
Package ‘nlmixr2est’
July 16, 2025

Type Package

Title Nonlinear Mixed Effects Models in Population PK/PD, Estimation
Routines

Version 4.0.0

Maintainer Matthew Fidler <matthew.fidler@gmail.com>

Description Fit and compare nonlinear mixed-effects models in
differential equations with flexible dosing information commonly seen
in pharmacokinetics and pharmacodynamics (Almquist, Leander, and
Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation
solving is by compiled C code provided in the 'rxode2' package (Wang,
Hallow, and James 2015 <doi:10.1002/psp4.12052>).

License GPL (>= 3)

URL https://github.com/nlmixr2/nlmixr2est,

https://nlmixr2.github.io/nlmixr2est/

Depends nlmixr2data, R (>= 4.0)

Imports backports, checkmate, cli, graphics, knitr, lbfgsb3c, lotri,
magrittr, Matrix, methods, minqa, n1qn1 (>= 6.0.1-12), nlme,
Rcpp, rex, rxode2 (>= 3.0.0), stats, symengine, utils

Suggests broom.mixed, crayon, data.table, devtools, digest, dplyr (>=
1.1.0), generics, nloptr, qs, sys, testthat, tibble, withr,
xgxr, sfsmisc, minpack.lm, remotes

LinkingTo BH, n1qn1 (>= 6.0.1-12), lbfgsb3c (>= 2024-3.5), lotri (>=
0.5.0), Rcpp, RcppArmadillo (>= 0.11.2.3.1), RcppEigen, rxode2
(>= 3.0.0)

Biarch true

Config/testthat/edition 3

Encoding UTF-8

Language en-US

NeedsCompilation yes

RoxygenNote 7.3.2

1

https://doi.org/10.1007/s10928-015-9409-1
https://doi.org/10.1002/psp4.12052
https://github.com/nlmixr2/nlmixr2est
https://nlmixr2.github.io/nlmixr2est/

2 Contents

LazyData true

Author Matthew Fidler [aut, cre] (ORCID:
<https://orcid.org/0000-0001-8538-6691>),

Yuan Xiong [aut],
Rik Schoemaker [aut] (ORCID: <https://orcid.org/0000-0002-7538-3005>),
Justin Wilkins [aut] (ORCID: <https://orcid.org/0000-0002-7099-9396>),
Wenping Wang [aut],
Robert Leary [ctb],
Mason McComb [ctb] (ORCID: <https://orcid.org/0000-0001-9871-8616>),
Vipul Mann [aut],
Mirjam Trame [ctb],
Mahmoud Abdelwahab [ctb],
Teun Post [ctb],
Richard Hooijmaijers [aut],
Hadley Wickham [ctb],
Dirk Eddelbuettel [cph],
Johannes Pfeifer [ctb],
Robert B. Schnabel [ctb],
Elizabeth Eskow [ctb],
Emmanuelle Comets [ctb],
Audrey Lavenu [ctb],
Marc Lavielle [ctb],
David Ardia [cph],
Katharine Mullen [cph],
Ben Goodrich [ctb]

Repository CRAN

Date/Publication 2025-07-15 23:40:02 UTC

Contents
.augPredIpredModel . 4
.nlmixr0preProcessCovariatesPresent . 4
.nlmixrPreprocessLiteralFix . 5
.preProcessDataUi . 6
.preProcessZeroOmega . 6
addCwres . 7
addNpde . 8
addTable . 10
assertNlmixrFit . 11
assertNlmixrFitData . 12
bobyqaControl . 13
boxCox . 20
cholSE . 21
foceiControl . 22
getValidNlmixrCtl.bobyqa . 35
lbfgsb3cControl . 37
n1qn1Control . 44

https://orcid.org/0000-0001-8538-6691
https://orcid.org/0000-0002-7538-3005
https://orcid.org/0000-0002-7099-9396
https://orcid.org/0000-0001-9871-8616

Contents 3

newuoaControl . 51
nlmControl . 58
nlminbControl . 65
nlmixr2 . 73
nlmixr2AllEst . 86
nlmixr2AugPredSolve . 86
nlmixr2CreateOutputFromUi . 88
nlmixr2Est.bobyqa . 89
nlmixr2Gill83 . 91
nlmixr2Hess . 93
nlmixr2Keywords . 94
nlmixr2Logo . 95
nlmixr2NlmeControl . 95
nlmixr2Validate . 101
nlmixr2Version . 101
nlmixrAddObjectiveFunctionDataFrame . 102
nlmixrAddTiming . 102
nlmixrCbind . 103
nlmixrClone . 104
nlmixrWithTiming . 105
nlsControl . 107
nmNearPD . 115
nmObjGetControl.bobyqa . 117
nmObjGetEstimationModel . 119
nmObjGetFoceiControl.nlme . 119
nmObjGetIpredModel . 120
nmObjGetPredOnly . 120
nmObjHandleControlObject.bobyqaControl . 121
nmObjHandleModelObject . 122
nmObjUiSetCompressed . 123
nmsimplex . 124
ofv . 125
optimControl . 126
print.saemFit . 134
residuals.nlmixr2FitData . 134
saemControl . 135
setCov . 139
setOfv . 140
sqrtm . 140
summary.saemFit . 141
tableControl . 141
uobyqaControl . 143
vpcSim . 150

Index 152

4 .nlmixr0preProcessCovariatesPresent

.augPredIpredModel Augment Prediction for Ipred Model

Description

This function augments the prediction for an individual prediction (Ipred) model. It retrieves the
simulation model from the fit object and evaluates the model variables.

Usage

.augPredIpredModel(fit)

Arguments

fit The fitted model object from which to retrieve the simulation model.

Details

The function performs the following steps:

- Retrieves the simulation model from the provided ‘fit‘ object using ‘.getSimModel‘ with ‘hideIpred‘
and ‘tad‘ set to ‘FALSE‘.

- Evaluates the model variables using ‘rxModelVars‘.

Value

The evaluated model variables for the Ipred model.

.nlmixr0preProcessCovariatesPresent

Preprocess Covariates needed (or other data items)

Description

Preprocess Covariates needed (or other data items)

Usage

.nlmixr0preProcessCovariatesPresent(ui, est, data, control)

Arguments

ui rxode2 ui
est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can

be added for other tools
data nlmixr data
control The estimation control object. These are expected to be different for each type

of estimation method

.nlmixrPreprocessLiteralFix 5

Value

list with the ui (possibly modified)

Author(s)

Matthew L. Fidler

.nlmixrPreprocessLiteralFix

This literally fixes parameters in the model

Description

Whenever there is a fixed parameter in the model, the parameter is replaced with the literal value in-
side of the model and dropped from the ‘ini‘ block. This only occurs when the ‘control$literalFix=TRUE‘.

Usage

.nlmixrPreprocessLiteralFix(ui, est, data, control)

Arguments

ui model function/object

est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can
be added for other tools

data nlmixr data

control The estimation control object. These are expected to be different for each type
of estimation method

Value

list with possibly updated ui

Author(s)

Matthew L. Fidler

6 .preProcessZeroOmega

.preProcessDataUi Preprocess the zero omegas

Description

Preprocess the zero omegas

Usage

.preProcessDataUi(ui, est, data, control)

Arguments

ui rxode2 ui
est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can

be added for other tools
data nlmixr data
control The estimation control object. These are expected to be different for each type

of estimation method

Value

list with the ui (possibly modified)

Author(s)

Matthew L. Fidler

.preProcessZeroOmega Preprocess the zero omegas

Description

Preprocess the zero omegas

Usage

.preProcessZeroOmega(ui, est, data, control)

Arguments

ui rxode2 ui model
est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can

be added for other tools
data nlmixr data
control The estimation control object. These are expected to be different for each type

of estimation method

addCwres 7

Value

list with the ui (possibly modified)

Author(s)

Matthew L. Fidler

addCwres Add CWRES

Description

This returns a new fit object with CWRES attached

Usage

addCwres(fit, focei = TRUE, updateObject = TRUE, envir = parent.frame(1))

Arguments

fit nlmixr2 fit without WRES/CWRES

focei Boolean indicating if the focei objective function is added. If not the foce ob-
jective function is added.

updateObject Boolean indicating if the original fit object should be updated. By default this is
true.

envir Environment that should be checked for object to update. By default this is the
global environment.

Value

fit with CWRES

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({

You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")

8 addNpde

the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

f <- try(nlmixr2(one.cmt, theo_sd, "saem"))

print(f)

even though you may have forgotten to add the cwres, you can add it to the data.frame:

if (!inherits(f, "try-error")) {
f <- try(addCwres(f))
print(f)

}

Note this also adds the FOCEi objective function

addNpde NPDE calculation for nlmixr2

Description

NPDE calculation for nlmixr2

Usage

addNpde(
object,
updateObject = TRUE,
table = tableControl(),
...,
envir = parent.frame(1)

)

Arguments

object nlmixr2 fit object

updateObject Boolean indicating if original object should be updated. By default this is TRUE.

addNpde 9

table ‘tableControl()‘ list of options

... Other ignored parameters.

envir Environment that should be checked for object to update. By default this is the
global environment.

Value

New nlmixr2 fit object

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({

You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

f <- nlmixr2(one.cmt, theo_sd, "saem")

even though you may have forgotten to add the NPDE, you can add it to the data.frame:

f <- addNpde(f)

10 addTable

addTable Add table information to nlmixr2 fit object without tables

Description

Add table information to nlmixr2 fit object without tables

Usage

addTable(
object,
updateObject = FALSE,
data = object$dataSav,
thetaEtaParameters = object$foceiThetaEtaParameters,
table = tableControl(),
keep = NULL,
drop = NULL,
envir = parent.frame(1)

)

Arguments

object nlmixr2 family of objects

updateObject Update the object (default FALSE)

data Saved data from
thetaEtaParameters

Internal theta/eta parameters

table a ‘tableControl()‘ list of options

keep Character Vector of items to keep

drop Character Vector of items to drop or NULL

envir Environment to search for updating

Value

Fit with table information attached

Author(s)

Matthew Fidler

assertNlmixrFit 11

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

run without tables step
f <- nlmixr2(one.cmt, theo_sd, "saem", control=list(calcTables=FALSE))

print(f)

Now add the tables

f <- addTable(f)

print(f)

assertNlmixrFit Assert that this is a nlmixr2 fit object

Description

Will error without nlmixr2 fit object

Usage

assertNlmixrFit(fit)

12 assertNlmixrFitData

Arguments

fit Fit object

Value

Nothing

Author(s)

Matthew L. Fidler

Examples

Not run:

f <- 4
assertNlmixrFit(f) # throw error

End(Not run)

assertNlmixrFitData Assert that this is a nlmixr2 fit data object

Description

Will error without nlmixr2 fit data object

Usage

assertNlmixrFitData(fit)

Arguments

fit Fit object

Value

Nothing

Author(s)

Matthew L. Fidler

bobyqaControl 13

Examples

Not run:

f <- 4
assertNlmixrFitData(f) # throw errors

End(Not run)

bobyqaControl Control for bobyqa estimation method in nlmixr2

Description

Control for bobyqa estimation method in nlmixr2

Usage

bobyqaControl(
npt = NULL,
rhobeg = NULL,
rhoend = NULL,
iprint = 0L,
maxfun = 100000L,
returnBobyqa = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", ""),
adjObf = TRUE,

14 bobyqaControl

ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

npt The number of points used to approximate the objective function via a quadratic
approximation. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in ‘par‘. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to min(n * 2, n+2).

rhobeg ‘rhobeg‘ and ‘rhoend‘ must be set to the initial and final values of a trust region
radius, so both must be positive with ‘0 < rhoend < rhobeg‘. Typically ‘rhobeg‘
should be about one tenth of the greatest expected change to a variable. If the
user does not provide a value, this will be set to ‘min(0.95, 0.2 * max(abs(par)))‘.
Note also that smallest difference ‘abs(upper-lower)‘ should be greater than or
equal to ‘rhobeg*2‘. If this is not the case then ‘rhobeg‘ will be adjusted.

