Package 'nodeSub'

May 6, 2025

Type Package

Title Simulate DNA Alignments Using Node Substitutions

Version 1.2.9

Maintainer Thijs Janzen <thijsjanzen@gmail.com>

Description Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

License GPL-3

URL https://github.com/thijsjanzen/nodeSub

BugReports https://github.com/thijsjanzen/nodeSub/issues

Depends ape, Rcpp

Imports beastier, beautier, DDD, geiger, lifecycle, pbapply, phangorn, phylobase, rappdirs, Rmpfr, stringr, testit, tibble, tracerer

Suggests dplyr, ggplot2, knitr, magrittr, nLTT, rmarkdown, RPANDA, testthat, tidyr, TreeSim

LinkingTo Rcpp

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Thijs Janzen [aut, cre]

Repository CRAN

Date/Publication 2025-05-06 09:00:02 UTC

Contents

nodeSub-package	2
calc_expected_hidden_nodes	3
calc_fraction	3
calc_required_node_time	4
calc_sum_stats	4
count_hidden	5
create_balanced_tree	6
create_equal_alignment	6
create_equal_alignment_explicit	7
create_unbalanced_tree	8
estimate_marginal_models	9
get_p_matrix	0
infer_phylogeny	0
reduce_tree	1
sim_linked	2
sim_normal	3
sim_normal_explicit	4
sim_unlinked	4
sim_unlinked_explicit	5
slow_matrix	6
18	8

Index

nodeSub-package

Package providing functions to simulate sequences under different DNA evolution models

Description

Simulate DNA sequences for the node substitution model. In the node substitution model, substitutions accumulate additionally during a speciation event, providing a potential mechanistic explanation for substitution rate variation. This package provides tools to simulate such a process, simulate a reference process with only substitutions along the branches, and provides tools to infer phylogenies from alignments. More information can be found in Janzen (2021) <doi:10.1093/sysbio/syab085>.

Version History:

Version 1.2.7 - Removed beta calculation due to apTreeshape removal from CRAN

Version 1.2.3 - Removed summary statistic tests for CRAN

Version 1.2.2 - Changed codedov links in README

Version 1.2.1 - Expanded dependency on RPANDA

Version 1.2 - Release on CRAN

Author(s)

Thijs Janzen Maintainer: Thijs Janzen <t.janzen@rug.nl>

References

Thijs Janzen, Folmer Bokma, Rampal S Etienne, Nucleotide Substitutions during Speciation may Explain Substitution Rate Variation, Systematic Biology, 2021; syab085

calc_expected_hidden_nodes

Calculate the number of expected hidden nodes in a phylogenetic tree

Description

Calculate the number of expected hidden nodes using equation 1 in Manceau et al. 2020

Usage

```
calc_expected_hidden_nodes(phy, lambda = NULL, mu = NULL)
```

Arguments

phy	phylogenetic tree
lambda	birth rate
mu	death rate

Value

expected number of hidden nodes

References

Manceau, M., Marin, J., Morlon, H., & Lambert, A. (2020). Model-based inference of punctuated molecular evolution. Molecular Biology and Evolution, 37(11), 3308-3323.

calc_fraction	Calculate the expected fraction of substitutions at the nodes, relative
	to the fraction at the branches

Description

calculates the relative contribution of substitutions at the nodes

Usage

calc_fraction(phy = NULL, node_time = 0, model = "unlinked")

Arguments

phy	phylogenetic tree (optional)
<pre>node_time</pre>	time spent at the node
model	node substitution model

Value

expected fraction

calc_required_node_time

Calculate the required node time to obtain a desired fraction of substitutions at the node

Description

calculates the required node time to obtain a desired fraction of substitutions at the node

Usage

```
calc_required_node_time(phy = NULL, s = 0.5, model = "unlinked")
```

Arguments

phy	phylogenetic tree
S	desired fraction
model	node substitution model, either "linked" or "unlinked".

