
Package ‘npbr’
March 22, 2023

Type Package

Title Nonparametric Boundary Regression

Version 1.8

Date 2023-03-21

Author Abdelaati Daouia <Abdelaati.Daouia@tse-fr.eu>, Thibault Lau-
rent <thibault.laurent@univ-tlse1.fr>, Hohsuk Noh <word5810@gmail.com>

Maintainer Thibault Laurent <thibault.laurent@univ-tlse1.fr>

Depends R (>= 4.0.0), graphics, stats, utils

Imports Benchmarking, np, quadprog, Rglpk (>= 0.6-2), splines

Description A variety of functions for the best known and most innovative approaches to nonparamet-
ric boundary estimation. The selected methods are concerned with empirical, smoothed, unre-
stricted as well as constrained fits under both separate and multiple shape con-
straints. They cover robust approaches to outliers as well as data envelopment tech-
niques based on piecewise polynomials, splines, local linear fitting, extreme values and ker-
nel smoothing. The package also seamlessly allows for Monte Carlo compar-
isons among these different estimation methods. Its use is illustrated via a number of empiri-
cal applications and simulated examples.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-03-22 09:00:05 UTC

R topics documented:
npbr-package . 2
air . 5
cub_spline_est . 6
cub_spline_kn . 8
dea_est . 10
dfs_momt . 12
dfs_pick . 14
dfs_pwm . 17

1

2 npbr-package

green . 19
kern_smooth . 20
kern_smooth_bw . 22
kopt_momt_pick . 24
loc_est . 26
loc_est_bw . 28
loc_max . 30
mopt_pwm . 31
nuclear . 33
pick_est . 34
poly_degree . 35
poly_est . 37
post . 38
quad_spline_est . 39
quad_spline_kn . 41
records . 43
rho_momt_pick . 44
rho_pwm . 46

Index 48

npbr-package Nonparametric boundary regression

Description

The package npbr (Daouia et al., 2017) is the first free specialized software for data edge and frontier
analysis in the statistical literature. It provides a variety of functions for the best known and most
innovative approaches to nonparametric boundary estimation. The selected methods are concerned
with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple
shape constraints. They also cover data envelopment techniques as well as robust approaches to
outliers. The routines included in npbr are user friendly and afford a large degree of flexibility
in the estimation specifications. They provide smoothing parameter selection for the modern lo-
cal linear and polynomial spline methods and for some promising extreme value techniques. Also,
they seamlessly allow for Monte Carlo comparisons among the implemented estimation procedures.
This package will be very useful for statisticians and applied researchers interested in employing
nonparametric boundary regression models. Its use is illustrated with a number of empirical appli-
cations and simulated examples.

Details

Suppose that we have n pairs of observations (xi, yi), i = 1, . . . , n, from a bivariate distribution
with a density f(x, y) in R2. The support Ψ of f is assumed to be of the form

Ψ = {(x, y)|y ≤ ϕ(x)} ⊇ {(x, y)|f(x, y) > 0}

{(x, y)|y > ϕ(x)} ⊆ {(x, y)|f(x, y) = 0},

npbr-package 3

where the graph of ϕ corresponds to the locus of the curve above which the density f is zero. We
consider the estimation of the frontier function ϕ based on the sample {(xi, yi), i = 1, . . . , n} in
the general setting where the density f may have sudden jumps at the frontier, decay to zero or rise
up to infinity as it approaches its support boundary.

The overall objective of the present package is to provide a large variety of functions for the
best known approaches to nonparametric boundary regression, including the vast class of meth-
ods employed in both Monte Carlo comparisons of Daouia et al. (2016) and Noh (2014) as well as
other promising nonparametric devices, namely the extreme-value techniques of Gijbels and Peng
(2000), Daouia et al. (2010) and Daouia et al. (2012). The various functions in the npbr pack-
age are summarized in the table below. We are not aware of any other existing set of statistical
routines more adapted to data envelope fitting and robust frontier estimation. Only the classical
nonsmooth FDH and DEA methods can be found in some available packages dedicated to the
economic literature on measurements of the production performance of enterprises, such as the
programs Benchmarking by Bogetoft and Otto (2011) and FEAR by Wilson (2008). Other con-
tributions to the econometric literature on frontier analysis by Parmeter and Racine (2013) can be
found at https://socialsciences.mcmaster.ca/racinej/Gallery/Home.html. The package
npbr is actually the first free specialized software for the statistical literature on nonparametric
frontier analysis. The routines included in npbr are user friendly and highly flexible in terms of
estimation specifications. They allow the user to locate the boundary from data by making use of
both empirical and smooth fits as well as (un)constrained estimates under single and multiple shape
constraints. They also integrate smoothing parameter selection for the innovative methods based
on local linear techniques, polynomial splines, extreme values and kernel smoothing, though the
proposed selection procedures can be computationally demanding.

In addition, the package will be extremely useful for researchers and practitioners interested in em-
ploying nonparametric boundary regression methods. On one hand, such methods are very appeal-
ing because they rely on very few assumptions and benefit from their modeling flexibility, function
approximation power and ability to detect the boundary structure of data without recourse to any
a priori parametric restrictions on the shape of the frontier and/or the distribution of noise. On
the other hand, the package offers R users and statisticians in this active area of research simple
functions to compute the empirical mean integrated squared error, the empirical integrated squared
bias and the empirical integrated variance of the implemented frontier estimators. This seamlessly
allows the interested researcher to reproduce the Monte Carlo estimates obtained in the original
articles and, perhaps most importantly, to easily compare the quality of any new proposal with the
competitive existing methods.

Function Description Reference
dea_est DEA, FDH Farrell (1957)

Deprins et al. (1984),
and linearized FDH Hall and Park (2002)

Jeong and Simar (2006)
loc_est Local linear fitting Hall et al. (1998),

Hall and Park (2004)
loc_est_bw Bandwidth choice Hall and Park (2004)

for local linear fitting
poly_est Polynomial estimation Hall et al. (1998)
poly_degree Optimal polynomial Daouia et al. (2015)

degree selection
dfs_momt Moment type estimation Daouia et al. (2010),

https://socialsciences.mcmaster.ca/racinej/Gallery/Home.html

4 npbr-package

Dekkers et al. (1989)
dfs_pick Pickands type estimation Daouia et al. (2010),

Dekkers and de Haan (1989)
rho_momt_pick Conditional tail Daouia et al. (2010),

index estimation Dekkers et al. (1989),
Dekkers and de Haan (1989)

kopt_momt_pick Threshold selection for Daouia et al. (2010)
moment/Pickands frontiers

dfs_pwm Nonparametric frontier Daouia et al. (2012)
regularization

loc_max Local constant estimation Gijbels and Peng (2000)
pick_est Local extreme-value estimation Gijbels and Peng (2000)
quad_spline_est Quadratic spline fitting Daouia et al. (2015)
quad_spline_kn Knot selection for Daouia et al. (2015)

quadratic spline fitting
cub_spline_est Cubic spline fitting Daouia et al. (2015)
cub_spline_kn Knot selection for Daouia et al. (2015)

cubic spline fitting
kern_smooth Nonparametric kernel Parmeter and Racine (2013),

boundary regression Noh (2014)
kern_smooth_bw Bandwidth choice for Parmeter and Racine (2013),

kernel boundary regression Noh (2014)

Author(s)

Abdelaati Daouia <Abdelaati.Daouia@tse-fr.eu>, Thibault Laurent <thibault.laurent@univ-tlse1.fr>,
Hohsuk Noh <word5810@gmail.com>

Maintainer: Thibault Laurent <thibault.laurent@univ-tlse1.fr>

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory.
Bernoulli, 16, 1039-1063.

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estima-
tors. Journal of Econometrics, 168, 285-299.

Daouia, A., Laurent, T. and Noh, H. (2017). npbr: A Package for Nonparametric Boundary Regres-
sion in R. Journal of Statistical Software, 79(9), 1-43. doi:10.18637/jss.v079.i09.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.

Dekkers, A.L.M. and L. de Haan (1989). On the estimation of extreme-value index and large
quantiles estimation. Annals of Statistics, 17, 1795-1832.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989). A moment estimator for the index of an
extreme-value distribution. Annals of Statistics, 17, 1833-1855.

Deprins, D., Simar, L. and Tulkens H. (1984). Measuring labor efficiency in post offices, in: M.
Marchand, P. Pestieau and H. Tulkens (Eds), The performance of Public Enterprises: Concepts and
Measurements. North-Holland, Amsterdam, 243-267.

air 5

Farrell, M.J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical
Society, Series A, 120, 253-281.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics. Extremes, 3,
251-277.

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries.
Journal of Multivariate Analysis, 66, 71-98.

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth bound-
aries. Journal of Multivariate Analysis, 91, 240-261.

Jeong, S.-O. and Simar, L. (2006). Linearly interpolated FDH efficiency score for nonconvex fron-
tiers. Journal of Multivariate Analysis, 97, 2141-2161.

Noh, H. (2014). Frontier Estimation using Kernel Smoothing with Data Transformation. Journal
of the Korean Statistical Society, 43, 503-512.

Parmeter, C. and Racine, J.S. (2013). Smooth Constrained Frontier Analysis. In Recent Advances
and Future Directions in Causality, Prediction, and Specification Analysis: Essays in Honor of
Halbert L. White, Jr., Springer Verlag, (X. Chen and N.R. Swanson Eds), 463-488.

air European air controllers

Description

The dataset is concerned with the assessment of the efficiency of 37 European Air Controllers. The
performance of each controller can be measured by its “distance” from the upper support boundary,
or equivalently, the set of the most efficient controllers. This dataset is taken from Mouchart and
Simar (2002). Here, the activity of the controllers is described by one input (an aggregate factor of
different kind of labor) and one output (an aggregate factor of the activity produced, based on the
number of controlled air movements, the number of controlled flight hours, etc.). See also Daouia,
Florens and Simar (2008).

Usage

data(air)

Format

A data frame with 37 observations on the following 2 variables.

xtab an input.
ytab an output.

References

Daouia, A., Florens, J.-P. and Simar, L. (2008). Functional Convergence of Quantile-type Frontiers
with Application to Parametric Approximations. Journal of Statistical Planning and Inference, 138,
708-725.

Mouchart, M. and L. Simar (2002). Efficiency analysis of Air Controllers: first insights, Consulting
report 0202, Institut de Statistique, UCL, Belgium.

