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nortestARMA Neyman Smooth Tests of Normality for the Errors of ARMA Models
Description

Test statistics are computed to check normality in autoregressive moving-average (ARMA) time
series models, adopting the smooth test paradigm. The mean of the ARMA process can be assumed
known or unknown. A data-driven order of the family of the BIC type is given.
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2 nortestARMA

Usage
nortestARMA(residuals, sigzhat, d = 2)

Arguments

residuals Vector of residuals of a fitted ARMA(p, ¢) model.

sig2hat Estimated variance of the i.i.d. errors of the ARMA(p, ¢) model.

d Paramater used in the choice of the order of the Legendre polynomial.
Details

In the 2004 paper, the mean p of the ARMA process is supposed to be known and thus should not
be estimated. In that case, the residuals should be computed without estimation of the mean pu.
Moreover, these residuals should not be centered before calling the nortestARMA function because
there might be some asymptotic impact of centering the residuals (see Serfling (1980) page 73, case
(iv)). In the 2016 paper, we considered that the mean g is unknown. Thus in that case, the residuals
should be computed taking into account the estimation of y. Moreover, we have showed that there
is no asymptotic impact of the centering of the residuals (see Yu (2007)). Nevertheless, in that case,
centering the residuals could be a good idea for small sample sizes.

Value

List with the following components:

RKsdest Values of the test statistics Ry, for £ = 1, ..., 10 when only the standard devia-
tion is estimated (mean is supposed known).

Koptsdest Optimal value KofK using a BIC type criterion involving the values of RKsdest,
k=d,...,D = 10.

pvalsdest p-value of the test, associated to RKsdest[Koptsdest].

RKsdmuest Values of the test statistics Ry, for & = 1,...,10 for the new test (both the
standard deviation and the mean are estimated).

Koptsdmuest Optimal value KofK using a BIC type criterion involving the values of RKsdmuest,
k=d,...,D = 10.

pvalsdmuest p-value for the new test, associated to RKsdmuest[Koptsdmuest].

Author(s)

Duchesne P., Lafaye de Micheaux P.

References

Ducharme G., Lafaye de Micheaux P., (2004). Goodness-of-fit tests of normality for the innovations
in ARMA models. Journal of Time Series Analysis 25 (3), 373-395.

Duchesne P., Lafaye de Micheaux P., Tagne J. (2016). Neyman Smooth Test of Normality for
ARMA Time Series Models with Unknown Mean. Submitted.

Piggott J. L., (1980). The use o f Box-Jenkins modelling for the forecasting of daily gas demand.
Paper presented to the Royal Statistical Society.
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Shea B. L., (1987). Estimation of Multivariate Time Series. Journal of Time Series Analysis 8 (1),
95-109.

Examples

AR AR

# Example in Ducharme et al. (2004) #

HHHHHHHHHHEHEHHEHHHEHH AR

data(Piggott)

ts.plot(Piggott$temp, main = "Temperature Series")
ts.plot(Piggott$wind. trans, main = "Transformed Wind Speed Series")

# The differenciated series Y_t - Y_{t - 1} of length 366 (taking Y_0 = @)
diff.temp <- c(Piggott$temp[1], diff(Piggott$temp))

pacf(diff.temp)
# Below, we assumed that the mean E(Y_t) is known and is equal to 0.
fit.MA4 <- arima(diff.temp, order = c(0,0,4), include.mean = FALSE)

resfit.MA4 <- residuals(fit.MA4)
sig2fit.MA4 <- fit.MA4$sigma?2

# The residuals should not be centered.
nortestARMA(resfit.MA4, sig2fit.MA4, d = 2)

# Note: In Ducharme et al. (2004), the data were analyzed using the
# G13DCF routine in NAG.

# This routine gave us slightly different results.

# We obtained the following values:

# ITERATION NUMBER = 9

# ESTIMATED CONDITION NUMBER OF HESSIAN MATRIX = 0.181E+01

# NUMBER OF LIKELIHOOD EVALUATIONS MADE SO FAR = 82

# VALUE OF LOG LIKELIHOOD FUNCTION = -0.68515E+03

# NORM OF GRADIENT VECTOR = ©0.12052E-03

# MA PARAMETERS : 0.0715894141 -0.296819534 -0.149662304 -0.19482046
# VARIANCE : 2.47466874

# For reproducibility purpose, the non centered residuals returned
# by this routine have been included in the current package in the
# 'resid.temp' object. To obtain exactly the same results as in the
# original 2004 article, one can thus issue the following commands:
Sig2NAG <- 2.47466874

nortestARMA(resid. temp, sig2NAG, d = 2)

AR R
# Example in Duchesne et al. (2016) #
HHHHHHARHEE A
data(potato)

plot(potato, type = "1")

# First difference
potatoe.yield.diff <- diff(potato$potatoeyield)
mean(potatoe.yield.diff)
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potatoe.yield.diff.centered <- scale(potatoe.yield.diff, scale = FALSE)
n <- length(potatoe.yield.diff.centered)
ts.plot(potatoe.yield.diff.centered)

acf2(potatoe.yield.diff.centered)

