Package ‘noisyCE2’

October 13, 2022
Type Package

Title Cross-Entropy Optimisation of Noisy Functions
Version 1.1.0
Author Flavio Santi [cre, aut] (<https://orcid.org/0000-0002-2014-1981>)

Maintainer Flavio Santi <flavio.santi@univr.it>
URL https://www.flaviosanti.it/software/noisyCE?2

BugReports https://github.com/f-santi/noisyCE2/issues

Description Cross-Entropy optimisation of unconstrained deterministic and noisy
functions illustrated in Rubinstein and Kroese (2004, ISBN:
978-1-4419-1940-3) through a highly flexible and customisable function which
allows user to define custom variable domains, sampling distributions,
updating and smoothing rules, and stopping criteria. Several built-in
methods and settings make the package very easy-to-use under standard
optimisation problems.

Imports magrittr

Suggests coda, testthat

License GPL (>=2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-11-09 13:10:10 UTC

R topics documented:

noisyCE2-package
gewWeke e
noisyCE2 e
smooth_dec e

https://orcid.org/0000-0002-2014-1981
https://www.flaviosanti.it/software/noisyCE2
https://github.com/f-santi/noisyCE2/issues

2 noisyCE2-package

smooth_lin e e 7
ts_change 8
type_variable 9
Index 11
noisyCE2-package Cross-Entropy Optimisation of Noisy Functions
Description

The package noisyCE2 implements the cross-entropy algorithm (Rubinstein and Kroese, 2004) for
the optimisation of unconstrained deterministic and noisy functions through a highly flexible and
customisable function which allows user to define custom variable domains, sampling distributions,
updating and smoothing rules, and stopping criteria. Several built-in methods and settings make the
package very easy-to-use under standard optimisation problems.

Details

The package permits a noisy function to be maximised by means of the cross-entropy algorithm.
Formally, problems in the form

max E(f(z))

are tackled for a noisy function f: © C R™ — R.

Author(s)

Maintainer: Flavio Santi <flavio.santi@univr.it> (ORCID)

References

Bee M., G. Espa, D. Giuliani, F. Santi (2017) "A cross-entropy approach to the estimation of gen-
eralised linear multilevel models", Journal of Computational and Graphical Statistics, 26 (3), pp.
695-708. https://doi.org/10.1080/10618600.2016.1278003

Rubinstein, R. Y., and Kroese, D. P. (2004), The Cross-Entropy Method, Springer, New York. ISBN:
978-1-4419-1940-3

See Also

Useful links:

* https://www.flaviosanti.it/software/noisyCE?2
* Report bugs at https://github.com/f-santi/noisyCE2/issues

https://orcid.org/0000-0002-2014-1981
https://doi.org/10.1080/10618600.2016.1278003
https://www.flaviosanti.it/software/noisyCE2
https://github.com/f-santi/noisyCE2/issues

geweke

Examples

EXAMPLE 1

The negative 4-dimensional paraboloid can be maximised as follows:
negparaboloid <- function(x) { -sum((x - (1:4))"2) }

sol <- noisyCE2(negparaboloid, domain = rep('real', 4))

EXAMPLE 2
The 10-dimensional Rosenbrock's function can be minimised as follows:
rosenbrock <- function(x) {
sum(100 * (tail(x, -1) - head(x, -1)*2)*2 + (head(x, -1) - 1)*2)
3

newvar <- type_real(
init = c(o, 2),
smooth = list(
quote(smooth_lin(x, xt, 1)),
quote(smooth_dec(x, xt, 0.7, 5))
)
)

sol <- noisyCE2(
rosenbrock, domain = rep(list(newvar), 10),
maximise = FALSE, N = 2000, maxiter = 10000

EXAMPLE 3

The negative 4-dimensional paraboloid with additive Gaussian noise can be

maximised as follows:

noisyparaboloid <- function(x) { -sum((x - (1:4))*2) + rnorm(1) }

sol <- noisyCE2(noisyparaboloid, domain = rep('real', 4), stoprule = geweke(x))
where the stopping criterion based on the Geweke's test has been adopted

according to Bee et al. (2017).

geweke Geweke’s test stopping rule

Description

geweke tests the convergence of x through the Geweke’s test.

Usage

geweke(x, fracl = 0.3, frac2 = 0.4, pvalue = 0.05)

4 noisyCE2

Arguments
X numeric vector of last v,, values, as selected by the function passed to noisyCE2()
through the argument stopwindow.
fracl, frac2 fraction arguments of the Geweke’s test according to coda: : geweke.diag().
pvalue threshold of the p-value which triggers the stop of the algorithm.
Value

A numeric indicating whether the algorithm has converged:

0 the algorithm has converged.
1 the algorithm has not converged.
See Also

Other stopping rules: ts_change()

noisyCE2 Cross-Entropy Optimisation of Noisy Functions

Description

Unconstraint optimisation of noisy functions through the cross-entropy algorithm.