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
1e-6 times the value set for ‘rhobeg‘ will be used.

iprint The value of ‘iprint‘ should be set to an integer value in ‘0, 1, 2, 3, ...‘, which
controls the amount of printing. Specifically, there is no output if ‘iprint=0‘ and
there is output only at the start and the return if ‘iprint=1‘. Otherwise, each
new value of ‘rho‘ is printed, with the best vector of variables so far and the
corresponding value of the objective function. Further, each new value of the
objective function with its variables are output if ‘iprint=3‘. If ‘iprint > 3‘, the
objective function value and corresponding variables are output every ‘iprint‘
evaluations. Default value is ‘0‘.

maxfun The maximum allowed number of function evaluations. If this is exceeded, the
method will terminate.

returnBobyqa return the bobyqa output instead of the nlmixr2 fit

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.

bobyqaControl 15

With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

16 bobyqaControl

• std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

bobyqaControl 17

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

18 bobyqaControl

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig

bobyqaControl 19

• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-
tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Ignored parameters

Value

bobqya control structure

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({

E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="bobyqa")

print(fit2)

you can also get the nlm output with

fit2$bobyqa

The nlm control has been modified slightly to include
extra components and name the parameters

20 boxCox

boxCox Cox Box, Yeo Johnson and inverse transformation

Description

Cox Box, Yeo Johnson and inverse transformation

Usage

boxCox(x, lambda = 1)

iBoxCox(x, lambda = 1)

yeoJohnson(x, lambda = 1)

iYeoJohnson(x, lambda = 1)

Arguments

x data to transform

lambda Cox-box lambda parameter

Value

Cox-Box Transformed Data

Author(s)

Matthew L. Fidler

Examples

boxCox(1:3,1) ## Normal
iBoxCox(boxCox(1:3,1))

boxCox(1:3,0) ## Log-Normal
iBoxCox(boxCox(1:3,0),0)

boxCox(1:3,0.5) ## lambda=0.5
iBoxCox(boxCox(1:3,0.5),0.5)

yeoJohnson(seq(-3,3),1) ## Normal
iYeoJohnson(yeoJohnson(seq(-3,3),1))

yeoJohnson(seq(-3,3),0)
iYeoJohnson(yeoJohnson(seq(-3,3),0),0)

cholSE 21

cholSE Generalized Cholesky Matrix Decomposition

Description

Performs a (modified) Cholesky factorization of the form

Usage

cholSE(matrix, tol = (.Machine$double.eps)^(1/3))

Arguments

matrix Matrix to be Factorized.

tol Tolerance; Algorithm suggests (.Machine$double.eps) ^ (1 / 3), default

Details

t(P) %*% A %*% P + E = t(R) %*% R

As detailed in Schnabel/Eskow (1990)

Value

Generalized Cholesky decomposed matrix.

Note

This version does not pivot or return the E matrix

Author(s)

Matthew L. Fidler (translation), Johannes Pfeifer, Robert B. Schnabel and Elizabeth Eskow

References

matlab source: http://www.dynare.org/dynare-matlab-m2html/matlab/chol_SE.html; Slightly dif-
ferent return values

Robert B. Schnabel and Elizabeth Eskow. 1990. "A New Modified Cholesky Factorization," SIAM
Journal of Scientific Statistical Computing, 11, 6: 1136-58.

Elizabeth Eskow and Robert B. Schnabel 1991. "Algorithm 695 - Software for a New Modified
Cholesky Factorization," ACM Transactions on Mathematical Software, Vol 17, No 3: 306-312

22 foceiControl

foceiControl Control Options for FOCEi

Description

Control Options for FOCEi

Usage

foceiControl(
sigdig = 3,
...,
epsilon = NULL,
maxInnerIterations = 1000,
maxOuterIterations = 5000,
n1qn1nsim = NULL,
print = 1L,
printNcol = floor((getOption("width") - 23)/12),
scaleTo = 1,
scaleObjective = 0,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleC0 = 1e+05,
derivEps = rep(20 * sqrt(.Machine$double.eps), 2),
derivMethod = c("switch", "forward", "central"),
derivSwitchTol = NULL,
covDerivMethod = c("central", "forward"),
covMethod = c("r,s", "r", "s", ""),
hessEps = (.Machine$double.eps)^(1/3),
hessEpsLlik = (.Machine$double.eps)^(1/3),
optimHessType = c("central", "forward"),
optimHessCovType = c("central", "forward"),
eventType = c("central", "forward"),
centralDerivEps = rep(20 * sqrt(.Machine$double.eps), 2),
lbfgsLmm = 7L,
lbfgsPgtol = 0,
lbfgsFactr = NULL,
eigen = TRUE,
addPosthoc = TRUE,
diagXform = c("sqrt", "log", "identity"),
sumProd = FALSE,
optExpression = TRUE,
literalFix = TRUE,
literalFixRes = TRUE,

foceiControl 23

ci = 0.95,
useColor = crayon::has_color(),
boundTol = NULL,
calcTables = TRUE,
noAbort = TRUE,
interaction = TRUE,
cholSEtol = (.Machine$double.eps)^(1/3),
cholAccept = 0.001,
resetEtaP = 0.15,
resetThetaP = 0.05,
resetThetaFinalP = 0.15,
diagOmegaBoundUpper = 5,
diagOmegaBoundLower = 100,
cholSEOpt = FALSE,
cholSECov = FALSE,
fo = FALSE,
covTryHarder = FALSE,
outerOpt = c("nlminb", "bobyqa", "lbfgsb3c", "L-BFGS-B", "mma", "lbfgsbLG", "slsqp",

"Rvmmin"),
innerOpt = c("n1qn1", "BFGS"),
rhobeg = 0.2,
rhoend = NULL,
npt = NULL,
rel.tol = NULL,
x.tol = NULL,
eval.max = 4000,
iter.max = 2000,
abstol = NULL,
reltol = NULL,
resetHessianAndEta = FALSE,
stateTrim = Inf,
shi21maxOuter = 0L,
shi21maxInner = 20L,
shi21maxInnerCov = 20L,
shi21maxFD = 20L,
gillK = 10L,
gillStep = 4,
gillFtol = 0,
gillRtol = sqrt(.Machine$double.eps),
gillKcov = 10L,
gillKcovLlik = 10L,
gillStepCovLlik = 4.5,
gillStepCov = 2,
gillFtolCov = 0,
gillFtolCovLlik = 0,
rmatNorm = TRUE,
rmatNormLlik = TRUE,
smatNorm = TRUE,

24 foceiControl

smatNormLlik = TRUE,
covGillF = TRUE,
optGillF = TRUE,
covSmall = 1e-05,
adjLik = TRUE,
gradTrim = Inf,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
gradCalcCentralSmall = 1e-04,
gradCalcCentralLarge = 10000,
etaNudge = qnorm(1 - 0.05/2)/sqrt(3),
etaNudge2 = qnorm(1 - 0.05/2) * sqrt(3/5),
nRetries = 3,
seed = 42,
resetThetaCheckPer = 0.1,
etaMat = NULL,
repeatGillMax = 1,
stickyRecalcN = 4,
gradProgressOfvTime = 10,
addProp = c("combined2", "combined1"),
badSolveObjfAdj = 100,
compress = TRUE,
rxControl = NULL,
sigdigTable = NULL,
fallbackFD = FALSE,
smatPer = 0.6,
sdLowerFact = 0.001,
zeroGradFirstReset = TRUE,
zeroGradRunReset = TRUE,
zeroGradBobyqa = TRUE,
mceta = -1L

)

Arguments

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

... Ignored parameters

epsilon Precision of estimate for n1qn1 optimization.
maxInnerIterations

Number of iterations for n1qn1 optimization.
maxOuterIterations

Maximum number of L-BFGS-B optimization for outer problem.

foceiControl 25

n1qn1nsim Number of function evaluations for n1qn1 optimization.

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

printNcol Number of columns to printout before wrapping parameter estimates/gradient

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

scaleObjective Scale the initial objective function to this value. By default this is 0 (meaning
do not scale)

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

26 foceiControl

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

foceiControl 27

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

28 foceiControl

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleC0 Number to adjust the scaling factor by if the initial gradient is zero.

derivEps Forward difference tolerances, which is a vector of relative difference and abso-
lute difference. The central/forward difference step size h is calculated as:
h = abs(x)*derivEps[1] + derivEps[2]

derivMethod indicates the method for calculating derivatives of the outer problem. Cur-
rently supports "switch", "central" and "forward" difference methods. Switch
starts with forward differences. This will switch to central differences when
abs(delta(OFV)) <= derivSwitchTol and switch back to forward differences when
abs(delta(OFV)) > derivSwitchTol.

derivSwitchTol The tolerance to switch forward to central differences.

covDerivMethod indicates the method for calculating the derivatives while calculating the covari-
ance components (Hessian and S).

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

hessEps is a double value representing the epsilon for the Hessian calculation. This is
used for the R matrix calculation.

hessEpsLlik is a double value representing the epsilon for the Hessian calculation when do-
ing focei generalized log-likelihood estimation. This is used for the R matrix
calculation.

optimHessType The hessian type for when calculating the individual hessian by numeric dif-
ferences (in generalized log-likelihood estimation). The options are "central",
and "forward". The central differences is what R’s ‘optimHess()‘ uses and is
the default for this method. (Though the "forward" is faster and still reasonable
for most cases). The Shi21 cannot be changed for the Gill83 algorithm with the
optimHess in a generalized likelihood problem.

optimHessCovType

The hessian type for when calculating the individual hessian by numeric differ-
ences (in generalized log-likelihood estimation). The options are "central", and
"forward". The central differences is what R’s ‘optimHess()‘ uses. While this

foceiControl 29

takes longer in optimization, it is more accurate, so for calculating the covari-
ance and final likelihood, the central differences are used. This also uses the
modified Shi21 method

eventType Event gradient type for dosing events; Can be "central" or "forward"
centralDerivEps

Central difference tolerances. This is a numeric vector of relative difference and
absolute difference. The central/forward difference step size h is calculated as:
h = abs(x)*derivEps[1] + derivEps[2]

lbfgsLmm An integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 7.

lbfgsPgtol is a double precision variable.
On entry pgtol >= 0 is specified by the user. The iteration will stop when:
max(\| proj g_i \| i = 1, ..., n) <= lbfgsPgtol

where pg_i is the ith component of the projected gradient.
On exit pgtol is unchanged. This defaults to zero, when the check is suppressed.

lbfgsFactr Controls the convergence of the "L-BFGS-B" method. Convergence occurs
when the reduction in the objective is within this factor of the machine toler-
ance. Default is 1e10, which gives a tolerance of about 2e-6, approximately
4 sigdigs. You can check your exact tolerance by multiplying this value by
.Machine$double.eps

eigen A boolean indicating if eigenvectors are calculated to include a condition num-
ber calculation.

addPosthoc Boolean indicating if posthoc parameters are added to the table output.

diagXform This is the transformation used on the diagonal of the chol(solve(omega)).
This matrix and values are the parameters estimated in FOCEi. The possibilities
are:

• sqrt Estimates the sqrt of the diagonal elements of chol(solve(omega)).
This is the default method.

• log Estimates the log of the diagonal elements of chol(solve(omega))
• identity Estimates the diagonal elements without any transformations

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

useColor Boolean indicating if focei can use ASCII color codes

boundTol Tolerance for boundary issues.