Value

expected fraction

calc_sum_stats calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA's JS-Dtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

count_hidden

Description

calculate summary statistics of a phylogenetic tree, compared with a reference tree. The following statistics are calculated: the beta statistic, gamma statistic, crown age, mean branch length, number of tips, the nLTT statistic and the laplacian difference, given by RPANDA's JSDtree. Because JSDtree can sometimes cause issues, some additional checks are performed to ensure that is possible to run this function.

Usage

calc_sum_stats(trees, true_tree, verbose = FALSE)

Arguments

trees	a phyloList object containing multiple trees	
true_tree	a phylo object containing the reference tree, preferably without extinct lineages. If extinct lineages are found, these are dropped.	
verbose	verbose output if true (e.g. progressbars)	

Value

list with two tibbles 1) containing the summary statistics of all trees and 2) containing the difference with the true tree

count_hidden	Function to calculate the number of hidden speciation events, e.g. spe- ciation events that have lead to an extinct species. Thus, these hidden
	speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Description

Function to calculate the number of hidden speciation events, e.g. speciation events that have lead to an extinct species. Thus, these hidden speciation events can only be detected in complete trees (as opposed to reconstructed trees).

Usage

count_hidden(tree)

Arguments

tree phylo object

Value

number of hidden speciation events

create_balanced_tree create a balanced tree out of branching times

Description

create a balanced tree out of branching times

Usage

create_balanced_tree(brts)

Arguments

brts vector of branching times

Value

phylo phylo object

create_equal_alignment

function create an alignment with identical information content

Description

function create an alignment with identical information content

Usage

```
create_equal_alignment(
    input_tree,
    sub_rate,
    alignment_result,
    sim_function = NULL,
    verbose = FALSE,
    node_time = NULL,
    input_alignment_type = "nodesub"
)
```

Arguments

input_tree	phylogeny for which to generate alignment	
sub_rate	substitution rate used in the original phylogeny	
alignment_resul	t	
	result of sim_normal, sim_linked or sim_unlinked	
sim_function	function that accepts a tree, sequence length, rootsequence and substitution rate (in that order). Default is sim_normal	
verbose	provide intermediate output	
node_time	node time	
<pre>input_alignment_type</pre>		
	was the input alignment simulated with a node substitution model or a nor- mal substitution model? Used to calculate the twin mutation rate. Options are "nodesub" and "normal".	

Value

list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

create_equal_alignment_explicit

function create an alignment with identical information content, using the explicit method to simulate substitutions

Description

function create an alignment with identical information content, using the explicit method to simulate substitutions

Usage

```
create_equal_alignment_explicit(
    input_tree,
    sub_rate,
    alignment_result,
    verbose = FALSE
)
```

Arguments

input_tree	phylogeny for which to generate alignment	
sub_rate	substitution rate used in the original phylogeny	
alignment_result		
	result of sim_normal, sim_linked or sim_unlinked	
verbose	provide intermediate output	

Value

list with four properties: 1) alignment: the alignment itself, 2) adjusted rate: the substitution rate used to obtain identical information content 3) total_accumulated_substitutions: the total number of substitutions accumulated. 4) total_node_substitutions: total number of substitutions accumulated on the nodes 5) total_branch_substitutions: total number of substitutions accumulated on the branches.

create_unbalanced_tree

create an unbalanced tree out of branching times

Description

create an unbalanced tree out of branching times

Usage

```
create_unbalanced_tree(brts)
```

Arguments

brts vector of branching times

Value

phylo phylo object

estimate_marginal_models

estimate the marginal likelihood of the relaxed and strict clock model for a provided alignment

Description

estimate_marginal_models estimates the marginal likelihood of both the strict and the relaxed clock model, given the JC69 substitution model, using the NS package in BEAST, made available via the babette R package. The NS package performs nested sampling, and uses an MCMC approach to estimate the marginal likelihood. Sampling is performed until convergence of the MCMC chain. Unfortunately, currently the babette package is unavailable on CRAN, requiring installation through GitHub to enjoy the full functionality of this function.