6 cub_spline_est

Examples

data("air")

cub_spline_est Cubic spline fitting

Description

The function cub_spline_est is an implementation of the (un)constrained cubic spline estimates
proposed by Daouia, Noh and Park (2016).

Usage

cub_spline_est(xtab, ytab, x, kn = ceiling((length(xtab))^(1/4)), method= "u",
all.dea=FALSE, control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

kn an integer specifying the number of inter-knot segments used in the computation
of the spline estimate.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

all.dea a boolean.

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

Let a and b be, respectively, the minimum and maximum of the design points x1, . . . , xn. Denote
a partition of [a, b] by a = t0 < t1 < · · · < tkn = b (see below the selection process). Let
N = kn + 3 and π(x) = (π0(x), . . . , πN−1(x))T be the vector of normalized B-splines of order
4 based on the knot mesh {tj} (see Daouia et al. (2015)). The unconstrained (option method="u")
cubic spline estimate of the frontier ϕ(x) is then defined by ϕ̃n(x) = π(x)T α̃, where α̃ minimizes∫ 1

0

π(x)Tαdx =

N∑
j=1

αj

∫ 1

0

πj(x) dx

over α ∈ RN subject to the envelopment constraints π(xi)
Tα ≥ yi, i = 1, . . . , n. A simple

way of choosing the knot mesh in this unconstrained setting is by considering the j/knth quantiles
tj = x[jn/kn] of the distinct values of xi for j = 1, . . . , kn− 1. The number of inter-knot segments
kn is obtained by calling the function cub_spline_kn (option method="u").

cub_spline_est 7

In what concerns the monotonicity constraint, we use the following suffcient condtion for the mono-
tonicity:

α0 ≤ α1 ≤ · · · ≤ αN−1

. This condition was previously used in Lu et al. (2007) and Pya and Wood (2015). Note that since
the condition corresponds to linear constraints on α, the estimator satisfying the monotonocity can
be obtained via linear programming.

When the estimate is required to be both monotone and concave, we use the function cub_spline_est
with the option method="mc". Such estimate is obtained as the cubic spline function which min-
imizes the same linear objective function as the unconstrained estimate subject to the same linear
envelopment constraints, the monotonicity constraint above and the additional linear concavity con-
straints π′′(tj)Tα ≤, j = 0, 1, . . . , kn, where the second derivative π′′ is a linear spline. Regarding
the choice of knots, we just apply the same scheme as for the unconstrained cubic spline estimate.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been
found by the solver (GLPK).

Author(s)

Hohsuk Noh

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.

Lu, M., Zhang, Y. and Huang, J. (2007). Estimation of the mean function with panel count data
using monotone polynomial splines. Biometrika, 94, 705-718.

Pya, N. and Wood, S. N. (2015). Shape constrained additive models. Statistical Computing, to
appear.

Schumaker, L.L. (2007). Spline Functions: Basic Theory, 3rd edition, Cambridge University Press.

See Also

cub_spline_kn

Examples

data("air")
x.air <- seq(min(air$xtab), max(air$xtab), length.out=101)

1. Unconstrained cubic spline fits
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.u<-cub_spline_kn(air$xtab, air$ytab,
method="u", type="BIC"))

Unconstrained spline estimate
y.cub.air.u<-cub_spline_est(air$xtab, air$ytab,
x.air, kn=kn.bic.air.u, method="u")

8 cub_spline_kn

2. Monotonicity constraint
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.m<-cub_spline_kn(air$xtab, air$ytab,
method="m", type="BIC"))

Monotonic splines estimate
y.cub.air.m<-cub_spline_est(air$xtab, air$ytab,
x.air, kn=kn.bic.air.m, method="m")

3. Monotonicity and Concavity constraints
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.air.mc<-cub_spline_kn(air$xtab, air$ytab,
method="mc", type="BIC"))

Monotonic/Concave splines estimate
y.cub.air.mc<-cub_spline_est(air$xtab, air$ytab,
x.air, kn=kn.bic.air.mc, method="mc", all.dea=TRUE)

Representation
plot(x.air, y.cub.air.u, lty=1, lwd=4, col="green",
type="l", xlab="log(COST)", ylab="log(OUTPUT)")

lines(x.air, y.cub.air.m, lty=2, lwd=4, col="cyan")
lines(x.air, y.cub.air.mc, lty=3, lwd=4, col="magenta")
points(ytab~xtab, data=air)
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
"monotone + concave"), lwd=4, cex=0.8)

cub_spline_kn AIC and BIC criteria for choosing the number of inter-knot segments
in cubic spline fits

Description

Computes the optimal number of inter-knot segments for the (un)constrained cubic spline fit pro-
posed by Daouia, Noh and Park (2016).

Usage

cub_spline_kn(xtab, ytab, method, krange = 1:20, type = "AIC",
control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

cub_spline_kn 9

krange a vector of integers specifying the range in which the optimal number of inter-
knot segments is to be selected.

type a character equal to "AIC" or "BIC".

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

The implementation of the unconstrained cubic spline smoother ϕ̃n (see cub_spline_est) is based
on the knot mesh {tj}, with tj = x[jn/kn] being the j/knth quantile of the distinct values of xi
for j = 1, . . . , kn − 1. Because the number of knots kn determines the complexity of the spline
approximation, its choice may then be viewed as model selection through the minimization of the
following two information criteria:

AIC(k) = log

(
n∑
i=1

(ϕ̃n(xi)− yi)

)
+ (k + 2)/n,

BIC(k) = log

(
n∑
i=1

(ϕ̃n(xi)− yi)

)
+ log n · (k + 2)/2n.

The first one (option type = "AIC") is similar to the famous Akaike information criterion (Akaike,
1973) and the second one (option type = "BIC") to the Bayesian information criterion (Schwartz,
1978). For the implementation of the concave cubic spline estimator, just apply the same scheme
as for the unconstrained version.

Value

Returns an integer.

Author(s)

Hohsuk Noh.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in
Second International Symposium of Information Theory, eds. B. N. Petrov and F. Csaki, Budapest:
Akademia Kiado, 267–281.

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.

Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

cub_spline_est.

10 dea_est

Examples

data("air")
a. Unconstrained cubic spline fits
(kn.bic.air.u<-cub_spline_kn(air$xtab, air$ytab,
method="u", type="BIC"))

b. Monotone cubic spline smoother
(kn.bic.air.m<-cub_spline_kn(air$xtab, air$ytab,
method="m", type="BIC"))

c. Monotone and Concave cubic spline smoother
(kn.bic.air.mc<-cub_spline_kn(air$xtab, air$ytab,
method="mc", type="BIC"))

dea_est DEA, FDH and linearized FDH estimators.

Description

The function implements the empirical FDH (free disposal hull), LFDH (linearized FDH) and DEA
(data envelopment analysis) frontier estimators.

Usage

dea_est(xtab, ytab, x, type = "dea")

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

type a character equal to "dea", "fdh" or "lfdh".

Details

There are mainly two usual frontier estimation methods for preserving monotonicity: the free dis-
posal hull (FDH) introduced by Deprins et al. (1984) and the data envelopment analysis (DEA)
initiated by Farrell (1957). The FDH boundary is the lowest “stair-case” monotone curve covering
all the data points

ϕn(x) := max{yi, i : xi ≤ x}.

An improved version of this estimator, referred to as the linearized FDH (LFDH), is obtained by
drawing the polygonal line smoothing the staircase FDH curve. It has been considered in Hall and
Park (2002) and Jeong and Simar (2006). When the joint support of data is in addition convex, the
DEA estimator is defined as the least concave majorant of the FDH frontier (see also Gijbels et al.
(1999)). We employ the function DEA from the package Benchmarking to implement the function
dea_est.

dea_est 11

Value

Returns a numeric vector with the same length as x.

Author(s)

Hohsuk Noh.

References

Bogetoft, P. and Otto, L. (2011), Benchmarking with DEA, SFA and R, Springer-Verlag.

Deprins, D., Simar, L. and H. Tulkens (1984). Measuring labor efficiency in post offices, in The
performance of Public Enterprises: Concepts and Measurements (M. Marchand, P. Pestieau and H.
Tulkens Eds), North-Holland, Amsterdam, 243–267.

Farrell, M.J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical
Society: Series A, 120, 253–281.

Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999). On estimation of monotone and concave
frontier functions, Journal of American Statistical Association, 94, 220–228.

Hall, P. and Park, B.U. (2002). New methods for bias correction at endpoints and boundaries,
Annals of Statistics, 30, 1460-1479.

Jeong, S.-O. and Simar, L. (2006). Linearly interpolated FDH efficiency score for nonconvex fron-
tiers, Journal of Multivariate Analysis, 97, 2141–2161.

See Also

quad_spline_est, cub_spline_est.

Examples

data("green")
plot(OUTPUT~COST, data=green)
x <- seq(min(green$COST), max(green$COST), length.out=1001)
We compute and represent the DEA, FDH and LFDH estimates
lines(x, dea_est(green$COST, green$OUTPUT, x, type="dea"),
lty=4, lwd=4, col="cyan")
lines(x, dea_est(green$COST, green$OUTPUT, x, type="fdh"),
lty=1, lwd=4, col="green")
lines(x, dea_est(green$COST, green$OUTPUT, x, type="lfdh"),
lty=2, lwd=4, col="magenta")
legend("topleft",legend=c("dea","fdh","lfdh"),
col=c("cyan","green","magenta"), lty=c(4,1,2), lwd=4)

12 dfs_momt

dfs_momt Moment frontier estimator

Description

This function is an implementation of the moment-type estimator developed by Daouia, Florens and
Simar (2010).

Usage

dfs_momt(xtab, ytab, x, rho, k, ci=TRUE)

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.
ytab a numeric vector of the same length as xtab containing the observed outputs

y1, . . . , yn.
x a numeric vector of evaluation points in which the estimator is to be computed.
rho a numeric vector of the same length as x or a scalar, which determines the values

of rho.
k a numeric vector of the same length as x or a scalar, which determines the thresh-

olds at which the moment estimator will be computed.
ci a boolean, TRUE for computing the confidence interval.