Usage

noisyCE2(
f,
domain,
rho = 0.05,
N = 1000,
smooth = NULL,
stopwindow = tail(gam, (n > 20) * n/2),
stoprule = ts_change(x),
maxiter = 1000,
maximise = TRUE,

verbose = "v

)

S3 method for class 'noisyCE2'
print(x, ...)

S3 method for class 'noisyCE2'
summary (object, ...)

noisyCE2

S3 method for class 'noisyCE2'
plot(x, what = c("x", "gam", "param"”), start = NULL, end = NULL, ...)

S3 method for class 'noisyCE2'

coef(object,

Arguments

.f_‘

domain

rho

smooth

stopwindow

stoprule

maxiter

maximise
verbose
X, object
what

start, end

)

objective function which takes the vector of optimisation variables as first argu-
ment.

a list (or other coercible objects) where each component specifies the domain
of each variable of the objective function f. The components of the list may be
either objects of typevar class (see type_variable) or strings identifying one of
type_variable functions (for example "real” for function type_real()). See §
Examples.

other arguments to be passed to f or to other methods (for print and plot).

parameter p of the Cross-Entropy algorithm. This argument may be passed ei-
ther as a numeric value in (0,1) or as an unevaluated expression which may
include the number of current iteration n, or the argument N.

parameter N of the Cross-Entropy algorithm. This argument may be passed
either as a positive integer or as an unevaluated expression which may include
the number of current iteration n.

list of unevaluated expressions to be used as smoothing rules for the parameters
of the sampling probability distributions of all variables. If not NULL, all default
or set smoothing rules of all variables will be overwritten. See type_variable for
details and examples.

unevaluated expression returning the object to be passed to the stopping rule.
Symbol gam permits the time series 7, to be used (as a numeric vector).

stopping rule passed as an unevaluated expression including x as the object
returned by evaluation of argument stopwindow. The algorithm is stopped
when zero is returned by the evaluation of stoprule. If returned object has
attribute mess, this is used as a message. Currently, built-in stopping rules are
ts_change () and geweke (), others may be defined by user.

maximum number of iteration. When it is reached, algorithm is stopped whether
or not the stopping criterion is satisfied. If the maximum number of iteration is
reached, the code and the message components of noisyCE object are overwrit-
ten.

if TRUE (default) f is maximised, otherwise a minimisation of f is performed.
algorithm verbosity (values v, vv and vvv are admitted).
object of class noisyCE2, as returned by noisyCE2.

type of plot should be drawn. If what = "x" (default), values of the variables
are plotted as time series; if what = "gam"”, time series of statistics -y is plotted;
if what = "param”, time series of parameters of the sampling distributions are
plotted.

first and last value to be plotted. If NULL, all values are plotted.

6 noisyCE2

Value

An object of class noisyCE?2 structured as a list with the following components:

f argument f.

fobj objective function f where possible arguments passed through argument . ..
have been substituted. Thus, the value of the objective function maximised by
noisyCE in x@ can be computed as fobj(x@). If a minimisation has been per-
formed, fobj returns f with sign inverted.

xopt numeric vector with solution.

hxopt matrix of niter rows and length(xopt) columns with values of variables gen-
erated by the optimisation algorithm.

param list of length(xopt) components where time series of parameters (vectors
vy) are stored for each variable as data. frame objects with niter+1 rows (the
first rows are the starting values set through function noisyCEcontrol).

gam vector of values ;.
niter number of iterations.
code convergence code of the algorithm. Value @ means that algorithm has converged;

other values are defined according to the stopping rule.

convMess textual message associated to the convergence code (if any).
compTimes named vector computation times of each phase.
Methods (by generic)

* print: display synthetic information about a noisyCE2 object
* summary: display summary information about a noisyCE2 object
* plot: plot various components of a noisyCE2 object

» coef: get the solution of the optimisation

Examples

library(magrittr)

Optimisation of the 4-dimensional function:

F(x1,x2,x3,x4)=-(x1-1)72-(x2-2)*2-(x3-3) "2~ (x4-4)*2

sol <- noisyCE2(function(x) -sum((x - (1:4))"2), domain = rep('real', 4))
Representation of the convergence process:

plot(sol, what = 'x')

plot(sol, what = 'gam')

smooth_dec

smooth_dec Decreasing first-order smoothing rule

Description

Decreasing smoothing rule
Tppr = e+ (1 —a) 21

(1)

for some 0.7 < b < 1 and some 5 < ¢ < 10.

where

Usage

smooth_dec(x, xt, b, qu)

Arguments
X numeric value of the last value of the parameter.
xt numeric vector of past values of the parameter (time series).
b smoothing parameter b.
qu smoothing parameter q.
Value

A numeric vector of updated parameters.

