun <- function(object, newdata) predict(object, newdata)

# nonparameteric bootstrap cases
set.seed(0)
boot.cases <- boot(smfit, statfun, newdata = newdata)

# nonparameteric bootstrap residuals
set.seed(0)
boot.resid <- boot(smfit, statfun, newdata = newdata, method = "resid")

# parameteric bootstrap residuals (R = 99 for speed)
set.seed(0)
boot.param <- boot(smfit, statfun, newdata = newdata, method = "param")

# plot results

par(mfrow = c(1, 3))

plotci(newdata$x, boot.cases$td, ci = boot.cases$ci, main = "Cases")
plotci(newdata$x, boot.resid$t@, ci = boot.resid$ci, main = "Residuals”)
plotci(newdata$x, boot.param$t@, ci = boot.param$ci, main = "Parametric")

boot



coef 9

W EXAMPLE 3 W
### generalized smooth model

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 * x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit smoothing spline
gsmfit <- gsm(y ~ x, knots = 10)

# define statistic (to be equivalent to boot.ss default)
newdata <- data.frame(x = seq(@, 1, length.out = 201))
statfun <- function(object, newdata) predict(object, newdata)

# nonparameteric bootstrap cases
set.seed(0)
boot.cases <- boot(gsmfit, statfun, newdata = newdata)

# nonparameteric bootstrap residuals
set.seed(0)
boot.resid <- boot(gsmfit, statfun, newdata = newdata, method = "resid")

# parameteric bootstrap residuals
set.seed(0)
boot.param <- boot(gsmfit, statfun, newdata = newdata, method = "param")

# plot results
par(mfrow = c(1, 3))

plotci(newdata$x, boot.cases$t@, ci = boot.cases$ci, main = "Cases")
plotci(newdata$x, boot.resid$t@, ci = boot.resid$ci, main = "Residuals”)
plotci(newdata$x, boot.param$t@, ci = boot.param$ci, main = "Parametric")

## End(Not run)

coef Extract Smooth Model Coefficients

Description
Extracts basis function coefficients from a fit smoothing spline (fit by ss), smooth model (fit by sm),
or generalized smooth model (fit by gsm).

Usage

## S3 method for class 'gsm'
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coef(object, ...)

## S3 method for class 'sm'
coef(object, ...)

## S3 method for class 'ss'

coef(object, ...)
Arguments
object an object of class "gsm" output by the gsm function, "sm" output by the sm

function, or "ss" output by the ss function

other arugments (currently ignored)

Details

For "ss" objects, the coefficient vector will be of length m + g where m is the dimension of the null
space and ¢ is the number of knots used for the fit.

For "sm" and "gsm" objects, the coefficient vector will be of length m + ¢ if the tprk = TRUE
(default). Otherwise the length will depend on the model formula and marginal knot placements.

Value

Coefficients extracted from the model object.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

Ss, sm, gsm

model.matrix, fitted.values, residuals

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)


https://doi.org/10.4135/9781526421036885885
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# smoothing spline

mod.ss <- ss(x, y, nknots = 10)
fit.ss <- fitted(mod.ss)

coef.ss <- coef(mod.ss)

X.ss <- model.matrix(mod.ss)
mean((fit.ss - X.ss %*% coef.ss)*2)

# smooth model

mod.sm <- sm(y ~ x, knots = 10)
fit.sm <- fitted(mod.sm)

coef.sm <- coef(mod.sm)

X.sm <- model.matrix(mod.sm)
mean((fit.sm - X.sm %*% coef.sm)*2)

# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)

fit.gsm <- fitted(mod.gsm)

coef.gsm <- coef(mod.gsm)

X.gsm <- model.matrix(mod.gsm)

mean((fit.gsm - X.gsm %*% coef.gsm)*2)

color.legend Adds Color Legend to Plot Margin

Description

This function can be used to add a color legend to the margin of a plot produced by image.

Usage
color.legend(zlim, side = 4, col = NULL, ncol = NULL, zlab = "z",
zline = 2.5, box = TRUE, zcex =1, ...)
Arguments
zlim numeric vector of the form c(min, max) giving the range of values for the color
legend.
side which side (margin) should the legend be added to? 1 = bottom, 2 = left, 3 =
top, 4 = right (default).
col colors to use for the legend. Can input the name of a color palette (see hcl.colors)
or a vector of colors to create a palette (see colorRampPalette).
ncol number of colors to use for the legend. Defaults to length(col).
zlab axis label for the color legend.
zline line number to draw axis label.
box add a box around the legend?
zcex scale factor for axis label.

additional arguments passed to image function.
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Details

The colorRampPalette function is used to create a vector of colors of length ncol that span the
colors included in col. Then the image function is used to draw a color legend with values spanning
zlim.

Value

Produces a color legend.

Note

You will likely need to use par()$plt or par()$fig to make enough room in the appropriate
margin (see example).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

plot.gsm for effect plots from gsm objects

plot.sm for effect plots from sm objects

Examples

# define function

fun <- function(x){
exp(-rowSums (x*2)/2)

3

# define xgrid

nx <- 101

x <-y <- seq(-3, 3, length.out = nx)
xy <- expand.grid(x1 = x, x2 =y)

# evaluate function
z <- matrix(fun(xy), nx, nx)

# define colors

colors <- c("#053061", "#2166ac”, "#4393c3", "#92c5de"”, "#d1e5f0", "#f7f7f7",
"#fddbc7"”, "#f4a582", "#d6604d", "#b2182b", "#67001f")

col <- colorRampPalette(colors)(21)

# setup par
oplt <- par()$plt
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par(plt = c(0.15, 0.8, oplt[3:4]))

# plot image
image(x, y, z, col = col)

# add legend
par(plt = c(0.85, 0.9, oplt[3:4]), new = TRUE)

color.legend(range(z), col = col, ncol = length(col))
# restore original par()$plt
par(plt = oplt)

deviance Smooth Model Deviance

Description
Returns the deviance from a fit smoothing spline (fit by ss), smooth model (fit by sm), or generalized
smooth model (fit by gsm).

Usage

## S3 method for class 'gsm'
deviance(object, ...)

## S3 method for class 'sm'
deviance(object, ...)

## S3 method for class 'ss'

deviance(object, ...)
Arguments
object an object of class "gsm" output by the gsm function, "sm" output by the sm

function, or "ss" output by the ss function

other arugments (currently ignored)

Details

For ss and sm objects, the deviance is caculated assuming iid Gaussian errors.

For gsm objects, the deviance is calculated by summing the squared deviance residuals, which are
calculated using family(object)$dev.resid

Value

Deviance of the model object.
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Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

Ss, sm, gsm

fitted.values and residuals

Examples

## for 'ss' and 'sm' objects, this function is defined as
function(object, ...){
sum(weighted.residuals(object)*2, na.rm = TRUE)
}

## for 'gsm' objects, this function is defined as
function(object, ...){
object$deviance

}

diagnostic.plots Plot Nonparametric Regression Diagnostics

Description

Six regression diagnostic plots for a fit smoothing spline (fit by ss), smooth model (fit by sm), or
generalized smooth model (fit by gsm).

Usage

diagnostic.plots(x, which = c(1, 2, 3, 5),
caption = list("Residuals vs Fitted”,

"Normal Q-Q", "Scale-Location”,
"Cook's distance”, "Residuals vs Leverage”,
"Cook's dist vs Variance ratio"),
panel = if (add.smooth) function(x, y, ...)
panel.smooth(x, y, iter = iter.smooth, ...)

else points,
sub.caption = NULL, main = "",
ask = prod(par("mfcol”)) < length(which) && dev.interactive(),


https://doi.org/10.4135/9781526421036885885
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., id.n = 3, labels.id = names(residuals(x)), cex.id = @.75, cex.pt =1,
ggline = TRUE, cook.levels =c(0.5, 1), add.smooth = getOption("”add.smooth"),
iter.smooth = if (isGlm) @ else 3, label.pos = c(4, 2), cex.caption =1,
cex.oma.main = 1.25, cex.lab =1, line.lab = 3, xlim = NULL, ylim = NULL)

Arguments

X

which
caption
panel
sub.caption
main

ask

id.n
labels. id
cex.id
cex.pt
ggline
cook.levels
add. smooth
iter.smooth

label.pos

cex.caption

cex.oma.main

cex.lab
line.lab

x1lim

ylim

an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function

subset of the integers 1: 6 indicating which plots to produce

captions to appear above the plots

panel function (panel.smooth or points?)

common title (for use above multiple figures)

title to each plot (in addition to caption)

if TRUE, the user is asked before each plot

other parameters to be passed through to plotting functions

number of points to be labeled in each plot, starting with the most extreme
vector of labels for extreme observations (NULL uses the observation numbers)
magnification of point labels

magnification of points

logical indicating if a qgline should be added to the normal Q-Q plot
levels of Cook’s distance at which to draw contours

logical indicating if a smoother should be added to most plots

the number of robustness iterations, the argument iter in panel.smooth

positioning of the labels, for the left hald and right half of the graph respectively,
for plots 1-3, 5, and 6

controls the size of the caption

controls the size of the sub. caption only if that is above the figures (when there
is more than one figure)

character expansion factor for axis labels
on which margin line should the axis labels be drawn?

Limits for x-axis. If length(which) == 1, a vector of the form c(xmin, xmax).
Otherwise a list the same length as which such that each list entry gives the
x-axis limits for the corresponding plot.

Limits for y-axis. If length(which) == 1, a vector of the form c(ymin, ymax).
Otherwise a list the same length as which such that each list entry gives the
y-axis limits for the corresponding plot.
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Details

This function is modeled after the plot.1m function. The structure of the arguments, as well as the
internal codes, mimics the plot.1m function whenever possible. By default, only plots 1-3 and 5
are provided, but any subset of plots can be requested using the which argument.

The six plots include: (1) residuals versus fitted values, (2) normal Q-Q plot, (3) scale-location plot
of \/|residuals| versus fitted values, (4) Cook’s distances, (5) residuals versus leverages, and (6)
Cook’s distance versus variance ratio = leverage/(1-leverage).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. London: Chapman
and Hall.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. London: Chapman and Hall.

See Also

Ss, sm, gsm

smooth.influence.measures and smooth.influence

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# smoothing spline
mod.ss <- ss(x, y, nknots = 10)
diagnostic.plots(mod.ss)

# smooth model
mod.sm <- sm(y ~ x, knots = 10)
diagnostic.plots(mod.sm)

# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)
diagnostic.plots(mod.gsm)
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fitted Extract Smooth Model Fitted Values

Description
Extracts the fitted values from a fit smoothing spline (fit by ss), smooth model (fit by sm), or
generalized smooth model (fit by gsm).

Usage

## S3 method for class 'ss'
fitted(object, ...)

## S3 method for class 'sm'
fitted(object, ...)

## S3 method for class 'gsm'

fitted(object, ...)
Arguments
object an object of class "gsm" output by the gsm function, "sm" output by the sm

function, or "ss" output by the ss function

other arugments (currently ignored)

Details

For objects of class ss, fitted values are predicted via predict(object, object$data$x) $y
For objects of class sm, fitted values are extracted via object$fitted.values

For objects of class gsm, fitted values are computed via ginv(object$linear.predictors) where
ginv =object$family$linkinv
Value

Fitted values extracted (or predicted) from object

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885
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See Also

Ss, sm, gsm

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# smoothing spline
mod.ss <- ss(x, y, nknots = 10)
fit.ss <- fitted(mod.ss)

# smooth model
mod.sm <- sm(y ~ x, knots = 10)
fit.sm <- fitted(mod.sm)

# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)
fit.gsm <- fitted(mod.gsm)

# compare fitted values

mean((fit.ss - fit.sm)*2)
mean((fit.ss - fit.gsm)"2)
mean((fit.sm - fit.gsm)*2)

gsm Fit a Generalized Smooth Model

Description

Fits a generalized semi- or nonparametric regression model with the smoothing parameter selected
via one of seven methods: GCV, OCV, GACYV, ACV, PQL, AIC, or BIC.

Usage

gsm(formula, family = gaussian, data, weights, types = NULL, tprk = TRUE,
knots = NULL, skip.iter = TRUE, spar = NULL, lambda = NULL, control = list(),
method = c("GCV", "OCV", "GACV", "ACV", "PQL", "AIC", "BIC"),
xrange = NULL, thetas = NULL, mf = NULL)

## S3 method for class 'gsm'
family(object, ...)
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Arguments for gsm:

formula

family

data

weights

types

tprk

knots

skip.iter

spar

lambda

control

Object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Uses the same syntax as 1Im and glm.

Description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function, or
the result of a call to a family function. See the "Family Objects" section for
details.

Optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which smis called.

Optional vector of weights to be used in the fitting process. If provided, weighted
(penalized) likelihood estimation is used. Defaults to all 1.

Named list giving the type of smooth to use for each predictor. If NULL, the type
is inferred from the data. See "Types of Smooths" section for details.

Logical specifying how to parameterize smooth models with multiple predic-
tors. If TRUE (default), a tensor product reproducing kernel function is used to
represent the function. If FALSE, a tensor product of marginal kernel functions
is used to represent the function. See the "Multiple Smooths" section for details.

Spline knots for the estimation of the nonparametric effects. For models with
multiple predictors, the knot specification will depend on the tprk input. See
the "Choosing Knots" section for details

Set to FALSE for deep tuning of the hyperparameters. Only applicable when
multiple smooth terms are included. See the "Parameter Tuning" section for
details.

Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256" (3*(spar-1)).

Computational smoothing parameter. This value is weighted by n to form the
penalty coefficient (see Details). Ignored if spar is provided.

Optional list with named components that control the optimization specs for the
smoothing parameter selection routine.

Note that spar is only searched for in the interval [lower, upper].

lower: lower bound for spar; defaults to 0.

upper: upper bound for spar; defaults to 1.

tol: the absolute precision (tolerance) used by optimize; defaults to 1e-8.
iterlim: the iteration limit used by nlm; defaults to 5000.

print.level: the print level used by nlm; defaults to O (no printing).

epsilon: relative convergence tolerance for IRPLS algorithm; defaults to 1e-8
maxit: maximum number of iterations for IRPLS algorithm; defaults to 25

epsilon.out: relative convergence tolerance for iterative NegBin update; de-
faults to le-6
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maxit.out: maximum number of iterations for iterative NegBin update; defaults

to 10

method Method for selecting the smoothing parameter. Ignored if 1ambda is provided.

xrange Optional named list containing the range of each predictor. If NULL, the ranges
are calculated from the input data.

thetas Optional vector of hyperparameters to use for smoothing. If NULL, these are
tuned using the requested method.

mf Optional model frame constructed from formula and data (and potentially
weights).

Note: the last two arguments are not intended to be called by the typical user of this function. These
arguments are included primarily for internal usage by the boot . gsm function.

Arguments for family.gsm:

object an object of class "gsm"

additional arguments (currently ignored)

Details

Letting 7; = n(x;) with z; = (2,1, . .., Z;p), the function is represented as
n=Xp+Za

where the basis functions in X span the null space (i.e., parametric effects), and Z contains the
kernel function(s) of the contrast space (i.e., nonparametric effects) evaluated at all combinations of
observed data points and knots. The vectors 5 and « contain unknown basis function coefficients.

Let 1; = E(y;) denote the mean of the i-th response. The unknown function is related to the mean
1; such as

9(pi) = i
where g() is a known link function. Note that this implies that p; = g—*(7;) given that the link
function is assumed to be invertible.

The penalized likelihood estimation problem has the form
n
= ik — b(&)] + nAd/ Qo
i=1

where &; is the canonical parameter, b() is a known function that depends on the chosen family, and
Q is the penalty matrix. Note that §; = go(u;) where go is the canonical link function. This implies
that £&; = n; when the chosen link function is canonical, i.e., when g = gq.

Value

An object of class "gsm" with components:

linear.predictors
the linear fit on link scale. Use fitted.gsm to obtain the fitted values on the
response scale.
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se.lp the standard errors of the linear predictors.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

cv.crit the cross-validation criterion.

nsdf the degrees of freedom (Df) for the null space.

df the estimated degrees of freedom (Df) for the fit model.

df .residual the residual degrees of freedom = nobs - df

r.squared the squared correlation between response and fitted values.

dispersion the estimated dispersion parameter.

loglik the log-likelihood.

aic Akaike’s Information Criterion.

bic Bayesian Information Criterion.

spar the value of spar computed or given, i.e., s = 1 + logys6(A)/3

lambda the value of \ corresponding to spar, i.e., A = 2563*(5=1),

penalty the smoothness penalty o/ Qa.

coefficients the basis function coefficients used for the fit model.

cov.sqrt the square-root of the covariance matrix of coefficients. Note: tcrossprod(cov.sqrt)
reconstructs the covariance matrix.
specs a list with information used for prediction purposes:
knots the spline knots used for each predictor.
thetas the "extra" tuning parameters used to weight the penalties.
xrng the ranges of the predictor variables.
xlev the factor levels of the predictor variables (if applicable).
tprk logical controlling the formation of tensor product smooths.

data the data used to fit the model.

types the type of smooth used for each predictor.

terms the terms included in the fit model.

method the method used for smoothing parameter selection. Will be NULL if 1ambda was
provided.

formula the formula specifying the fit model.

weights the weights used for fitting (if applicable)

call the matched call.

family the input family evaluated as a function using .

iter the number of iterations of IRPLS used.

residuals the working (IRPLS) residuals from the fitted model.

null.deviance the deviance of the null model (i.e., intercept only).

Family Objects

Supported families and links include:
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family link

binomial logit, probit, cauchit, log, cloglog
gaussian identity, log, inverse

Gamma inverse, identity, log
inverse.gaussian 1/mu”2, inverse, identity, log
poisson log, identity, sqrt

NegBin log, identity, sqrt

See NegBin for information about the Negative Binomial family.