Details

Combining ideas from Dekkers, Einmahl and de Haan (1989) with the dimensionless transformation
{zxi := yi1{xi≤x}, i = 1, · · · , n} of the observed sample {(xi, yi), i = 1, · · · , n}, the authors
estimate the conditional endpoint ϕ(x) by

ϕ̃momt(x) = zx(n−k) + zx(n−k)M
(1)
n {1 + ρx}

where M (1)
n = (1/k)

∑k−1
i=0

(
log zx(n−i) − log zx(n−k)

)
, zx(1) ≤ · · · ≤ zx(n) are the ascending order

statistics corresponding to the transformed sample {zxi , i = 1, · · · , n} and ρx > 0 is referred to as
the extreme-value index and has the following interpretation: when ρx > 2, the joint density of data
decays smoothly to zero at a speed of power ρx − 2 of the distance from the frontier; when ρx = 2,
the density has sudden jumps at the frontier; when ρx < 2, the density increases toward infinity at
a speed of power ρx − 2 of the distance from the frontier. Most of the contributions to econometric
literature on frontier analysis assume that the joint density is strictly positive at its support boundary,
or equivalently, ρx = 2 for all x. When ρx is unknown, Daouia et al. (2010) suggest to use the
following two-step estimator: First, estimate ρx by the moment estimator ρ̃x implemented in the
function rho_momt_pick by utilizing the option method="moment", or by the Pickands estimator
ρ̂x by using the option method="pickands". Second, use the estimator ϕ̃momt(x), as if ρx were
known, by substituting the estimated value ρ̃x or ρ̂x in place of ρx. The 95% confidence interval of
ϕ(x) derived from the asymptotic normality of ϕ̃momt(x) is given by

[ϕ̃momt(x)± 1.96
√
V (ρx)/kzx(n−k)M

(1)
n (1 + 1/ρx)]

dfs_momt 13

where V (ρx) = ρ2
x(1 + 2/ρx)−1. The sample fraction k = kn(x) plays here the role of the

smoothing parameter and varies between 1 andNx−1, withNx =
∑n
i=1 1{xi≤x} being the number

of observations (xi, yi) with xi ≤ x. See kopt_momt_pick for an automatic data-driven rule for
selecting k.

Value

Returns a numeric vector with the same length as x.

Note

As it is common in extreme-value theory, good results require a large sample size Nx at each
evaluation point x. See also the note in kopt_momt_pick.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar’s Matlab code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory,
Bernoulli, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an
extreme-value distribution, nnals of Statistics, 17, 1833-1855.

See Also

dfs_pick, kopt_momt_pick.

Examples

data("post")
x.post <- seq(post$xinput[100], max(post$xinput),
length.out = 100)

1. When rho[x] is known and equal to 2, we set:
rho <- 2
To determine the sample fraction k=k[n](x)
in tilde(varphi[momt])(x).
best_kn.1 <- kopt_momt_pick(post$xinput, post$yprod,
x.post, rho = rho)

To compute the frontier estimates and confidence intervals:
res.momt.1 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho, k = best_kn.1)

Representation
plot(yprod~xinput, data = post, xlab = "Quantity of labor",
ylab = "Volume of delivered mail")

lines(x.post, res.momt.1[,1], lty = 1, col = "cyan")
lines(x.post, res.momt.1[,2], lty = 3, col = "magenta")
lines(x.post, res.momt.1[,3], lty = 3, col = "magenta")

Not run:

14 dfs_pick

2. rho[x] is unknown and estimated by
the Pickands estimator tilde(rho[x])
rho_momt <- rho_momt_pick(post$xinput, post$yprod,
x.post)

best_kn.2 <- kopt_momt_pick(post$xinput, post$yprod,
x.post, rho = rho_momt)

res.momt.2 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho_momt, k = best_kn.2)

3. rho[x] is unknown independent of x and estimated
by the (trimmed) mean of tilde(rho[x])
rho_trimmean <- mean(rho_momt, trim=0.00)
best_kn.3 <- kopt_momt_pick(post$xinput, post$yprod,

x.post, rho = rho_trimmean)
res.momt.3 <- dfs_momt(post$xinput, post$yprod, x.post,
rho = rho_trimmean, k = best_kn.3)

Representation
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")

lines(x.post, res.momt.2[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.2[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.2[,3], lty = 3, lwd = 4, col = "magenta")
plot(yprod~xinput, data = post, col = "grey",
xlab = "Quantity of labor", ylab = "Volume of delivered mail")

lines(x.post, res.momt.3[,1], lty = 1, lwd = 2, col = "cyan")
lines(x.post, res.momt.3[,2], lty = 3, lwd = 4, col = "magenta")
lines(x.post, res.momt.3[,3], lty = 3, lwd = 4, col = "magenta")

End(Not run)

dfs_pick Pickands frontier estimator

Description

This function is an implementation of the Pickands type estimator developed by Daouia, Florens
and Simar (2010).

Usage

dfs_pick(xtab, ytab, x, k, rho, ci=TRUE)

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

dfs_pick 15

k a numeric vector of the same length as x or a scalar, which determines the thresh-
olds at which the Pickands estimator will be computed.

rho a numeric vector of the same length as x or a scalar, which determines the values
of rho.

ci a boolean, TRUE for computing the confidence interval.

Details

Built on the ideas of Dekkers and de Haan (1989), Daouia et al. (2010) propose to estimate the
frontier point ϕ(x) by

ϕ̂pick(x) =
zx(n−k+1) − z

x
(n−2k+1)

21/ρx − 1
+ zx(n−k+1)

from the transformed data {zxi , i = 1, · · · , n} described in dfs_momt, where ρx > 0 is the same
tail-index as in dfs_momt. If ρx is known (typically equal to 2 if the joint density of data is believed
to have sudden jumps at the frontier), then one can use the estimator ϕ̂pick(x) in conjunction with
the function kopt_momt_pick which implements an automatic data-driven method for selecting the
threshold k. In contrast, if ρx is unknown, one could consider using the following two-step estima-
tor: First, estimate ρx by the Pickands estimator ρ̂x implemented in the function rho_momt_pick
by using the option method="pickands", or by the moment estimator ρ̃x by utilizing the option
method="moment". Second, use the estimator ϕ̂pick(x), as if ρx were known, by substituting the
estimated value ρ̂x or ρ̃x in place of ρx. The pointwise 95% confidence interval of the frontier
function obtained from the asymptotic normality of ϕ̂pick(x) is given by

[ϕ̂pick(x)± 1.96
√
v(ρx)/(2k)(zx(n−k+1) − z

x
(n−2k+1))]

where v(ρx) = ρ−2
x 2−2/ρx/(2−1/ρx − 1)4. Finally, to select the threshold k = kn(x), one

could use the automatic data-driven method of Daouia et al. (2010) implemented in the function
kopt_momt_pick (option method="pickands").

Value

Returns a numeric vector with the same length as x.

Note

As it is common in extreme-value theory, good results require a large sample size Nx at each
evaluation point x. See also the note in kopt_momt_pick.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar’s Matlab code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory,
Bernoulli, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an
extreme-value distribution, Annals of Statistics, 17, 1833-1855.

16 dfs_pick

See Also

dfs_momt, kopt_momt_pick.

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)

1. When rho[x] is known and equal to 2, we set:
rho<-2
To determine the sample fraction k=k[n](x)
in hat(varphi[pick])(x).
best_kn.1<-kopt_momt_pick(post$xinput, post$yprod,
x.post, method="pickands", rho=rho)

To compute the frontier estimates and confidence intervals:
res.pick.1<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho, k=best_kn.1)

Representation
plot(yprod~xinput, data=post, xlab="Quantity of labor",
ylab="Volume of delivered mail")

lines(x.post, res.pick.1[,1], lty=1, col="cyan")
lines(x.post, res.pick.1[,2], lty=3, col="magenta")
lines(x.post, res.pick.1[,3], lty=3, col="magenta")

Not run:
2. rho[x] is unknown and estimated by
the Pickands estimator hat(rho[x])
rho_pick<-rho_momt_pick(post$xinput, post$yprod,
x.post, method="pickands")

best_kn.2<-kopt_momt_pick(post$xinput, post$yprod,
x.post, method="pickands", rho=rho_pick)

res.pick.2<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho_pick, k=best_kn.2)

3. rho[x] is unknown independent of x and estimated
by the (trimmed) mean of hat(rho[x])
rho_trimmean<-mean(rho_pick, trim=0.00)
best_kn.3<-kopt_momt_pick(post$xinput, post$yprod,

x.post, rho=rho_trimmean, method="pickands")
res.pick.3<-dfs_pick(post$xinput, post$yprod, x.post,
rho=rho_trimmean, k=best_kn.3)

Representation
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")

lines(x.post, res.pick.2[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.2[,2], lty=3, lwd=4, col="magenta")
lines(x.post, res.pick.2[,3], lty=3, lwd=4, col="magenta")
plot(yprod~xinput, data=post, col="grey", xlab="Quantity of labor",
ylab="Volume of delivered mail")

lines(x.post, res.pick.3[,1], lty=1, lwd=2, col="cyan")
lines(x.post, res.pick.3[,2], lty=3, lwd=4, col="magenta")
lines(x.post, res.pick.3[,3], lty=3, lwd=4, col="magenta")

dfs_pwm 17

End(Not run)

dfs_pwm Probability-weighted moment frontier estimator

Description

This function is an implementation of the probability-weighted moment frontier estimator devel-
oped by Daouia, Florens and Simar (2012).

Usage

dfs_pwm(xtab, ytab, x, coefm, a=2, rho, ci=TRUE)

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

coefm a tuning parameter (integer) larger than or equal to 1.

a a smoothing parameter (integer) larger than or equal to 2.

rho a numeric vector of the same length as x or a scalar, which determines the values
of rho.

ci a boolean, TRUE for computing the confidence interval.

Details

The regularized frontier estimator introduced by Daouia et al. (2012) is based on the unregularized
probability-weighted moment estimator

ϕ̂m(x) = ϕfdh(x)−
∫ ϕfdh(x)

0

F̂m(y|x)dy

where the trimming order m ≥ 1 is an integer such that m = mn →∞ as n→∞, and F̂ (y|x) =∑n
i=1 1(xi≤x,yi≤y)/

∑n
i=1 1(xi≤x). The implemented estimator of ϕ(x) is then defined as

ϕ̃m(x) = ϕ̂m(x) + Γ (1 + 1/ρ̄x)
(

1/m ˆ̀
x

)1/ρ̄x

where

ρ̄x = log(a)

{
log
(ϕ̂m(x)− ϕ̂am(x)

ϕ̂am(x)− ϕ̂a2m(x)

)}−1

, ˆ̀
x =

1

m

[
Γ(1 + 1/ρ̄x)

(
1− a−1/ρ̄x

)
ϕ̂m(x)− ϕ̂am(x)

]ρ̄x
,

18 dfs_pwm

with a ≥ 2 being a fixed integer. If the true tail-index ρx = βx + 2 is known, we set ρ̄x = ρx in the
expressions above. The two smoothing parameters m and a have to be fixed by the user in the 4th
and 5th arguments of the function.