See Also

Other smoothing rules: smooth_1in()

smooth_lin Linear first-order smoothing rule

Description

Linear smoothing rule
Ty =az+ (1 —a) 1

for some a € [0, 1].

Usage

smooth_lin(x, xt, a)

8 ts_change

Arguments
X numeric value of the last value of the parameter.
xt numeric vector of past values of the parameter (time series).
a smoothing parameter a.

Value

A numeric vector of updated parameters.

See Also

Other smoothing rules: smooth_dec()

ts_change Time series change stopping rule

Description

Deterministic stopping rule based on the last change in the value of ~,,. Changes smaller than tol,
or relative changes smaller than reltol stop the algorithm. This criterion is suitable only in case of
deterministic objective functions.

Usage

ts_change(x, reltol = 1e-04, tol = 1e-12)

Arguments
X numeric vector of last v,, values, as selected by the function passed to noisyCE2()
through the argument stopwindow.
reltol relative changes smaller than tol stop the algorithm.
tol changes smaller than tol stop the algorithm.
Value

A numeric indicating whether the algorithm has converged:

0 the algorithm has converged.
1 the algorithm has not converged.
See Also

Other stopping rules: geweke ()

type_variable 9

type_variable Functions for defining the types of variables

Description

All functions permit fully-customised types of variable to be defined. Functions other than type_custom
already include standard default values which make the definition of standard variable types easier
and quicker.

Usage
type_custom(
type = "custom”,
init = c(0, 10),
randomXj = function(n, v) { rnorm(n, v[1]1, v[2]) },
x2v = function(x) { c(mean(x), sd(x)) 3,
v2x = function(v) { v[1] 3},

smooth = list(quote(smooth_lin(x, xt, 1)), quote(smooth_dec(x, xt, 0.9, 10))),
)
type_real(...)
type_positive(...)

type_negative(...)

Arguments

type label for identifying the type of variable. The name is not used internally in any
case.

init numeric vector of starting values of parameters of the sampling distribution.

randomXj function for randomly generating variable values according to the sampling dis-
tribution. The function should take the number of observations to be generated
as a first argument, and the vector of parameters as a second argument; a vector
of random values should be returned.

X2V function for updating the parameters of the sampling distribution. No smoothing
is needed. The function should take a single argument to be used for updating
the parameters.

V2X function for obtaining point values of variable from the parameters of the sam-
pling distribution.

smooth list of unevaluated expressions of smoothing functions for each parameter of the

sampling distribution.

further arguments to be included into the typevar object. In case of function
for predefined types, it is possible to use ellipsis for overwriting default values
(see § Examples).

10 type_variable

Value

An object of class type and typevar, where type is the value of the argument type passed to
type_custom, or predefined lables (if not overwritten) in case of other functions.

Examples

Define a new type of real variable where the first parameter of the
sampling distribution is updated through the median (instead of the
mean):
type_real(

type = 'real2’,

x2v = function(x) { c(median(x), sd(x)) }
)

Define a new type of real variable whith different smoothing
parameters:
type_real(
type = 'real3’,
smooth = list(
quote(smooth_lin(x, xt, 0.8)),
quote(smooth_dec(x, xt, .99, 15))
)
)

Index

* smoothing rules
smooth_dec, 7
smooth_lin, 7
* stopping rules
geweke, 3
ts_change, 8
_PACKAGE (noisyCE2-package), 2

coda: :geweke.diag(), 4
coef.noisyCE2 (noisyCE2), 4

geweke, 3, 8
geweke(), 5

noisyCE2, 4
noisyCE2(), 4, 8
noisyCE2-package, 2

plot.noisyCE2 (noisyCE2), 4
print.noisyCE2 (noisyCE2), 4

smooth_dec, 7, 8
smooth_lin, 7,7
summary.noisyCE2 (noisyCE2), 4

ts_change, 4, 8

ts_change(), 5

type_custom (type_variable), 9
type_negative (type_variable), 9
type_positive (type_variable), 9
type_real (type_variable), 9
type_real(), 5
type_variable, 5,9

	noisyCE2-package
	geweke
	noisyCE2
	smooth_dec
	smooth_lin
	ts_change
	type_variable
	Index