Methods

The smoothing parameter can be selected using one of seven methods:
Generalized Cross-Validation (GCV)

Ordinary Cross-Validation (OCV)

Generalized Approximate Cross-Validation (GACV)

Approximate Cross-Validation (ACV)

Penalized Quasi-Likelihood (PQL)

Akaike’s Information Criterion (AIC)

Bayesian Information Criterion (BIC)

Types of Smooths

The following codes specify the spline types:

par Parametric effect (factor, integer, or numeric).

ran Random effect/intercept (unordered factor).

nom Nominal smoothing spline (unordered factor).

ord  Ordinal smoothing spline (ordered factor).

lin Linear smoothing spline (integer or numeric).

cub  Cubic smoothing spline (integer or numeric).

qui  Quintic smoothing spline (integer or numeric).

per  Periodic smoothing spline (integer or numeric).

sph  Spherical spline (matrix with d = 2 columns: lat, long).
tps Thin plate spline (matrix with d > 1 columns).

For finer control of some specialized spline types:

per.lin Linear periodic spline (m = 1).
per.cub  Cubic periodic spline (m = 2).
per.qui  Quintic periodic spline (m = 3).
sph.2 2nd order spherical spline (m = 2).
sph.3 3rd order spherical spline (m = 3).
sph.4 4th order spherical spline (m = 4).
tps.lin  Linear thin plate spline (m = 1).
tps.cub  Cubic thin plate spline (m = 2).
tps.qui  Quintic thin plate spline (m = 3).
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For details on the spline kernel functions, see basis.nom (nominal), basis.ord (ordinal), basis.poly
(polynomial), basis. sph (spherical), and basis. tps (thin plate).

Note: "ran" is default for unordered factors when the number of levels is 20 or more, whereas "nom"
is the default for unordered factors otherwise.

Choosing Knots

If tprk = TRUE, the four options for the knots input include:

1. ascalar giving the total number of knots to sample

2. avector of integers indexing which rows of data are the knots

a list with named elements giving the marginal knot values for each predictor (to be combined via expand.grid)

4. alist with named elements giving the knot values for each predictor (requires the same number of knots for each predicto

(O8]

If tprk = FALSE, the three options for the knots input include:

1. ascalar giving the common number of knots for each continuous predictor
2. alist with named elements giving the number of marginal knots for each predictor
3. alist with named elements giving the marginal knot values for each predictor

Multiple Smooths

Suppose formula =y ~ x1 + x2 so that the model contains additive effects of two predictor vari-
ables.

The k-th predictor’s marginal effect can be denoted as

fr = XpBr + Zioy,

where X, is the n by my, null space basis function matrix, and Zj, is the n by 7 contrast space
basis function matrix.

If tprk = TRUE, the null space basis function matrix has the form X = [1, X;, X5] and the contrast
space basis function matrix has the form

Z =01Z1+ 0225

where the 6, are the "extra" smoothing parameters. Note that Z is of dimension n by r = r; = rs.

If tprk = FALSE, the null space basis function matrix has the form X = [1, X, X5, and the contrast
space basis function matrix has the form

Z = [6hZ1,0225)

where the 6, are the "extra" smoothing parameters. Note that Z is of dimension n by r = r1 + 75.

Parameter Tuning

When multiple smooth terms are included in the model, there are smoothing (hyper)parameters that
weight the contribution of each combination of smooth terms. These hyperparameters are distinct
from the overall smoothing parameter 1lambda that weights the contribution of the penalty.
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skip.iter = TRUE (default) estimates the smoothing hyperparameters using Algorithm 3.2 of Gu
and Wahba (1991), which typically provides adequate results when the model form is correctly
specified. The 1ambda parameter is tuned via the specified smoothing parameter selection method.

skip.iter = FALSE uses Algorithm 3.2 as an initialization, and then the n1m function is used to tune
the hyperparameters via the specified smoothing parameter selection method. Setting skip.iter
= FALSE can (substantially) increase the model fitting time, but should produce better results—
particularly if the model formula is misspecified.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Berry, L. N., & Helwig, N. E. (2021). Cross-validation, information theory, or maximum likeli-
hood? A comparison of tuning methods for penalized splines. Stats, 4(3), 701-724. doi:10.3390/
stats4030042

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. doi:10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Gu, C. and Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters
via the Newton method. SIAM Journal on Scientific and Statistical Computing, 12(2), 383-398.
doi:10.1137/0912021

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats,

See Also

Related Modeling Functions:
ss for fitting a smoothing spline with a single predictor (Gaussian response).

sm for fitting smooth models with multiple predictors of mixed types (Gaussian response).

S3 Methods and Related Functions for ""gsm'' Objects:

boot. gsm for bootstrapping gsm objects.

coef. gsm for extracting coefficients from gsm objects.
cooks.distance. gsm for calculating Cook’s distances from gsm objects.
cov.ratio for computing covariance ratio from gsm objects.

deviance. gsm for extracting deviance from gsm objects.
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dfbeta.gsm for calculating DFBETA from gsm objects.

dfbetas. gsm for calculating DFBETAS from gsm objects.

diagnostic.plots for plotting regression diagnostics from gsm objects.
family.gsm for extracting family from gsm objects.

fitted.gsm for extracting fitted values from gsm objects.
hatvalues.gsm for extracting leverages from gsm objects.
model.matrix.gsm for constructing model matrix from gsm objects.

plot.gsm for plotting effects from gsm objects.

predict.gsm for predicting from gsm objects.

residuals.gsm for extracting residuals from gsm objects.

rstandard.gsm for computing standardized residuals from gsm objects.
rstudent. gsm for computing studentized residuals from gsm objects.
smooth.influence for calculating basic influence information from gsm objects.
smooth.influence.measures for convenient display of influential observations from gsm objects.
summary . gsm for summarizing gsm objects.

vcov. gsm for extracting coefficient covariance matrix from gsm objects.

weights.gsm for extracting prior weights from gsm objects.

Examples

HHHHHAEE EXAMPLE 1 HHHHAEE
### 1 continuous predictor

# generate data

n <- 1000

x <- seq(@, 1, length.out = n)

fx <= 3 % x + sin(2 * pi *x x) - 1.5

# gaussian (default)

set.seed(1)

y <= fx + rnorm(n, sd = 1/sqrt(2))
mod <- gsm(y ~ x, knots = 10)
plot(mod)
mean((mod$linear.predictors - fx)*2)

# compare to result from sm (they are identical)
mod.sm <- sm(y ~ x, knots = 10)

plot(mod.sm)

mean((mod$linear.predictors - mod.sm$fitted.values)*2)

# binomial (no weights)

set.seed(1)

y <= rbinom(n = n, size =1, p =1/ (1 + exp(-fx)))
mod <- gsm(y ~ x, family = binomial, knots = 10)
plot(mod)

mean((mod$linear.predictors - fx)*2)
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# binomial (w/ weights)

set.seed(1)

w <- as.integer(rep(c(10,20,30,40,50), length.out = n))

y <= rbinom(n = n, size =w, p =1/ (1 + exp(-fx))) / w

mod <- gsm(y ~ x, family = binomial, weights = w, knots = 10)
plot(mod)

mean((mod$linear.predictors - fx)*2)

# poisson

set.seed(1)

y <= rpois(n = n, lambda = exp(fx))

mod <- gsm(y ~ x, family = poisson, knots = 10)
plot(mod)

mean((mod$linear.predictors - fx)*2)

# negative binomial (known theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x, family = NegBin(theta = 1/2), knots = 10)
plot(mod)

mean((mod$linear.predictors - fx)*2)

mod$family$theta # fixed theta

# negative binomial (unknown theta)
set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))
mod <- gsm(y ~ x, family = NegBin, knots = 10)
plot(mod)

mean((mod$linear.predictors - fx)*2)
mod$family$theta # estimated theta

# gamma

set.seed(1)

y <= rgamma(n = n, shape = 2, scale = (1 / (2 + fx)) / 2)
mod <- gsm(y ~ x, family = Gamma, knots = 10)

plot(mod)

mean((mod$linear.predictors - fx - 2)*2)

# inverse.gaussian (not run; requires statmod)

##set.seed(1)

#i#y <- statmod::rinvgauss(n = n, mean = sqrt(1 / (2 + fx)), shape = 2)
##mod <- gsm(y ~ x, family = inverse.gaussian, knots = 10)

##plot (mod)

#i#tmean((mod$linear.predictors - fx - 2)*2)

HHHHAEE EXAMPLE 2 HHHHAEE
### 1 continuous and 1 nominal predictor
### additive model

# generate data
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n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 x x + sin(2 * pi * x) - 1.5
3

fx <= fun(x, z)

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# gaussian (default)

set.seed(1)

y <= fx + rnorm(n, sd = 1/sqrt(2))
mod <- gsm(y ~ x + z, knots = knots)
plot(mod)
mean((mod$linear.predictors - fx)*2)

# compare to result from sm (they are identical)
mod.sm <- sm(y ~ x + z, knots = knots)

plot(mod.sm)

mean((mod$linear.predictors - mod.sm$fitted.values)*2)

# binomial (no weights)

set.seed(1)

y <= rbinom(n = n, size =1, p=1/ (1 + exp(-fx)))
mod <- gsm(y ~ x + z, family = binomial, knots = knots)
plot(mod)

mean((mod$linear.predictors - fx)*2)

# binomial (w/ weights)

set.seed(1)

w <- as.integer(rep(c(10,20,30,40,50), length.out = n))

y <= rbinom(n = n, size =w, p =1/ (1 + exp(-fx))) / w

mod <- gsm(y ~ x + z, family = binomial, weights = w, knots = knots)
plot(mod)

mean((mod$linear.predictors - fx)*2)

# poisson

set.seed(1)

y <= rpois(n = n, lambda = exp(fx))

mod <- gsm(y ~ x + z, family = poisson, knots = knots)
plot(mod)

mean((mod$linear.predictors - fx)*2)

# negative binomial (known theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x + z, family = NegBin(theta = 1/2), knots = knots)

27
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plot(mod)
mean((mod$linear.predictors - fx)*2)
mod$family$theta # fixed theta

# negative binomial (unknown theta)

set.seed(1)

y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

mod <- gsm(y ~ x + z, family = NegBin, knots = knots)
plot(mod)

mean((mod$linear.predictors - fx)*2)
mod$family$theta # estimated theta

# gamma

set.seed(1)

y <- rgamma(n = n, shape = 2, scale = (1 / (4 + fx)) / 2)
mod <- gsm(y ~ x + z, family = Gamma, knots = knots)
plot(mod)

mean((mod$linear.predictors - fx - 4)*2)

# inverse.gaussian (not run; requires statmod)

##set.seed(1)

#i#y <- statmod::rinvgauss(n = n, mean = sqrt(1 / (4 + fx)), shape = 2)
##mod <- gsm(y ~ x + z, family = inverse.gaussian, knots = knots)
##plot (mod)

##mean((mod$linear.predictors - fx - 4)*2)

model.matrix Construct Design Matrix for Fit Model

Description

model.matrix returns the design (or model) matrix used by the input object to produce the fitted
values (for objects of class ss or sm) or the linear predictors (for objects of class gsm).

Usage

## S3 method for class 'ss'
model.matrix(object, ...)

## S3 method for class 'sm'
model.matrix(object, ...)

## S3 method for class 'gsm'

model.matrix(object, ...)
Arguments
object an object of class ss, sm, or gsm

additional arguments (currently ignored)
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Details

For ss objects, the basis.poly function is used to construct the design matrix.

For sm objects, the predict. sm function with option design = TRUE is used to construct the design
matrix.

For gsm objects, the predict.gsm function with option design = TRUE is used to construct the
design matrix.

Value

The design matrix that is post-multiplied by the coefficients to produce the fitted values (or linear
predictors).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

basis.poly for the smoothing spline basis
predict.sm for predicting from smooth models

predict.gsm for predicting from generalized smooth models

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# smoothing spline

mod.ss <- ss(x, y, nknots = 10)

X.ss <- model.matrix(mod.ss)

mean((mod.ss$y - X.ss %*% mod.ss$fit$coef)”*2)

# smooth model

mod.sm <- sm(y ~ x, knots = 10)

X.sm <- model.matrix(mod.sm)

mean((mod.sm$fitted.values - X.sm %*% mod.sm$coefficients)*2)


https://doi.org/10.4135/9781526421036885885
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# generalized smooth model (family = gaussian)

mod.gsm <- gsm(y ~ x, knots = 10)

X.gsm <- model.matrix(mod.gsm)

mean((mod.gsm$linear.predictors - X.gsm %*% mod.gsm$coefficients)*2)

msqrt Matrix (Inverse?) Square Root

Description

Stable computation of the square root (or inverse square root) of a positive semi-definite matrix.

Usage

msqrt(x, inverse = FALSE, symmetric = FALSE,
tol = .Machine$double.eps, checkx = TRUE)

Arguments
X positive semi-definite matrix
inverse compute inverse square root?
symmetric does the square root need to be symmetric? See Details.
tol tolerance for detecting linear dependencies in x
checkx should x be checked for symmetry using isSymmetric?
Details

If symmetric = FALSE, this function computes the matrix z such that x = tcrossprod(z)
If symmetric = TRUE, this function computes the matrix z such that x = crossprod(z) = tcrossprod(z)

If inverse = TRUE, the matrix x is replaced by the pseudo-inverse of x in these equations (see
psolve)

Value

The matrix z that gives the (inverse?) square root of x. See Details.

Note

The matrix (inverse?) square root is calculated by (inverting and) square rooting the eigenvalues
that are greater than the first value multiplied by tol * nrow(x)

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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See Also

psolve

Examples

# generate x
set.seed(0)
X <- crossprod(matrix(rnorm(100), 20, 5))

# asymmetric square root (default)
xsqrt <- msqrt(x)

mean(( x - crossprod(xsqrt) )*2)
mean(( x - tcrossprod(xsqrt) )*2)

# symmetric square root

xsqrt <- msqrt(x, symmetric = TRUE)
mean(( x - crossprod(xsqrt) )*2)
mean(( x - tcrossprod(xsqrt) )*2)

# asymmetric inverse square root (default)
xsqrt <- msqrt(x, inverse = TRUE)

mean(( solve(x) - crossprod(xsqrt) )*2)
mean(( solve(x) - tcrossprod(xsqrt) )*2)

# symmetric inverse square root

xsqrt <- msqrt(x, inverse = TRUE, symmetric = TRUE)
mean(( solve(x) - crossprod(xsqrt) )*2)

mean(( solve(x) - tcrossprod(xsqrt) )*2)

NegBin Family Function for Negative Binomial

Description

Creates the functions needed to fit a Negative Binomial generalized smooth model via gsm with or
without a known theta parameter. Adapted from the negative.binomial function in the MASS
package.

Usage
NegBin(theta = NULL, link = "log")

Arguments
theta the size parameter for the Negative Binomial distribution. Default of NULL
indicates that theta should be estimated from the data.
link the link function. Must be log, sqrt, identity, or an object of class 1ink-glm

(as generated by make. 1link).
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Details
The Negative Binomial distribution has mean p and variance p + p2 /6, where the size parameter
6 is the inverse of the dispersion parameter. See NegBinomial for details.

Value

An object of class "family" with the functions and expressions needed to fit the gsm. In addition to
the standard values (see family), this also produces the following:

loglik function to evaluate the log-likelihood
canpar function to compute the canonical parameter
cumulant function to compute the cumulant function
theta the specified theta parameter

fixed. theta logical specifying if theta was provided

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References
Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition.
Springer.
https://www.rdocumentation.org/packages/MASS/versions/7.3-51.6/topics/negative.binomial

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/NegBinomial

See Also

gsm for fitting generalized smooth models with Negative Binomial responses

theta.mle for maximum likelihood estimation of theta

Examples

# generate data

n <- 1000

x <- seq(@, 1, length.out = n)

fx <= 3 x x +sin(2 * pi x x) - 1.5

# negative binomial (size = 1/2, log link)
set.seed(1)
y <= rnbinom(n = n, size = 1/2, mu = exp(fx))

# fit model (known theta)

mod <- gsm(y ~ x, family = NegBin(theta = 1/2), knots = 10)
mean((mod$linear.predictors - fx)*2)

mod$family$theta # fixed theta

# fit model (unknown theta)
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mod <- gsm(y ~ x, family = NegBin, knots = 10)
mean((mod$linear.predictors - fx)*2)
mod$family$theta # estimated theta

nominal Nominal Smoothing Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a nominal spline. This basis and penalty
are for an unordered factor.

Usage
basis.nom(x, knots, K = NULL, intercept = FALSE, ridge = FALSE)

penalty.nom(x, K = NULL)

Arguments
X Predictor variable (basis) or spline knots (penalty). Factor or integer vector of
length n.
knots Spline knots. Factor or integer vector of length 7.
K Number of levels of x. If NULL, this argument is defined as K = length(unique(x)).
intercept If TRUE, the first column of the basis will be a column of ones.
ridge If TRUE, the basis matrix is post-multiplied by the inverse square root of the
penalty matrix. See Note and Examples.
Details

Generates a basis function or penalty matrix used to fit nominal smoothing splines.

With an intercept included, the basis function matrix has the form
X = [Xo, X1]

where matrix X_@ is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by r.

The X_0 matrix contains the "parametric part" of the basis (i.e., the intercept). The matrix X_1
contains the "nonparametric part" of the basis, which consists of the reproducing kernel function

p(:lc,y) = (Sam,/ - 1/K
evaluated at all combinations of x and knots. The notation ¢,,,, denotes Kronecker’s delta function.