The pointwise 95% confidence interval of ϕ(x) derived from the asymptotic normality of ϕ̃m(x) is
given by [ϕ̃m(x)± 1.96 σ̂(m,x)/

√
n] where

σ̂2(m,x) =
2m2

F̂X(x)

∫ ϕfdh(x)

0

∫ ϕfdh(x)

0

F̂m(y|x)F̂m−1(u|x)(1− F̂ (u|x))1(y≤u) dy du,

with F̂X(x) = (1/n)
∑n
i=1 1(xi≤x). Note that the standard deviation σ(m,x)/

√
n of the bias-

corrected estimator ϕ̃m(x) is adjusted by a bootstrap estimator in the numerical illustrations of
Daouia et al. (2012), whereas the exact estimate σ̂(m,x)/

√
n is utilized in the implemented func-

tion. A practical choice of m that Daouia et al. (2012) have employed is the simple rule of thumb
m = coefm × N1/3

x , where Nx =
∑n
i=1 1{xi≤x}, and the integer coefm as well as the second

smoothing parameter a are to be tuned by the user to avoid numerical instabilities in the pointwise
estimates of the tail-index ρx and the frontier function ϕ(x). The user may start with the values
coefm=5 and a=2 [respectively, coefm=10 and a=20] for computing the estimator ϕ̃m(x) [respec-
tively, ρ̄x]. Note that tail-index estimation and frontier estimation are conducted separately.

Value

Returns a numeric vector with the same length as x.

Note

The computational burden here is demanding, so be forewarned.

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Abdelaati Daouia’s Matlab code).

References

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estima-
tors. Journal of Econometrics, 168, 285-299.

See Also

rho_pwm, mopt_pwm.

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)

Not run:
1. When rho[x] is known and equal to 2, we set:
rho<-2
res.pwm.1<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,
a=2, rho, ci=TRUE)

green 19

2. When rho[x] is unknown and dependent of x,
its estimate hat(rho[x]) is obtained via:
rho_pwm <- rho_pwm(post$xinput, post$yprod, x.post, coefm=10, a=20)
and the corresponding frontier estimator via:
res.pwm.2<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,
a=2, rho_pwm, ci=TRUE)

3. When rho[x] is unknown but independent of x,
a robust estimation strategy is by using the (trimmed) mean
over the estimates hat(rho[x]):
rho_trimmean<-mean(rho_pwm, trim=0.00)
res.pwm.3<- dfs_pwm(post$xinput, post$yprod, x.post, coefm=5,
a=2, rho_trimmean, ci=TRUE)

End(Not run)

green American electric utility companies

Description

The dataset consists of 123 American electric utility companies. As in the set-up of Gijbels et al.
(1999), we used the measurements of the variables yi = log(qi) and xi = log(ci), where qi is the
production output of the company i and ci is the total cost involved in the production. For a detailed
description and analysis of these data see, e.g., Christensen and Greene (1976) and Greene (1990).

Usage

data(green)

Format

A data frame with 123 observations on the following 2 variables.

COST a numeric vector.

OUTPUT a numeric vector.

Source

Gijbels et al. (1999).

References

Christensen, L.R. and Greene, W.H. (1976). Economies of Scale in U.S. Electric Power Generation,
Journal of Political Economy, University of Chicago Press, 84, 655-76.

Gijbels, I., Mammen, E., Park, B.U. and Simar, L. (1999). On estimation of monotone and concave
frontier functions. Journal of American Statistical Association, 94, 220-228.

Greene, W.H. (1990). A Gamma-distributed stochastic frontier model, Journal of Econometrics,
46, 141-163.

20 kern_smooth

Examples

data("green")

kern_smooth Frontier estimation via kernel smoothing

Description

The function kern_smooth implements two frontier estimators based on kernel smoothing tech-
niques. One is from Noh (2014) and the other is from Parmeter and Racine (2013).

Usage

kern_smooth(xtab, ytab, x, h, method="u", technique="noh",
control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

h determines the bandwidth at which the smoothed kernel estimate will be com-
puted.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

technique which estimation method to use. "Noh"" specifies the use of the method in Noh
(2014) and "pr" is for the method in Parameter and Racine (2013).

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

To estimate the frontier function, Parameter and Racine (2013) considered the following general-
ization of linear regression smoothers

ϕ̂(x|p) =

n∑
i=1

piAi(x)yi,

where Ai(x) is the kernel weight function of x for the ith data depending on xi’s and the sort of lin-
ear smoothers. For example, the Nadaraya-Watson kernel weights areAi(x) = Ki(x)/(

∑n
j=1Kj(x)),

where Ki(x) = h−1K{(x − xi)/h}, with the kernel function K being a bounded and symmetric
probability density, and h is a bandwidth. Then, the weight vector p = (p1, . . . , pn)T is chosen to
minimize the distance D(p) = (p − pu)T (p − pu) subject to the envelopment constraints and the

kern_smooth 21

choice of the shape constraints, where pu is an n-dimensional vector with all elements being one.
The envelopement and shape constraints are

ϕ̂(xi|p)− yi =
∑n
i=1 piAi(xi)yi − yi ≥ 0, i = 1, . . . , n; (envelopment constraints)

ϕ̂(1)(x|p) =
∑n
i=1 piA

(1)
i (x)yi ≥ 0, x ∈M; (monotonocity constraints)

ϕ̂(2)(x|p) =
∑n
i=1 piA

(2)
i (x)yi ≤ 0, x ∈ C, (concavity constraints)

where ϕ̂(s)(x|p) =
∑n
i=1 piA

(s)
i (x)yi is the sth derivative of ϕ̂(x|p), with M and C being the

collections of points where monotonicity and concavity are imposed, respectively. In our imple-
mentation of the estimator, we simply take the entire dataset {(xi, yi), i = 1, . . . , n} to beM and
C and, in case of small samples, we augment the sample points by an equispaced grid of length 201
over the observed support [mini xi,maxi xi] of X . For the weight Ai(x), we use the Nadaraya-
Watson weights.

Noh (2014) considered the same generalization of linear smoothers ϕ̂(x|p) for frontier estimation,
but with a difference choice of the weight p. Using the same envelopment and shape constraints
as Parmeter and Racine (2013), the weight vector p is chosen to minimize the area under the fitted
curve ϕ̂(x|p), that is A(p) =

∫ b
a
ϕ̂(x|p)dx =

∑n
i=1 piyi

(∫ b
a
Ai(x)dx

)
, where [a, b] is the true

support of X . In practice, we integrate over the observed support [mini xi,maxi xi] since the
theoretic one is unknown. In what concerns the kernel weights Ai(x), we use the Priestley-Chao
weights

Ai(x) =

{
0 , i = 1

(xi − xi−1)Ki(x) , i 6= 1
,

where it is assumed that the pairs (xi, yi) have been ordered so that x1 ≤ · · · ≤ xn. The choice of
such weights is motivated by their convenience for the evaluation of the integral

∫
Ai(x)dx.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been
found by the solver (GLPK).

Author(s)

Hohsuk Noh

References

Noh, H. (2014). Frontier estimation using kernel smoothing estimators with data transformation.
Journal of the Korean Statistical Society, 43, 503-512.

Parmeter, C.F. and Racine, J.S. (2013). Smooth constrained frontier analysis in Recent Advances
and Future Directions in Causality, Prediction, and Specification Analysis, Springer-Verlag, New
York, 463-488.

See Also

kern_smooth_bw.

22 kern_smooth_bw

Examples

Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),
length.out = 101)

options(np.tree=TRUE, crs.messages=FALSE, np.messages=FALSE)
1. Unconstrained
(h.bic.green.u <- kern_smooth_bw(log(green$COST),
log(green$OUTPUT), method = "u", technique = "noh",
bw_method = "bic"))

y.ks.green.u <- kern_smooth(log(green$COST),
log(green$OUTPUT), x.green, h = h.bic.green.u,
method = "u", technique = "noh")

2. Monotonicity constraint
(h.bic.green.m <- kern_smooth_bw(log(green$COST),
log(green$OUTPUT), method = "m", technique = "noh",
bw_method = "bic"))

y.ks.green.m <- kern_smooth(log(green$COST),
log(green$OUTPUT), x.green, h = h.bic.green.m,
method = "m", technique = "noh")

3. Monotonicity and Concavity constraints
(h.bic.green.mc<-kern_smooth_bw(log(green$COST), log(green$OUTPUT),
method="mc", technique="noh", bw_method="bic"))

y.ks.green.mc<-kern_smooth(log(green$COST),
log(green$OUTPUT), x.green, h=h.bic.green.mc, method="mc",
technique="noh")

Representation
plot(log(OUTPUT)~log(COST), data=green, xlab="log(COST)",
ylab="log(OUTPUT)")

lines(x.green, y.ks.green.u, lty=1, lwd=4, col="green")
lines(x.green, y.ks.green.m, lty=2, lwd=4, col="cyan")
lines(x.green, y.ks.green.mc, lty=3, lwd=4, col="magenta")
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
"monotone + concave"), lwd=4, cex=0.8)

End(Not run)

kern_smooth_bw Bandwidth selection for kernel smoothing frontier estimators

Description

The function kern_smooth_bw provides two bandwidth selection methods. One is the least squares
cross-validation developed by Parmeter and Racine (2013). The other is the BIC developed in Noh
(2014).

kern_smooth_bw 23

Usage

kern_smooth_bw(xtab, ytab, method="u", technique="noh", bw_method="bic",
control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

technique which estimation technique to use: "Noh" specifies the use of the method in Noh
(2014), while "pr" is for the method in Parameter and Racine (2013).

bw_method which bandwidth selection method to use: "cv" returns the bandwidth that min-
imizes the least squares cross-validation criterion, and "bic" returns the band-
width minimizing the BIC.

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

As with any smoothed techniques, the bandwidth selection is critical to the quality of the frontier
estimator. Parmeter and Racine (2013)’s recommendation is to use the least squares cross-validation
method implemented with bw_method="cv" in the function kern_smooth_bw. Instead, Noh
(2014) proposed to select the bandwidth which minimizes the following criterion:

BIC(h) = log

(
n∑
i=1

(ϕ̂(xi|p̂(h))− yi)

)
+

log n · tr(S(h))

2n
,

where p̂(h) is the chosen weight vector associated to the bandwidth h, and tr(S(h)) is the trace of
the smoothing matrix

S(h) =

 A1(x1) · · · An(x1)
...