Usage

```
estimate_marginal_models(
  fasta_filename,
  use_yule_prior = FALSE,
  rng_seed = 42,
  sub_rate = 1,
  verbose = FALSE
)
```

Arguments

fasta_filename	file name of fasta file holding alignment for which the marginal likelihood is to be estimated
use_yule_prior	by default, a birth-death prior is used as tree prior, but if use_yule_prior is set to TRUE, a pure-birth prior will be used.
rng_seed	seed of pseudo-random number generator
sub_rate	substitution rate
verbose	boolean indicating if verbose intermediate output is to be generated

Value

data frame with marginal likelihoods and relative weights per clock model.

get_p_matrix calculate p matrix

Description

calculates the p matrix

Usage

```
get_p_matrix(branch_length, eig = phangorn::edQt(), rate = 1)
```

Arguments

branch_length	branch length
eig	eigen object
rate	rate

Value

p matrix

infer_phylogeny	infer the time calibrated phylogeny associated with the provided align-
	ment. This function uses the R package babette to infer the phylogeny using BEAST2.
	0

Description

infer the time calibrated phylogeny associated with the provided alignment. This function uses the R package babette to infer the phylogeny using BEAST2.

Usage

```
infer_phylogeny(
    alignment,
    treatment_name,
    tree_prior = beautier::create_bd_tree_prior(),
    clock_prior = beautier::create_strict_clock_model(),
    mcmc_seed = NULL,
    chain_length = 1e+07,
    sample_interval = 5000,
    burnin = 0.1,
    working_dir = NULL,
    sub_rate = 1
)
```

reduce_tree

Arguments

alignment	Phydat object containing the focal alignment
<pre>treatment_name</pre>	string to be appended to BEAST files
tree_prior	tree prior used, default = birth-death prior
clock_prior	clock prior used, default = strict clock
<pre>mcmc_seed</pre>	seed of the mcmc chain, default is the system time
chain_length	length of the mcmc chain, default is 1e7.
sample_interval	
	interval of sampling, default is 5000
burnin	burnin of posterior distribution
working_dir	beast2 working dir
sub_rate	substitution rate used to generate the original alignment (if available), default is 1

Value

list with all trees, and the consensus tree

reduce_tree	Function to remove speciation events occuring after an extinction
	event. Extinct species are pruned randomly, such that only a single
	extinct species per branching event (if any extinct species) remains.

Description

Function to remove speciation events occuring after an extinction event. Extinct species are pruned randomly, such that only a single extinct species per branching event (if any extinct species) remains.

Usage

```
reduce_tree(tree)
```

Arguments

tree phylo object

Value

pruned tree

sim_linked

Description

simulate a sequence assuming conditional substitutions on the node.

Usage

```
sim_linked(
    phy,
    Q = rep(1, 6),
    rate = 0.1,
    node_mut_rate_double = 1e-09,
    l = 1000,
    bf = rep(0.25, 4),
    rootseq = NULL,
    node_time = 0.01
)
```

Arguments

phy	tree for which to simulate sequences	
Q	substitution matrix along the branches, $default = JC$	
rate	mutation rate , default = 1	
<pre>node_mut_rate_double</pre>		
	mutation rate on the node, $default = 1e-9$	
1	number of base pairs to simulate	
bf	base frequencies, default = $c(0.25, 0.25, 0.25, 0.25)$	
rootseq	sequence at the root, simulated by default	
node_time	time spent at the node	

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_normal Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Description

Simulate sequences for a given evolutionary tree, using a standard model of sequence evolution along the branches. Code for this function was heavily inspired by the function simSeq from the phangorn package.