The penalty matrix consists of the reproducing kernel function

p(xvy) = (Szy - 1/K

evaluated at all combinations of x.
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Value

Basis: Matrix of dimension c(length(x), df) where df = length(knots) + intercept.

Penalty: Matrix of dimension c(r, r) where r = length(x) is the number of knots.

Note

If the inputs x and knots are factors, they should have the same levels.
If the inputs x and knots are integers, the knots should be a subset of the input x.

If ridge = TRUE, the penalty matrix is the identity matrix.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag.
doi:10.1007/9781461453697

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smooth-
ing spline analysis of variance models with large samples. Journal of Computational and Graphical
Statistics, 24(3), 715-732. doi:10.1080/10618600.2014.926819

See Also

See ordinal for a basis and penalty for ordered factors.

Examples

##HHHE K standard parameterization  ###HHHP Rk

# generate data

set.seed(0)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

# nominal smoothing spline basis
X <- basis.nom(x, knots, intercept = TRUE)

# nominal smoothing spline penalty
Q <- penalty.nom(knots, K = 4)


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.4135/9781526421036885885
https://doi.org/10.1080/10618600.2014.926819

number2color

# pad Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((etalx] - yhat)*2))

HHHEHE oo ridge parameterization  ##HHEHE < #HHHEE

# generate data

set.seed(Q)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

# nominal smoothing spline basis
X <- basis.nom(x, knots, intercept = TRUE, ridge = TRUE)

# nominal smoothing spline penalty (ridge)
Q <- diag(rep(c(@, 1), times = c(1, ncol(X) - 1)))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((etal[x] - yhat)*2))

35

number2color Map Numbers to Colors
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Description

Each of the n elements of a numeric vector is mapped onto one of the m specified colors.

Usage

number2color(x, colors, ncol = 21, equidistant = TRUE, xmin = min(x), xmax = max(x))

Arguments
X numeric vector of observations that should be mapped to colors
colors an optional vector of colors (see Note for default colors)
ncol number of colors m used for mapping
equidistant if TRUE (default), the breaks used for binning are an equidistant seqeunce of
values spanning the range of x. Otherwise sample quantiles of x are used to
define the bin breaks.
xmin minimum x value to use when defining breaks
Xmax maximum x value to use when defining breaks
Details

Elements of a numeric vector are binned using either an equidistant sequence (default) or sample
quantiles. Each bin is associated with a unique color, so binning the observations is equivalent to
mapping the numbers to colors. The colors are input to the colorRampPalette function to create
a color palette with length specified by the ncol argument.

Value

Returns of vector of colors the same length as x

Note

If colors is missing, the default color palette is defined as
colors <- c("darkblue”, rainbow(12)[c(9, 8, 7, 5, 3, 2, 1)1, "darkred")

which is a modified version of the rainbow color palette.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

.bincode is used to bin the data

Examples

X <- 1:100
xcol <- number2color(x)
plot(x, col = xcol)



ordinal 37

ordinal Ordinal Smoothing Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for an ordinal spline. This basis and penalty
are for an ordered factor.

Usage

basis.ord(x, knots, K = NULL, intercept = FALSE, ridge = FALSE)

penalty.ord(x, K = NULL, xlev = NULL)

Arguments
X Predictor variable (basis) or spline knots (penalty). Ordered factor or integer
vector of length n.
knots Spline knots. Ordered factor or integer vector of length r.
K Number of levels of x. If NULL, this argument is defined as K = length(unique(x)).
xlev Factor levels of x (for penalty). If NULL, the levels are defined as levels(as.ordered(x)).
intercept If TRUE, the first column of the basis will be a column of ones.
ridge If TRUE, the basis matrix is post-multiplied by the inverse square root of the
penalty matrix. See Note and Examples.
Details

Generates a basis function or penalty matrix used to fit ordinal smoothing splines.

With an intercept included, the basis function matrix has the form
X = [Xo, X1]

where matrix X_0 is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by . The X_0
matrix contains the "parametric part" of the basis (i.e., the intercept). The matrix X_1 contains the
"nonparametric part" of the basis, which consists of the reproducing kernel function

plr,y) =1—(zVy)+ (1/2K)x (z(z - 1) +y(y — 1)) + ¢

evaluated at all combinations of x and knots. The notation (z V y) denotes the maximum of = and
y, and the constant is ¢ = (K — 1)(2K — 1) /(6K).

The penalty matrix consists of the reproducing kernel function
ple,y) =1—(zVy) + (1/2K) * (z(z = 1) +y(y = 1)) +-¢

evaluated at all combinations of x.



38 ordinal

Value

Basis: Matrix of dimension c(length(x), df) where df = length(knots) + intercept.

Penalty: Matrix of dimension c(r, r) where r = length(x) is the number of knots.

Note

If the inputs x and knots are factors, they should have the same levels.
If the inputs x and knots are integers, the knots should be a subset of the input x.

If ridge = TRUE, the penalty matrix is the identity matrix.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag.
doi:10.1007/9781461453697

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

See nominal for a basis and penalty for unordered factors.

See polynomial for a basis and penalty for numeric variables.

Examples

###HHHEA oK standard parameterization  ###HHHP Rk

# generate data

set.seed(0)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

# ordinal smoothing spline basis
X <- basis.ord(x, knots, intercept = TRUE)

# ordinal smoothing spline penalty
Q <- penalty.ord(knots, K = 4)

# pad Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.4135/9781526421036885885
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# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((etalx] - yhat)*2))

A oo ridge parameterization  ##HHEHE < #HEHE

# generate data

set.seed(Q)

n <- 101

x <- factor(sort(rep(LETTERS[1:4], length.out = n)))
knots <- LETTERS[1:3]

eta <- 1:4

y <- eta[x] + rnorm(n, sd = 0.5)

# ordinal smoothing spline basis
X <- basis.ord(x, knots, intercept = TRUE, ridge = TRUE)

# ordinal smoothing spline penalty (ridge)
Q <- diag(rep(c(@, 1), times = c(1, ncol(X) - 1)))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((etal[x] - yhat)*2))

plot.gsm Plot Effects for Generalized Smooth Model Fits

Description

Plots the main and two-way interaction effects for objects of class "gsm".
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Usage

## S3 method for class 'gsm'
plot(x, terms = x$terms, se = TRUE, n = 201, intercept = FALSE,
ask = prod(par(”"mfcol”)) < length(terms) && dev.interactive(),

zero.line = TRUE, zero.lty = 3, zero.col = "black”, ncolor = 21,
colors = NULL, rev = FALSE, zlim = NULL, lty.col = NULL,
legend.xy = "top"”, main = NULL, xlab = NULL, ylab = NULL, ...)
Arguments
X a fit from gsm.
terms which terms to include in the plot. The default plots all terms.
se a switch indicating if standard errors are required.
n number of points to use for line plots. Note sqrt(n) points are used for image
plots.
intercept a switch indicating if an intercept should be added to the effect plot(s).
ask a swith indicating if the user should be prompted before switching plots (if
length(terms) > 1)
zero.line a switch indicating if the zero line should be added to the effect plot(s).
zero.lty line type for the zero line (if zero.1line = TRUE).
zero.col color for the zero line (if zero.line = TRUE).
ncolor number of colors to use for image plot(s).
colors colors to use for image plots. Can input the name of a color palette (see hcl.colors)
or a vector of colors to create a palette (see colorRampPalette).
rev if colors is the name of a palette, should it be reversed? See hcl.colors.
zlim limits to use for image plot(s) when mapping numbers to colors.
lty.col color(s) to use for lines when plotting effects of continuous predictors.
legend. xy location to place the legend for line plots involving interactions.
main title for plot (ignored unless plotting a single term).
xlab x-axis label for plot (ignored unless plotting a single term).
ylab y-axis label for plot (ignored unless plotting a single term).

additional arguments passed to plotci or image

Details

Plots main and two-way interaction effects for fit smooth models using either line or image plots.
The terms arugment can be used to plot a specific effect term. Main and interaction effects
are plotted by creating predictions from the fit model that only include the requested terms (see
predict.sm), and then using either the plotci function (for line plots) or the image function (for
heatmaps).

Value

Produces a line or image plot for each requested term in the model.
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Note

Three-way interaction effects are not plotted.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

gsm for fitting sm objects.

Examples

# see examples in gsm() help file
?gsm

plot.sm Plot Effects for Smooth Model Fits

Description

Plots the main and two-way interaction effects for objects of class "sm".

Usage

## S3 method for class 'sm'
plot(x, terms = x$terms, se = TRUE, n = 201, intercept = FALSE,
ask = prod(par(”"mfcol”)) < length(terms) && dev.interactive(),

zero.line = TRUE, zero.lty = 3, zero.col = "black”, ncolor = 21,
colors = NULL, rev = FALSE, zlim = NULL, lty.col = NULL,
legend.xy = "top", main = NULL, xlab = NULL, ylab = NULL, ...)
Arguments
X a fit from sm.
terms which terms to include in the plot. The default plots all terms.
se a switch indicating if standard errors are required.
n number of points to use for line plots. Note sqrt(n) points are used for image
plots.

intercept a switch indicating if an intercept should be added to the effect plot(s).
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ask

zero.line
zero.lty
zero.col
ncolor

colors

rev
z1lim
lty.col
legend. xy
main

xlab

ylab

Details

plot.sm

a swith indicating if the user should be prompted before switching plots (if
length(terms) > 1)

a switch indicating if the zero line should be added to the effect plot(s).
line type for the zero line (if zero.line = TRUE).

color for the zero line (if zero.line = TRUE).

number of colors to use for image plot(s).

colors to use for image plots. Can input the name of a color palette (see hcl.colors)
or a vector of colors to create a palette (see colorRampPalette).

if colors is the name of a palette, should it be reversed? See hcl.colors.
limits to use for image plot(s) when mapping numbers to colors.

color(s) to use for lines when plotting effects of continuous predictors.
location to place the legend for line plots involving interactions.

title for plot (ignored unless plotting a single term).

x-axis label for plot (ignored unless plotting a single term).

y-axis label for plot (ignored unless plotting a single term).

additional arguments passed to plotci or image

Plots main and two-way interaction effects for fit smooth models using either line or image plots.
The terms arugment can be used to plot a specific effect term. Main and interaction effects
are plotted by creating predictions from the fit model that only include the requested terms (see
predict.sm), and then using either the plotci function (for line plots) or the image function (for

heatmaps).

Value

Produces a line or image plot for each requested term in the model.

Note

Three-way interaction effects are not plotted.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
https://doi.org/10.4135/9781526421036885885

See Also

sm for fitting sm objects.
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Examples

# see examples in sm() help file
?sm

plot.ss Plot method for Smoothing Spline Fit and Bootstrap

Description

Default plotting methods for ss and boot. ss objects.

Usage

## S3 method for class 'ss'
plot(x, n = 201, ci = TRUE, xseq = NULL, ...)

## S3 method for class 'boot.ss'

plot(x, n = 201, ci = TRUE, xseq = NULL, ...)
Arguments
X an object of class ’ss’ or ’boot.ss’
n number of points used to plot smoothing spline estimate
ci logical indicating whether to include a confidence interval
xseq ordered sequence of points at which to plot smoothing spline estimate

optional additional argument for the plotci function, e.g., level, col, etc.

Details
Unless a sequence of points is provided via the xseq arugment, the plots are created by evaluating
the smoothing spline fit at an equidistant sequence of n values that span the range of the training
data.

Value
Plot of the function estimate and confidence interval with the title displaying the effective degrees
of freedom.

Note
The plot.ssandplot.boot.ss functions produce plots that only differ in terms of their confidence
intervals: plot.ss uses the Bayesian Cls, whereas plot.boot.ss uses the bootstrap Cls.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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See Also

ss and boot.ss

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit smoothing spline
ssfit <- ss(x, y, nknots = 10)

# plot smoothing spline fit
plot(ssfit)

## Not run:

# bootstrap smoothing spline
ssfitboot <- boot(ssfit)

# plot smoothing spline bootstrap
plot(ssfitboot)

## End(Not run)

plotci Generic X-Y Plotting with Confidence Intervals

Description

Modification to the plot function that adds confidence intervals. The ClIs can be plotted using
polygons (default) or error bars.

Usage

plotci(x, y, se, level = 0.95, crit.val = NULL,
add = FALSE, col = NULL, col.ci = NULL,
alpha = NULL, bars = NULL, bw = 0.05,
linkinv = NULL, ci = NULL, ...)

Arguments

X a vector of "x’ values (n by 1). If y is missing, the x input can be a list or matrix
containing the x, y, and se arguments.

y a vector of "y’ values (n by 1).



plotci

se
level

crit.val

add

col
col.ci
alpha
bars
bw

linkinv

ci

Details

45

a vector of standard error values (n by 1).
confidence level for the intervals (between O and 1).

an optional critical value for the intervals. If provided, the level input is ig-
nored. See Details.

a switch controlling whether a new plot should be created (via a call to plot) or
if the plot should be added to the current plot (via a call to 1ines).

a character specifying the color for plotting the lines/points.

a character specifying the color for plotting the intervals.

a scalar between 0 and 1 controlling the transparency of the intervals.

a switch controlling whether the intervals should be plotted as bars or polygons.
a positive scalar controlling the bar width. Ignored if bars = FALSE.

an inverse link function for the plotting. If provided, the function plots x versus
linkinv(y) and the intervals are similarly transformed.

an optional matrix if dimension nz2 giving the confidence interval lower and
upper bounds: ci = cbind(1lwr, upr)

extra arguments passed to the plot or 1ines function.

This function plots x versus y with confidence intervals. Unless ci is provided, the CIs have the

form

lwr=y-crit.val * se
upr =y +crit.val * se
where crit.val is the critical value.

If crit.val = NULL, the critival value is determined from the level input as
crit.val <-gnorm(1-(1-level)/2)
where gnorm is the quantile function for the standard normal distribution.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

This function is used by plot.ss to plot smoothing spline fits.

Examples

# generate data
set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit smooth model
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polynomial

smod <- sm(y ~ x, knots = 10)

# plot fit with 95% CI polygon
plotci(x, smod$fitted.values, smod$se.fit)

# plot fit with 95% CI bars
plotci(x, smod$fitted.values, smod$se.fit, bars = TRUE)

# plot fit +/- 1 SE
plotci(x, smod$fitted.values, smod$se.fit, crit.val = 1, bars = TRUE)

polynomial

Polynomial Smoothing Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a polynomial spline. Derivatives of the
smoothing spline basis matrix are supported.

Usage

basis.poly(x, knots, m = 2, d = @, xmin = min(x), xmax = max(x),

periodic = FALSE, rescale = FALSE, intercept = FALSE,
bernoulli = TRUE, ridge = FALSE)

penalty.poly(x, m = 2, xmin = min(x), xmax = max(x),

Arguments

X

knots

xmin
Xmax
periodic
rescale

intercept
bernoulli

ridge

periodic = FALSE, rescale = FALSE, bernoulli = TRUE)

Predictor variable (basis) or spline knots (penalty). Numeric or integer vector of
length n.

Spline knots. Numeric or integer vector of length 7.

Penalty order. "m=1" for linear smoothing spline, "m=2" for cubic, and "m=3"
for quintic.

Derivative order. "d=0" for smoothing spline basis, "d=1" for Ist derivative of
basis, and "d=2" for 2nd derivative of basis.

Minimum value of "x".
Maximum value of "x".
If TRUE, the smoothing spline basis is periodic w.r.t. the interval [xmin, xmax].

If TRUE, the nonparametric part of the basis is divided by the average of the
reproducing kernel function evaluated at the knots.

If TRUE, the first column of the basis will be a column of ones.

If TRUE, scaled Bernoulli polynomials are used for the basis and penalty func-
tions.

If TRUE, the basis matrix is post-multiplied by the inverse square root of the
penalty matrix. See Note and Examples.
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Details
Generates a basis function or penalty matrix used to fit linear, cubic, and quintic smoothing splines
(or evaluate their derivatives).

For non-periodic smoothing splines, the basis function matrix has the form
X = [Xo, Xi]
where the matrix X_0 is of dimension n by m — 1 (plus 1 if an intercept is included), and X_1 is a

matrix of dimension n by r.

The X_0 matrix contains the "parametric part" of the basis, which includes polynomial functions of
x up to degree m — 1.

The matrix X_1 contains the "nonparametric part" of the basis, which consists of the reproducing
kernel function

p(x,y) = K (@) km (y) + (1) 2m (o — y])
evaluated at all combinations of x and knots. The &, functions are scaled Bernoulli polynomials.

For periodic smoothing splines, the Xy matrix only contains the intercept column and the modified
reproducing kernel function

p(z,y) = ()" wom(jz —yl)
is evaluated for all combinations of x and knots.

For non-periodic smoothing splines, the penalty matrix consists of the reproducing kernel function

p(x,y) = fm(2)km(y) + (=)™ ram (|2 — yl)

evaluated at all combinations of x. For periodic smoothing splines, the modified reproducing kernel
function

pla,y) = (=1)" ' ram (|2 - yl)
is evaluated for all combinations of x.

If bernoulli = FALSE, the reproducing kernel function is defined as
1
plasa) = 1/ m = 0)° [ =y~
0

where (.); = max(.,0). This produces the "classic" definition of a smoothing spline, where the
function estimate is a piecewise polynomial function with pieces of degree 2m — 1.

Value

Basis: Matrix of dimension c(length(x), df) where df >=length(knots). If the smoothing
spline basis is not periodic (default), then the number of columns is df = length(knots) +m -
lintercept. For periodic smoothing splines, the basis has m fewer columns.

Penalty: Matrix of dimension c(r, r) where r = length(x) is the number of knots.

Note

Inputs x and knots should be within the interval [xmin, xmax].