. . .
...

A1(xn) · · · An(xn)

 .

The function kern_smooth_bw computes the optimal bandwidth from this criterion with option
bw_method="bic".

Value

Returns an optimal bandwidth depending on the specified selection method.

Author(s)

Hohsuk Noh

24 kopt_momt_pick

References

Noh, H. (2014). Frontier estimation using kernel smoothing estimators with data transformation.
Journal of the Korean Statistical Society, 43, 503-512.

Parmeter, C.F. and Racine, J.S. (2013). Smooth constrained frontier analysis in Recent Advances
and Future Directions in Causality, Prediction, and Specification Analysis, Springer-Verlag, New
York, 463-488.

See Also

kern_smooth.

Examples

Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),length.out=101)
options(np.tree=TRUE,crs.messages=FALSE,np.messages=FALSE)
h.pr.green.m<-kern_smooth_bw(log(green$COST),log(green$OUTPUT), method="m",
technique="pr", bw_method="cv")

h.noh.green.m<-kern_smooth_bw(log(green$COST),log(green$OUTPUT), method="m",
technique="noh", bw_method="bic")

y.pr.green.m<-kern_smooth(log(green$COST),log(green$OUTPUT), x.green,
h=h.pr.green.m, method="m", technique="pr")

y.noh.green.m<-kern_smooth(log(green$COST),log(green$OUTPUT), x.green,
h=h.noh.green.m, method="m", technique="noh")

plot(log(OUTPUT)~log(COST), data=green, xlab="log(COST)",ylab="log(OUTPUT)")
lines(x.green, y.pr.green.m, lwd=4, lty=3, col="red")
lines(x.green, y.noh.green.m, lwd=4, lty=3, col="blue")
legend("topleft", col=c("blue","red"),lty=3, legend=c("noh","pr"),
lwd=4, cex=0.8)

End(Not run)

kopt_momt_pick Optimal k in moment and Pickands frontier estimators

Description

This function gives the optimal sample fraction k in the moment and Pickands type of estimators
introduced by Daouia, Florens and Simar (2010).

Usage

kopt_momt_pick(xtab, ytab, x, rho, method="moment", wind.coef=0.1)

kopt_momt_pick 25

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

rho a numeric vector of the same length as x or a scalar, which determines the values
of rho.

method a character equal to "moment" or "pickands".

wind.coef a scalar coefficient to be selected in the interval (0,1].

Details

This function is an implementation of an experimental method by Daouia et al. (2010) for the
automated threshold selection (choice of k = kn(x)) for the moment frontier estimator ϕ̃momt(x)
[see dfs_momt] in case method="moment" and for the Pickands frontier estimator ϕ̂pick(x) [see
dfs_pick] in case method="pickands". The idea is to select first (for each x) a grid of values
for the sample fraction kn(x) given by k = 1, · · · , [

√
Nx], where [

√
Nx] stands for the integer

part of
√
Nx with Nx =

∑n
i=1 1{xi≤x}, and then select the k where the variation of the results

is the smallest. To achieve this here, Daouia et al. (2010) compute the standard deviations of
ϕ̃momt(x) [option method="moment"] or ϕ̂pick(x) [option method="pickands"] over a “window”
of size max(3, [wind.coef ×

√
Nx/2]), where the coefficient wind.coef should be selected in the

interval (0, 1] in such a way to avoid numerical instabilities. The default option wind.coef=0.1
corresponds to having a window large enough to cover around 10% of the possible values of k in
the selected range of values for kn(x). The value of k where the standard deviation is minimal
defines the desired sample fraction kn(x).

Value

Returns a numeric vector with the same length as x.

Note

In order to choose a raisonable estimate ϕ̃momt(x) = ϕ̃momt(x, k) [see dfs_momt] and ϕ̂pick(x) =
ϕ̂pick(x, k) [see dfs_pick] of the frontier function ϕ(x), for each fixed x, one can construct the plot
of the estimator of interest, consisting of the points {(k, ϕ̃momt(x, k))}k or {(k, ϕ̂pick(x, k))}k,
and select a value of the estimate at which the obtained graph looks stable. This is this kind of
idea which guides the proposed automatic data-driven rule for a chosen grid of values of x. The
main difficulty with such a method is that the plots of ϕ̃momt(x, k) or ϕ̂pick(x, k) as functions of
k, for each x, may be so unstable that reasonable values of k [which would correspond to the true
value of ϕ(x)] may be hidden in the graphs. In result, the obtained frontier estimator may exhibit
considerable volatility as a function of x. One way to avoid such instabilities is by tuning the choice
of the parameter wind.coef in the interval (0,1]. Note that the default value is wind.coef=0.1.
The user can also improve appreciably the estimation of ϕ(x) by refining the estimation of the
extreme-value index ρx (see rho_momt_pick for details).

Author(s)

Abdelaati Daouia and Thibault Laurent (converted from Leopold Simar’s Matlab code).

26 loc_est

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory,
Bernoulli, 16, 1039-1063.
Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an
extreme-value distribution, Annals of Statistics, 17, 1833-1855.

See Also

dfs_momt, dfs_pick.

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)

When rho[x] is known and equal to 2, we set:
rho<-2
a. Optimal k in Pickands frontier estimators
best_kn.pick<-kopt_momt_pick(post$xinput, post$yprod,
x.post, method="pickands", rho=rho)

b. Optimal k in moment frontier estimators
Not run:
best_kn.momt<-kopt_momt_pick(post$xinput, post$yprod,
x.post, rho=rho)

End(Not run)

loc_est Local linear frontier estimator

Description

Computes the local linear smoothing frontier estimator of Hall, Park and Stern (1998) and Hall and
Park (2004).

Usage

loc_est(xtab, ytab, x, h, method="u", control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.
ytab a numeric vector of the same length as xtab containing the observed outputs

y1, . . . , yn.
x a numeric vector of evaluation points in which the estimator is to be computed.
h determines the bandwidth at which the local linear estimate will be computed.
method a character equal to "u" (unconstrained estimator) or "m" (improved version of

the unconstrained estimator).
control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

loc_est 27

Details

In the unconstrained case (option method="u"), the implemented estimator of ϕ(x) is defined by

ϕ̂n,LL(x) = min
{
z : there exists θ such that yi ≤ z + θ(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}
,

where the bandwidth h has to be fixed by the user in the 4th argument of the function. This estimator
may lack of smoothness in case of small samples and has no guarantee of being monotone even if the
true frontier is so. Following the curvature of the monotone frontier ϕ, the unconstrained estimator
ϕ̂n,LL is likely to exhibit substantial bias, especially at the sample boundaries (see Daouia et al
(2016) for numerical illustrations). A simple way to remedy to this drawback is by imposing the
extra condition θ ≥ 0 in the definition of ϕ̂n,LL(x) to get

ϕ̃n,LL(x) = min
{
z : there exists θ ≥ 0 such that yi ≤ z + θ(xi − x)

for all i such that xi ∈ (x− h, x+ h)
}
.

As shown in Daouia et al (2016), this version only reduces the vexing bias and border defects of
the original estimator when the true frontier is monotone. The option method="m" indicates that
the improved fit ϕ̃n,LL(x) should be utilized in place of ϕ̂n,LL(x). Hall and Park (2004) proposed
a bootstrap procedure for selecting the optimal bandwidth h in ϕ̂n,LL(x) and ϕ̃n,LL(x) (see the
function loc_est_bw).

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been
found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth bound-
aries. Journal of Multivariate Analysis, 91, 240-261.

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries.
Journal of Multivariate Analysis, 66, 71-98.

See Also

loc_est_bw.

28 loc_est_bw

Examples

data("nuclear")
x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab),
length.out=101)

1. Unconstrained estimator
Optimal bandwidths over 100 bootstrap replications
Not run:
h.nucl.u <- loc_est_bw(nuclear$xtab, nuclear$ytab,
x.nucl, h=40, B=100, method="u")

End(Not run)
(h.nucl.u<-79.11877)
y.nucl.u<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl,
h=h.nucl.u, method="u")

2. improved version of the estimator
Optimal bandwidths over 100 bootstrap replications
Not run:
h.nucl.m <- loc_est_bw(nuclear$xtab, nuclear$ytab,
x.nucl, h=40, B=100, method="m")

End(Not run)
(h.nucl.m<-79.12)
y.nucl.m<-loc_est(nuclear$xtab, nuclear$ytab, x.nucl,
h=h.nucl.m, method="m")

3. Representation
plot(x.nucl, y.nucl.u, lty=1, lwd=4, col="magenta", type="l")
lines(x.nucl, y.nucl.m, lty=2, lwd=4, col="cyan")
points(ytab~xtab, data=nuclear)
legend("topleft",legend=c("unconstrained", "improved"),
col=c("magenta","cyan"), lwd=4, lty=c(1,2))

loc_est_bw Bandwidth selection for the local linear frontier estimator

Description

Computes the optimal bootstrap bandwidth proposed by Hall and Park (2004) for the local linear
frontier estimator.

Usage

loc_est_bw(xtab, ytab, x, hini, B = 5, method = "u",
fix.seed = FALSE, control = list("tm_limit" = 700))

loc_est_bw 29

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

hini the initial bandwidth at which the local linear estimate will be computed.

B number of bootstrap replications.

method a character equal to "u" (unconstrained estimator) or "m" (improved version of
the unconstrained estimator).

fix.seed a boolean equal to TRUE for fixing the seed (bootstrap sampling).

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

For a detailed description of the bootstrap procedure, see Hall and Park (2004).

Value

Returns the optimal bootstrap bandwidth.

Note

The computational burden here is very demanding, so be forewarned.

Author(s)

Hohsuk Noh.

References

Hall, P. and Park, B.U. (2004). Bandwidth choice for local polynomial estimation of smooth bound-
aries. Journal of Multivariate Analysis, 91, 240-261.

See Also

loc_est.