Usage

sim_normal(x, 1 = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)

Arguments

х	a phylogenetic tree tree, i.e. an object of class phylo
1	length of the sequence to simulate.
Q	the rate matrix.
bf	base frequencies.
rootseq	a vector of length l containing the root sequence, other root sequence is ran- domly generated.
rate	mutation rate

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

Author(s)

Klaus Schliep <klaus.schliep@gmail.com>

sim_normal_explicit

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

simulate a sequence assuming substitutions are only accumulated along the branches, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```
sim_normal_explicit(x, l = 1000, Q = NULL, bf = NULL, rootseq = NULL, rate = 1)
```

Arguments

х	a phylogenetic tree tree, i.e. an object of class phylo or and object of class pml.
1	length of the sequence to simulate.
Q	the rate matrix.
bf	base frequencies.
rootseq	a vector of length l containing the root sequence, other root sequence is ran- domly generated.
rate	mutation rate or scaler for the edge length, a numerical value greater than zero.

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked	Simulate a sequence assuming node substitutions are not shared
	amongst offspring, given two substitution matrices: one for substitu- tions occuring on the nodes, and one for substitutions occuring along the branches.

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, given two substitution matrices: one for substitutions occuring on the nodes, and one for substitutions occuring along the branches.

Usage

```
sim_unlinked(
    phy,
    Q1 = rep(1, 6),
    Q2 = rep(1, 6),
    rate1 = 0.1,
    rate2 = 0.1,
    1 = 1000,
    bf = rep(0.25, 4),
    rootseq = NULL,
    node_time = 0.001
)
```

Arguments

phy	tree for which to simulate sequences
Q1	substitution matrix along the branches, default = JC
Q2	substitution matrix on the nodes, $default = JC$
rate1	mutation rate along the branch, default = 0.1
rate2	mutation rate on the node, default = 0.1
1	number of base pairs to simulate
bf	base frequencies, default = $c(0.25, 0.25, 0.25, 0.25)$
rootseq	sequence at the root, simulated by default
node_time	amount of time spent at the nodes

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

sim_unlinked_explicit Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Description

Simulate a sequence assuming node substitutions are not shared amongst offspring, using the explicit simulation method (e.g. reverse substitutions are modeled explicitly)

Usage

```
sim_unlinked_explicit(
    phy,
    Q1 = rep(1, 6),
    Q2 = rep(1, 6),
    rate1 = 0.1,
    rate2 = 0.1,
    1 = 1000,
    bf = rep(0.25, 4),
    rootseq = NULL,
    node_time = 0.001
)
```

Arguments

phy	phylogenetic tree for which to simulate sequences
Q1	substitution matrix along the branches, default = JC
Q2	substitution matrix on the nodes, $default = JC$
rate1	mutation rate along the branch, default = 0.1
rate2	mutation rate on the node, default = 0.1
1	number of base pairs to simulate
bf	base frequencies, $default = c(0.25, 0.25, 0.25, 0.25)$
rootseq	sequence at the root, simulated by default
node_time	amount of time spent at the nodes

Value

list with four items

- 1. alignment Phydat object with the resulting alignment
- 2. rootseq the rootsequence used
- 3. total_branch_substitutions total number of substitutions accumulated on the branches
- 4. total_node_substitutions total number of substitutions accumulated at the nodes

slow_matrix	this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify
-------------	--

Description

this function calculates the p matrix within R this is slower than the C++ implementation in get_p_matrix but provides a way to debug and verify

16

slow_matrix

Usage

slow_matrix(eig, branch_length, rate)

Arguments

eig	eigen object
branch_length	branch length
rate	substitution rate

Value

p matrix

Index

```
calc_expected_hidden_nodes, 3
calc_fraction, 3
calc_required_node_time, 4
calc_sum_stats, 4
count_hidden, 5
create_balanced_tree, 6
create_equal_alignment, 6
create_equal_alignment_explicit, 7
create_unbalanced_tree, 8
```

 $\texttt{estimate_marginal_models}, 9$

get_p_matrix, 10

infer_phylogeny, 10

nodeSub (nodeSub-package), 2
nodeSub-package, 2

reduce_tree, 11

```
sim_linked, 12
sim_normal, 13
sim_normal_explicit, 14
sim_unlinked, 14
sim_unlinked_explicit, 15
slow_matrix, 16
```