If ridge = TRUE, the penalty matrix is the identity matrix.
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Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

polynomial

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag.

doi:10.1007/9781461453697

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers

in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.

doi:10.4135/9781526421036885885

Helwig, N. E., & Ma, P. (2015). Fast and stable multiple smoothing parameter selection in smooth-
ing spline analysis of variance models with large samples. Journal of Computational and Graphical

Statistics, 24(3), 715-732. doi:10.1080/10618600.2014.926819

See Also

See thinplate for a thin plate spline basis and penalty.

See ordinal for a basis and penalty for ordered factors.

Examples

#H##H#HHEA ok standard parameterization  ###HHHP R

# generate data

set.seed(0)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta <- 1+ 2 *x x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

# cubic smoothing spline basis
X <- basis.poly(x, knots, intercept = TRUE)

# cubic smoothing spline penalty
Q <- penalty.poly(knots, xmin = min(x), xmax = max(x))

# pad Q with zeros (for intercept and linear effect)
Q <- rbind(@, @, cbind(0, 2, Q))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients

coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.4135/9781526421036885885
https://doi.org/10.1080/10618600.2014.926819
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# check rmse
sqrt(mean((eta - yhat)*2))

# plot results

plot(x, y)
lines(x, yhat)

H#iHHH o ridge parameterization  ##HHHxxx A

# generate data

set.seed(0)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta<- 1+ 2 % x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

# cubic smoothing spline basis
X <- basis.poly(x, knots, intercept = TRUE, ridge = TRUE)

# cubic smoothing spline penalty (ridge)
Q <- diag(rep(c(@, 1), times = c(2, ncol(X) - 2)))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- solve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqgrt(mean((eta - yhat)*2))

# plot results

plot(x, y)
lines(x, yhat)

predict.gsm Predict method for Generalized Smooth Model Fits

Description

predict method for class "gsm".
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Usage
## S3 method for class 'gsm'
predict(object, newdata = NULL, se.fit = FALSE,
type = c("link”, "response”, "terms"),
terms = NULL, na.action = na.pass,
intercept = NULL, combine = TRUE, design = FALSE,
check.newdata = TRUE, ...)
Arguments
object a fit from gsm.
newdata an optional list or data frame in which to look for variables with which to predict.
If omitted, the original data are used.
se.fit a switch indicating if standard errors are required.
type type of prediction (link, response, or model term). Can be abbreviated.
terms which terms to include in the fit. The default of NULL uses all terms. This input
is used regardless of the type of prediction.
na.action function determining what should be done with missing values in newdata. The
default is to predict NA.
intercept a switch indicating if the intercept should be included in the prediction. If NULL
(default), the intercept is included in the fit only when type = "r" and terms
includes all model terms.
combine a switch indicating if the parametric and smooth components of the prediction
should be combined (default) or returned separately.
design a switch indicating if the model (design) matrix for the prediction should be

returned.

check.newdata aswitch indicating if the newdata should be checked for consistency (e.g., class
and range). Ignored if newdata is not provided.

additional arguments affecting the prediction produced (currently ignored).

Details

Inspired by the predict.glm function in R’s stats package.

Produces predicted values, obtained by evaluating the regression function in the frame newdata
(which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the
predictions are calculated.

If newdata is omitted the predictions are based on the data used for the fit. Regardless of the
newdata argument, how cases with missing values are handled is determined by the na.action
argument. If na.action =na.omit omitted cases will not appear in the predictions, whereas if
na.action = na.exclude they will appear (in predictions and standard errors), with value NA.

Similar to the glm function, setting type = "terms"” returns a matrix giving the predictions for each
of the requested model terms. Unlike the glm function, this function allows for predictions using
any subset of the model terms. Specifically, the predictions (on both the 1ink and response scale)
will only include the requested terms, which makes it possible to obtain estimates (and standard
errors) for subsets of model terms. In this case, the newdata only needs to contain data for the
subset of variables that are requested in terms.
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Value

Default use returns a vector of predictions. Otherwise the form of the output will depend on the
combination of argumments: se.fit, type, combine, and design.

type = "1ink":

When se.fit = FALSE and design = FALSE, the output will be the predictions on the link scale.
When se.fit = TRUE or design = TRUE, the output is a list with components fit, se.fit (if re-
quested), and X (if requested).

type = "response”:

When se.fit = FALSE and design = FALSE, the output will be the predictions on the data scale.
When se.fit = TRUE or design = TRUE, the output is a list with components fit, se.fit (if re-
quested), and X (if requested).

type = "terms":

When se.fit = FALSE and design = FALSE, the output will be the predictions for each term on
the link scale. When se.fit = TRUE or design = TRUE, the output is a list with components fit,
se.fit (if requested), and X (if requested).

Regardless of the type, setting combine = FALSE decomposes the requested result(s) into the parametric
and smooth contributions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.glm.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. doi:10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

gsm

Examples

# generate data
set.seed(1)
n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)


https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.4135/9781526421036885885
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zi <- as.integer(z)

fx <= mufzi] + 3 * x + sin(2 * pi * x + mu[ziJxpi/4)
3
fx <= fun(x, z)
y <= rbinom(n = n, size =1, p =1/ (1 + exp(-fx)))

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# fit gsm with specified knots (tprk = TRUE)

gsm.ssa <- gsm(y ~ x x z, family = binomial, knots = knots)

pred <- predict(gsm.ssa)

term <- predict(gsm.ssa, type = "terms")

mean((gsm.ssa$linear.predictors - pred)*2)

mean((gsm.ssa$linear.predictors - rowSums(term) - attr(term, "constant”))"2)

# fit gsm with specified knots (tprk = FALSE)

gsm.gam <- gsm(y ~ x * z, family = binomial, knots = knots, tprk = FALSE)
pred <- predict(gsm.gam)

term <- predict(gsm.gam, type = "terms")

mean((gsm.gam$linear.predictors - pred)*2)

mean((gsm.gam$linear.predictors - rowSums(term) - attr(term, "constant”))"2)

predict.sm Predict method for Smooth Model Fits

Description

predict method for class "sm".

Usage

## S3 method for class 'sm'

predict(object, newdata = NULL, se.fit = FALSE,
interval = c("none”, "confidence"”, "prediction”),
level = 0.95, type = c("response”, "terms"),
terms = NULL, na.action = na.pass,
intercept = NULL, combine = TRUE, design = FALSE,

check.newdata = TRUE, ...)
Arguments
object a fit from sm.
newdata an optional list or data frame in which to look for variables with which to predict.

If omitted, the original data are used.

se.fit a switch indicating if standard errors are required.
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interval type of interval calculation. Can be abbreviated.

level tolerance/confidence level.

type type of prediction (response or model term). Can be abbreviated.

terms which terms to include in the fit. The default of NULL uses all terms. This input

is used regardless of the type of prediction.

na.action function determining what should be done with missing values in newdata. The
default is to predict NA.

intercept a switch indicating if the intercept should be included in the prediction. If NULL
(default), the intercept is included in the fit only when type = "r" and terms
includes all model terms.

combine a switch indicating if the parametric and smooth components of the prediction
should be combined (default) or returned separately.

design a switch indicating if the model (design) matrix for the prediction should be
returned.

check.newdata aswitch indicating if the newdata should be checked for consistency (e.g., class
and range). Ignored if newdata is not provided.

additional arguments affecting the prediction produced (currently ignored).

Details

Inspired by the predict.1m function in R’s stats package.

Produces predicted values, obtained by evaluating the regression function in the frame newdata
(which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the
predictions are calculated. Setting intervals specifies computation of confidence or prediction
(tolerance) intervals at the specified level, sometimes referred to as narrow vs. wide intervals.

If newdata is omitted the predictions are based on the data used for the fit. Regardless of the
newdata argument, how cases with missing values are handled is determined by the na.action
argument. If na.action =na.omit omitted cases will not appear in the predictions, whereas if
na.action = na.exclude they will appear (in predictions, standard errors or interval limits), with
value NA.

Similar to the 1m function, setting type = "terms” returns a matrix giving the predictions for each
of the requested model terms. Unlike the 1m function, this function allows for predictions using any
subset of the model terms. Specifically, when type = "response” the predictions will only include
the requested terms, which makes it possible to obtain estimates (and standard errors and intervals)
for subsets of model terms. In this case, the newdata only needs to contain data for the subset of
variables that are requested in terms.

Value

Default use returns a vector of predictions. Otherwise the form of the output will depend on the
combination of argumments: se.fit, interval, type, combine, and design.

type = "response”:

When se.fit = FALSE and design = FALSE, the output will be the predictions (possibly with lwr
and upr interval bounds). When se.fit = TRUE or design = TRUE, the output is a list with compo-
nents fit, se.fit (if requested), and X (if requested).
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type = "terms":

When se.fit = FALSE and design = FALSE, the output will be the predictions for each term (possi-
bly with 1wr and upr interval bounds). When se.fit = TRUE or design = TRUE, the output is a list
with components fit, se.fit (if requested), and X (if requested).

Regardless of the type, setting combine = FALSE decomposes the requested result(s) into the parametric
and smooth contributions.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.lm.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. doi:10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

sm

Examples

# generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x + mu[zilxpi/4)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# fit sm with specified knots
smod <- sm(y ~ x * z, knots = knots)


https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.4135/9781526421036885885
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# get model "response” predictions
fit <- predict(smod)
mean((smod$fitted.values - fit)*2)

# get model "terms"” predictions

trm <- predict(smod, type = "terms")
attr(trm, "constant”)
head(trm)

mean((smod$fitted.values - rowSums(trm) - attr(trm, "constant”))*2)

# get predictions with "newdata” (= the original data)
fit <- predict(smod, newdata = data.frame(x = x, z = z))
mean((fit - smod$fitted.values)*2)

# get predictions and standard errors
fit <- predict(smod, se.fit = TRUE)
mean((fit$fit - smod$fitted.values)*2)
mean((fit$se.fit - smod$se.fit)*2)

# get 99% confidence interval
fit <- predict(smod, interval = "c", level = 0.99)
head(fit)

# get 99% prediction interval
fit <- predict(smod, interval = "p"”, level = 0.99)
head(fit)

# get predictions only for x main effect

fit <- predict(smod, newdata = data.frame(x = x),
se.fit = TRUE, terms = "x")

plotci(x, fit$fit, fit$se.fit)

# get predictions only for each group

fit.a <- predict(smod, newdata = data.frame(x = x, z = "a"), se.fit
fit.b <- predict(smod, newdata = data.frame(x = "b"), se.fit
fit.c <- predict(smod, newdata = data.frame(x = "c"), se.fit

1
x
|

1l
x
N

|

# plot results (truth as dashed line)
plotci(x = x, y = fit.a$fit, se = fit.a$se.fit,
col = "red”, col.ci = "pink”, ylim = c(-6, 6))
lines(x, fun(x, rep(1, n)), lty = 2, col = "red")
plotci(x = x, y = fit.b$fit, se = fit.b$se.fit,
col = "blue”, col.ci = "cyan"”, add = TRUE)
lines(x, fun(x, rep(2, n)), lty = 2, col = "blue")
plotci(x = x, y = fit.c$fit, se = fit.c$se.fit,
col = "darkgreen”, col.ci = "lightgreen”, add = TRUE)
lines(x, fun(x, rep(3, n)), lty = 2, col = "darkgreen")

# add legends

legend("bottomleft”, legend = c("Truth”, "Estimate"”, "CI"),
1ty = c(2, 1, NA), lwd = c(1, 2, NA),
col = c("black”, "black”,"gray80"),
pch = ¢(NA, NA, 15), pt.cex = 2, bty = "n")

TRUE)
TRUE)
TRUE)
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legend("bottomright”, legend = letters[1:3],
lwd = 2, col = c("red”, "blue”, "darkgreen”), bty = "n")

predict.ss Predict method for Smoothing Spline Fits

Description

predict method for class "ss".

Usage

## S3 method for class 'ss'

predict(object, x, deriv = 0, se.fit = TRUE, ...)
Arguments

object a fit from ss.

X the new values of x.

deriv integer; the order of the derivative required.

se.fit a switch indicating if standard errors are required.

additional arguments affecting the prediction produced (currently ignored).

Details

Inspired by the predict.smooth.spline function in R’s stats package.

Value

A list with components

X The input x.

y The fitted values or derivatives at x.

se The standard errors of the fitted values or derivatives (if requested).
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.smooth.spline.html

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. doi:10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

SS

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# GCV selection (default)
ss.GCV <- ss(x, y, nknots = 10)

# get predictions and SEs (at design points)
fit <- predict(ss.GCV, x = x)
head(fit)

# compare to original fit
mean((fit$y - ss.GCV$y)*2)

# plot result (with default 95% CI)
plotci(fit)

# estimate first derivative

dl <= 3 + 2 * pi * cos(2 * pi * x)

fit <- predict(ss.GCV, x = x, deriv = 1)
head(fit)

# plot result (with default 95% CI)
plotci(fit)
lines(x, d1, 1ty = 2) # truth


https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.4135/9781526421036885885
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psolve Pseudo-Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector or a
matrix. This implementation is similar to solve, but uses a pseudo-inverse if the system is compu-
tationally singular.

Usage
psolve(a, b, tol)

Arguments
a a rectangular numeric matrix containing the coefficients of the linear system.
b a numeric vector or matrix giving the right-hand side(s) of the linear system. If
missing, b is taken to be an identity matrix and solve will return the (pseudo-
)inverse of a.
tol the tolerance for detecting linear dependencies in the columns of a. The default
is .Machine$double.eps.
Details

If a is a symmetric matrix, eigen is used to compute the (pseudo-)inverse. This assumes that a is a
positive semi-definite matrix. Otherwise svd is used to compute the (pseudo-)inverse for rectangular
matrices.

Value

If b is missing, returns the (pseudo-)inverse of a. Otherwise returns psolve(a) %*% b.

Note
The pseudo-inverse is calculated by inverting the eigen/singular values that are greater than the first
value multiplied by tol * min(dim(a)).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American
Mathematical Society, 26, 394-395. doi:10.1090/S000299041920033227

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 51(3), 406-413. doi:10.1017/S0305004100030401


https://doi.org/10.1090/S0002-9904-1920-03322-7
https://doi.org/10.1017/S0305004100030401
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See Also

msqrt

Examples

# generate X

set.seed(Q)

X <= matrix(rnorm(100), 20, 5)
X <= cbind(X, rowSums(X))

# pseudo-inverse of X (dim = 6 by 20)
Xinv <- psolve(X)

# pseudo-inverse of crossprod(X) (dim = 6 by 6)
XtXinv <- psolve(crossprod(X))

residuals Extract Model Residuals

Description

Extracts the residuals from a fit smoothing spline ("ss"), smooth model ("sm"), or generalized
smooth model ("gsm") object.

Usage
## S3 method for class 'ss'
residuals(object, type = c("working"”, "response”, "deviance",
"pearson”, "partial"), ...)

## S3 method for class 'sm'
residuals(object, type = c("working"”, "response”, "deviance”,
"pearson”, "partial"), ...)

## S3 method for class 'gsm'

residuals(object, type = c("deviance”, "pearson”, "working",
"response”, "partial”), ...)
Arguments
object an object of class "ss", "sm", or "gsm"

type type of residuals

other arugments (currently ignored)
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Details

For objects of class ss and sm
* the working and response residuals are defined as ’observed - fitted’
* the deviance and Pearson residuals multiply the working residuals by sqrt(weights(object))

For objects of class gsm, the residual types are the same as those produced by the residuals.glm
function

Value

Residuals from object

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

Ss, sm, gsm

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# smoothing spline
mod.ss <- ss(x, y, nknots = 10)
res.ss <- residuals(mod.ss)

# smooth model
mod.sm <- sm(y ~ x, knots = 10)
res.sm <- residuals(mod.sm)

# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, knots = 10)
res.gsm <- residuals(mod.gsm)

# y = fitted + residuals

mean((y - fitted(mod.ss) - res.ss)"*2)
mean((y - fitted(mod.sm) - res.sm)"2)
mean((y - fitted(mod.gsm) - res.gsm)*2)


https://doi.org/10.4135/9781526421036885885
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sm

Fit a Smooth Model

Description

Fits a semi- or nonparametric regression model with the smoothing parameter(s) selected via one
of eight methods: GCV, OCV, GACYV, ACV, REML, ML, AIC, or BIC.

Usage

sm(formula, data, weights, types = NULL, tprk = TRUE, knots = NULL,

skip.iter
method
xrange

Arguments

formula

data

weights

types

tprk

knots

skip.iter

df

spar

lambda

TRUE, df, spar = NULL, lambda = NULL, control = list(),
C(”GCV”, IIOCVII’ IIGACVH, IIACVH’ ”REMLH, HMLII, IIAICII’ HBICH)’
NULL, thetas = NULL, mf = NULL)

Object of class "formula" (or one that can be coerced to that class): a symbolic
description of the model to be fitted. Uses the same syntax as 1m and glm.

Optional data frame, list or environment (or object coercible by as.data. frame
to a data frame) containing the variables in the model. If not found in data,
the variables are taken from environment (formula), typically the environment
from which sm is called.

Optional vector of weights to be used in the fitting process. If provided, weighted
least squares is used. Defaults to all 1.

Named list giving the type of smooth to use for each predictor. If NULL, the type
is inferred from the data. See "Types of Smooths" section for details.

Logical specifying how to parameterize smooth models with multiple predic-
tors. If TRUE (default), a tensor product reproducing kernel function is used to
represent the function. If FALSE, a tensor product of marginal kernel functions
is used to represent the function. See the "Multiple Smooths" section for details.

Spline knots for the estimation of the nonparametric effects. For models with
multiple predictors, the knot specification will depend on the tprk input. See
the "Choosing Knots" section for details

Set to FALSE for deep tuning of the hyperparameters. Only applicable when
multiple smooth terms are included. See the "Parameter Tuning" section for
details.