30 foceiControl

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

noAbort Boolean to indicate if you should abort the FOCEi evaluation if it runs into
troubles. (default TRUE)

interaction Boolean indicate FOCEi should be used (TRUE) instead of FOCE (FALSE)

cholSEtol tolerance for Generalized Cholesky Decomposition. Defaults to suggested (.Ma-
chine$double.eps)^(1/3)

cholAccept Tolerance to accept a Generalized Cholesky Decomposition for a R or S matrix.

resetEtaP represents the p-value for reseting the individual ETA to 0 during optimization
(instead of the saved value). The two test statistics used in the z-test are either
chol(omega^-1) %*% eta or eta/sd(allEtas). A p-value of 0 indicates the ETAs
never reset. A p-value of 1 indicates the ETAs always reset.

resetThetaP represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization. A
p-value of 0 indicates the THETAs never reset. A p-value of 1 indicates the
THETAs always reset and is not allowed. The theta reset is checked at the begin-
ning and when nearing a local minima. The percent change in objective function
where a theta reset check is initiated is controlled in resetThetaCheckPer.

resetThetaFinalP

represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization one
final time.

diagOmegaBoundUpper

This represents the upper bound of the diagonal omega matrix. The upper bound
is given by diag(omega)*diagOmegaBoundUpper. If diagOmegaBoundUpper is
1, there is no upper bound on Omega.

diagOmegaBoundLower

This represents the lower bound of the diagonal omega matrix. The lower bound
is given by diag(omega)/diagOmegaBoundUpper. If diagOmegaBoundLower is
1, there is no lower bound on Omega.

cholSEOpt Boolean indicating if the generalized Cholesky should be used while optimizing.

cholSECov Boolean indicating if the generalized Cholesky should be used while calculating
the Covariance Matrix.

fo is a boolean indicating if this is a FO approximation routine.

covTryHarder If the R matrix is non-positive definite and cannot be corrected to be non-positive
definite try estimating the Hessian on the unscaled parameter space.

outerOpt optimization method for the outer problem

innerOpt optimization method for the inner problem (not implemented yet.)

rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default
this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted. (bobyqa)

foceiControl 31

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
10^(-sigdig-1) will be used. (bobyqa)

npt The number of points used to approximate the objective function via a quadratic
approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1. (bobyqa)

rel.tol Relative tolerance before nlminb stops (nlmimb).
x.tol X tolerance for nlmixr2 optimizer
eval.max Number of maximum evaluations of the objective function (nlmimb)
iter.max Maximum number of iterations allowed (nlmimb)
abstol Absolute tolerance for nlmixr2 optimizer (BFGS)
reltol tolerance for nlmixr2 (BFGS)
resetHessianAndEta

is a boolean representing if the individual Hessian is reset when ETAs are reset
using the option resetEtaP.

stateTrim Trim state amounts/concentrations to this value.
shi21maxOuter The maximum number of steps for the optimization of the forward-difference

step size. When not zero, use this instead of Gill differences.
shi21maxInner The maximum number of steps for the optimization of the individual Hessian

matrices in the generalized likelihood problem. When 0, un-optimized finite
differences are used.

shi21maxInnerCov

The maximum number of steps for the optimization of the individual Hessian
matrices in the generalized likelihood problem for the covariance step. When 0,
un-optimized finite differences are used.

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

gillK The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

gillStep When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

gillFtol The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

gillRtol The relative tolerance used for Gill 1983 determination of optimal step size.
gillKcov The total number of possible steps to determine the optimal forward/central dif-

ference step size per parameter (by the Gill 1983 method) during the covariance
step. If 0, no optimal step size is determined. Otherwise this is the optimal step
size determined.

gillKcovLlik The total number of possible steps to determine the optimal forward/central
difference step per parameter when using the generalized focei log-likelihood
method (by the Gill 1986 method). If 0, no optimal step size is determined.
Otherwise this is the optimal step size is determined

32 foceiControl

gillStepCovLlik

Same as above but during generalized focei log-likelihood

gillStepCov When looking for the optimal forward difference step size, this is This is the step
size to increase the initial estimate by. So each iteration during the covariance
step is equal to the new step size = (prior step size)*gillStepCov

gillFtolCov The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates during the covariance step.

gillFtolCovLlik

Same as above but applied during generalized log-likelihood estimation.

rmatNorm A parameter to normalize gradient step size by the parameter value during the
calculation of the R matrix

rmatNormLlik A parameter to normalize gradient step size by the parameter value during the
calculation of the R matrix if you are using generalized log-likelihood Hessian
matrix.

smatNorm A parameter to normalize gradient step size by the parameter value during the
calculation of the S matrix

smatNormLlik A parameter to normalize gradient step size by the parameter value during the
calculation of the S matrix if you are using the generalized log-likelihood.

covGillF Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central difference gradient calculation.

optGillF Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central differences for optimization.

covSmall The covSmall is the small number to compare covariance numbers before reject-
ing an estimate of the covariance as the final estimate (when comparing sand-
wich vs R/S matrix estimates of the covariance). This number controls how
small the variance is before the covariance matrix is rejected.

adjLik In nlmixr2, the objective function matches NONMEM’s objective function, which
removes a 2*pi constant from the likelihood calculation. If this is TRUE, the
likelihood function is adjusted by this 2*pi factor. When adjusted this number
more closely matches the likelihood approximations of nlme, and SAS approx-
imations. Regardless of if this is turned on or off the objective function matches
NONMEM’s objective function.

gradTrim The parameter to adjust the gradient to if the |gradient| is very large.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

gradCalcCentralSmall

A small number that represents the value where |grad| < gradCalcCentralSmall
where forward differences switch to central differences.

gradCalcCentralLarge

A large number that represents the value where |grad| > gradCalcCentralLarge
where forward differences switch to central differences.

foceiControl 33

etaNudge By default initial ETA estimates start at zero; Sometimes this doesn’t optimize
appropriately. If this value is non-zero, when the n1qn1 optimization didn’t
perform appropriately, reset the Hessian, and nudge the ETA up by this value; If
the ETA still doesn’t move, nudge the ETA down by this value. By default this
value is qnorm(1-0.05/2)*1/sqrt(3), the first of the Gauss Quadrature numbers
times by the 0.95% normal region. If this is not successful try the second eta
nudge number (below). If +-etaNudge2 is not successful, then assign to zero
and do not optimize any longer

etaNudge2 This is the second eta nudge. By default it is qnorm(1-0.05/2)*sqrt(3/5), which
is the n=3 quadrature point (excluding zero) times by the 0.95% normal region

nRetries If FOCEi doesn’t fit with the current parameter estimates, randomly sample new
parameter estimates and restart the problem. This is similar to ’PsN’ resampling.

seed an object specifying if and how the random number generator should be initial-
ized

resetThetaCheckPer

represents objective function % percentage below which resetThetaP is checked.

etaMat Eta matrix for initial estimates or final estimates of the ETAs.
This can also be a fit to take use the final estimation estimates and use them as
the initial eta value of the next fit.
By default, it will be the initial values of the etas from the last fit (if supplied) or
missing, meaning all ETAs start at zero (‘NULL‘)
When this value is ‘NA‘, the initial ETA estimates are not taken from the last fit.

repeatGillMax If the tolerances were reduced when calculating the initial Gill differences, the
Gill difference is repeated up to a maximum number of times defined by this
parameter.

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

gradProgressOfvTime

This is the time for a single objective function evaluation (in seconds) to start
progress bars on gradient evaluations

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

34 foceiControl

badSolveObjfAdj

The objective function adjustment when the ODE system cannot be solved. It is
based on each individual bad solve.

compress Should the object have compressed items

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

fallbackFD Fallback to the finite differences if the sensitivity equations do not solve.

smatPer A percentage representing the number of failed parameter gradients for each
individual (which are replaced with the overall gradient for the parameter) out of
the total number of gradients parameters (ie ‘ntheta*nsub‘) before the S matrix
is considered to be a bad matrix.

sdLowerFact A factor for multiplying the estimate by when the lower estimate is zero and
the error is known to represent a standard deviation of a parameter (like add.sd,
prop.sd, pow.sd, lnorm.sd, etc). When zero, no factor is applied. If your initial
estimate is 0.15 and your lower bound is zero, then the lower bound would be
assumed to be 0.00015.

zeroGradFirstReset

boolean, when ‘TRUE‘ if the first gradient is zero, reset the zero gradient to
‘sqrt(.Machine$double.eps)‘ to get past the bad initial estimate, otherwise error
(and possibly reset), when ‘FALSE‘ error when the first gradient is zero. When
‘NA‘ on the last reset, have the zero gradient ignored, otherwise error and look
for another value. Default is ‘TRUE‘

zeroGradRunReset

boolean, when ‘TRUE‘ if a gradient is zero, reset the zero gradient to ‘sqrt(.Machine$double.eps)‘
to get past the bad estimate while running. Otherwise error (and possibly reset).
Default is ‘TRUE‘

zeroGradBobyqa boolean, when ‘TRUE‘ if a gradient is zero, the reset will change the method to
the gradient free bobyqa method. When ‘NA‘, the zero gradient will change to
bobyqa only when the first gradient is zero. Default is ‘TRUE‘

mceta Integer indicating the type of Monte Carlo sampling to perform for the best
initial ETA estimate (based on ‘omega‘). When:
- ‘-1‘ the last eta is used for the optimization (default)
- ‘0‘ eta=0 is used for each inner optimization
For the rest of the ‘mceta‘, each parameter’s inner objective function is calcu-
lated and the eta set with the best objective function is used. With these further
options:
- ‘1‘ the last eta and eta=0 are used
- ‘2‘ the last eta and eta=0 are used, as well as 1 sampled eta from the omega
matrix
- ‘n‘ the last eta and eta=0 are used, as well as n-1 sampled etas from the omega
matrix

getValidNlmixrCtl.bobyqa 35

Details

Note this uses the R’s L-BFGS-B in optim for the outer problem and the BFGS n1qn1 with that
allows restoring the prior individual Hessian (for faster optimization speed).

However the inner problem is not scaled. Since most eta estimates start near zero, scaling for these
parameters do not make sense.

This process of scaling can fix some ill conditioning for the unscaled problem. The covariance step
is performed on the unscaled problem, so the condition number of that matrix may not be reflective
of the scaled problem’s condition-number.

Value

The control object that changes the options for the FOCEi family of estimation methods

Author(s)

Matthew L. Fidler

References

Gill, P.E., Murray, W., Saunders, M.A., & Wright, M.H. (1983). Computing Forward-Difference
Intervals for Numerical Optimization. Siam Journal on Scientific and Statistical Computing, 4,
310-321.

Shi, H.M., Xie, Y., Xuan, M.Q., & Nocedal, J. (2021). Adaptive Finite-Difference Interval Estima-
tion for Noisy Derivative-Free Optimization.