( fit.AR1 <- arima(potatoe.yield.diff.centered, order = c(1, 0, @) ,

method= 'ML', include.mean = TRUE) )

( fit.ART.wo.mean <- arima(potatoe.yield.diff.centered, order = c(1, 0, @) ,
method= 'ML', include.mean = FALSE) )

resfit.AR1 <- residuals(fit.AR1)

sig2fit.AR1 <- fit.AR1$sigma2

resfit.AR1.centered <- resfit.AR1 - mean(resfit.AR1)
nortestARMA(resfit.AR1.centered, sig2fit.AR1, d = 2)

Using the (2014) approach where the residuals have been

computed after estimating the mean (by first removing the average of the
observations), and doing as if the mean had not

been estimated and were known (include.mean = FALSE).

Note that if Y_t = a + bt + X_t for example, differenciating
will not make the true mean of the differenciated series to be 0.
resfit.AR1.wo.mean <- residuals(fit.AR71.wo.mean)
sig2fit.AR1.wo.mean <- fit.AR1.wo.mean$sigma2
nortestARMA(resfit.AR1.wo.mean, sig2fit.AR1.wo.mean, d = 2)

#
#
#
#
#
#

hist(resfit.AR1/sqrt(sig2fit.AR1))

Box.test(resfit.AR1.centered, lag = 3, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 6, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 12, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 14, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 20, type = "Ljung-Box", fitdf = 1)

acf2(resfit.AR1)

matX.AOdsARI11 <- function(n, phi) {
X <- matrix(@, nrow = n + 2, ncol = n)
oneminusphi <- c¢(1, -1 - phi, phi)
for (i in 1:n) X[i: (i + 2), i] <- oneminusphi
X <= X[1:n, ]
return(X)
3

findAOdsARIT1 <- function(residuals, X, phi) {
n <- length(residuals)
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oneminusphi <- c(1, -1 - phi, phi)
tau2 <- sum(oneminusphi * 2)
sigma2 <- mean(residuals * 2)
res <- matrix(@, nrow = n, ncol = 2)
for (t in 1:n) {
colXt <- X[, t]
fitt <- lm(residuals ~ colXt - 1)
omegaAt <- coef(fitt)
res[t, 1] <- sqgrt(tau2) * omegaAt / sqrt(sigma2)
res[t, 2] <- omegaAt
}
return(res)

}

findAOandIOdsARI11 <- function(residuals, X, phi) {
n <- length(residuals)
oneminusphi <- c¢(1, -1 - phi, phi)
tau2 <- sum(oneminusphi * 2)
sigma2 <- mean(residuals * 2)
res <- matrix(@, nrow = n, ncol = 3)
for (t in 1:n) {
colXt <- X[, t]
fitt <- Im(residuals ~ colXt - 1)
omegaAt <- coef(fitt)
res[t, 1] <- sqgrt(tau2) * omegaAt / sqrt(sigma2)
res[t, 2] <- omegaAt
omegalt <- residuals[t] / sqrt(sigma2)
res[t, 3] <- omegalt
}
return(res)

}

phi <- coef(fit.AR1)[1]

matX <- matX.AOdsARI11(n, phi)

findAO <- findAOdsARI11(resfit.AR1, matX, phi)
findAOandIO <- findAOandIOdsARI11(resfit.AR1, matX, phi)

omega <- rep(@, length(potato$potatoeyield))

findAOandIO[44, 2]

omegal44 + 1] <- -93.8998780 # warning: the residuals in 'resfit.AR1' are in the diff series
potatoe.yieldAO <- potato$potatoeyield - omega

plot(potato, type = "1", xlab = "year"”, ylab = "Hundredweight - Cwt")
lines(potato$year, potatoe.yieldAO, type = "1", 1ty = 2, col = "blue")
title('Original time series and with an intervention')

potatoe.yield.diffAO <- diff(potatoe.yieldAO)

mean(potatoe.yield.diffA0)

potatoe.yield.diff.centeredao <- potatoe.yield.diffAO - mean(potatoe.yield.diffAQ)
n <- length(potatoe.yield.diff.centeredao)

ts.plot(potatoe.yield.diff.centered)
ts.plot(potatoe.yield.diff.centeredao)
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plot(1:1length(potatoe.yield.diff.centered), potatoe.yield.diff, type = "1")
lines(1:1length(potatoe.yield.diff.centeredao), potatoe.yield.diffAO,
type = "1", 1ty = 2)

acf2(potatoe.yield.diff.centeredao)

( fit.AR1 <- arima(potatoe.yield.diff.centeredao, order = c(1,0,0) ,

method= 'ML', include.mean = TRUE) )

( fit.AR1.wo.mean <- arima(potatoe.yield.diff.centeredao, order = c(1,0,0) ,
method= 'ML', include.mean = FALSE) )

resfit.AR1 <- residuals(fit.ART1)
resfit.AR1.centered <- resfit.AR1 - mean(resfit.AR1)
sig2fit.AR1 <- fit.AR1$sigma2

hist(resfit.AR1/sqrt(sig2fit.AR1))
acf2(resfit.AR1)
phi <- coef(fit.AR1)[1]

nortestARMA(resfit.AR1.centered, sig2fit.AR1, d = 2)