Equivalent degrees of freedom (trace of the smoother matrix). Must be in [m, n]
where m is the number of columns of the null space basis function matrix X, and
n is the number of observations. Will be approximate if skip.iter = FALSE.

Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256" (3*(spar-1)).

Computational smoothing parameter. This value is weighted by n to form the
penalty coefficient (see Details). Ignored if spar is provided.
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control

method

xrange

thetas

mf

sm

Optional list with named components that control the optimization specs for the
smoothing parameter selection routine.

Note that spar is only searched for in the interval [lower, upper].

lower: lower bound for spar; defaults to -1.5
upper: upper bound for spar; defaults to 1.5

tol: the absolute precision (tolerance) used by optimize and nlm; defaults to
le-8.

iterlim: the iteration limit used by nlm; defaults to 5000.
print.level: the print level used by nlm; defaults to O (no printing).

Method for selecting the smoothing parameter. Ignored if lambda is provided
and skip.iter = TRUE.

Optional named list containing the range of each predictor. If NULL, the ranges
are calculated from the input data.

Optional vector of hyperparameters to use for smoothing. If NULL, these are
tuned using the requested method.

Optional model frame constructed from formula and data (and potentially
weights).

Note: the last two arguments are not intended to be called by the typical user of this function. These
arguments are included primarily for internal usage by the boot . sm function.

Details

Letting f; = f(z;) with z; = (@41, ..., p), the function is represented as

f=XB+Za

where the basis functions in X span the null space (i.e., parametric effects), and Z contains the
kernel function(s) of the contrast space (i.e., nonparametric effects) evaluated at all combinations of
observed data points and knots. The vectors 8 and « contain unknown basis function coefficients.

Letting M = (X, Z) and v = (f’,@’)’, the penalized least squares problem has the form

(y — M~)'W(y — Mv) + nia'Qa

where W is a diagonal matrix containg the weights, and @) is the penalty matrix. The optimal
coefficients are the solution to

(M'WM +nAP)y= MWy

where P is the penalty matrix () augmented with zeros corresponding to the /3 in ~.

Value

An object of class "sm" with components:

fitted.values
se.fit

sse

the fitted values, i.e., predictions.
the standard errors of the fitted values.

the sum-of-squared errors.
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cv.crit the cross-validation criterion.

nsdf the degrees of freedom (Df) for the null space.

df the estimated degrees of freedom (Df) for the fit model.

df.residual the residual degrees of freedom = nobs - df

r.squared the observed coefficient of multiple determination.

sigma the estimate of the error standard deviation.

loglik the log-likelihood (if method is REML or ML).

aic Akaike’s Information Criterion (if method is AIC).

bic Bayesian Information Criterion (if method is BIC).

spar the value of spar computed or given, i.e., s = 1 + logys6(A)/3

lambda the value of A corresponding to spar,i.e., A = 2563(s—1)

penalty the smoothness penalty o/ Qa.

coefficients the basis function coefficients used for the fit model.

cov.sqrt the square-root of the covariance matrix of coefficients. Note: tcrossprod(cov.sqrt)
reconstructs the covariance matrix.

iter the number of iterations used by nlm (if applicable).

specs a list with information used for prediction purposes:

knots the spline knots used for each predictor.

thetas the "extra" tuning parameters used to weight the penalties.
xrng the ranges of the predictor variables.

xlev the factor levels of the predictor variables (if applicable).
tprk logical controlling the formation of tensor product smooths.
skip.iter logical controlling the parameter tuning (same as input).
control the control options use for tuning.

data the data used to fit the model.
types the type of smooth used for each predictor.
terms the terms included in the fit model.
method the method used for smoothing parameter selection. Will be NULL if 1ambda was
provided.
formula the formula specifying the fit model.
weights the weights used for fitting (if applicable)
call the matched call.
Methods

The smoothing parameter can be selected using one of eight methods:
Generalized Cross-Validation (GCV)

Ordinary Cross-Validation (OCV)

Generalized Approximate Cross-Validation (GACV)

Approximate Cross-Validation (ACV)

Restricted Maximum Likelihood (REML)

Maximum Likelihood (ML)

Akaike’s Information Criterion (AIC)

Bayesian Information Criterion (BIC)
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Types of Smooths

The following codes specify the spline types:

par Parametric effect (factor, integer, or numeric).

ran  Random effect/intercept (unordered factor).

nom Nominal smoothing spline (unordered factor).

ord  Ordinal smoothing spline (ordered factor).

lin Linear smoothing spline (integer or numeric).

cub  Cubic smoothing spline (integer or numeric).

qui  Quintic smoothing spline (integer or numeric).

per  Periodic smoothing spline (integer or numeric).

sph  Spherical spline (matrix with d = 2 columns: lat, long).
tps Thin plate spline (matrix with d > 1 columns).

For finer control of some specialized spline types:

per.lin Linear periodic spline (m = 1).
per.cub  Cubic periodic spline (m = 2).
per.qui  Quintic periodic spline (m = 3).
sph.2 Linear spherical spline (m = 2).
sph.3 Cubic spherical spline (m = 3).
sph.4 Quintic spherical spline (m = 4).
tps.lin  Linear thin plate spline (m = 1).
tps.cub  Cubic thin plate spline (m = 2).
tps.qui  Quintic thin plate spline (m = 3).

For details on the spline kernel functions, see basis.nom (nominal), basis.ord (ordinal), basis.poly
(polynomial), basis. sph (spherical), and basis. tps (thin plate).

Note: "ran" is default for unordered factors when the number of levels is 20 or more, whereas "nom"
is the default for unordered factors otherwise.

Choosing Knots

If tprk = TRUE, the four options for the knots input include:

1. ascalar giving the total number of knots to sample

2. avector of integers indexing which rows of data are the knots

a list with named elements giving the marginal knot values for each predictor (to be combined via expand. grid)

4. alist with named elements giving the knot values for each predictor (requires the same number of knots for each predicto

(O8]

If tprk = FALSE, the three options for the knots input include:

1. ascalar giving the common number of knots for each continuous predictor
2. alist with named elements giving the number of marginal knots for each predictor
3. alist with named elements giving the marginal knot values for each predictor
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Multiple Smooths

Suppose formula =y ~ x1 + x2 so that the model contains additive effects of two predictor vari-
ables.

The k-th predictor’s marginal effect can be denoted as

Jre = XiBr + Zpay
where X, is the n by my null space basis function matrix, and Zj is the n by rj contrast space
basis function matrix.

If tprk = TRUE, the null space basis function matrix has the form X = [1, X;, X5] and the contrast
space basis function matrix has the form

Z = 01Z1 + 02Z2

where the 0, are the "extra" smoothing parameters. Note that Z is of dimension n by r = r; = 9.

If tprk = FALSE, the null space basis function matrix has the form X = [1, X;, X5], and the contrast
space basis function matrix has the form

Z = [0121,0:25]

where the 6, are the "extra" smoothing parameters. Note that Z is of dimension n by r = 1 + 7.

Parameter Tuning

When multiple smooth terms are included in the model, there are smoothing (hyper)parameters that
weight the contribution of each combination of smooth terms. These hyperparameters are distinct
from the overall smoothing parameter 1lambda that weights the contribution of the penalty.

skip.iter = TRUE (default) estimates the smoothing hyperparameters using Algorithm 3.2 of Gu
and Wahba (1991), which typically provides adequate results when the model form is correctly
specified. The lambda parameter is tuned via the specified smoothing parameter selection method.

skip.iter = FALSE uses Algorithm 3.2 as an initialization, and then the n1m function is used to tune
the hyperparameters via the specified smoothing parameter selection method. Setting skip.iter
= FALSE can (substantially) increase the model fitting time, but should produce better results—
particularly if the model formula is misspecified.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Berry, L. N., & Helwig, N. E. (2021). Cross-validation, information theory, or maximum likeli-
hood? A comparison of tuning methods for penalized splines. Stats, 4(3), 701-724. doi:10.3390/
stats4030042

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31, 377-403. doi:10.1007/BF01404567
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Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Gu, C. and Wahba, G. (1991). Minimizing GCV/GML scores with multiple smoothing parameters
via the Newton method. SIAM Journal on Scientific and Statistical Computing, 12(2), 383-398.
doi:10.1137/0912021

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
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See Also
Related Modeling Functions:

ss for fitting a smoothing spline with a single predictor (Gaussian response).

gsm for fitting generalized smooth models with multiple predictors of mixed types (non-Gaussian
response).

S3 Methods and Related Functions for "sm'' Objects:

boot. sm for bootstrapping sm objects.

coef. sm for extracting coefficients from sm objects.

cooks.distance. sm for calculating Cook’s distances from sm objects.
cov.ratio for computing covariance ratio from sm objects.

deviance. sm for extracting deviance from sm objects.

dfbeta. sm for calculating DFBETA from sm objects.

dfbetas. sm for calculating DFBETAS from sm objects.
diagnostic.plots for plotting regression diagnostics from sm objects.
fitted.sm for extracting fitted values from sm objects.

hatvalues. sm for extracting leverages from sm objects.
model.matrix.sm for constructing model matrix from sm objects.
plot.sm for plotting effects from sm objects.

predict.sm for predicting from sm objects.

residuals. sm for extracting residuals from sm objects.

rstandard. sm for computing standardized residuals from sm objects.
rstudent. sm for computing studentized residuals from sm objects.
smooth. influence for calculating basic influence information from sm objects.
smooth.influence.measures for convenient display of influential observations from sm objects.
summary . sm for summarizing sm objects.

vcov. sm for extracting coefficient covariance matrix from sm objects.

weights.sm for extracting prior weights from sm objects.
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https://doi.org/10.1080/10618600.2020.1806855

sm

Examples

W EXAMPLE 1 W
### 1 continuous predictor

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit sm with 10 knots (tprk = TRUE)
sm.ssa <- sm(y ~ x, knots = 10)

# fit sm with 10 knots (tprk = FALSE)
sm.gam <- sm(y ~ x, knots = 10, tprk = FALSE)

# print both results (note: they are identical)
sm.ssa
sm.gam

# plot both results (note: they are identical)
plot(sm.ssa)
plot(sm.gam)

# summarize both results (note: they are identical)
summary (sm. ssa)
summary (sm. gam)

# compare true MSE values (note: they are identical)
mean( ( fx - sm.ssa$fit )*2 )
mean( ( fx - sm.gam$fit )*2 )

HHHHHHAE EXAMPLE 2 HHHHHHAE
### 1 continuous and 1 nominal predictor
### additive model

# generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)
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# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x + z, knots = knots)

# fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x + z, knots = knots, tprk = FALSE)

# print both results (note: they are identical)
sm.ssa
sm. gam

# plot both results (note: they are identical)
plot(sm.ssa)
plot(sm.gam)

# summarize both results (note: they are almost identical)
summary(sm.ssa)
summary (sm. gam)

# compare true MSE values (note: they are identical)
mean( ( fx - sm.ssa$fit )*2 )
mean( ( fx - sm.gam$fit )*2 )

W EXAMPLE 3 W
### 1 continuous and 1 nominal predictor
### interaction model

# generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 x x + sin(2 * pi * x + mu[zil*pi/4)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

TRUE)

# fit sm with specified knots (tprk
sm.ssa <- sm(y ~ x * z, knots = knots)
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# fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x * z, knots = knots, tprk = FALSE)

# print both results (note: they are slightly different)
sm.ssa
sm.gam

# plot both results (note: they are slightly different)
plot(sm.ssa)
plot(sm.gam)

# summarize both results (note: they are slightly different)
summary (sm.ssa)
summary (sm.gam)

# compare true MSE values (note: they are slightly different)
mean( ( fx - sm.ssa$fit )*2 )
mean( ( fx - sm.gam$fit )*2 )

HHH A EXAMPLE 4 HHHHHH
### 4 continuous predictors
### additive model

# generate data
set.seed(1)
n <- 100
fun <- function(x){
sin(pixx[,1]) + sin(2xpi*x[,2]) + sin(3*pi*x[,3]) + sin(4*xpi*x[,4])
3
data <- as.data.frame(replicate(4, runif(n)))
colnames(data) <- c("x1v", "x2v", "x3v", "x4v")
fx <- fun(data)
y <= fx + rnorm(n)

# define marginal knots

knots <- list(xlv = quantile(data$xlv, probs = seq(@, 1, length.out = 10)),

1
x2v = quantile(data$x2v, probs = seq(@, 1, length.out = 10)),
x3v = quantile(data$x3v, probs = seq(@, 1, length.out = 10)),
x4v = quantile(data$x4v, probs = seq(@, 1, length.out = 10)))

# define ssa knot indices

knots.indx <- c(bin.sample(data$xlv, nbin = 10, index.return = TRUE)$ix,
bin.sample(data$x2v, nbin = 10, index.return = TRUE)$ix,
bin.sample(data$x3v, nbin = 10, index.return = TRUE)$ix,
bin.sample(data$x4v, nbin = 10, index.return = TRUE)$ix)

# fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ xlv + x2v + x3v + x4v, data = data, knots = knots.indx)

# fit sm with specified knots (tprk = FALSE)
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sm.gam <- sm(y ~ x1v + x2v + x3v + x4v, data = data, knots = knots, tprk = FALSE)

# print both results (note: they are slightly different)
sm.ssa
sm. gam

# plot both results (note: they are slightly different)
plot(sm.ssa)
plot(sm.gam)

# summarize both results (note: they are slightly different)
summary(sm.ssa)
summary (sm. gam)

# compare true MSE values (note: they are slightly different)
mean( ( fx - sm.ssa$fit )*2 )
mean( ( fx - sm.gam$fit )*2 )

smooth.influence Nonparametric Regression Diagnostics

Description

These functions provide the basic quantities that are used to form a variety of diagnostics for check-
ing the quality of a fit smoothing spline (fit by ss), smooth model (fit by sm), or generalized smooth
model (fit by gsm).

Usage
## S3 method for class 'ss'
influence(model, do.coef = TRUE, ...)
## S3 method for class 'sm'
influence(model, do.coef = TRUE, ...)
## S3 method for class 'gsm'
influence(model, do.coef = TRUE, ...)

smooth.influence(model, do.coef = TRUE)

Arguments
model an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function
do.coef logical indicating if the changed coefficients are desired (see Details).

additional arguments (currently ignored)
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Details

Inspired by influence and 1m. influence functions in R’s stats package.

The functions documented in smooth.influence.measures provide a more user-friendly way of
computing a variety of regression diagnostics.

For non-Gaussian gsm objects, these regression diagnostics are based on one-step approximations,
which may be inadequate if a case has high influence.

For all models, the diagostics are computed assuming that the smoothing parameters are fixed at the
given values.

Value

A list with the components

hat a vector containing the leverages, i.e., the diagonals of the smoothing matrix

coefficients if do. coef is true, a matrix whose i-th row contains the change in the estimated
coefficients which results when the i-th case is excluded from the fitting.

deviance a vector whose i-th entry contains the deviance which results when the i-th case
is excluded from the fitting.

df a vector whose i-th entry contains the effective degrees-of-freedom which results
when the i-th case is excluded from the fitting.

sigma a vector whose i-th element contains the estimate of the residual standard devi-
ation obtained when the i-th case is excluded from the fitting.

wt.res a vector of weighted (or for class gsm rather deviance) residuals.

Warning

The approximations used for gsm objects can result in sigma estimates being NaN.

Note

The coefficients returned by smooth. influence (and the corresponding functions S3 influence
methods) are the change in the coefficients which result from dropping each case, i.e., § — 6;, where
0 are the original coefficients obtained from the full sample of n observations and 6; are the coeffi-
cients that result from dropping the i-th case.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

See the list in the documentation for influence.measures

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.
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See Also

ss, sm, gsm for modeling functions

smooth.influence.measures for convenient summary

diagnostic.plots for regression diagnostic plots

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# fit models

mod.ss <- ss(x, y, nknots = 10)
mod.sm <- sm(y ~ x, knots = 10)
mod.gsm <- gsm(y ~ x, knots = 10)

# calculate influence

infl.ss <- influence(mod.ss)
infl.sm <- influence(mod.sm)
infl.gsm <- influence(mod.gsm)

# compare hat

mean((infl.ss$hat - infl.sm$hat)*2)
mean((infl.ss$hat - infl.gsm$hat)*2)
mean((infl.sm$hat - infl.gsm$hat)*2)

# compare deviance

mean((infl.ss$deviance - infl.sm$deviance)*2)
mean((infl.ss$deviance - infl.gsm$deviance)*2)
mean((infl.sm$deviance - infl.gsm$deviance)*2)

# compare df

mean((infl.ss$df - infl.sm$df)*2)
mean((infl.ss$df - infl.gsm$df)*2)
mean((infl.sm$df - infl.gsm$df)*2)

# compare sigma

mean((infl.ss$sigma - infl.sm$sigma)*2)
mean((infl.ss$sigma - infl.gsm$sigma)*2)
mean((infl.sm$sigma - infl.gsm$sigma)*2)

# compare residuals

mean((infl.ss$wt.res - infl.sm$wt.res)*2)
mean((infl.ss$wt.res - infl.gsm$dev.res)*2)
mean((infl.sm$wt.res - infl.gsm$dev.res)*2)

# NOTE: ss() coef only comparable to sm() and gsm() after rescaling
scale.sm <- rep(c(1, mod.sm$specs$thetas), times = c(2, 10))

smooth.influence
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scale.gsm <- rep(c(1, mod.gsm$specs$thetas), times = c(2, 10))
mean((coef(mod.ss) / scale.sm - coef(mod.sm))*2)
mean((coef(mod.ss) / scale.gsm - coef(mod.gsm))*2)
mean( (coef (mod.sm) - coef(mod.gsm))*2)

# infl.ss$coefficients are *not* comparable to others
mean((infl.ss$coefficients - infl.sm$coefficients)*2)
mean((infl.ss$coefficients - infl.gsm$coefficients)*2)
mean((infl.sm$coefficients - infl.gsm$coefficients)*2)
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Nonparametric Regression Deletion Diagnostics

Description

These functions compute several regression (leave-one-out deletion) diagnostics for a fit smoothing

spline (fit by ss), smooth model (fit by sm), or generalized smooth model (fit by gsm).