See Also

optim

n1qn1

rxSolve

Other Estimation control: nlmixr2NlmeControl(), saemControl()

getValidNlmixrCtl.bobyqa

Get valid nlmixr control object

Description

Get valid nlmixr control object

36 getValidNlmixrCtl.bobyqa

Usage

S3 method for class 'bobyqa'
getValidNlmixrCtl(control)

S3 method for class 'lbfgsb3c'
getValidNlmixrCtl(control)

S3 method for class 'n1qn1'
getValidNlmixrCtl(control)

S3 method for class 'newuoa'
getValidNlmixrCtl(control)

S3 method for class 'nlm'
getValidNlmixrCtl(control)

S3 method for class 'nlminb'
getValidNlmixrCtl(control)

S3 method for class 'nls'
getValidNlmixrCtl(control)

S3 method for class 'optim'
getValidNlmixrCtl(control)

getValidNlmixrControl(control, est)

getValidNlmixrCtl(control)

S3 method for class 'focei'
getValidNlmixrCtl(control)

S3 method for class 'foce'
getValidNlmixrCtl(control)

S3 method for class 'fo'
getValidNlmixrCtl(control)

S3 method for class 'foi'
getValidNlmixrCtl(control)

S3 method for class 'posthoc'
getValidNlmixrCtl(control)

S3 method for class 'foce'
getValidNlmixrCtl(control)

S3 method for class 'nlme'

lbfgsb3cControl 37

getValidNlmixrCtl(control)

S3 method for class 'saem'
getValidNlmixrCtl(control)

S3 method for class 'rxSolve'
getValidNlmixrCtl(control)

S3 method for class 'simulate'
getValidNlmixrCtl(control)

S3 method for class 'simulation'
getValidNlmixrCtl(control)

S3 method for class 'predict'
getValidNlmixrCtl(control)

S3 method for class 'tableControl'
getValidNlmixrCtl(control)

Default S3 method:
getValidNlmixrCtl(control)

S3 method for class 'uobyqa'
getValidNlmixrCtl(control)

Arguments

control nlmixr control object

est Estimation routine

Details

This is based on running the S3 method ‘getValidNlmixrCtl()‘ the ‘control‘ object is put into a list
and the class of this new list is ‘c(est, "getValidNlmixrControl")‘

Value

Valid control object based on estimation method run.

lbfgsb3cControl Control for lbfgsb3c estimation method in nlmixr2

Description

Control for lbfgsb3c estimation method in nlmixr2

38 lbfgsb3cControl

Usage

lbfgsb3cControl(
trace = 0,
factr = 1e+07,
pgtol = 0,
abstol = 0,
reltol = 0,
lmm = 5L,
maxit = 10000L,
returnLbfgsb3c = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

trace If positive, tracing information on the progress of the optimization is produced.
Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the
source code: higher levels give more detail.)

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when
the reduction in the objective is within this factor of the machine tolerance. De-
fault is 1e7, that is a tolerance of about 1e-8.

lbfgsb3cControl 39

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on
the projected gradient in the current search direction. This defaults to zero, when
the check is suppressed.

abstol helps control the convergence of the "L-BFGS-B" method. It is an absolute
tolerance difference in x values. This defaults to zero, when the check is sup-
pressed.

reltol helps control the convergence of the "L-BFGS-B" method. It is an relative toler-
ance difference in x values. This defaults to zero, when the check is suppressed.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 5.

maxit maximum number of iterations.

returnLbfgsb3c return the lbfgsb3c output instead of the nlmixr2 fit

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

40 lbfgsb3cControl

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

lbfgsb3cControl 41

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

42 lbfgsb3cControl

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

lbfgsb3cControl 43

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Ignored parameters

Value

bobqya control structure

Author(s)

Matthew L. Fidler

44 n1qn1Control

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="lbfgsb3c")

print(fit2)

you can also get the nlm output with fit2$lbfgsb3c

fit2$lbfgsb3c

The nlm control has been modified slightly to include
extra components and name the parameters

n1qn1Control Control for n1qn1 estimation method in nlmixr2

Description

Control for n1qn1 estimation method in nlmixr2

Usage

n1qn1Control(
epsilon = (.Machine$double.eps)^0.25,
max_iterations = 10000,
nsim = 10000,
imp = 0,
print.functions = FALSE,
returnN1qn1 = FALSE,

n1qn1Control 45

stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", "n1qn1", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

epsilon Precision of estimate for n1qn1 optimization.

max_iterations Number of iterations

nsim Number of function evaluations

imp Verbosity of messages.
print.functions

Boolean to control if the function value and parameter estimates are echoed
every time a function is called.

returnN1qn1 return the n1qn1 output instead of the nlmixr2 fit

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

46 n1qn1Control

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

n1qn1Control 47

• mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

48 n1qn1Control

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

n1qn1Control 49

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

50 n1qn1Control

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Ignored parameters

Value

bobqya control structure

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({

E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="n1qn1")

print(fit2)

newuoaControl 51

you can also get the nlm output with fit2$n1qn1

fit2$n1qn1

The nlm control has been modified slightly to include
extra components and name the parameters

newuoaControl Control for newuoa estimation method in nlmixr2

Description

Control for newuoa estimation method in nlmixr2

Usage

newuoaControl(
npt = NULL,
rhobeg = NULL,
rhoend = NULL,
iprint = 0L,
maxfun = 100000L,
returnNewuoa = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", ""),
adjObf = TRUE,
ci = 0.95,

52 newuoaControl

sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

npt The number of points used to approximate the objective function via a quadratic
approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1. (bobyqa)

rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default
this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted. (bobyqa)

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
10^(-sigdig-1) will be used. (bobyqa)

iprint The value of ‘iprint‘ should be set to an integer value in ‘0, 1, 2, 3, ...‘, which
controls the amount of printing. Specifically, there is no output if ‘iprint=0‘ and
there is output only at the start and the return if ‘iprint=1‘. Otherwise, each
new value of ‘rho‘ is printed, with the best vector of variables so far and the
corresponding value of the objective function. Further, each new value of the
objective function with its variables are output if ‘iprint=3‘. If ‘iprint > 3‘, the
objective function value and corresponding variables are output every ‘iprint‘
evaluations. Default value is ‘0‘.

maxfun The maximum allowed number of function evaluations. If this is exceeded, the
method will terminate.

returnNewuoa return the newuoa output instead of the nlmixr2 fit

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.

newuoaControl 53

With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

54 newuoaControl

• std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

newuoaControl 55

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

56 newuoaControl

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig

newuoaControl 57

• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-
tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Ignored parameters

Value

newuoa control structure

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({

E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="newuoa")

print(fit2)

you can also get the nlm output with

fit2$newuoa

The nlm control has been modified slightly to include
extra components and name the parameters

58 nlmControl

nlmControl nlmixr2 defaults controls for nlm

Description

nlmixr2 defaults controls for nlm

Usage

nlmControl(
typsize = NULL,
fscale = 1,
print.level = 0,
ndigit = NULL,
gradtol = 1e-06,
stepmax = NULL,
steptol = 1e-06,
iterlim = 10000,
check.analyticals = FALSE,
returnNlm = FALSE,
solveType = c("hessian", "grad", "fun"),
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
eventType = c("central", "forward"),
shiErr = (.Machine$double.eps)^(1/3),
shi21maxFD = 20L,
optimHessType = c("central", "forward"),
hessErr = (.Machine$double.eps)^(1/3),
shi21maxHess = 20L,
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,

nlmControl 59

compress = TRUE,
covMethod = c("r", "nlm", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

typsize an estimate of the size of each parameter at the minimum.

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of 0 means that no printing occurs, a value
of 1 means that initial and final details are printed and a value of 2 means that
full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in f in each direction p[i] divided by the relative change
in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length. stepmax
is used to prevent steps which would cause the optimization function to overflow,
to prevent the algorithm from leaving the area of interest in parameter space, or
to detect divergence in the algorithm. stepmax would be chosen small enough
to prevent the first two of these occurrences, but should be larger than any antic-
ipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

check.analyticals

a logical scalar specifying whether the analytic gradients and Hessians, if they
are supplied, should be checked against numerical derivatives at the initial pa-
rameter values. This can help detect incorrectly formulated gradients or Hes-
sians.

returnNlm is a logical that allows a return of the ‘nlm‘ object

solveType tells if ‘nlm‘ will use nlmixr2’s analytical gradients when available (finite differ-
ences will be used for event-related parameters like parameters controlling lag
time, duration/rate of infusion, and modeled bioavailability). This can be:
- ‘"hessian"‘ which will use the analytical gradients to create a Hessian with
finite differences.
- ‘"gradient"‘ which will use the gradient and let ‘nlm‘ calculate the finite dif-
ference hessian
- ‘"fun"‘ where nlm will calculate both the finite difference gradient and the
finite difference Hessian

60 nlmControl

When using nlmixr2’s finite differences, the "ideal" step size for either central
or forward differences are optimized for with the Shi2021 method which may
give more accurate derivatives

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

eventType Event gradient type for dosing events; Can be "central" or "forward"

shiErr This represents the epsilon when optimizing the ideal step size for numeric dif-
ferentiation using the Shi2021 method

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

optimHessType The hessian type for when calculating the individual hessian by numeric dif-
ferences (in generalized log-likelihood estimation). The options are "central",
and "forward". The central differences is what R’s ‘optimHess()‘ uses and is
the default for this method. (Though the "forward" is faster and still reasonable
for most cases). The Shi21 cannot be changed for the Gill83 algorithm with the
optimHess in a generalized likelihood problem.

hessErr This represents the epsilon when optimizing the Hessian step size using the
Shi2021 method.

shi21maxHess Maximum number of times to optimize the best step size for the hessian calcu-
lation

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

nlmControl 61

The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)

62 nlmControl

• len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo

nlmControl 63

• multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

64 nlmControl

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod allows selection of "r", which uses nlmixr2’s ‘nlmixr2Hess()‘ for the hessian cal-
culation or "nlm" which uses the hessian from ‘stats::nlm(.., hessian=TRUE)‘.
When using ‘nlmixr2’s‘ hessian for optimization or ‘nlmixr2’s‘ gradient for
solving this defaults to "nlm" since ‘stats::optimHess()‘ assumes an accurate
gradient and is faster than ‘nlmixr2Hess‘

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... additional arguments to be passed to f.

nlminbControl 65

Value

nlm control object

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="nlm")

print(fit2)

you can also get the nlm output with fit2$nlm

fit2$nlm

The nlm control has been modified slightly to include
extra components and name the parameters

nlminbControl nlmixr2 nlminb defaults

Description

nlmixr2 nlminb defaults

66 nlminbControl

Usage

nlminbControl(
eval.max = 200,
iter.max = 150,
trace = 0,
abs.tol = 0,
rel.tol = 1e-10,
x.tol = 1.5e-08,
xf.tol = 2.2e-14,
step.min = 1,
step.max = 1,
sing.tol = rel.tol,
scale = 1,
scale.init = NULL,
diff.g = NULL,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
returnNlminb = FALSE,
solveType = c("hessian", "grad", "fun"),
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
eventType = c("central", "forward"),
shiErr = (.Machine$double.eps)^(1/3),
shi21maxFD = 20L,
optimHessType = c("central", "forward"),
hessErr = (.Machine$double.eps)^(1/3),
shi21maxHess = 20L,
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", "nlminb", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,

nlminbControl 67

sigdigTable = NULL,
...

)

Arguments

eval.max Maximum number of evaluations of the objective function allowed. Defaults to
200.

iter.max Maximum number of iterations allowed. Defaults to 150.

trace The value of the objective function and the parameters is printed every trace’th
iteration. When 0 no trace information is to be printed

abs.tol Absolute tolerance. Defaults to 0 so the absolute convergence test is not used.
If the objective function is known to be non-negative, the previous default of
‘1e-20‘ would be more appropriate

rel.tol Relative tolerance. Defaults to ‘1e-10‘.

x.tol X tolerance. Defaults to ‘1.5e-8‘.

xf.tol false convergence tolerance. Defaults to ‘2.2e-14‘.

step.min Minimum step size. Default to ‘1.’.

step.max Maximum step size. Default to ‘1.’.

sing.tol singular convergence tolerance; defaults to ‘rel.tol;.

scale See PORT documentation (or leave alone).

scale.init ... probably need to check PORT documentation

diff.g an estimated bound on the relative error in the objective function value

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

returnNlminb logical; when TRUE this will return the nlminb result instead of the nlmixr2 fit
object

solveType tells if ‘nlm‘ will use nlmixr2’s analytical gradients when available (finite differ-
ences will be used for event-related parameters like parameters controlling lag
time, duration/rate of infusion, and modeled bioavailability). This can be:
- ‘"hessian"‘ which will use the analytical gradients to create a Hessian with
finite differences.
- ‘"gradient"‘ which will use the gradient and let ‘nlm‘ calculate the finite dif-
ference hessian

68 nlminbControl

- ‘"fun"‘ where nlm will calculate both the finite difference gradient and the
finite difference Hessian
When using nlmixr2’s finite differences, the "ideal" step size for either central
or forward differences are optimized for with the Shi2021 method which may
give more accurate derivatives

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

eventType Event gradient type for dosing events; Can be "central" or "forward"

shiErr This represents the epsilon when optimizing the ideal step size for numeric dif-
ferentiation using the Shi2021 method

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

optimHessType The hessian type for when calculating the individual hessian by numeric dif-
ferences (in generalized log-likelihood estimation). The options are "central",
and "forward". The central differences is what R’s ‘optimHess()‘ uses and is
the default for this method. (Though the "forward" is faster and still reasonable
for most cases). The Shi21 cannot be changed for the Gill83 algorithm with the
optimHess in a generalized likelihood problem.

hessErr This represents the epsilon when optimizing the Hessian step size using the
Shi2021 method.

shi21maxHess Maximum number of times to optimize the best step size for the hessian calcu-
lation

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

nlminbControl 69

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• mean or mean normalization. This rescales to center the parameters around

the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)

70 nlminbControl

• len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo

nlminbControl 71

• multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

72 nlminbControl

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Further arguments to be supplied to objective.