Examples

Not run:
data("nuclear")
x.nucl <- seq(min(nuclear$xtab), max(nuclear$xtab),
length.out = 101)
1. Unconstrained case
Optimal bandwidths over 100 bootstrap replications
system.time(
h.nucl.u <- loc_est_bw(nuclear$xtab, nuclear$ytab,
x.nucl, hini = 40, B = 1, method = "u")

30 loc_max

)
result is 79.11877

2. Monotonicity constraint
Optimal bandwidths over 100 bootstrap replications
h.nucl.m <- loc_est_bw(nuclear$xtab, nuclear$ytab,
x.nucl, hini = 40, B = 100, method = "m")

result is 79.12

End(Not run)

loc_max Local maximum frontier estimators

Description

Computes the local constant and local DEA boundary estimates proposed by Gijbels and Peng
(2000).

Usage

loc_max(xtab, ytab, x, h, type="one-stage")

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.
ytab a numeric vector of the same length as xtab containing the observed outputs

y1, . . . , yn.
x a numeric vector of evaluation points in which the estimator is to be computed.
h determines the bandwidth at which the estimate will be computed.
type a character equal to "one-stage" or "two-stage".

Details

When estimating ϕ(x), for a given point x ∈ R, the methodology of Gijbels and Peng consists
of considering a strip around x of width 2h, where h = hn → 0 with nhn → ∞ as n → ∞,
and focusing then on the yi observations falling into this strip. More precisely, they consider the
transformend variables zxhi = yi1(|xi−x|≤h), i = 1, . . . , n, and the corresponding order statistics
zxh(1) ≤ · · · ≤ z

xh
(n).

The simple maximum zxh(n) = maxi=1,...,n z
xh
i defines then the local constant estimator of the fron-

tier point ϕ(x) [option type="one-stage"]. This opens a way to a two-stage estimation procedure
as follows. In a first stage, Gijbels and Peng calculate the maximum zxh(n). Then, they suggest to
replace each observation yi in the strip of width 2h around x by this maximum, leaving all ob-
servations outside the strip unchanged. More precisely, they define ỹi = yi if |xi − x| > h and
ỹi = zxh(n) if |xi − x| ≤ h either. Then, they apply the DEA estimator (see the function dea_est)
to these transformed data (xi, ỹi), giving the local DEA estimator (option type="two-stage"). An
ad hoc way of selecting h is by using for instance the function npcdistbw from the np package (see
Daouia et al. (2016) for details).

mopt_pwm 31

Value

Returns a numeric vector with the same length as x.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Laurent, T. and Noh, H. (2017). npbr: A Package for Nonparametric Boundary Regres-
sion in R. Journal of Statistical Software, 79(9), 1-43. doi:10.18637/jss.v079.i09.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics, Extremes, 3,
251–277.

See Also

dea_est

Examples

data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)),
length.out=101)

Local maximum frontier estimates
a. Local constant estimator
loc_max_1stage<-loc_max(log(green$COST), log(green$OUTPUT),
x.green, h=0.5, type="one-stage")

b. Local DEA estimator
loc_max_2stage<-loc_max(log(green$COST), log(green$OUTPUT),
x.green, h=0.5, type="two-stage")

Representation
plot(log(OUTPUT)~log(COST), data=green)
lines(x.green, loc_max_1stage, lty=1, col="magenta")
lines(x.green, loc_max_2stage, lty=2, col="cyan")
legend("topleft",legend=c("one-stage", "two-stage"),
col=c("magenta","cyan"), lty=c(1,2))

mopt_pwm Threshold selection for the PWM frontier estimator

Description

This function implements the optimal smoothing parameter coefm involved in the probability-
weighted moment frontier estimator of Daouia, Florens and Simar (2012).

Usage

mopt_pwm(xtab, ytab, x, a=2, rho, wind.coef=0.1)

32 mopt_pwm

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

a a smoothing parameter (integer) larger than or equal to 2 (2 by default).

rho a numeric vector of the same length as x or a scalar, which determines the values
of rho.

wind.coef a scalar coefficient to be selected in the interval (0,1].

Details

This is an implementation of an automated selection of the parameter coefm involved in the probability-
weighted moment (PWM) estimator ϕ̃pwm(x) [see dfs_pwm]. It is an adaptation of the experimental
method kopt_momt_pick by Daouia et al. (2010). The idea is to select first (for each x) a grid of
values for the parameter coefm given by c = 1, · · · ,min(10, [

√
Nx]), where Nx =

∑n
i=1 1{xi≤x},

and then select the c where the variation of the results is the smallest. To achieve this, we compute
the standard deviations of ϕ̃pwm(x) over a “window” of size wind.coef ×min(10, [

√
Nx]), where

the coefficient wind.coef should be selected in the interval (0, 1] in such a way to avoid numerical
instabilities. The default option wind.coef=0.1 corresponds to having a window large enough to
cover around 10% of the possible values of c in the selected range of values for coefm. The value
of c where the standard deviation is minimal defines the desired coefm.

Value

Returns a numeric vector with the same length as x.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory.
Bernoulli, 16, 1039-1063.

See Also

dfs_pwm, kopt_momt_pick.

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)

Not run:
When rho[x] is known and equal to 2:
best_cm.1<- mopt_pwm(post$xinput, post$yprod,

nuclear 33

x.post, a=2, rho=2)

End(Not run)

nuclear Reliability programs of nuclear reactors

Description

The dataset from the US Electric Power Research Institute (EPRI) consists of 254 toughness re-
sults obtained from non-irradiated representative steels. For each steel i, fracture toughness yi and
temperature xi were measured.

Usage

data(nuclear)

Format

A data frame with 254 observations on the following 2 variables.

xtab Temperature.

ytab Fracture toughness of each material.

Source

US Electric Power Research Institute (EPRI).

References

Daouia, A., Girard, S. and Guillou, A. (2014). A Gamma-moment approach to monotonic boundary
estimation. Journal of Econometrics, 78, 727-740.

Examples

data("nuclear")

34 pick_est

pick_est Local Pickands’ frontier estimator

Description

Computes the Pickands type of estimator introduced by Gijbels and Peng (2000).

Usage

pick_est(xtab, ytab, x, h, k, type="one-stage")

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

h determines the bandwidth at which the estimate will be computed.

k a numeric vector of the same length as x, which determines the thresholds at
which the Pickands’ estimator will be computed.

type a character equal to "one-stage" or "two-stage".

Details

The local Pickands’ frontier estimator (option type="one-stage"), obtained by applying the well-
known approach of Dekkers and de Haan (1989) in conjunction with the transformed sample of
zxhi ’s described in the function loc_max, is defined as

zxh(n−k) +
(
zxh(n−k) − z

xh
(n−2k)

)
{2
− log

zxh
(n−k)

−zxh
(n−2k)

zxh
(n−2k)

−zxh
(n−4k)

/ log 2

− 1}−1.

It is based on three upper order statistics zxh(n−k), z
xh
(n−2k), z

xh
(n−4k), and depends on h (see loc_max)

as well as an intermediate sequence k = k(x, n) → ∞ with k/n → 0 as n → ∞. The two
smoothing parameters h and k have to be fixed in the 4th and 5th arguments of the function.

Also, the user can replace each observation yi in the strip of width 2h around x by the resulting
local Pickands’, leaving all observations outside the strip unchanged. Then, one may apply the
DEA estimator (see the function dea_est) to the obtained transformed data, giving the local DEA
estimator (option type="two-stage").

Value

Returns a numeric vector with the same length as x.

Author(s)

Abdelaati Daouia and Thibault Laurent.

poly_degree 35

References

Dekkers, A.L.M. and L. de Haan (1989). On the estimation of extreme-value index and large
quantiles estimation, Annals of Statistics, 17, 1795-1832.

Gijbels, I. and Peng, L. (2000). Estimation of a support curve via order statistics, Extremes, 3,
251-277.

See Also

dea_est

Examples

Not run:
data("green")
plot(log(OUTPUT)~log(COST), data=green)
x <- seq(min(log(green$COST)), max(log(green$COST)), length.out=101)
h=0.5
nx<-unlist(lapply(x,function(y) length(which(abs(log(green$COST)-y)<=h))))
k<-trunc(nx^0.1)
lines(x, pick_est(log(green$COST), log(green$OUTPUT), x, h=h, k=k), lty=1, col="red")

End(Not run)

poly_degree AIC and BIC criteria for choosing the optimal degree of the polyno-
mial frontier estimator

Description

Computes the optimal degree of the unconstrained polynomial frontier estimator proposed by Hall,
Park and Stern (1998).

Usage

poly_degree(xtab, ytab, prange=0:20, type="AIC",
control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

prange a vector of integers specifying the range in which the optimal degree of the
polynomial frontier estimator is to be selected.

type a character equal to "AIC" or "BIC".

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

36 poly_degree

Details

As the degree p of the polynomial estimator ϕ̂n,p (see poly_est) determines the dimensionality
of the approximating function, we may view the problem of choosing p as model selection. By
analogy to the information criteria proposed by Daouia et al. (2016) in the boundary regression
context, we obtain the optimal polynomial degree by minimizing

AIC(p) = log

(
n∑
i=1

(ϕ̂n,p(xi)− yi)

)
+ (p+ 1)/n,

BIC(p) = log

(
n∑
i=1

(ϕ̂n,p(xi)− yi)

)
+ log n(p+ 1)/(2n).

The first one (option type = "AIC") is similar to the famous Akaike information criterion Akaike
(1973) and the second one (option type = "BIC") to the Bayesian information criterion Schwartz
(1978).

Value

Returns an integer.

Author(s)

Hohsuk Noh.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in
Second International Symposium of Information Theory, eds. B. N. Petrov and F. Csaki, Budapest:
Akademia Kiado, 267–281.
Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.
Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries.
Journal of Multivariate Analysis, 66, 71-98.
Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

poly_est

Examples

data("air")
x.air <- seq(min(air$xtab), max(air$xtab),
length.out = 101)

Optimal polynomial degrees via the AIC criterion
(p.aic.air <- poly_degree(air$xtab, air$ytab,
type = "AIC"))

Optimal polynomial degrees via the BIC criterion
(p.bic.air <- poly_degree(air$xtab, air$ytab,
type = "BIC"))

poly_est 37

poly_est Polynomial frontier estimators

Description

Computes the polynomial-type estimators of frontiers and boundaries proposed by Hall, Park and
Stern (1998).

Usage

poly_est(xtab, ytab, x, deg, control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

deg an integer (polynomial degree).