Usage

smooth.influence.

measures(model, infl = smooth.influence(model))

## S3 method for class 'ss'

rstandard(model, infl = NULL, sd = model$sigma,
type = c("sd.1", "predictive"”), ...)

## S3 method for class 'sm'

rstandard(model, infl = NULL, sd = model$sigma,
type = c(”"sd.1", "predictive"”), ...)

## S3 method for class 'gsm'

rstandard(model, infl = NULL,
type = c("deviance”, "pearson”), ...)

## S3 method for

class 'ss'

rstudent(model, infl = influence(model, do.coef = FALSE),
res = infl$wt.res, ...)

## S3 method for

class 'sm

rstudent(model, infl = influence(model, do.coef = FALSE),
res = infl$wt.res, ...)

## S3 method for

class 'gsm

rstudent(model, infl = influence(model, do.coef = FALSE), ...)
## S3 method for class 'ss'

dfbeta(model, infl = NULL, ...)

## S3 method for class 'sm'

dfbeta(model, infl = NULL, ...)

## S3 method for class 'gsm'
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dfbeta(model, infl = NULL, ...)

## S3 method for class 'ss'

dfbetas(model, infl = smooth.influence(model, do.coef = TRUE), ...)
## S3 method for class 'sm'
dfbetas(model, infl = smooth.influence(model, do.coef = TRUE), ...)

## S3 method for class 'gsm'

dfbetas(model, infl = smooth.influence(model, do.coef = TRUE), ...)

cov.ratio(model, infl = smooth.influence(model, do.coef = FALSE),
res = weighted.residuals(model))

## S3 method for class 'ss'

cooks.distance(model, infl = NULL, res = weighted.residuals(model),
sd = model$sigma, hat = hatvalues(model), ...)

## S3 method for class 'sm'

cooks.distance(model, infl = NULL, res = weighted.residuals(model),

sd = model$sigma, hat = hatvalues(model), ...)

## S3 method for class 'gsm'

cooks.distance(model, infl = NULL, res = residuals(model, type = "pearson"),
dispersion = model$dispersion, hat = hatvalues(model), ...)

## S3 method for class 'ss'

hatvalues(model, ...)
## S3 method for class 'sm'
hatvalues(model, ...)
## S3 method for class 'gsm'
hatvalues(model, ...)
Arguments
model an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function
infl influence structure as returned by smooth. influence
res (possibly weighted) residuals with proper defaults
sd standard deviation to use, see defaults
dispersion dispersion (for gsm objects) to use, see defaults
hat hat values .S;;, see defaults
type type of residuals for rstandard

additional arguments (currently ignored)

Details

Inspired by influence.measures and related functions in R’s stats package.

The function smooth.influence.measures produces a class "infl" object, which displays the DF-
BETAS for each coefficient, DFFITS, covariance ratios, Cook’s distance, and the diagonals of the
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smoothing matrix. Cases which are influential with respect to any of these measures are marked
with an asterisk.

The S3 methods dfbetas, dffits, covratio, and cooks.distance provide direct access to the
corresponding diagnostic quantities. The S3 methods rstandard and rstudent give the standard-
ized and Studentized residuals, respectively. (These re-normalize the residuals to have unit variance,
using an overall and leave-one-out measure of the error variance, respectively.)

Values for generalized smoothing models are approximations, as described in Williams (1987) (ex-
cept that Cook’s distances are scaled as F' rather than chi-square values). THe approximations can
be poor when some cases have large influence.

The optional inf1, res, and sd arguments are there to encourage the use of these direct access func-
tions in situations where the underlying basic influence measures, e.g., from smooth.influence,
are already available.

For ss and sm objects, the code rstandard(*, type = "predictive”) returns the leave-one-out
(ordinary) cross-validation residuals, and the PRESS (PREdictive Sum of Squares) statistic is de-
fined as

PRESS <- sum(rstandard(model, type = "predictive”)*2)
Note that OCV = PRESS / n, where OCV = ordinary cross-validation criterion

Note

Note: the dffits function in R’s stats package can be used with the following syntax
dffits(model, infl = smooth.influence(model, do.coef =FALSE), res =weighted.residuals(model))

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

See references listed in influence.measures

Williams, D. A. (1987). Generalized linear model diagnostics using the deviance and single case
deletions. Applied Statistics, 36, 181-191. doi:10.2307/2347550

See Also

ss, sm, gsm for modeling functions
smooth.influence for some basic influence information

diagnostic.plots for regression diagnostic plots

Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)
fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)
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# fit models

mod.ss <- ss(x, y, nknots = 10)
mod.sm <- sm(y ~ x, knots = 10)
mod.gsm <- gsm(y ~ x, knots = 10)

# calculate influence

infl.ss <- smooth.influence.measures(mod.ss)
infl.sm <- smooth.influence.measures(mod.sm)
infl.gsm <- smooth.influence.measures(mod.gsm)

# standardized residuals
rstan.ss <- rstandard(mod.ss)
rstan.sm <- rstandard(mod.sm)
rstan.gsm <- rstandard(mod.gsm)

# studentized residuals
rstud.ss <- rstudent(mod.ss)
rstud.sm <- rstudent(mod.sm)
rstud.gsm <- rstudent(mod.gsm)

spherical Spherical Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a spherical spline. This basis is designed
for predictors where the values are points on a sphere.

Usage
basis.sph(x, knots, m = 2, intercept = FALSE, ridge = FALSE)

penalty.sph(x, m = 2)

Arguments

X Predictor variables (basis) or spline knots (penalty). Matrix of dimension n by
2. Column 1 is latitude (-90 to 90 deg) and column 2 is longitude (-180 to 180
deg).

knots Spline knots. Matrix of dimension r by 2. Column 1 is latitude (-90 to 90 deg)
and column 2 is longitude (-180 to 180 deg).

m Penalty order. "m=2" for 2nd order spherical spline, "m=3" for 3rd order, and
"m=4" for 4th order.

intercept If TRUE, the first column of the basis will be a column of ones.

ridge If TRUE, the basis matrix is post-multiplied by the inverse square root of the

penalty matrix. See Note and Examples.
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Details
Generates a basis function or penalty matrix used to fit spherical splines of order 2, 3, or 4.
With an intercept included, the basis function matrix has the form

X = [Xo, X1]

where matrix X_@ is an n by 1 matrix of ones, and X_1 is a matrix of dimension n by .
The X_0 matrix contains the "parametric part" of the basis (i.e., the intercept).

The matrix X_1 contains the "nonparametric part" of the basis, which consists of the reproducing
kernel function

p(x,y) = [g2m—2(x.y) — a]/B

evaluated at all combinations of x and knots. Note that « = 1/(2m — 1) and 8 = 27 (2m — 2)! are
constants, ga,,—2(.) is the spherical spline semi-kernel function, and x.y denotes the cosine of the
angle between x and y (see References).

The penalty matrix consists of the reproducing kernel function
p($7 y) = [QQm—Q(x'y) - O‘} /ﬁ

evaluated at all combinations of x.

Value

Basis: Matrix of dimension c(length(x), df) where df = nrow(knots) + intercept.

Penalty: Matrix of dimension c(r, r) where r = nrow(x) is the number of knots.

Note

The inputs x and knots must have the same dimension.

If ridge = TRUE, the penalty matrix is the identity matrix.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag.
doi:10.1007/9781461453697

Wahba, G (1981). Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific
Computing, 2(1), 5-16. doi:10.1137/0902002

See Also

See thinplate for a thin plate spline basis and penalty.


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1137/0902002
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Examples

H#H#HHHER K fHHH#E standard parameterization  ###HHHEP R

# function with spherical predictors
set.seed(0)
n <- 1000
myfun <- function(x){
sin(pixx[,1]) + cos(2xpi*x[,2]) + cos(pi*x[,3]1)
3
x3d <- cbind(runif(n), runif(n), runif(n)) - 0.5
x3d <- t(apply(x3d, 1, function(x) x / sgrt(sum(x*2))))
eta <- myfun(x3d)
y <- eta + rnorm(n, sd = 0.5)

# convert x latitude and longitude
x <- cbind(latitude = acos(x3d[,3]) - pi/2,
longitude = atan2(x3d[,2], x3d[,1]1)) * (180 / pi)

# select first 100 points as knots
knots <- x[1:100,]

# cubic spherical spline basis
X <- basis.sph(x, knots, intercept = TRUE)

# cubic spherical spline penalty
Q <- penalty.sph(knots)

# pad Q with zeros (for intercept)
Q <- rbind(@, cbind(@, Q))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((eta - yhat)*2))

HiHHHH o< ##HE## ridge parameterization  ##HHEHE < #HHHE

# function with spherical predictors

set.seed(0)

n <- 1000

myfun <- function(x){
sin(pi*x[,1]) + cos(2xpi*x[,2]) + cos(pixx[,3])
}
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x3d <= cbind(runif(n), runif(n), runif(n)) - 0.5

x3d <- t(apply(x3d, 1, function(x) x / sqgrt(sum(x*2))))
eta <- myfun(x3d)

y <- eta + rnorm(n, sd = 0.5)

# convert x latitude and longitude
x <- cbind(latitude = acos(x3d[,3]) - pi/2,
longitude = atan2(x3d[,2], x3d[,11)) *x (180 / pi)

# select first 100 points as knots
knots <- x[1:100,]

# cubic spherical spline basis
X <- basis.sph(x, knots, intercept = TRUE, ridge = TRUE)

# cubic spherical spline penalty (ridge)
Q <- diag(rep(c(@, 1), times = c(1, ncol(X) - 1)))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- psolve(crossprod(X) + n x lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqgrt(mean((eta - yhat)*2))

ss Fit a Smoothing Spline

Description

Fits a smoothing spline with the smoothing parameter selected via one of eight methods: GCV,
OCV, GACYV, ACV, REML, ML, AIC, or BIC.

Usage

ss(x, y = NULL, w = NULL, df, spar = NULL, lambda = NULL,
method = c("GCV", "OCV", "GACV", "ACV", "REML", "ML", "AIC", "BIC"),
m = 2L, periodic = FALSE, all.knots = FALSE, nknots = .nknots.smspl,
knots = NULL, keep.data = TRUE, df.offset = @, penalty = 1,
control.spar = list(), tol = 1e-6 * IQR(x), bernoulli = TRUE,
xmin = NULL, xmax = NULL, homosced = TRUE, iter.max = 1)



Arguments

X

df

spar

lambda

method

periodic

all.knots

nknots

knots

keep.data
df.offset

penalty

control.spar

tol

SS

Predictor vector of length n. Can also input a list or a two-column matrix spec-
ifying x and y.

Response vector of length n. If y is missing or NULL, the responses are assumed
to be specified by x, with x the index vector.

Weights vector of length n. Defaults to all 1.

Equivalent degrees of freedom (trace of the smoother matrix). Must be in [m, nx],
where nx is the number of unique x values, see below.

Smoothing parameter. Typically (but not always) in the range (0, 1]. If specified
lambda = 256" (3*(spar-1)).
Computational smoothing parameter. This value is weighted by n to form the

penalty coefficient (see Details). Ignored if spar is provided.

Method for selecting the smoothing parameter. Ignored if spar or lambda is
provided.

Penalty order (integer). The penalty functional is the integrated squared m-th
derivative of the function. Defaults to m = 2, which is a cubic smoothing spline.
Set'm = 1 for a linear smoothing spline or m = 3 for a quintic smoothing spline.

Logical. If TRUE, the estimated function f(z) is constrained to be periodic, i.e.,
f(a) = f(b) where ¢ = min(z) and b = max(x).

If TRUE, all distinct points in x are used as knots. If FALSE (default), a sequence
knots is placed at the quantiles of the unique x values; in this case, the input
nknots specifies the number of knots in the sequence. Ignored if the knot values
are input using the knots argument.

Positive integer or function specifying the number of knots. Ignored if either
all.knots = TRUE or the knot values are input using the knots argument.

Vector of knot values for the spline. Should be unique and within the range of
the x values (to avoid a warning).

Logical. If TRUE, the original data as a part of the output object.

Allows the degrees of freedom to be increased by df . of fset in the GCV crite-
rion.

The coefficient of the penalty for degrees of freedom in the GCV criterion.
Optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.

Note that spar is only searched for in the interval [lower, upper].

lower: lower bound for spar; defaults to -1.5

upper: upper bound for spar; defaults to 1.5

tol: the absolute precision (tolerance) used by optimize; defaults to 1e-8.
Tolerance for same-ness or uniqueness of the x values. The values are binned

into bins of size tol and values which fall into the same bin are regarded as the
same. Must be strictly positive (and finite).
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bernoulli If TRUE, scaled Bernoulli polynomials are used for the basis and penalty func-
tions. If FALSE, produces the "classic" definition of a smoothing spline, where
the function estimate is a piecewise polynomial function with pieces of degree
2m — 1. See polynomial for details.

Xmin Minimum x value used to transform predictor scores to [0,1]. If NULL, xmin =
min(x).

Xmax Maximum x value used to transform predictor scores to [0,1]. If NULL, xmax =
max (x).

homosced Are error variances homoscedastic? If FALSE, variance weights are (iteratively?)

estimated from the data.

iter.max Maximum number of iterations for variance weight estimation. Ignored if homosced
= TRUE.

Details

Inspired by the smooth.spline function in R’s stats package.
Neither x nor y are allowed to containing missing or infinite values.

The x vector should contain at least 2m distinct values. ’Distinct’ here is controlled by tol: values
which are regarded as the same are replaced by the first of their values and the corresponding y and
w are pooled accordingly.

Unless 1ambda has been specified instead of spar, the computational ) used (as a function of spar)
is A = 2563~ where s = spar.

If spar and lambda are missing or NULL, the value of df is used to determine the degree of smooth-
ing. If df is missing as well, the specified method is used to determine A.

Letting f; = f(x;), the function is represented as

f=XB+Za
where the basis functions in X span the null space (i.e., functions with m-th derivative of zero), and
Z contains the reproducing kernel function of the contrast space evaluated at all combinations of
observed data points and knots, i.e., Z[i, j| = R(x;, k;) where R is the kernel function and k; is the

j-th knot. The vectors 8 and « contain unknown basis function coefficients. Letting M = (X, Z)
and v = (', ’)’, the penalized least squares problem has the form

(y = M~)'W(y — Mv) + nho/ Qu
where W is a diagonal matrix containg the weights, and () is the penalty matrix. Note that Q[é, j] =
R(k;, k;) contains the reproducing kernel function evaluated at all combinations of knots. The
optimal coefficients are the solution to

(M'WM +nAP)y= MWy

where P is the penalty matrix () augmented with zeros corresponding to the /3 in ~.
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Value

SS

An object of class "ss" with components:

X

yin
tol
data

lev
cv.crit

pen.crit

crit

df
df.residual
spar

lambda

fit

call
sigma
logLik

aic

the distinct x values in increasing order; see Note.
the fitted values corresponding to x.

the weights used at the unique values of x.

the y values used at the unique y values.

the tol argument (whose default depends on x).

only if keep.data = TRUE: itself a list with components x, y and w (if applicable).
These are the original (z;,y;, w;),i = 1,...,n, values where data$x may have
repeated values and hence be longer than the above x component; see details.

leverages, the diagonal values of the smoother matrix.
cross-validation score.

the penalized criterion, a non-negative number; simply the (weighted) residual
sum of squares (RSS).

the criterion value minimized in the underlying df21ambda function. When df

is provided, the criterion is [tr(Sy) — df]>.

equivalent degrees of freedom used.

the residual degrees of freedom = nobs - df

the value of spar computed or given, i.e., s = 1 + logys6(A)/3

the value of \ corresponding to spar, i.e., A = 25631,

list for use by predict.ss, with components

n: number of observations.

knot: the knot sequence.

nk: number of coefficients (# knots plus m).

coef: coefficients for the spline basis used.

min, range: numbers giving the corresponding quantities of x

m: spline penalty order (same as input m)

periodic: is spline periodic?

cov.sqrt square root of covariance matrix of coef such that tcrossprod(coef’)
reconstructs the covariance matrix.

weighted were weights w used in fitting?

df.offset same as input

penalty same as input

control.spar control parameters for smoothing parameter selection

bernoulli were Bernoulli polynomials used in fitting?

the matched call.

estimated error standard deviation.

log-likelihood (if method is REML or ML).
Akaike’s Information Criterion (if method is AIC).
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bic Bayesian Information Criterion (if method is BIC).
penalty smoothness penalty o’Qa, which is the integrated squared m-th derivative of
the estimated function f(x).
method smoothing parameter selection method. Will be NULL if df, spar, or 1ambda is
provided.
Methods

The smoothing parameter can be selected using one of eight methods:
Generalized Cross-Validation (GCV)

Ordinary Cross-Validation (OCV)

Generalized Approximate Cross-Validation (GACV)

Approximate Cross-Validation (ACV)

Restricted Maximum Likelihood (REML)

Maximum Likelihood (ML)

Akaike’s Information Criterion (AIC)

Bayesian Information Criterion (BIC)

Note

The number of unique x values, nx, are determined by the tol argument, equivalently to
nx <- sum(!duplicated( round((x - mean(x)) / tol) ))

In this case where not all unique x values are used as knots, the result is not a smoothing spline in
the strict sense, but very close unless a small smoothing parameter (or large df) is used.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/smooth.spline.html

Berry, L. N., & Helwig, N. E. (2021). Cross-validation, information theory, or maximum likeli-
hood? A comparison of tuning methods for penalized splines. Stats, 4(3), 701-724. doi:10.3390/
stats4030042

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the cor-
rect degree of smoothing by the method of generalized cross-validation. Numerische Mathematik,
31,377-403. doi:10.1007/BF01404567

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855
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Wahba, G. (1985). A comparison of GCV and GML for choosing the smoothing parameters in the
generalized spline smoothing problem. The Annals of Statistics, 4, 1378-1402. doi:10.1214/aos/
1176349743

See Also

Related Modeling Functions:
sm for fitting smooth models with multiple predictors of mixed types (Gaussian response).

gsm for fitting generalized smooth models with multiple predictors of mixed types (non-Gaussian
response).