Author(s)

Matthew L. Fidler

nlmixr2 73

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="nlminb")

print(fit2)

you can also get the nlm output with fit2$nlminb

fit2$nlminb

nlmixr2 nlmixr2 fits population PK and PKPD non-linear mixed effects mod-
els.

Description

nlmixr2 is an R package for fitting population pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic
(PKPD) models.

Usage

nlmixr2(
object,
data,
est = NULL,
control = list(),
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

74 nlmixr2

)

nlmixr(
object,
data,
est = NULL,
control = list(),
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

S3 method for class '`function`'
nlmixr2(
object,
data = NULL,
est = NULL,
control = NULL,
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

S3 method for class 'rxUi'
nlmixr2(
object,
data = NULL,
est = NULL,
control = NULL,
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

S3 method for class 'nlmixr2FitCore'
nlmixr2(
object,
data = NULL,
est = NULL,
control = NULL,
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

nlmixr2 75

S3 method for class 'nlmixr2FitData'
nlmixr2(
object,
data = NULL,
est = NULL,
control = NULL,
table = tableControl(),
...,
save = NULL,
envir = parent.frame()

)

Arguments

object Fitted object or function specifying the model.

data nlmixr data

est estimation method (all methods are shown by ‘nlmixr2AllEst()‘). Methods can
be added for other tools

control The estimation control object. These are expected to be different for each type
of estimation method

table The output table control object (like ‘tableControl()‘)

... Other parameters

save Boolean to save a nlmixr2 object in a rds file in the working directory. If NULL,
uses option "nlmixr2.save"

envir Environment where the nlmixr object/function is evaluated before running the
estimation routine.

Details

The nlmixr2 generalized function allows common access to the nlmixr2 estimation routines.

The nlmixr object has the following fields:

Field Description
conditionNumber Condition number, that is the highest divided by the lowest eigenvalue in the population covariance matrix
cor Correlation matrix
phiR correlation matrix of each individual’s eta (if present)
objDF Data frame containing objective function information (AIC, BIC, etc.)
time Duration of different parts of the analysis (e.g. setup, optimization, calculation of covariance, etc.)
theta Estimates for eta for each individual
etaObf Estimates for eta for each individual, This also includes the objective function for each individual
fixef Estimates of fixed effects
foceiControl Estimation options if focei was used
ui Final estimates for the model
dataMergeFull Full data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
censInfo Gives the censorng information abot the fit (the type of censoring that was seend and handled in the dataset)

76 nlmixr2

dataLloq Gives the lloq from the dataset (average) when cesoring has occured; Requires the fit to have a table step
dataUloq Gives the uloq from the dataset (average) when censoring has occured; requires the fit to have a table step
eta IIV values for each indiviudal
dataMergeInner Inner data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
rxControl Integration options used to control rxode2
dataMergeLeft Left data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
omega Matrix containing the estimates of the multivarte normal covariance matrix for between subject varaibilities (omega)
covMethod Method used to calculate covariance of the fixed effects
modelName Name of the R object containing the model
origData Original dataset
phiRSE Relative standard error of each individuals eta
dataMergeRight Right data merge with the fit output and the original dataset; Also includes nlmixrLlikObs which includes the individual observation contribution to the likelihood
ipredModel rxode2 estimation model for fit (internal will likely be removed from visibility
phiSE Standard error of each individuals eta
parFixed Table of parameter estimates (rounded and pretty looking)
parFixedDF Table of parameter estimates as a data frame
omegaR The correlation matirx of omega with standard deviations for the diagonal pieces
iniUi The initial model used to start the estimation
finalUi The model with the estimates replaced as values
scaleInfo The scaling factors used for nlmixr2 estimation in focei; The can be changed by foceiControl(scaleC=. . .) if you think these are unreasonable. It also tells the Gill83 outcome of trying to find the best step size (High gradient error, bad gradient etc)
table These are the table options that were used when generating the table output (were CWRES included, etc
shrink This is a table of shrinkages for all the individual ETAs as well as the variance shrinkage as well as summary statistics for the ETAs and Residual Error
env This is the environment where all the information for the fit is stored outside of the data-frame. It is an R environment hence $env
seed This is the initial seed used for saem
simInfo This returns a list of all the fit information used for a traditional rxode2 simulation, which you can tweak yourself if you wish
runInfo This returns a list of all the warnings or fit information
parHistStacked Value of objective function and parameters at each iteration (tall format)
parHist Value of objective function and parameters at each iteration (wide format)
cov Variance-covariance matrix

Value

Either a nlmixr2 model or a nlmixr2 fit object

nlmixr modeling mini-language

Rationale

nlmixr estimation routines each have their own way of specifying models. Often the models are
specified in ways that are most intuitive for one estimation routine, but do not make sense for
another estimation routine. Sometimes, legacy estimation routines like nlme have their own syntax
that is outside of the control of the nlmixr package.

The unique syntax of each routine makes the routines themselves easier to maintain and expand,
and allows interfacing with existing packages that are outside of nlmixr (like nlme). However, a
model definition language that is common between estimation methods, and an output object that
is uniform, will make it easier to switch between estimation routines and will facilitate interfacing
output with external packages like Xpose.

nlmixr2 77

The nlmixr mini-modeling language, attempts to address this issue by incorporating a common
language. This language is inspired by both R and NONMEM, since these languages are familiar
to many pharmacometricians.

Initial Estimates and boundaries for population parameters

nlmixr models are contained in a R function with two blocks: ini and model. This R function can
be named anything, but is not meant to be called directly from R. In fact if you try you will likely
get an error such as Error: could not find function "ini".

The ini model block is meant to hold the initial estimates for the model, and the boundaries of
the parameters for estimation routines that support boundaries (note nlmixr’s saem and nlme do not
currently support parameter boundaries).

To explain how these initial estimates are specified we will start with an annotated example:

f <- function(){ ## Note the arguments to the function are currently
ignored by nlmixr

ini({
Initial conditions for population parameters (sometimes
called theta parameters) are defined by either `<-` or '='
lCl <- 1.6 #log Cl (L/hr)
Note that simple expressions that evaluate to a number are
OK for defining initial conditions (like in R)
lVc = log(90) #log V (L)
Also a comment on a parameter is captured as a parameter label
lKa <- 1 #log Ka (1/hr)
Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.err <- c(0, 0.2, 1)

})
The model block will be discussed later
model({})

}

As shown in the above examples:

• Simple parameter values are specified as a R-compatible assignment

• Boundaries my be specified by c(lower, est, upper).

• Like NONMEM, c(lower,est) is equivalent to c(lower,est,Inf)

• Also like NONMEM, c(est) does not specify a lower bound, and is equivalent to specifying
the parameter without R’s ‘c‘ function.

• The initial estimates are specified on the variance scale, and in analogy with NONMEM, the
square roots of the diagonal elements correspond to coefficients of variation when used in the
exponential IIV implementation

These parameters can be named almost any R compatible name. Please note that:

• Residual error estimates should be coded as population estimates (i.e. using an ’=’ or ’<-’
statement, not a ’~’).

78 nlmixr2

• Naming variables that start with "_" are not supported. Note that R does not allow variable
starting with "_" to be assigned without quoting them.

• Naming variables that start with "rx_" or "nlmixr_" is not supported since rxode2 and nlmixr2
use these prefixes internally for certain estimation routines and calculating residuals.

• Variable names are case sensitive, just like they are in R. "CL" is not the same as "Cl".

Initial Estimates for between subject error distribution (NONMEM’s $OMEGA)

In mixture models, multivariate normal individual deviations from the population parameters are
estimated (in NONMEM these are called eta parameters). Additionally the variance/covariance
matrix of these deviations is also estimated (in NONMEM this is the OMEGA matrix). These also
have initial estimates. In nlmixr these are specified by the ‘~‘ operator that is typically used in R
for "modeled by", and was chosen to distinguish these estimates from the population and residual
error parameters.

Continuing the prior example, we can annotate the estimates for the between subject error distribu-
tion

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc = log(90) #log V (L)
lKa <- 1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
Initial estimate for ka IIV variance
Labels work for single parameters
eta.ka ~ 0.1 # BSV Ka

For correlated parameters, you specify the names of each
correlated parameter separated by a addition operator `+`
and the left handed side specifies the lower triangular
matrix initial of the covariance matrix.
eta.cl + eta.vc ~ c(0.1,

0.005, 0.1)
Note that labels do not currently work for correlated
parameters. Also do not put comments inside the lower
triangular matrix as this will currently break the model.

})
The model block will be discussed later
model({})

}

As shown in the above examples:

• Simple variances are specified by the variable name and the estimate separated by ‘~‘.

• Correlated parameters are specified by the sum of the variable labels and then the lower trian-
gular matrix of the covariance is specified on the left handed side of the equation. This is also
separated by ‘~‘.

nlmixr2 79

Currently the model syntax does not allow comments inside the lower triangular matrix.

Model Syntax for ODE based models (NONMEM’s $PK, $PRED, $DES and $ERROR)
Once the initialization block has been defined, you can define a model in terms of the defined
variables in the ini block. You can also mix in RxODE blocks into the model.

The current method of defining a nlmixr model is to specify the parameters, and then possibly the
RxODE lines:

Continuing describing the syntax with an annotated example:

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)

})
}

A few points to note:

• Parameters are often defined before the differential equations.

• The differential equations, parameters and error terms are in a single block, instead of multiple
sections.

• State names, calculated variables cannot start with either "rx_" or "nlmixr_" since these are
used internally in some estimation routines.

• Errors are specified using the ‘~‘. Currently you can use either add(parameter) for additive
error, prop(parameter) for proportional error or add(parameter1) + prop(parameter2) for
additive plus proportional error. You can also specify norm(parameter) for the additive error,
since it follows a normal distribution.

80 nlmixr2

• Some routines, like saem require parameters in terms of Pop.Parameter + Individual.Deviation.Parameter
+ Covariate*Covariate.Parameter. The order of these parameters do not matter. This is
similar to NONMEM’s mu-referencing, though not quite so restrictive.

• The type of parameter in the model is determined by the initial block; Covariates used in the
model are missing in the ini block. These variables need to be present in the modeling dataset
for the model to run.

Model Syntax for solved PK systems

Solved PK systems are also currently supported by nlmixr with the ‘linCmt()‘ pseudo-function. An
annotated example of a solved system is below:

##’

f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
Instead of specifying the ODEs, you can use
the linCmt() function to use the solved system.
##
This function determines the type of PK solved system
to use by the parameters that are defined. In this case
it knows that this is a one-compartment model with first-order
absorption.
linCmt() ~ prop(prop.err)

})
}

A few things to keep in mind:

• While RxODE allows mixing of solved systems and ODEs, this has not been implemented in
nlmixr yet.