# Using the (2014) approach where the residuals have been

# computed after estimating the mean (by first removing the average of the
# observations), and doing as if the mean had not

# been estimated and were known (include.mean = FALSE).

resfit.AR1.wo.mean <- residuals(fit.AR1.wo.mean)

sig2fit.AR1.wo.mean <- fit.AR1.wo.mean$sigma2
nortestARMA(resfit.AR1.wo.mean, sig2fit.AR1.wo.mean, d = 2)

Box.test(resfit.AR1.centered, lag = 3, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 6, type = "Ljung-Box", fitdf = 1)

Box.test(resfit.AR1.centered, lag = 12, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 14, type = "Ljung-Box", fitdf = 1)
Box.test(resfit.AR1.centered, lag = 20, type = "Ljung-Box", fitdf = 1)
# ______________________________________
# oo fitting an AR(2) -----—--
# ______________________________________

( fit.AR2 <- arima(potatoe.yield.diff.centeredao, order = c(2, 0, 0),

method= 'ML', include.mean = TRUE) )

( fit.AR2.wo.mean <- arima(potatoe.yield.diff.centeredao, order = c(2, 0, 0),
method= 'ML', include.mean = FALSE) )

resfit.AR2 <- residuals(fit.AR2)
sig2fit.AR2 <- fit.AR2$sigma2

hist( resfit.AR2/sqrt(sig2fit.AR2) )
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acf2(resfit.AR2)

resfit.AR2.centered <- resfit.AR2 - mean(resfit.AR2)
nortestARMA(resfit.AR2.centered, sig2fit.AR2, d = 2)

# Using the (2014) approach where the residuals have been

# computed after estimating the mean (by first removing the average of the
# observations), and doing as if the mean had not

# been estimated and were known (include.mean = FALSE).

resfit.AR2.wo.mean <- residuals(fit.AR2.wo.mean)

sig2fit.AR2.wo.mean <- fit.AR2.wo.mean$sigma2
nortestARMA(resfit.AR2.wo.mean, sig2fit.AR2, d = 2)

Box.test(resfit.AR2.centered, lag = 3, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 6, type= "Ljung-Box", fitdf = 2)

Box.test(resfit.AR2.centered, lag = 12, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 14, type= "Ljung-Box", fitdf = 2)
Box.test(resfit.AR2.centered, lag = 20, type= "Ljung-Box", fitdf = 2)

Piggott Daily gas demand study by Piggott

Description

Two series consisting of daily temperature values and the (square root transformed) wind speed
series obtained from Piggott (1980). This data set was first studied by Shea (1987) and then by
Ducharme et al. (2004).

Usage
data(Piggott)

Format

A data frame with 366 observations on the following 2 variables.

temp numeric vector of daily temperatures.

wind. trans numeric vector of the (square root transformed) wind speed series.

Author(s)
Duchesne P., Lafaye de Micheaux P.

References

Ducharme G., Lafaye de Micheaux P., (2004). Goodness-of-fit tests of normality for the innovations
in ARMA models. Journal of Time Series Analysis 25 (3), 373-395.

Duchesne P., Lafaye de Micheaux P., Tagne J. (2016). Neyman Smooth Test of Normality for
ARMA Time Series Models with Unknown Mean. Submitted.
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Piggott J. L., (1980). The use o f Box-Jenkins modelling for the forecasting of daily gas demand.
Paper presented to the Royal Statistical Society.

Shea B. L., (1987). Estimation of Multivariate Time Series. Journal of Time Series Analysis 8 (1),
95-109.

Examples
data(Piggott)
potato Prince Edward Island; Average Yield, Potatoes (Hundredweight per
harvested acres (1957-2014))
Description

We retrieved the data from the Canadian Socio-Economic Information Management System (CAN-
SIM), which is a computerized database of Statistics Canada. The time series consists of annual data
on the productivity of potatoes (per acre) in Prince Edward Island for the time period 1957-2014
(CANSIM Series V47152).

Usage
data(potato)

Format
A data frame with 58 observations on the following 2 variables.

year numeric vector of the years of harvest

potatoeyield numeric vector of the productivity of potatoes (Hundredweight per harvested acres)

Author(s)

Duchesne P., Lafaye de Micheaux P.

References

Cheng H., (2005). Competitive relationship among potato production areas in northeastern america.
Journal of Food Distribution Research Proceedings 36 (1), 27-32.

Ducharme G., Lafaye de Micheaux P., (2004). Goodness-of-fit tests of normality for the innovations
in ARMA models. Journal of Time Series Analysis 25 (3), 373-395.

Duchesne P., Lafaye de Micheaux P., Tagne J. (2016). Neyman Smooth Test of Normality for
ARMA Time Series Models with Unknown Mean. Submitted.

Examples

data(potato)
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