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

The data edge is modeled by a single polynomial ϕθ(x) = θ0 + θ1x+ · · ·+ θpx
p of known degree

p that envelopes the full data and minimizes the area under its graph for x ∈ [a, b], with a and b
being respectively the lower and upper endpoints of the design points x1, . . . , xn. The implemented
function is the estimate ϕ̂n,p(x) = θ̂0 + θ̂1x + · · · + θ̂px

p of ϕ(x), where θ̂ = (θ̂0, θ̂1, · · · , θ̂p)T

minimizes
∫ b
a
ϕθ(x) dx over θ ∈ Rp+1 subject to the envelopment constraints ϕθ(xi) ≥ yi, i =

1, . . . , n.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been
found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Hall, P., Park, B.U. and Stern, S.E. (1998). On polynomial estimators of frontiers and boundaries.
Journal of Multivariate Analysis, 66, 71-98.

See Also

loc_est

38 post

Examples

data("air")
x.air <- seq(min(air$xtab), max(air$xtab),
length.out = 101)

Optimal polynomial degrees via the AIC criterion
(p.aic.air <- poly_degree(air$xtab, air$ytab,
type = "AIC"))

Polynomial boundaries estimate
y.poly.air<-poly_est(air$xtab, air$ytab, x.air,
deg = p.aic.air)

Representation
plot(x.air, y.poly.air, lty = 1, lwd = 4,
col = "magenta", type = "l")

points(ytab~xtab, data = air)
legend("topleft",legend = paste("degree =", p.aic.air),
col = "magenta", lwd = 4, lty = 1)

post European postal services

Description

The dataset post about the cost of the delivery activity of the postal services in Europe was first
analyzed by Cazals, Florens and Simar (2002). There are 4,000 post offices observed in 1994. For
each post office i, the input xi is the labor cost measured by the quantity of labor, which represents
more than 80% of the total cost of the delivery activity. The output yi is defined as the volume of
delivered mail (in number of objects). It should be noted that noise has been added to the original
data.

Usage

data(post)

Format

A data frame with 4000 observations on the following 2 variables.

xinput a numeric vector.

yprod a numeric vector.

References

Cazals, C., Florens, J.-P., Simar, L. (2002), Nonparametric frontier estimation: a robust approach,
Journal of Econometrics, 106, 1-25.

Examples

data("post")

quad_spline_est 39

quad_spline_est Quadratic spline frontiers

Description

This function is an implementation of the (un)constrained quadratic spline smoother proposed by
Daouia, Noh and Park (2016).

Usage

quad_spline_est(xtab, ytab, x, kn = ceiling((length(xtab))^(1/4)), method= "u",
all.dea = FALSE, control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

kn an integer specifying the number of inter-knot segments used in the computation
of the spline estimate.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

all.dea a boolean.

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

Let a and b be, respectively, the minimum and maximum of the design points x1, . . . , xn. Denote
a partition of [a, b] by a = t0 < t1 < · · · < tkn = b (see below the selection process). Let
N = kn + 1 and π(x) = (π1(x), . . . , πN (x))T be the vector of normalized B-splines of order 3
based on the knot mesh {tj} (see, e.g., Schumaker (2007)). When the true frontier ϕ(x) is known
or required to be monotone nondecreasing (option cv=0), its constrained quadratic spline estimate
is defined by ϕ̂n(x) = π(x)T α̂, where α̂ minimizes∫ 1

0

π(x)Tαdx =

N∑
j=1

αj

∫ 1

0

πj(x) dx

over α ∈ RN subject to the envelopment and monotonicity constraints π(xi)
Tα ≥ yi, i = 1, . . . , n,

and π′(tj)Tα ≥ 0, j = 0, 1, . . . , kn, with π′ being the derivative of π.

Considering the special connection of the spline smoother ϕ̂n with the traditional FDH frontier
ϕn (see the function dea_est), Daouia et al. (2015) propose an easy way of choosing the knot
mesh. Let (X1,Y1), . . . , (XN ,YN) be the observations (xi, yi) lying on the FDH boundary (i.e.
yi = ϕn(xi)). The basic idea is to pick out a set of knots equally spaced in percentile ranks among

40 quad_spline_est

theN FDH points (X`,Y`) by taking tj = X[jN/kn], the j/knth quantile of the values ofX` for j =
1, . . . , kn−1. The choice of the number of internal knots is then viewed as model selection through
the minimization of the AIC and BIC information criteria (see the function quad_spline_kn).

When the monotone boundary ϕ(x) is also believed to be concave (option cv=1), its constrained fit
is defined as ϕ̂?n(x) = π(x)T α̂?, where α̂? ∈ RN minimizes the same objective function as α̂ sub-
ject to the same envelopment and monotonicity constraints and the additional concavity constraints
π′′(t∗j)

Tα ≤ 0, j = 1, . . . , kn, where π′′ is the constant second derivative of π on each inter-knot
interval and t∗j is the midpoint of (tj−1, tj].

Regarding the choice of knots, the same scheme as for ϕ̂n can be applied by replacing the FDH
points (X1,Y1), . . . , (XN ,YN) with the DEA points (X ∗1 ,Y∗1), . . . , (X ∗M,Y∗M), that is, the obser-
vations (xi, yi) lying on the piecewise linear DEA frontier (see the function dea_est). Alterna-
tively, the strategy of just using all the DEA points as knots is also working quite well for datasets
of modest size as shown in Daouia et al. (2016). In this case, the user has to choose the option
all.dea=TRUE.

Value

Returns a numeric vector with the same length as x. Returns a vector of NA if no solution has been
found by the solver (GLPK).

Author(s)

Hohsuk Noh.

References

Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.

Schumaker, L.L. (2007). Spline Functions: Basic Theory, 3rd edition, Cambridge University Press.

See Also

quad_spline_kn

Examples

Not run:
data("green")
x.green <- seq(min(log(green$COST)), max(log(green$COST)), length.out=101)
1. Unconstrained quadratic spline fits
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.u<-quad_spline_kn(log(green$COST),
log(green$OUTPUT), method="u", type="BIC"))
Unconstrained spline estimate
y.quad.green.u<-quad_spline_est(log(green$COST),
log(green$OUTPUT), x.green, kn=kn.bic.green.u, method="u")

2. Monotonicity constraint
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.m<-quad_spline_kn(log(green$COST),

quad_spline_kn 41

log(green$OUTPUT), method="m", type="BIC"))
Monotonic splines estimate
y.quad.green.m<-quad_spline_est(log(green$COST),
log(green$OUTPUT), x.green, kn=kn.bic.green.m, method="m")

3. Monotonicity and Concavity constraints
Optimal number of inter-knot segments via the BIC criterion
(kn.bic.green.mc<-quad_spline_kn(log(green$COST),
log(green$OUTPUT), method="mc", type="BIC"))

Monotonic/Concave splines estimate
y.quad.green.mc<-quad_spline_est(log(green$COST),
log(green$OUTPUT), x.green, kn=kn.bic.green.mc,
method="mc", all.dea=TRUE)

Representation
plot(x.green, y.quad.green.u, lty=1, lwd=4, col="green",
type="l", xlab="log(COST)", ylab="log(OUTPUT)")

lines(x.green, y.quad.green.m, lty=2, lwd=4, col="cyan")
lines(x.green, y.quad.green.mc, lwd=4, lty=3, col="magenta")
points(log(OUTPUT)~log(COST), data=green)
legend("topleft", col=c("green","cyan","magenta"),
lty=c(1,2,3), legend=c("unconstrained", "monotone",
"monotone + concave"), lwd=4, cex=0.8)

End(Not run)

quad_spline_kn AIC and BIC criteria for choosing the optimal number of inter-knot
segments in quadratic spline fits

Description

Computes the optimal number kn of inter-knot segments in the quadratic spline fits proposed by
Daouia, Noh and Park (2016).

Usage

quad_spline_kn(xtab, ytab, method, krange = 1:20, type = "AIC",
control = list("tm_limit" = 700))

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

method a character equal to "u" (unconstrained estimator), "m" (under the monotonic-
ity constraint) or "mc" (under simultaneous monotonicity and concavity con-
straints).

42 quad_spline_kn

krange a vector of integers specifying the range in which the optimal number of inter-
knot segments is to be selected.

type a character equal to "AIC" or "BIC".

control a list of parameters to the GLPK solver. See *Details* of help(Rglpk_solve_LP).

Details

For the implementation of the unconstrained quadratic spline smoother ϕ̃n (see quad_spline_est),
based on the knot mesh {tj = x[jn/kn] : j = 1, . . . , kn − 1}, the user has to employ the option
method="u". Since the number kn determines the complexity of the spline approximation, its
choice may be viewed as model selection via the minimization of the following Akaike (option
type="AIC") or Bayesian (option type="BIC") information criteria:

AĨC(k) = log

(
n∑
i=1

(ϕ̃n(xi)− yi)

)
+ (k + 2)/n,

BĨC(k) = log

(
n∑
i=1

(ϕ̃n(xi)− yi)

)
+ log n · (k + 2)/2n.

For the implementation of the monotone (option method="m") quadratic spline smoother ϕ̂n (see
quad_spline_est), the authors first suggest using the set of knots {tj = X[jN/kn], j = 1, . . . , kn−
1} among the FDH points (X`,Y`), ` = 1, . . . ,N (function quad_spline_est). Then, they
propose to choose kn by minimizing the following AIC (option type="AIC") or BIC (option
type="BIC") information criteria:

AÎC(k) = log

(
n∑
i=1

(ϕ̂n(xi)− yi)

)
+ (k + 2)/n,

BÎC(k) = log

(
n∑
i=1

(ϕ̂n(xi)− yi)

)
+ log n · (k + 2)/2n.

A small number of knots is typically needed as elucidated by the asymptotic theory.

For the implementation of the monotone and concave (option method="mc") spline estimator ϕ̂?n,
just apply the same scheme as above by replacing the FDH points (X`,Y`) with the DEA points
(X ∗` ,Y∗`) (see dea_est).

Value

Returns an integer.

Author(s)

Hohsuk Noh.

records 43

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, in
Second International Symposium of Information Theory, eds. B. N. Petrov and F. Csaki, Budapest:
Akademia Kiado, 267–281.
Daouia, A., Noh, H. and Park, B.U. (2016). Data Envelope fitting with constrained polynomial
splines. Journal of the Royal Statistical Society: Series B, 78(1), 3-30. doi:10.1111/rssb.12098.
Schwartz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461–464.