• The solved systems implemented are the one, two and three compartment models with or
without first-order absorption. Each of the models support a lag time with a tlag parameter.

• In general the linear compartment model figures out the model by the parameter names. nlmixr
currently knows about numbered volumes, Vc/Vp, Clearances in terms of both Cl and Q/CLD.
Additionally nlmixr knows about elimination micro-constants (ie K12). Mixing of these pa-
rameters for these models is currently not supported.

nlmixr2 81

Checking model syntax

After specifying the model syntax you can check that nlmixr is interpreting it correctly by using the
nlmixr function on it.

Using the above function we can get:

> nlmixr(f)
1-compartment model with first-order absorption in terms of Cl
Initialization:
##
Fixed Effects ($theta):

lCl lVc lKA
1.60000 4.49981 0.10000

Omega ($omega):
[,1] [,2] [,3]

[1,] 0.1 0.0 0.0
[2,] 0.0 0.1 0.0
[3,] 0.0 0.0 0.1

Model:
##
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
Instead of specifying the ODEs, you can use
the linCmt() function to use the solved system.
##
This function determines the type of PK solved system
to use by the parameters that are defined. In this case
it knows that this is a one-compartment model with first-order
absorption.
linCmt() ~ prop(prop.err)

In general this gives you information about the model (what type of solved system/RxODE), initial
estimates as well as the code for the model block.

Using the model syntax for estimating a model

Once the model function has been created, you can use it and a dataset to estimate the parameters
for a model given a dataset.

This dataset has to have RxODE compatible events IDs. Both Monolix and NONMEM use a a very
similar standard to what nlmixr can support.

Once the data has been converted to the appropriate format, you can use the nlmixr function to run
the appropriate code.

The method to estimate the model is:

fit <- nlmixr(model.function, dataset, est="est", control=estControl(options))

82 nlmixr2

Currently nlme and saem are implemented. For example, to run the above model with saem, we
could have the following:

> f <- function(){
ini({

lCl <- 1.6 #log Cl (L/hr)
lVc <- log(90) #log Vc (L)
lKA <- 0.1 #log Ka (1/hr)
prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

})
model({

First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(lCl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- Cl / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KA*depot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)

})
}
> fit.s <- nlmixr(f,d,est="saem",control=saemControl(n.burn=50,n.em=100,print=50));
Compiling RxODE differential equations...done.
c:/Rtools/mingw_64/bin/g++ -I"c:/R/R-34~1.1/include" -DNDEBUG -I"d:/Compiler/gcc-4.9.3/local330/include" -Ic:/nlmixr/inst/include -Ic:/R/R-34~1.1/library/STANHE~1/include -Ic:/R/R-34~1.1/library/Rcpp/include -Ic:/R/R-34~1.1/library/RCPPAR~1/include -Ic:/R/R-34~1.1/library/RCPPEI~1/include -Ic:/R/R-34~1.1/library/BH/include -O2 -Wall -mtune=core2 -c saem3090757b4bd1x64.cpp -o saem3090757b4bd1x64.o
In file included from c:/R/R-34~1.1/library/RCPPAR~1/include/armadillo:52:0,

from c:/R/R-34~1.1/library/RCPPAR~1/include/RcppArmadilloForward.h:46,
from c:/R/R-34~1.1/library/RCPPAR~1/include/RcppArmadillo.h:31,
from saem3090757b4bd1x64.cpp:1:

c:/R/R-34~1.1/library/RCPPAR~1/include/armadillo_bits/compiler_setup.hpp:474:96: note: #pragma message: WARNING: use of OpenMP disabled; this compiler doesn't support OpenMP 3.0+
#pragma message ("WARNING: use of OpenMP disabled; this compiler doesn't support OpenMP 3.0+")

^
c:/Rtools/mingw_64/bin/g++ -shared -s -static-libgcc -o saem3090757b4bd1x64.dll tmp.def saem3090757b4bd1x64.o c:/nlmixr/R/rx_855815def56a50f0e7a80e48811d947c_x64.dll -Lc:/R/R-34~1.1/bin/x64 -lRblas -Lc:/R/R-34~1.1/bin/x64 -lRlapack -lgfortran -lm -lquadmath -Ld:/Compiler/gcc-4.9.3/local330/lib/x64 -Ld:/Compiler/gcc-4.9.3/local330/lib -Lc:/R/R-34~1.1/bin/x64 -lR
done.
1: 1.8174 4.6328 0.0553 0.0950 0.0950 0.0950 0.6357
50: 1.3900 4.2039 0.0001 0.0679 0.0784 0.1082 0.1992
100: 1.3894 4.2054 0.0107 0.0686 0.0777 0.1111 0.1981
150: 1.3885 4.2041 0.0089 0.0683 0.0778 0.1117 0.1980
Using sympy via SnakeCharmR
Calculate ETA-based prediction and error derivatives:
Calculate Jacobian...................done.

nlmixr2 83

Calculate sensitivities.......
done.
Calculate d(f)/d(eta)
...
done
...
done
The model-based sensitivities have been calculated
Calculating Table Variables...
done

The options for saem are controlled by saemControl. You may wish to make sure the minimization
is complete in the case of saem. You can do that with traceplot which shows the iteration history
with the divided by burn-in and EM phases. In this case, the burn in seems reasonable; you may
wish to increase the number of iterations in the EM phase of the estimation. Overall it is probably
a semi-reasonable solution.

nlmixr output objects
In addition to unifying the modeling language sent to each of the estimation routines, the outputs
currently have a unified structure.

You can see the fit object by typing the object name:

> fit.s
-- nlmixr SAEM fit (ODE); OBJF calculated from FOCEi approximation -------------

OBJF AIC BIC Log-likelihood Condition Number
62337.09 62351.09 62399.01 -31168.55 82.6086

-- Time (sec; fit.s$time): ---
saem setup Likelihood Calculation covariance table

elapsed 430.25 31.64 1.19 0 3.44

-- Parameters (fit.s$par.fixed): ---
Parameter Estimate SE

lCl log Cl (L/hr) 1.39 0.0240 1.73 4.01 (3.83, 4.20) 26.6
lVc log Vc (L) 4.20 0.0256 0.608 67.0 (63.7, 70.4) 28.5
lKA log Ka (1/hr) 0.00924 0.0323 349. 1.01 (0.947, 1.08) 34.3
prop.err prop.err 0.198 19.8

Shrink(SD)
lCl 0.248
lVc 1.09
lKA 4.19
prop.err 1.81

No correlations in between subject variability (BSV) matrix
Full BSV covariance (fit.s$omega) or correlation (fit.s$omega.R; diagonals=SDs)
Distribution stats (mean/skewness/kurtosis/p-value) available in fit.s$shrink

-- Fit Data (object fit.s is a modified data.frame): ---------------------------
A tibble: 6,947 x 22

84 nlmixr2

ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES
* <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 0.25 205. 198. 6.60 0.0741 189. 16.2 0.434 198. 6.78
2 1 0.5 311. 349. -38.7 -0.261 330. -19.0 -0.291 349. -38.3
3 1 0.75 389. 464. -74.5 -0.398 434. -45.2 -0.526 463. -73.9
... with 6,944 more rows, and 11 more variables: CWRES <dbl>, eta.Cl <dbl>,
eta.Vc <dbl>, eta.KA <dbl>, depot <dbl>, centr <dbl>, Cl <dbl>, Vc <dbl>,
KA <dbl>, kel <dbl>, cp <dbl>

This example shows what is typical printout of a nlmixr fit object. The elements of the fit are:

• The type of fit (nlme, saem, etc)

• Metrics of goodness of fit (AIC, BIC, and logLik).

– To align the comparison between methods, the FOCEi likelihood objective is calculated
regardless of the method used and used for goodness of fit metrics.

– This FOCEi likelihood has been compared to NONMEM’s objective function and gives
the same values (based on the data in Wang 2007)

– Also note that saem does not calculate an objective function, and the FOCEi is used as
the only objective function for the fit.

– Even though the objective functions are calculated in the same manner, caution should be
used when comparing fits from various estimation routines.

• The next item is the timing of each of the steps of the fit.

– These can be also accessed by (fit.s$time).
– As a mnemonic, the access for this item is shown in the printout. This is true for almost

all of the other items in the printout.

• After the timing of the fit, the parameter estimates are displayed (can be accessed by fit.s$par.fixed)

– While the items are rounded for R printing, each estimate without rounding is still ac-
cessible by the ‘$‘ syntax. For example, the ‘$Untransformed‘ gives the untransformed
parameter values.

– The Untransformed parameter takes log-space parameters and back-transforms them to
normal parameters. Not the CIs are listed on the back-transformed parameter space.

– Proportional Errors are converted to

• Omega block (accessed by fit.s$omega)

• The table of fit data. Please note:

– A nlmixr fit object is actually a data frame. Saving it as a Rdata object and then loading it
without nlmixr will just show the data by itself. Don’t worry; the fit information has not
vanished, you can bring it back by simply loading nlmixr, and then accessing the data.

– Special access to fit information (like the $omega) needs nlmixr to extract the information.
– If you use the $ to access information, the order of precedence is:

* Fit data from the overall data.frame

* Information about the parsed nlmixr model (via $uif)

* Parameter history if available (via $par.hist and $par.hist.stacked)

* Fixed effects table (via $par.fixed)

* Individual differences from the typical population parameters (via $eta)

nlmixr2 85

* Fit information from the list of information generated during the post-hoc residual
calculation.

* Fit information from the environment where the post-hoc residual were calculated

* Fit information about how the data and options interacted with the specified model
(such as estimation options or if the solved system is for an infusion or an IV bolus).

– While the printout may displays the data as a data.table object or tbl object, the data
is NOT any of these objects, but rather a derived data frame.

– Since the object is a data.frame, you can treat it like one.

In addition to the above properties of the fit object, there are a few additional that may be helpful
for the modeler:

• $theta gives the fixed effects parameter estimates (in NONMEM the thetas). This can also
be accessed in fixed.effects function. Note that the residual variability is treated as a fixed
effect parameter and is included in this list.

• $eta gives the random effects parameter estimates, or in NONMEM the etas. This can also
be accessed in using the random.effects function.

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
prop.sd <- 0.01

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd) + prop(prop.sd)

})
}

fitF <- nlmixr(one.cmt, theo_sd, "focei")

86 nlmixr2AugPredSolve

fitS <- nlmixr(one.cmt, theo_sd, "saem")

nlmixr2AllEst Show all the current estimation methods

Description

Show all the current estimation methods

Usage

nlmixr2AllEst()

Value

List of supported nlmixr2 estimation options (est=...)

Examples

nlmixr2AllEst()

nlmixr2AugPredSolve Augmented Prediction for nlmixr2 fit

Description

Augmented Prediction for nlmixr2 fit

Usage

nlmixr2AugPredSolve(
fit,
covsInterpolation = c("locf", "nocb", "linear", "midpoint"),
minimum = NULL,
maximum = NULL,
length.out = 51L,
...

)

S3 method for class 'nlmixr2FitData'
augPred(
object,
primary = NULL,

nlmixr2AugPredSolve 87

minimum = NULL,
maximum = NULL,
length.out = 51,
...

)

Arguments

fit Nlmixr2 fit object
covsInterpolation

specifies the interpolation method for time-varying covariates. When solving
ODEs it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

• "linear" interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.

• "locf" – Last observation carried forward (the default).
• "nocb" – Next Observation Carried Backward. This is the same method

that NONMEM uses.
• "midpoint" Last observation carried forward to midpoint; Next observa-

tion carried backward to midpoint.
For time-varying covariates where a missing value is present, the interpola-
tion method will use either "locf" or "nocb" throughout if they are the type
of covariate interpolation that is selected.
When using the linear or midpoint interpolation, the lower point in the inter-
polation will use locf to interpolate missing covariates and the upper point
will use the nocb to interpolate missing covariates.

minimum an optional lower limit for the primary covariate. Defaults to min(primary).

maximum an optional upper limit for the primary covariate. Defaults to max(primary).

length.out an optional integer with the number of primary covariate values at which to
evaluate the predictions. Defaults to 51.