S3 Methods and Related Functions for '"'ss' Objects:

boot.ss for bootstrapping ss objects.

coef.ss for extracting coefficients from ss objects.
cooks.distance.ss for calculating Cook’s distances from ss objects.
cov.ratio for computing covariance ratio from ss objects.

deviance. ss for extracting deviance from ss objects.

dfbeta.ss for calculating DFBETA from ss objects.

dfbetas. ss for calculating DFBETAS from ss objects.
diagnostic.plots for plotting regression diagnostics from ss objects.
fitted.ss for extracting fitted values from ss objects.

hatvalues. ss for extracting leverages from ss objects.
model.matrix.ss for constructing model matrix from ss objects.
plot.ss for plotting predictions from ss objects.

plot.boot.ss for plotting boot. ss objects.

predict.ss for predicting from ss objects.

residuals.ss for extracting residuals from ss objects.

rstandard.ss for computing standardized residuals from ss objects.
rstudent.ss for computing studentized residuals from ss objects.
smooth. influence for calculating basic influence information from ss objects.
smooth.influence.measures for convenient display of influential observations from ss objects.
summary . ss for summarizing ss objects.

vcov. ss for extracting coefficient covariance matrix from ss objects.

weights.ss for extracting prior weights from ss objects.


https://doi.org/10.1214/aos/1176349743
https://doi.org/10.1214/aos/1176349743
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Examples

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <=2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# GCV selection (default)
ss.GCV <- ss(x, y, nknots
ss.GCV

10)

# OCV selection
$s.0CV <- ss(x, y, method = "OCV", nknots = 10)
ss.0CV

# GACV selection
ss.GACV <- ss(x, y, method = "GACV", nknots = 10)
ss.GACV

# ACV selection
ss.ACV <- ss(x, y, method = "ACV", nknots = 10)
Ss.ACV

# ML selection
ss.ML <- ss(x, y, method = "ML", nknots = 10)
ss.ML

# REML selection
ss.REML <- ss(x, y, method = "REML", nknots = 10)
ss.REML

# AIC selection
ss.AIC <- ss(x, y, method = "AIC", nknots = 10)
ss.AIC

# BIC selection
ss.BIC <- ss(x, y, method = "BIC", nknots = 10)
ss.BIC

# compare results
mean( ( fx - ss.GCV$y )*2 )

mean( ( fx - ss.0CV$y )*2 )
mean( ( fx - ss.GACV$y )*2 )
mean( ( fx - ss.ACV$y )*2 )
mean( ( fx - ss.ML$y )*2 )

mean( ( fx - ss.REML$y )*2 )
mean( ( fx - ss.AIC$y )"2 )
mean( ( fx - ss.BIC$y )*2 )

# plot results
plot(x, y)



86

rlist <- list(ss.GCV, ss.0CV, ss.GACV, ss.ACV,
ss.REML, ss.ML, ss.AIC, ss.BIC)
for(j in 1:length(rlist)){
lines(rlist[[j]], lwd = 2, col = j)
3

sumimary

StartupMessage Startup Message for npreg

Description

Prints the startup message when npreg is loaded. Not intended to be called by the user.

Details

The ‘npreg’ ascii start-up message was created using the taag software.

References

https://patorjk.com/software/taag/

summary Summary methods for Fit Models

Description

non

summary methods for object classes "gsm", "sm", and "ss".

Usage

## S3 method for class 'gsm'
summary (object, ...)

## S3 method for class 'sm'
summary (object, ...)

## S3 method for class 'ss'
summary(object, ...)

## S3 method for class 'summary.gsm'

print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),

## S3 method for class 'summary.sm'

print(x, digits = max(3, getOption("digits") - 3),
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signif.stars = getOption("show.signif.stars"), ...)

## S3 method for class 'summary.ss'

print(x, digits

= max (3, getOption("digits”) - 3),

signif.stars = getOption("show.signif.stars"), ...)
Arguments

object an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function

X an object of class "summary.gsm" output by the summary.gsm function, "sum-
mary.sm" output by the summary.sm function, or "summary.ss" output by the
summary.ss function.

digits the minimum number of significant digits to be printed in values.

signif.stars

Details

logical. If TRUE, ‘significance stars’ are printed for each coefficient.

additional arguments affecting the summary produced (currently ignored).

Summary includes information for assessing the statistical and practical significance of the model

terms.

Statistical inference is conducted via (approximate) frequentist chi-square tests using the Bayesian
interpretation of a smoothing spline (Nychka, 1988; Wahba, 1983).

With multiple smooth terms included in the model, the inferential results may (and likely will) differ
slightly depending on the tprk argument (when using the gsm and sm functions).

If significance testing is of interest, the tprk = FALSE option may be desirable, given that this allows
for unique basis function coefficients for each model term.

In all cases, the inferential results are based on a (pseudo) F or chi-square statistic which fails to
consider the uncertainty of the smoothing parameter estimation.

Value

residuals
fstatistic
dev.expl
p.table
s.table
dispersion
r.squared
adj.r.squared

kappa

the deviance residuals.

the F statistic for testing all effects (parametric and smooth).

the explained deviance.

the coefficient table for (approximate) inference on the parametric terms.
the coefficient table for (approximate) inference on the smooth terms.
the estimate of the dispersion parameter.

the observed coefficient of multiple determination.

the adjusted coefficient of multiple determination.

the collinearity indices, i.e., square-roots of the variance inflation factors (see
varinf). A value of 1 indicates no collinearity, and higher values indicate more
collinearity of a given term with other model terms.
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pi the importance indices. Larger values indicate more importance, and the values
satisfy sum(pi) = 1. Note that elements of pi can be negative.
call the original function call.
family the specified family (for gsm objects).
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Nychka, D. (1988). Bayesian confience intervals for smoothing splines. Journal of the American
Statistical Association, 83(404), 1134-1143. doi:10.2307/2290146

Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. Jour-
nal of the Royal Statistical Society. Series B, 45(1), 133-150. doi:10.1111/j.25176161.1983.tb01239.x

See Also

gsm, sm, and ss

Examples

### Example 1: gsm

# generate data
set.seed(1)
n <- 1000
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x + mu[zilxpi/4)
3
fx <= fun(x, z)
y <= rbinom(n = n, size =1, p=1/ (1 + exp(-fx)))

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)
knots <- list(x = quantile(x, probs = probs),

z = letters[1:3])

# fit sm with specified knots (tprk = TRUE)

gsm.ssa <- gsm(y ~ x * z, family = binomial, knots = knots)
summary (gsm.ssa)

# fit sm with specified knots (tprk = FALSE)


https://doi.org/10.4135/9781526421036885885
https://doi.org/10.2307/2290146
https://doi.org/10.1111/j.2517-6161.1983.tb01239.x

theta.mle

gsm.gam <- gsm(y ~ x * z, family = binomial, knots = knots, tprk = FALSE)
summary (gsm. gam)

### Example 2: sm

# generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x + mu[zilxpi/4)
}
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# fit sm with specified knots (tprk = TRUE)
sm.ssa <- sm(y ~ x * z, knots = knots)
summary(sm.ssa)

# fit sm with specified knots (tprk = FALSE)
sm.gam <- sm(y ~ x * z, knots = knots, tprk = FALSE)
summary (sm. gam)

### Example 3: ss

# generate data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

fx <= 2+ 3 % x + sin(2 * pi * x)
y <= fx + rnorm(n, sd = 0.5)

# regular smoothing spline
ss.reg <- ss(x, y, nknots = 10)
summary(ss.reg)

theta.mle MLE of Theta for Negative Binomial
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Description
Computes the maximum likelihood estimate of the size (theta) parameter for the Negative Binomial
distribution via a Newton-Raphson algorithm.

Usage

theta.mle(y, mu, theta, wt =1,
maxit = 100, maxth = .Machine$double.xmax,
tol = .Machine$double.eps”0.5)

Arguments
y response vector
mu mean vector
theta initial theta (optional)
wt weight vector
maxit max number of iterations
maxth max possible value of theta
tol convergence tolerance
Details

Based on the glm.nb function in the MASS package. If theta is missing, the initial estimate of
theta is given by

theta<-1/mean(wt * (y /mu-1)"2)

which is motivated by the method of moments estimator for the dispersion parameter in a quasi-
Poisson model.

Value

Returns estimated theta with attributes

SE standard error estimate
iter number of iterations
Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Venables, W. N. and Ripley, B. D. (1999) Modern Applied Statistics with S-PLUS. Third Edition.
Springer.

https://www.rdocumentation.org/packages/MASS/versions/7.3-51.6/topics/negative.binomial

https://www.rdocumentation.org/packages/MASS/versions/7.3-51.6/topics/glm.nb
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See Also

NegBin for details on the Negative Binomial distribution

Examples

# generate data

n <- 1000

x <- seq(@, 1, length.out = n)

fx <= 3 *x x + sin(2 * pi * x) - 1.5
mu <- exp(fx)

# simulate negative binomial data
set.seed(1)
y <= rnbinom(n = n, size = 1/2, mu = mu)

# estimate theta
theta.mle(y, mu)
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Thin Plate Spline Basis and Penalty

Description

Generate the smoothing spline basis and penalty matrix for a thin plate spline.

Usage

basis.tps(x, knots, m = 2, rk = TRUE, intercept = FALSE, ridge = FALSE)

penalty.tps(x, m = 2, rk = TRUE)

Arguments

X Predictor variables (basis) or spline knots (penalty). Numeric or integer vector
of length n, or matrix of dimension n by p.

knots Spline knots. Numeric or integer vector of length 7, or matrix of dimension r by
.

m Penalty order. "m=1" for linear thin plate spline, "m=2" for cubic, and "m=3"
for quintic. Must satisfy 2m > p.

rk If true (default), the reproducing kernel parameterization is used. Otherwise, the
classic thin plate basis is returned.

intercept If TRUE, the first column of the basis will be a column of ones.

ridge If TRUE, the basis matrix is post-multiplied by the inverse square root of the

penalty matrix. Only applicable if rk = TRUE. See Note and Examples.
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Details
Generates a basis function or penalty matrix used to fit linear, cubic, and quintic thin plate splines.
The basis function matrix has the form

X = [Xo, X1]

where the matrix X_0 is of dimension n by M — 1 (plus 1 if an intercept is included) where M =
(pJ”;%l), and X_1 is a matrix of dimension n by r.

The X_0 matrix contains the "parametric part" of the basis, which includes polynomial functions of
the columns of x up to degree m — 1 (and potentially interactions).

The matrix X_1 contains the "nonparametric part" of the basis.

If rk = TRUE, the matrix X_1 consists of the reproducing kernel function

plx,y) = — Pr)(I — Py)E(|x —y|)

evaluated at all combinations of x and knots. Note that P, and P, are projection operators, |.|
denotes the Euclidean distance, and the TPS semi-kernel is defined as

E(z) = az*™ P log(2)

if p is even and
E(z) = Bz*mP

otherwise, where « and f3 are positive constants (see References).

If rk = FALSE, the matrix X_1 contains the TPS semi-kernel E(.) evaluated at all combinations of x
and knots. Note: the TPS semi-kernel is not positive (semi-)definite, but the projection is.

If rk = TRUE, the penalty matrix consists of the reproducing kernel function

ple,y) = (I = Po)(I = By)E(|Jx —y))
evaluated at all combinations of x. If rk = FALSE, the penalty matrix contains the TPS semi-kernel
E(.) evaluated at all combinations of x.
Value

Basis: Matrix of dimension c(length(x), df) where df = nrow(as.matrix(knots)) + choose(p
+m-1, p) - lintercept and p = ncol(as.matrix(x)).

Penalty: Matrix of dimension c(r, r) where r = nrow(as.matrix(x)) is the number of knots.

Note

The inputs x and knots must have the same dimension.

If rk = TRUE and ridge = TRUE, the penalty matrix is the identity matrix.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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References

Gu, C. (2013). Smoothing Spline ANOVA Models. 2nd Ed. New York, NY: Springer-Verlag.
doi:10.1007/9781461453697

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015
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See Also

See polynomial for a basis and penalty for numeric variables.

See spherical for a basis and penalty for spherical variables.

Examples

oA standard parameterization  ###HHHP ki

# generate data

set.seed(0)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta <- 1+ 2 % x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

# cubic thin plate spline basis
X <- basis.tps(x, knots, intercept = TRUE)

# cubic thin plate spline penalty
Q <- penalty.tps(knots)

# pad Q with zeros (for intercept and linear effect)
Q <- rbind(@, 0, cbind(@, @, Q))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqgrt(mean((eta - yhat)*2))

# plot results

plot(x, y)
lines(x, yhat)


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.1080/10618600.2014.926819
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HiHHEHE oo AR ridge parameterization  #HHEHE < #HEHE

# generate data

set.seed(Q)

n <- 101

x <- seq(@, 1, length.out = n)
knots <- seq(@, 0.95, by = 0.05)
eta<- 1+ 2 % x + sin(2 * pi * x)
y <- eta + rnorm(n, sd = 0.5)

# cubic thin plate spline basis
X <- basis.tps(x, knots, intercept = TRUE, ridge = TRUE)

# cubic thin plate spline penalty (ridge)
Q <- diag(rep(c(@, 1), times = c(2, ncol(X) - 2)))

# define smoothing parameter
lambda <- 1e-5

# estimate coefficients
coefs <- psolve(crossprod(X) + n * lambda * Q) %*% crossprod(X, y)

# estimate eta
yhat <- X %*% coefs

# check rmse
sqrt(mean((eta - yhat)*2))

# plot results

plot(x, y)
lines(x, yhat)

varimp Variable Importance Indices

Description

Computes variable importance indices for terms of a smooth model.

Usage

varimp(object, newdata = NULL, combine = TRUE)
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Arguments
object an object of class "sm" output by the sm function or an object of class "gsm"
output by the gsm function.
newdata the data used for variable importance calculation (if NULL training data are used).
combine a switch indicating if the parametric and smooth components of the importance
should be combined (default) or returned separately.
Details

Suppose that the function can be written as

n=n-+nmn+n+..+n
where 1) is a constant (intercept) term, and 7; denotes the j-th effect function, which is assumed to
have mean zero. Note that 1); could be a main or interaction effect function for all j =1, ..., p.

The variable importance index for the j-th effect term is defined as

mj = (0] 1)/ (0 11.)
where 7, = 11 + 12 + ... +7,. Note that Z§:1 m; = 1 but there is no guarantee that 7; > 0.

If all 7; are non-negative, then 7; gives the proportion of the model’s R-squared that can be ac-
counted for by the j-th effect term. Thus, values of 7; closer to 1 indicate that 7; is more important,
whereas values of 7; closer to 0 (including negative values) indicate that 7; is less important.

Value

If combine = TRUE, returns a named vector containing the importance indices for each effect func-
tion (in object$terms).

If combine = FALSE, returns a data frame where the first column gives the importance indices for
the parametric components and the second column gives the importance indices for the smooth
(nonparametric) components.

Note

When combine = FALSE, importance indices will be equal to zero for non-existent components of
a model term. For example, a nominal effect does not have a parametric component, so the $p
component of the importance index for a nominal effect will be zero.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.4135/9781526421036885885
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See Also

See summary . sm for more thorough summaries of smooth models.

See summary . gsm for more thorough summaries of generalized smooth models.

Examples

S EXAMPLE 1 WA
### 1 continuous and 1 nominal predictor

# generate data
set.seed(1)
n <- 100
x <- seq(@, 1, length.out = n)
z <- factor(sample(letters[1:3], size = n, replace = TRUE))
fun <- function(x, z){
mu <- c(-2, 0, 2)
zi <- as.integer(z)
fx <= mu[zi] + 3 * x + sin(2 * pi * x)
3
fx <= fun(x, z)
y <= fx + rnorm(n, sd = 0.5)

# define marginal knots

probs <- seq(@, 0.9, by = 0.1)

knots <- list(x = quantile(x, probs = probs),
z = letters[1:3])

# fit correct (additive) model
sm.add <- sm(y ~ x + z, knots = knots)

# fit incorrect (interaction) model
sm.int <- sm(y ~ x * z, knots = knots)

# true importance indices

eff <- data.frame(x = 3 * x + sin(2 *x pi * x), z = ¢c(-2, 0, 2)[as.integer(z)])
eff <- scale(eff, scale = FALSE)

fstar <- rowSums(eff)

colSums(eff * fstar) / sum(fstar*2)

# estimated importance indices
varimp(sm.add)
varimp(sm.int)

H#iHHHEEHEE EXAMPLE 2 #HHEHEHHEHE
### 4 continuous predictors
### additive model

# generate data
set.seed(1)
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n <- 100
fun <- function(x){
sin(pi*x[,1]) + sin(2xpi*x[,2]) + sin(3*pi*x[,3]) + sin(4xpi*x[,4])
3
data <- as.data.frame(replicate(4, runif(n)))
colnames(data) <- c("x1v", " x3v", "x4v")
fx <- fun(data)
y <= fx + rnorm(n)

n n

x2v",

# define ssa knot indices

knots.indx <- c(bin.sample(data$xlv, nbin = 1@, index.return = TRUE)$ix,
bin.sample(data$x2v, nbin = 10, index.return = TRUE)$ix,
bin.sample(data$x3v, nbin = 10, index.return = TRUE)$ix,
bin.sample(data$x4v, nbin = 10, index.return = TRUE)$ix)

# fit correct (additive) model
sm.add <- sm(y ~ x1v + x2v + x3v + x4v, data = data, knots = knots.indx)

# fit incorrect (interaction) model
sm.int <- sm(y ~ x1lv * x2v + x3v + x4v, data = data, knots = knots.indx)

# true importance indices

eff <- data.frame(x1lv = sin(pixdatal,1]), x2v = sin(2xpix*datal,2]),
x3v = sin(3*pixdatal,3]), x4v = sin(4*pix*datal,4]))

eff <- scale(eff, scale = FALSE)

fstar <- rowSums(eff)

colSums(eff x fstar) / sum(fstar*2)

# estimated importance indices
varimp(sm.add)
varimp(sm.int)

varinf Variance Inflation Factors

Description

Computes variance inflation factors for terms of a smooth model.