See Also

quad_spline_est

Examples

data("green")
Not run:
BIC criteria for choosing the optimal number of
inter-knot segments in:
a. Unconstrained quadratic spline fits
(kn.bic.green.u <- quad_spline_kn(log(green$COST),
log(green$OUTPUT), method = "u", type = "BIC"))

b. Monotone quadratic spline smoother
(kn.bic.green.m <- quad_spline_kn(log(green$COST),
log(green$OUTPUT), method = "m", type = "BIC"))

c. Monotone and concave quadratic spline smoother
(kn.bic.green.mc<-quad_spline_kn(log(green$COST),
log(green$OUTPUT), method = "mc", type = "BIC"))

End(Not run)

records Annual sport records

Description

The dataset records is concerned with the yearly best men’s outdoor 1500m times starting from
1966. Following Jirak, Meister and Reiss (2014), the lower boundary can be interpreted as the best
possible time for a given year. This boundary is not believed to be shape constrained and can be
estimated by any unconstrained shape nonparametric method.

Usage

data(records)

Format

A data frame with 46 observations on the following 2 variables.

year year.
result 1500m record in seconds.

44 rho_momt_pick

References

Jirak, M., Meister, A. and M. Reiss (2014), Optimal adaptive estimation in nonparametric regression
with one-sided errors. Annals of Statistics, 42, 1970–2002.

Examples

data("records")

rho_momt_pick Optimal rho for moment and Pickands frontier estimator

Description

This function gives the optimal rho involved in the moment and Pickands estimators of Daouia,
Florens and Simar (2010).

Usage

rho_momt_pick(xtab, ytab, x, method="moment", lrho=1, urho=Inf)

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

method a character equal to "moment" or "pickands".

lrho a scalar, minimum rho threshold value.

urho a scalar, maximum rho threshold value.

Details

This function computes the moment and Pickands estimates of the extreme-value index ρx in-
volved in the frontier estimators ϕ̃momt(x) [see dfs_momt] and ϕ̂pick(x) [see dfs_pick]. In case
method="moment", the estimator of ρx defined as

ρ̃x = −
(
M (1)
n + 1− 1

2

[
1− (M (1)

n)2/M (2)
n

]−1
)−1

is based on the momentsM (j)
n = (1/k)

∑k−1
i=0

(
log zx(n−i) − log zx(n−k)

)j
for j = 1, 2, with zx(1) ≤

· · · ≤ zx(n) are the ascending order statistics corresponding to the transformed sample {zxi :=

yi1{xi≤x}, i = 1, · · · , n} In case method="pickands", the estimator of ρx is given by

ρ̂x = − log 2/ log{(zx(n−k+1) − z
x
(n−2k+1))/(z

x
(n−2k+1) − z

x
(n−4k+1))}.

rho_momt_pick 45

To select the threshold k = kn(x) in ρ̃x and ρ̂x, Daouia et al. (2010) have suggested to use the
following data driven method for each x: They first select a grid of values for k = kn(x). For the
Pickands estimator ρ̂x, they choose kn(x) = [Nx/4]−k+1, where k is an integer varying between 1
and the integer part [Nx/4] of Nx/4, with Nx =

∑n
i=1 1{xi≤x}. For the moment estimator ρ̃x, they

choose kn(x) = Nx − k, where k is an integer varying between 1 and Nx − 1. Then, they evaluate
the estimator ρ̂x(k) (respectively, ρ̃x(k)) and select the k where the variation of the results is the
smallest. They achieve this by computing the standard deviation of ρ̂x(k) (respectively, ρ̃x(k)) over
a “window” of max([

√
Nx/4], 3) (respectively, max([

√
Nx − 1], 3)) successive values of k. The

value of k where this standard deviation is minimal defines the value of kn(x). The user can also
appreciably improve the estimation of ρx and ϕ(x) itself by tuning the choice of the lower limit
(default option lrho=1) and upper limit (default option urho=Inf).

Value

Returns a numeric vector with the same length as x.

Note

In order to choose a raisonable estimate ρ̃x = ρ̃x(k) and ρ̂x = ρ̂x(k) of the extreme-value index
ρx, for each fixed x, one can construct the plot of the estimator of interest, consisting of the points
{(k, ρ̃x(k))}k or {(k, ρ̂x(k))}k, and select a value of the estimate at which the obtained graph looks
stable. This is this kind of idea which guides the propoed automatic data-driven rule for a chosen
grid of values of x. The main difficulty with such a method is that the plots of ρ̃x(k) or ρ̂x(k) as
functions of k, for each x, may be so unstable that reasonable values of k [which would correspond
to the true value of ρx] may be hidden in the graphs. In results, the obtained extreme-value index
estimator and the frontier estimator itself may exhibits considerable volatility as functions of x. The
user can appreciably improve the estimation of ρx and ϕ(x) by tuning the choice of the lower limit
(default option lrho=1) and upper limit (default option urho=Inf).

Author(s)

Abdelaati Daouia and Thibault Laurent (codes converted from Matlab’s Leopold Simar code).

References

Daouia, A., Florens, J.P. and Simar, L. (2010). Frontier Estimation and Extreme Value Theory,
Bernoulli, 16, 1039-1063.

Dekkers, A.L.M., Einmahl, J.H.J. and L. de Haan (1989), A moment estimator for the index of an
extreme-value distribution, The Annals of Statistics, 17(4), 1833-1855.

See Also

dfs_momt, dfs_pick

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)
Not run:

46 rho_pwm

a. Optimal rho for Pickands frontier estimator
rho_pick<-rho_momt_pick(post$xinput, post$yprod,
x.post, method="pickands")

b. Optimal rho for moment frontier estimator
rho_momt<-rho_momt_pick(post$xinput, post$yprod,
x.post, method="moment")

End(Not run)

rho_pwm Probability-weighted moment frontier estimator

Description

This function is an implementation of the Probability-weighted moment frontier estimator devel-
oped by Daouia, Florens and Simar (2012).

Usage

rho_pwm(xtab, ytab, x, a=2, lrho=1, urho=Inf)

Arguments

xtab a numeric vector containing the observed inputs x1, . . . , xn.

ytab a numeric vector of the same length as xtab containing the observed outputs
y1, . . . , yn.

x a numeric vector of evaluation points in which the estimator is to be computed.

a a smoothing parameter (integer) larger than or equal to 2.

lrho a scalar, minimum rho threshold value.

urho a scalar, maximum rho threshold value.

Details

The function computes the probability-weighted moment (PWM) estimator ρ̄x utilized in the fron-
tier estimate ϕ̃pwm(x)[see dfs_pwm]. This estimator depends on the smoothing parameters a and
m. A simple selection rule of thumb that Daouia et al. (2012) have employed is a = 2 [default
option in the 4th argument of the function] and m = coefm ×N1/3

x , where Nx =
∑n
i=1 1{xi≤x}

and the integer coefm is to be tuned by the user. To choose this parameter in an optimal way for
each x, we adapt the automated threshold selection method of Daouia et al. (2010) as follows: We
first evaluate the estimator ρ̄x over a grid of values of coefm given by c = 1, · · · , 150. Then, we
select the c where the variation of the results is the smallest. This is achieved by computing the
standard deviation of the estimates ρ̄x over a “window” of max([

√
150], 3) successive values of c.

The value of c where this standard deviation is minimal defines the value of coefm. The user can
also appreciably improve the estimation of the extreme-value index ρx and the frontier function ϕx
itself by tuning the choice of the lower limit (default option lrho=1) and upper limit (default option
urho=Inf).

rho_pwm 47

Value

Returns a numeric vector with the same length as x.

Note

The computational burden here is demanding, so be forewarned.

Author(s)

Abdelaati Daouia and Thibault Laurent.

References

Daouia, A., Florens, J.-P. and Simar, L. (2010). Frontier estimation and extreme value theory.
Bernoulli, 16, 1039-1063.

Daouia, A., Florens, J.-P. and Simar, L. (2012). Regularization of Nonparametric Frontier Estima-
tors. Journal of Econometrics, 168, 285-299.

See Also

dfs_pwm, mopt_pwm.

Examples

data("post")
x.post<- seq(post$xinput[100],max(post$xinput),
length.out=100)

Not run:
When rho[x] is unknown and dependent of x,
its estimate hat(rho[x]) is obtained via:
rho_pwm <- rho_pwm(post$xinput, post$yprod, x.post, a=20)

End(Not run)

Index

∗ datasets
air, 5
green, 19
nuclear, 33
post, 38
records, 43

∗ nonparametric
cub_spline_est, 6
cub_spline_kn, 8
dea_est, 10
dfs_momt, 12
dfs_pick, 14
dfs_pwm, 17
kopt_momt_pick, 24
loc_max, 30
mopt_pwm, 31
npbr-package, 2
pick_est, 34
poly_degree, 35
quad_spline_est, 39
quad_spline_kn, 41
rho_momt_pick, 44
rho_pwm, 46

∗ optimize
cub_spline_est, 6
cub_spline_kn, 8
dea_est, 10
kern_smooth, 20
kern_smooth_bw, 22
loc_est, 26
loc_est_bw, 28
npbr-package, 2
poly_degree, 35
poly_est, 37
quad_spline_est, 39
quad_spline_kn, 41

air, 5

cub_spline_est, 4, 6, 9, 11

cub_spline_kn, 4, 6, 7, 8

dea_est, 3, 10, 30, 31, 34, 35, 39, 40, 42
dfs_momt, 3, 12, 15, 16, 25, 26, 44, 45
dfs_pick, 4, 13, 14, 25, 26, 44, 45
dfs_pwm, 4, 17, 32, 46, 47

green, 19

kern_smooth, 4, 20, 24
kern_smooth_bw, 4, 21, 22
kopt_momt_pick, 4, 13, 15, 16, 24, 32

loc_est, 3, 26, 29, 37
loc_est_bw, 3, 27, 28
loc_max, 4, 30, 34

mopt_pwm, 18, 31, 47

npbr (npbr-package), 2
npbr-package, 2
nuclear, 33

pick_est, 4, 34
poly_degree, 3, 35
poly_est, 3, 36, 37
post, 38

quad_spline_est, 4, 11, 39, 42, 43
quad_spline_kn, 4, 40, 41

records, 43
rho_momt_pick, 4, 12, 15, 25, 44
rho_pwm, 18, 46

48

	npbr-package
	air
	cub_spline_est
	cub_spline_kn
	dea_est
	dfs_momt
	dfs_pick
	dfs_pwm
	green
	kern_smooth
	kern_smooth_bw
	kopt_momt_pick
	loc_est
	loc_est_bw
	loc_max
	mopt_pwm
	nuclear
	pick_est
	poly_degree
	poly_est
	post
	quad_spline_est
	quad_spline_kn
	records
	rho_momt_pick
	rho_pwm
	Index