... some methods for the generic may require additional arguments.

object a fitted model object from which predictions can be extracted, using a predict
method.

primary an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generate object (using getCovariate), it will be used as
primary.

Value

Stacked data.frame with observations, individual/population predictions.

Author(s)

Matthew L. Fidler

88 nlmixr2CreateOutputFromUi

nlmixr2CreateOutputFromUi

Create nlmixr output from the UI

Description

Create nlmixr output from the UI

Usage

nlmixr2CreateOutputFromUi(
ui,
data = NULL,
control = NULL,
table = NULL,
env = NULL,
est = "none"

)

Arguments

ui This is the UI that will be used for the translation
data This has the data
control focei control for data creation
table Table options
env Environment setup which needs the following: - ‘$table‘ for table options -

‘$origData‘ – Original Data - ‘$dataSav‘ – Processed data from .foceiPrePro-
cessData - ‘$idLvl‘ – Level information for ID factor added - ‘$covLvl‘ – Level
information for items to convert to factor - ‘$ui‘ for ui object - ‘$fullTheta‘
Full theta information - ‘$etaObf‘ data frame with ID, etas and OBJI - ‘$cov‘
For covariance - ‘$covMethod‘ for the method of calculating the covariance -
‘$adjObf‘ Should the objective function value be adjusted - ‘$objective‘ objec-
tive function value - ‘$extra‘ Extra print information - ‘$method‘ Estimation
method (for printing) - ‘$omega‘ Omega matrix - ‘$theta‘ Is a theta data frame
- ‘$model‘ a list of model information for table generation. Needs a ‘predOnly‘
model - ‘$message‘ Message for display - ‘$est‘ estimation method - ‘$ofvType‘
(optional) tells the type of ofv is currently being use
There are some more details that need to be described here

est Estimation method

Value

nlmixr fit object

Author(s)

Matthew L. Fidler

nlmixr2Est.bobyqa 89

nlmixr2Est.bobyqa Generic for nlmixr2 estimation methods

Description

Generic for nlmixr2 estimation methods

Usage

S3 method for class 'bobyqa'
nlmixr2Est(env, ...)

S3 method for class 'focei'
nlmixr2Est(env, ...)

S3 method for class 'foce'
nlmixr2Est(env, ...)

S3 method for class 'posthoc'
nlmixr2Est(env, ...)

S3 method for class 'foi'
nlmixr2Est(env, ...)

S3 method for class 'fo'
nlmixr2Est(env, ...)

S3 method for class 'output'
nlmixr2Est(env, ...)

S3 method for class 'lbfgsb3c'
nlmixr2Est(env, ...)

S3 method for class 'n1qn1'
nlmixr2Est(env, ...)

S3 method for class 'newuoa'
nlmixr2Est(env, ...)

S3 method for class 'nlm'
nlmixr2Est(env, ...)

S3 method for class 'nlme'
nlmixr2Est(env, ...)

S3 method for class 'nlminb'
nlmixr2Est(env, ...)

90 nlmixr2Est.bobyqa

nlmixr2Est(env, ...)

Default S3 method:
nlmixr2Est(env, ...)

S3 method for class 'nls'
nlmixr2Est(env, ...)

S3 method for class 'optim'
nlmixr2Est(env, ...)

S3 method for class 'rxSolve'
nlmixr2Est(env, ...)

S3 method for class 'simulate'
nlmixr2Est(env, ...)

S3 method for class 'simulation'
nlmixr2Est(env, ...)

S3 method for class 'predict'
nlmixr2Est(env, ...)

S3 method for class 'saem'
nlmixr2Est(env, ...)

S3 method for class 'uobyqa'
nlmixr2Est(env, ...)

Arguments

env Environment for the nlmixr2 estimation routines.
This needs to have:
- rxode2 ui object in ‘$ui‘
- data to fit in the estimation routine in ‘$data‘
- control for the estimation routine’s control options in ‘$ui‘

... Other arguments provided to ‘nlmixr2Est()‘ provided for flexibility but not cur-
rently used inside nlmixr

Details

This is a S3 generic that allows others to use the nlmixr2 environment to do their own estimation
routines

Value

nlmixr2 fit object

nlmixr2Gill83 91

Author(s)

Matthew Fidler

nlmixr2Gill83 Get the optimal forward difference interval by Gill83 method

Description

Get the optimal forward difference interval by Gill83 method

Usage

nlmixr2Gill83(
what,
args,
envir = parent.frame(),
which,
gillRtol = sqrt(.Machine$double.eps),
gillK = 10L,
gillStep = 2,
gillFtol = 0

)

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

which Which parameters to calculate the forward difference and optimal forward dif-
ference interval

gillRtol The relative tolerance used for Gill 1983 determination of optimal step size.

gillK The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

gillStep When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

gillFtol The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

92 nlmixr2Gill83

Value

A data frame with the following columns:

- info Gradient evaluation/forward difference information

- hf Forward difference final estimate

- df Derivative estimate

- df2 2nd Derivative Estimate

- err Error of the final estimate derivative

- aEps Absolute difference for forward numerical differences

- rEps Relative Difference for backward numerical differences

- aEpsC Absolute difference for central numerical differences

- rEpsC Relative difference for central numerical differences

The info returns one of the following:

- "Not Assessed" Gradient wasn’t assessed

- "Good Success" in Estimating optimal forward difference interval

- "High Grad Error" Large error; Derivative estimate error fTol or more of the derivative

- "Constant Grad" Function constant or nearly constant for this parameter

- "Odd/Linear Grad" Function odd or nearly linear, df = K, df2 ~ 0

- "Grad changes quickly" df2 increases rapidly as h decreases

Author(s)

Matthew Fidler

Examples

These are taken from the numDeriv::grad examples to show how
simple gradients are assessed with nlmixr2Gill83

nlmixr2Gill83(sin, pi)

nlmixr2Gill83(sin, (0:10)*2*pi/10)

func0 <- function(x){ sum(sin(x)) }
nlmixr2Gill83(func0 , (0:10)*2*pi/10)

func1 <- function(x){ sin(10*x) - exp(-x) }
curve(func1,from=0,to=5)

x <- 2.04
numd1 <- nlmixr2Gill83(func1, x)
exact <- 10*cos(10*x) + exp(-x)
c(numd1$df, exact, (numd1$df - exact)/exact)

x <- c(1:10)
numd1 <- nlmixr2Gill83(func1, x)

nlmixr2Hess 93

exact <- 10*cos(10*x) + exp(-x)
cbind(numd1=numd1$df, exact, err=(numd1$df - exact)/exact)

sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n

}

sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) - 1) / n

}

x0 <- rnorm(100)
exact <- sc2.g(x0)

g <- nlmixr2Gill83(sc2.f, x0)

max(abs(exact - g$df)/(1 + abs(exact)))

nlmixr2Hess Calculate Hessian

Description

Unlike ‘stats::optimHess‘ which assumes the gradient is accurate, nlmixr2Hess does not make as
strong an assumption that the gradient is accurate but takes more function evaluations to calculate
the Hessian. In addition, this procedures optimizes the forward difference interval by nlmixr2Gill83

Usage

nlmixr2Hess(par, fn, ..., envir = parent.frame())

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

... Extra arguments sent to nlmixr2Gill83

envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Details

If you have an analytical gradient function, you should use ‘stats::optimHess‘

94 nlmixr2Keywords

Value

Hessian matrix based on Gill83

Author(s)

Matthew Fidler

See Also

nlmixr2Gill83, optimHess

Examples

func0 <- function(x){ sum(sin(x)) }
x <- (0:10)*2*pi/10
nlmixr2Hess(x, func0)

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

h1 <- optimHess(c(1.2,1.2), fr, grr)

h2 <- optimHess(c(1.2,1.2), fr)

in this case h3 is closer to h1 where the gradient is known

h3 <- nlmixr2Hess(c(1.2,1.2), fr)

nlmixr2Keywords A list and description of the fields in the nlmxir2 object

Description

A list and description of the fields in the nlmxir2 object

Usage

nlmixr2Keywords

nlmixr2Logo 95

Format

A data frame with 2 columns and 40 or more rows

Field Name of the field in the nlmixr2 object

Description Description of the information in the field

nlmixr2Logo Messages the nlmixr2 logo...

Description

Messages the nlmixr2 logo...

Usage

nlmixr2Logo(str = "", version = sessionInfo()$otherPkgs$nlmixr2$Version)

Arguments

str String to print

version Version information (by default use package version)

Value

nothing; Called to display version information

Author(s)

Matthew L. Fidler

nlmixr2NlmeControl Control Values for nlme Fit with extra options for nlmixr

Description

The values supplied in the function call replace the defaults and a list with all possible arguments is
returned. The returned list is used as the ‘control’ argument to the ‘nlme’ function.

96 nlmixr2NlmeControl

Usage

nlmixr2NlmeControl(
maxIter = 100,
pnlsMaxIter = 100,
msMaxIter = 100,
minScale = 0.001,
tolerance = 1e-05,
niterEM = 25,
pnlsTol = 0.001,
msTol = 1e-06,
returnObject = FALSE,
msVerbose = FALSE,
msWarnNoConv = TRUE,
gradHess = TRUE,
apVar = TRUE,
.relStep = .Machine$double.eps^(1/3),
minAbsParApVar = 0.05,
opt = c("nlminb", "nlm"),
natural = TRUE,
sigma = NULL,
optExpression = TRUE,
literalFix = TRUE,
sumProd = FALSE,
rxControl = NULL,
method = c("ML", "REML"),
random = NULL,
fixed = NULL,
weights = NULL,
verbose = TRUE,
returnNlme = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
muRefCovAlg = TRUE,
...

)

nlmeControl(
maxIter = 100,
pnlsMaxIter = 100,
msMaxIter = 100,
minScale = 0.001,
tolerance = 1e-05,
niterEM = 25,

nlmixr2NlmeControl 97

pnlsTol = 0.001,
msTol = 1e-06,
returnObject = FALSE,
msVerbose = FALSE,
msWarnNoConv = TRUE,
gradHess = TRUE,
apVar = TRUE,
.relStep = .Machine$double.eps^(1/3),
minAbsParApVar = 0.05,
opt = c("nlminb", "nlm"),
natural = TRUE,
sigma = NULL,
optExpression = TRUE,
literalFix = TRUE,
sumProd = FALSE,
rxControl = NULL,
method = c("ML", "REML"),
random = NULL,
fixed = NULL,
weights = NULL,
verbose = TRUE,
returnNlme = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
muRefCovAlg = TRUE,
...

)

Arguments

maxIter maximum number of iterations for the nlme optimization algorithm. Default is
50.

pnlsMaxIter maximum number of iterations for the PNLS optimization step inside the nlme
optimization. Default is 7.

msMaxIter maximum number of iterations for nlminb (iter.max) or the nlm (iterlim,
from the 10-th step) optimization step inside the nlme optimization. Default is
50 (which may be too small for e.g. for overparametrized cases).

minScale minimum factor by which to shrink the default step size in an attempt to decrease
the sum of squares in the PNLS step. Default 0.001.

tolerance tolerance for the convergence criterion in the nlme algorithm. Default is 1e-6.

niterEM number of iterations for the EM algorithm used to refine the initial estimates of
the random effects variance-covariance coefficients. Default is 25.