Usage

varinf(object, newdata = NULL)

Arguments

object an object of class "sm" output by the sm function or an object of class "gsm"
output by the gsm function.

newdata the data used for variance inflation calculation (if NULL training data are used).
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Details

Let m? denote the VIF for the j-th model term.

Values of Ii? close to 1 indicate no multicollinearity issues for the j-th term. Larger values of I'i?
indicate that 7; has more collinearity with other terms.

Thresholds of x3 > 5 or x5 > 10 are typically recommended for determining if multicollinearity is
too much of an issue.

To understand these thresholds, note that

1

2
ki =1 _p2
1—Rj

where RJQ- is the R-squared for the linear model predicting 7); from the remaining model terms.

Value

anamed vector containing the variance inflation factors for each effect function (in object$terms).

Note
Suppose that the function can be written as
nN=n+m-+n2+..+1n

where 1) is a constant (intercept) term, and 7); denotes the j-th effect function, which is assumed to
have mean zero. Note that 77; could be a main or interaction effect function forall j =1, ..., p.

Defining the p x p matrix C' with entries
Cjk = cos(n, 1)
where the cosine is defined with respect to the training data, i.e.,
2 i1 M5 (@) ()
> i 77]2(331) D oie1 M)

COS(%‘, n) =

The variane inflation factors are the diagonal elements of C' -1 ie,
2 _ 9
K = C

where «7 is the VIF for the j-th term, and C77 denotes the j-th diagonal element of the matrix C~'.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Gu, C. (2013). Smoothing spline ANOVA models, 2nd edition. New York: Springer. doi:10.1007/
9781461453697

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885


https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.1007/978-1-4614-5369-7
https://doi.org/10.4135/9781526421036885885
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See Also

See summary . sm for more thorough summaries of smooth models.

See summary . gsm for more thorough summaries of generalized smooth models.

Examples

HHHEHEHE EXAMPLE 1 #HHHHHEEHE
### 4 continuous predictors
### no multicollinearity

# generate data
set.seed(1)
n <- 100
fun <- function(x){
sin(pixx[,1]) + sin(2xpi*x[,2]) + sin(3*pi*x[,3]) + sin(4*xpi*x[,4])
3
data <- as.data.frame(replicate(4, runif(n)))
colnames(data) <- c("x1v", "x2v", "x3v", "x4v")
fx <- fun(data)
y <= fx + rnorm(n)

# fit model
mod <- sm(y ~ x1v + x2v + x3v + x4v, data = data, tprk = FALSE)

# check vif
varinf(mod)

WA EXAMPLE 2 WA
### 4 continuous predictors
### multicollinearity

# generate data
set.seed(1)
n <- 100
fun <- function(x){

sin(pixx[,1]1) + sin(2xpi*x[,2]) + sin(3*pi*x[,3]) + sin(3*pi*x[,4])
3
data <- as.data.frame(replicate(3, runif(n)))
data <- cbind(data, c(data[1,2], datal[2:n,3]))
colnames(data) <- c("x1v", " x3v", "x4v")
fx <- fun(data)
y <= fx + rnorm(n)

" "

x2v",

# check collinearity
cor(data)
cor(sin(3xpixdatal,3]), sin(3*pixdatal,4]))

# fit model
mod <- sm(y ~ x1v + x2v + x3v + x4v, data = data, tprk = FALSE)

# check vif
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varinf(mod)

vcov Calculate Variance-Covariance Matrix for a Fitted Smooth Model

Description

Returns the variance-covariance matrix for the basis function coefficients from a fit smoothing
spline (fit by ss), smooth model (fit by sm), or generalized smooth model (fit by gsm).
Usage

## S3 method for class 'ss'
vcov(object, ...)

## S3 method for class 'sm'
vcov(object, ...)

## S3 method for class 'gsm'

vcov(object, ...)
Arguments
object an object of class "gsm" output by the gsm function, "sm" output by the sm

function, or "ss" output by the ss function

other arugments (currently ignored)

Details

The variance-covariance matrix is calculated using the Bayesian interpretation of a smoothing
spline. Unlike the classic treatments (e.g., Wahba, 1983; Nychka, 1988), which interpret the
smoothing spline as a Bayesian estimate of a Gaussian process, this treatment applies the Bayesian
interpretation directly on the coefficient vector. More specifically, the smoothing spline basis func-
tion coefficients are interpreted as Bayesian estimates of the basis function coefficients (see Helwig,
2020).

Value
Returns the (symmetric) matrix such that cell (¢, j) contains the covariance between the i-th and
j-th elements of the coefficient vector.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>
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References

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

Nychka, D. (1988). Bayesian confience intervals for smoothing splines. Journal of the American
Statistical Association, 83(404), 1134-1143. doi:10.2307/2290146

Wahba, G. (1983). Bayesian "confidence intervals" for the cross-validated smoothing spline. Jour-
nal of the Royal Statistical Society. Series B, 45(1), 133-150. doi:10.1111/.25176161.1983.tb01239.x

See Also

ss, sm, gsm for model fitting

boot.ss, boot.sm, boot.gsm for bootstrapping

Examples

## for 'ss' objects this function is defined as
function(object, ...){
Sigma <- tcrossprod(object$fit$cov.sqrt)
rownames(Sigma) <- colnames(Sigma) <- names(object$fit$coef)
Sigma

3

## for 'sm' and 'gsm' objects this function is defined as
function(object, ...){
Sigma <- tcrossprod(object$cov.sqrt)
rownames(Sigma) <- colnames(Sigma) <- names(object$coefficients)
Sigma

3

weights Extract Smooth Model Weights

Description
Extracts prior weights from a fit smoothing spline (fit by ss), smooth model (fit by sm), or general-
ized smooth model (fit by gsm).
Usage
## S3 method for class 'ss'
weights(object, ...)

## S3 method for class 'sm'
weights(object, ...)

## S3 method for class 'gsm'
weights(object, ...)


https://doi.org/10.4135/9781526421036885885
https://doi.org/10.2307/2290146
https://doi.org/10.1111/j.2517-6161.1983.tb01239.x
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Arguments
object an object of class "gsm" output by the gsm function, "sm" output by the sm
function, or "ss" output by the ss function
other arugments (currently ignored)
Details

Returns the "prior weights", which are user-specified via the w argument (of the ss function) or the
weights argument (of the sm and gsm functions). If no prior weights were supplied, returns the
(default) unit weights, i.e., rep(1, nobs).

Value

Prior weights extracted from object

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Helwig, N. E. (2020). Multiple and Generalized Nonparametric Regression. In P. Atkinson, S. De-
lamont, A. Cernat, J. W. Sakshaug, & R. A. Williams (Eds.), SAGE Research Methods Foundations.
doi:10.4135/9781526421036885885

See Also

Ss, sm, gsm

Examples

# generate weighted data

set.seed(1)

n <- 100

x <- seq(@, 1, length.out = n)

w <- rep(5:15, length.out = n)

fx <=2+ 3 * x + sin(2 * pi * x)

y <= fx + rnorm(n, sd = 0.5 / sqrt(w))

# smoothing spline
mod.ss <- ss(x, y, w, nknots = 10)
w.ss <- weights(mod.ss)

# smooth model
mod.sm <- sm(y ~ x, weights = w, knots = 10)
w.sm <- weights(mod.sm)

# generalized smooth model (family = gaussian)
mod.gsm <- gsm(y ~ x, weights = w, knots = 10)


https://doi.org/10.4135/9781526421036885885
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w.gsm <- weights(mod.gsm)

# note: weights are internally rescaled such as
wl <- w / mean(w)

max(abs(w@ - w.ss))

max(abs(w@ - w.sm))

max (abs(wd - w.gsm))

wtd.mean Weighted Arithmetic Mean

Description

Generic function for calculating the weighted (and possibly trimmed) arithmetic mean.

Usage

wtd.mean(x, weights, trim = @, na.rm = FALSE)

Arguments
X Numerical or logical vector.
weights Vector of non-negative weights.
trim Fraction [0, 0.5) of observations trimmed from each end before calculating
mean.
na.rm Logical indicating whether NA values should be removed before calculation.
Details

If weights are missing, the weights are defined to be a vector of ones (which is the same as the
unweighted arithmetic mean).

If trimis non-zero, then trim observations are deleted from each end before the (weighted) mean
is computed. The quantiles used for trimming are defined using the wtd. quantile function.

Value

Returns the weighted and/or trimmed arithmetic mean.

Note
The weighted (and possible trimmed) mean is defined as:
sum(weights * x) / sum(weights)

where x is the (possibly trimmed version of the) input data.
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Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

wtd. var for weighted variance calculations

wtd. quantile for weighted quantile calculations

Examples

# generate data and weights
set.seed(1)

X <= rnorm(10)

w <- rpois(10, lambda = 10)

# weighted mean
wtd.mean(x, w)
sum(x * w) / sum(w)

# trimmed mean

g <- quantile(x, probs = c(0.1, 0.9), type = 4)
i <= which(x < q[1] | x > ql[2])

mean(x[-i])

wtd.mean(x, trim = 0.1)

# weighted and trimmed mean

g <- wtd.quantile(x, w, probs = c(0.1, 0.9))
i <= which(x < q[1] | x > q[2])
wtd.mean(x[-i], w[-i])

wtd.mean(x, w, trim = 0.1)

wtd.quantile Weighted Quantiles

Description

Generic function for calculating weighted quantiles.

Usage

wtd.quantile(x, weights, probs = seq(@, 1, 0.25),
na.rm = FALSE, names = TRUE)
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Arguments
X Numerical or logical vector.
weights Vector of non-negative weights.
probs Numeric vector of probabilities with values in [0,1].
na.rm Logical indicating whether NA values should be removed before calculation.
names Logical indicating if the result should have names corresponding to the proba-
bilities.
Details

If weights are missing, the weights are defined to be a vector of ones (which is the same as the
unweighted quantiles).

The weighted quantiles are computed by linearly interpolating the empirical cdf via the approx
function.

Value

Returns the weighted quantiles corresponding to the input probabilities.

Note

If the weights are all equal (or missing), the resulting quantiles are equivalent to those produced by
the quantile function using the ’type = 4’ argument.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

wtd.mean for weighted mean calculations

wtd. var for weighted variance calculations

Examples

# generate data and weights
set.seed(1)

x <= rnorm(10)

w <- rpois(10, lambda = 10)

# unweighted quantiles
quantile(x, probs = c(0.1, 0.9), type = 4)
wtd.quantile(x, probs = c(0.1, 0.9))

# weighted quantiles

sx <- sort(x, index.return = TRUE)
sw <- w[sx$ix]

ecdf <- cumsum(sw) / sum(sw)
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approx(x = ecdf, y = sx$x, xout = c(0.1, 0.9), rule = 2)$y
wtd.quantile(x, w, probs = c(0.1, 0.9))

wtd.var Weighted Variance and Standard Deviation

Description

Generic function for calculating weighted variance or standard deviation of a vector.

Usage

wtd.var(x, weights, na.rm = FALSE)

wtd.sd(x, weights, na.rm = FALSE)

Arguments

X Numerical or logical vector.

weights Vector of non-negative weights.

na.rm Logical indicating whether NA values should be removed before calculation.
Details

The weighted variance is defined as
(n/ (n=-1)) * sum(weights * (x - xbar)*2) / sum(weights)

where n is the number of observations with non-zero weights, and xbar is the weighted mean
computed via the wtd.mean function.

The weighted standard deviation is the square root of the weighted variance.

Value

Returns the weighted variance or standard deviation.

Note

If weights are missing, the weights are defined to be a vector of ones (which is the same as the
unweighted variance or standard deviation).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

wtd.mean for weighted mean calculations

wtd.quantile for weighted quantile calculations
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Examples

# generate data and weights
set.seed(1)

x <= rnorm(10)

w <- rpois(10, lambda = 10)

# weighted mean
xbar <- wtd.mean(x, w)

# weighted variance
wtd.var(x, w)
(10 /7 9) * sum(w * (x - xbar)*2) / sum(w)

# weighted standard deviation
wtd.sd(x, w)
sqrt((10 / 9) * sum(w * (x - xbar)*2) / sum(w))



Index

x algebra
msqrt, 30
psolve, 58

* aplot

color.legend, 11

predict.sm, 52
predict.ss, 56
sm, 61
spherical, 76
ss, 79

plot.gsm, 39 summary, 86
plot.sm, 41 theta.mle, 89
plot.ss, 43 thinplate, 91
plotci, 44 varimp, 94
* array varinf, 97
msqrt, 30 * smooth
psolve, 58 gsm, 18
* color nominal, 33
color.legend, 11 ordinal, 37
* distribution plot.gsm, 39
NegBin, 31 plot.sm, 41
theta.mle, 89 polynomial, 46
« dplot predict.gsm, 49
plot.ss, 43 predict.sm, 52
plotci ;14 predict.ss, 56
* htest sm, 61
boot. 5 spherical, 76
. ’ ss, 79
* iImportance
. summary, 86
varimp, 94 .
. . . thinplate, 91
+ multicollinearity .
. varimp, 94
varinf, 97 .
.. varinf, 97
+ multivariate .
boot. 5 * univar
’ tri boot, 5
* nortljparar;le rie wtd.mean, 103
OOt.’ wtd.quantile, 104
* regression wtd.var, 106
gsm, 18 .bincode, 3, 36
NegBin, 31
nominal, 33 approx, 105
ordinal, 37 as.data.frame, 19, 61
plot.gsm, 39
plot.sm, 41 basis.nom, 23, 64
polynomial, 46 basis.nom(nominal), 33
predict.gsm, 49 basis.ord, 23, 64

108



INDEX

basis.ord (ordinal), 37
basis.poly, 23, 29, 64
basis.poly (polynomial), 46
basis.sph, 23, 64

basis.sph (spherical), 76
basis.tps, 23, 64

basis.tps (thinplate), 91
basis_nom (nominal), 33
basis_ord (ordinal), 37
basis_poly (polynomial), 46
basis_sph (spherical), 76
basis_tps (thinplate), 91
bin.sample, 2

boot, 5

boot.gsm, 20, 24, 101
boot.sm, 62, 66, 101
boot.ss, 43, 44, 84, 101

coef, 9

coef.gsm, 24

coef.sm, 66

coef.ss, 84

color.legend, 11

colorRampPalette, 11, 12, 36, 40, 42

cooks.distance.gsm, 24

cooks.distance.gsm
(smooth.influence.measures), 73

cooks.distance.sm, 66

cooks.distance.sm
(smooth.influence.measures), 73

cooks.distance.ss, 84

cooks.distance.ss
(smooth.influence.measures), 73

cov.ratio, 24, 66, 84

cov.ratio (smooth.influence.measures),
73

deviance, 13

deviance.gsm, 24

deviance.sm, 66

deviance.ss, 84

dfbeta.gsm, 25

dfbeta.gsm (smooth.influence.measures),
73

dfbeta.sm, 66

dfbeta.sm (smooth.influence.measures),
73

dfbeta.ss, 84

109

dfbeta.ss (smooth.influence.measures),
73

dfbetas.gsm, 25

dfbetas.gsm
(smooth.influence.measures), 73

dfbetas.sm, 66

dfbetas.sm(smooth.influence.measures),
73

dfbetas.ss, 84

dfbetas.ss (smooth.influence.measures),
73

dffits, 75

diagnostic.plots, 14, 25, 66, 72, 75, 84

eigen, 58
expand.grid, 23, 64

family, 32
family.gsm, 25
family.gsm (gsm), 18
fitted, 17
fitted.gsm, 20, 25
fitted.sm, 66
fitted.ss, 84
fitted.values, 10, 14

glm, 19,61

gsm, 5-7,9, 10, 12-18, 18, 28, 29, 31, 32,41,
51,60, 66, 70, 72-75, 84, 87, 88, 95,
97, 100-102

hatvalues.gsm, 25

hatvalues.gsm
(smooth.influence.measures), 73

hatvalues.sm, 66

hatvalues.sm
(smooth.influence.measures), 73

hatvalues.ss, 84

hatvalues.ss
(smooth.influence.measures), 73

hcl.colors, 11,40, 42

image, 11, 12, 40, 42

influence, 71

influence.gsm (smooth.influence), 70
influence.measures, 71, 74, 75
influence.sm (smooth.influence), 70
influence.ss (smooth.influence), 70
isSymmetric, 30



110

lines, 45
1Im, 19, 61
Im.influence, 71

make.link, 3/
model.matrix, /0, 28
model.matrix.gsm, 25
model.matrix.sm, 66
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