98 nlmixr2NlmeControl

pnlsTol tolerance for the convergence criterion in PNLS step. Default is 1e-3.

msTol tolerance for the convergence criterion in nlm, passed as the gradtol argument
to the function (see documentation on nlm). Default is 1e-7.

returnObject a logical value indicating whether the fitted object should be returned when the
maximum number of iterations is reached without convergence of the algorithm.
Default is FALSE.

msVerbose a logical value passed as the trace to nlminb(.., control= list(trace = *,
..)) or as argument print.level to nlm(). Default is FALSE.

msWarnNoConv logical indicating if a warning should be signalled whenever the minimization
(by opt) in the LME step does not converge; defaults to TRUE.

gradHess a logical value indicating whether numerical gradient vectors and Hessian ma-
trices of the log-likelihood function should be used in the nlm optimization.
This option is only available when the correlation structure (corStruct) and
the variance function structure (varFunc) have no "varying" parameters and the
pdMat classes used in the random effects structure are pdSymm (general positive-
definite), pdDiag (diagonal), pdIdent (multiple of the identity), or pdCompSymm
(compound symmetry). Default is TRUE.

apVar a logical value indicating whether the approximate covariance matrix of the
variance-covariance parameters should be calculated. Default is TRUE.

.relStep relative step for numerical derivatives calculations. Default is .Machine$double.eps^(1/3).

minAbsParApVar numeric value - minimum absolute parameter value in the approximate variance
calculation. The default is 0.05.

opt the optimizer to be used, either "nlminb" (the default) or "nlm".

natural a logical value indicating whether the pdNatural parametrization should be
used for general positive-definite matrices (pdSymm) in reStruct, when the ap-
proximate covariance matrix of the estimators is calculated. Default is TRUE.

sigma optionally a positive number to fix the residual error at. If NULL, as by default,
or 0, sigma is estimated.

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

method a character string. If "REML" the model is fit by maximizing the restricted log-
likelihood. If "ML" the log-likelihood is maximized. Defaults to "ML".

random optionally, any of the following: (i) a two-sided formula of the form r1+...+rn~x1+...+xm
| g1/.../gQ, with r1,...,rn naming parameters included on the right hand
side of model, x1+...+xm specifying the random-effects model for these pa-
rameters and g1/.../gQ the grouping structure (Q may be equal to 1, in which
case no / is required). The random effects formula will be repeated for all

nlmixr2NlmeControl 99

levels of grouping, in the case of multiple levels of grouping; (ii) a two-sided
formula of the form r1+...+rn~x1+..+xm, a list of two-sided formulas of the
form r1~x1+...+xm, with possibly different random-effects models for differ-
ent parameters, a pdMat object with a two-sided formula, or list of two-sided
formulas (i.e. a non-NULL value for formula(random)), or a list of pdMat ob-
jects with two-sided formulas, or lists of two-sided formulas. In this case, the
grouping structure formula will be given in groups, or derived from the data
used to fit the nonlinear mixed-effects model, which should inherit from class
groupedData,; (iii) a named list of formulas, lists of formulas, or pdMat ob-
jects as in (ii), with the grouping factors as names. The order of nesting will be
assumed the same as the order of the order of the elements in the list; (iv) an
reStruct object. See the documentation on pdClasses for a description of the
available pdMat classes. Defaults to fixed, resulting in all fixed effects having
also random effects.

fixed a two-sided linear formula of the form f1+...+fn~x1+...+xm, or a list of two-
sided formulas of the form f1~x1+...+xm, with possibly different models for
different parameters. The f1,...,fn are the names of parameters included on
the right hand side of model and the x1+...+xm expressions define linear models
for these parameters (when the left hand side of the formula contains several
parameters, they all are assumed to follow the same linear model, described by
the right hand side expression). A 1 on the right hand side of the formula(s)
indicates a single fixed effects for the corresponding parameter(s).

weights an optional varFunc object or one-sided formula describing the within-group
heteroscedasticity structure. If given as a formula, it is used as the argument
to varFixed, corresponding to fixed variance weights. See the documentation
on varClasses for a description of the available varFunc classes. Defaults to
NULL, corresponding to homoscedastic within-group errors.

verbose an optional logical value. If TRUE information on the evolution of the iterative
algorithm is printed. Default is FALSE.

returnNlme Returns the nlme object instead of the nlmixr object (by default FALSE). If
any of the nlme specific options of ‘random‘, ‘fixed‘, ‘sens‘, the nlme object is
returned

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

100 nlmixr2NlmeControl

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

muRefCovAlg This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:
1. Creating a internal data-variable ‘nlmixrMuDerCov#‘ for each algebraic mu-
referenced expression
2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta‘
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion
5. Remove ‘nlmixrMuDerCov#‘ from nlmix2 output
In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE‘.

... Further, named control arguments to be passed to nlminb (apart from trace and
iter.max mentioned above), where used (eval.max and those from abs.tol
down).

Value

a nlmixr-nlme list

See Also

Other Estimation control: foceiControl(), saemControl()

Examples

nlmeControl()
nlmixr2NlmeControl()

nlmixr2Validate 101

nlmixr2Validate Validate nlmixr2

Description

This allows easy validation/qualification of nlmixr2 by running the testing suite on your system.

Usage

nlmixr2Validate(type = NULL, skipOnCran = TRUE)

nmTest(type = NULL, skipOnCran = TRUE)

Arguments

type of test to be run

skipOnCran when ‘TRUE‘ skip the test on CRAN.

Value

Nothing, called for its side effects

Author(s)

Matthew L. Fidler

nlmixr2Version Display nlmixr2’s version

Description

Display nlmixr2’s version

Usage

nlmixr2Version()

Value

Nothing, called for its side effects

Author(s)

Matthew L. Fidler

102 nlmixrAddTiming

nlmixrAddObjectiveFunctionDataFrame

Add objective function data frame to the current objective function

Description

Add objective function data frame to the current objective function

Usage

nlmixrAddObjectiveFunctionDataFrame(fit, objDf, type, etaObf = NULL)

Arguments

fit nlmixr fit object

objDf nlmixr objective function data frame which has column names "OBJF", "AIC",
"BIC", "Log-likelihood" and "Condition#(Cov)" "Condition#(Cor)"

type Objective Function Type

etaObf Eta objective function table to add (with focei) to give focei objective function

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

nlmixrAddTiming Manually add time to a nlmixr2 object

Description

Manually add time to a nlmixr2 object

Usage

nlmixrAddTiming(object, name, time)

Arguments

object nlmixr2 object

name string of the timing name

time time (in seconds)

nlmixrCbind 103

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <- nlmixr(one.cmt, theo_sd, est="saem")

will add to the current setup
nlmixrAddTiming(fit, "setup", 3)

Add a new item to the timing dataframe
nlmixrAddTiming(fit, "new", 3)

nlmixrCbind nlmixrCbind

Description

‘cbind‘ for ‘nlmixr‘ objects that preserve the fit information

104 nlmixrClone

Usage

nlmixrCbind(fit, extra)

Arguments

fit nlmixr fit

extra data to cbind to nlmixr fit

Value

fit expanded with extra values, without disturbing the fit information

Author(s)

Matthew L. Fidler

nlmixrClone Clone nlmixr environment

Description

Clone nlmixr environment

Usage

nlmixrClone(x)

Arguments

x nlmixr fit

Value

cloned nlmixr environment

Author(s)

Matthew L. Fidler

nlmixrWithTiming 105

Examples

Not run:

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

f <- nlmixr2(one.cmt, theo_sd, "saem")

nlmixrClone(f)

End(Not run)

nlmixrWithTiming Time a part of a nlmixr operation and add to nlmixr object

Description

Time a part of a nlmixr operation and add to nlmixr object

Usage

nlmixrWithTiming(name, code, envir = NULL)

Arguments

name Name of the timing to be integrated
code Code to be evaluated and timed
envir can be either the nlmixr2 fit data, the nlmixr2 fit environment or NULL, which

implies it is going to be added to the nlmixr fit when it is finalized. If the function
is being called after a fit is created, please supply this environmental variable

106 nlmixrWithTiming

Value

Result of code

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}
fit <- nlmixr(one.cmt, theo_sd, est="saem")

nlmixrWithTiming("time1", {
Sys.sleep(1)
note this can be nested, time1 will exclude the timing from time2
nlmixrWithTiming("time2", {

Sys.sleep(1)
}, envir=fit)

}, envir=fit)

print(fit)

nlsControl 107

nlsControl nlmixr2 defaults controls for nls

Description

nlmixr2 defaults controls for nls

Usage

nlsControl(
maxiter = 10000,
tol = 1e-05,
minFactor = 1/1024,
printEval = FALSE,
warnOnly = FALSE,
scaleOffset = 0,
nDcentral = FALSE,
algorithm = c("LM", "default", "plinear", "port"),
ftol = sqrt(.Machine$double.eps),
ptol = sqrt(.Machine$double.eps),
gtol = 0,
diag = list(),
epsfcn = 0,
factor = 100,
maxfev = integer(),
nprint = 0,
solveType = c("grad", "fun"),
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
eventType = c("central", "forward"),
shiErr = (.Machine$double.eps)^(1/3),
shi21maxFD = 20L,
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
trace = FALSE,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,

108 nlsControl

literalFix = TRUE,
returnNls = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

maxiter A positive integer specifying the maximum number of iterations allowed.

tol A positive numeric value specifying the tolerance level for the relative offset
convergence criterion.

minFactor A positive numeric value specifying the minimum step-size factor allowed on
any step in the iteration. The increment is calculated with a Gauss-Newton
algorithm and successively halved until the residual sum of squares has been
decreased or until the step-size factor has been reduced below this limit.

printEval a logical specifying whether the number of evaluations (steps in the gradient
direction taken each iteration) is printed.

warnOnly a logical specifying whether nls() should return instead of signalling an error
in the case of termination before convergence. Termination before convergence
happens upon completion of maxiter iterations, in the case of a singular gradi-
ent, and in the case that the step-size factor is reduced below minFactor.

scaleOffset a constant to be added to the denominator of the relative offset convergence
criterion calculation to avoid a zero divide in the case where the fit of a model to
data is very close. The default value of 0 keeps the legacy behaviour of nls().
A value such as 1 seems to work for problems of reasonable scale with very
small residuals.

nDcentral only when numerical derivatives are used: logical indicating if central differ-
ences should be employed, i.e., numericDeriv(*, central=TRUE) be used.

algorithm character string specifying the algorithm to use. The default algorithm is a
Gauss-Newton algorithm. Other possible values are "plinear" for the Golub-
Pereyra algorithm for partially linear least-squares models and "port" for the
‘nl2sol’ algorithm from the Port library – see the references. Can be abbreviated.

ftol non-negative numeric. Termination occurs when both the actual and predicted
relative reductions in the sum of squares are at most ftol. Therefore, ftol
measures the relative error desired in the sum of squares.

ptol non-negative numeric. Termination occurs when the relative error between two
consecutive iterates is at most ptol. Therefore, ptol measures the relative error
desired in the approximate solution.

gtol non-negative numeric. Termination occurs when the cosine of the angle between
result of fn evaluation fvec and any column of the Jacobian is at most gtol in

nlsControl 109

absolute value. Therefore, gtol measures the orthogonality desired between the
function vector and the columns of the Jacobian.

diag a list or numeric vector containing positive entries that serve as multiplicative
scale factors for the parameters. Length of diag should be equal to that of par.
If not, user-provided diag is ignored and diag is internally set.

epsfcn (used if jac is not provided) is a numeric used in determining a suitable step
for the forward-difference approximation. This approximation assumes that the
relative errors in the functions are of the order of epsfcn. If epsfcn is less than
the machine precision, it is assumed that the relative errors in the functions are
of the order of the machine precision.

factor positive numeric, used in determining the initial step bound. This bound is set to
the product of factor and the |diag ∗ par| if nonzero, or else to factor itself.
In most cases factor should lie in the interval (0.1,100). 100 is a generally
recommended value.

maxfev integer; termination occurs when the number of calls to fn has reached maxfev.
Note that nls.lm sets the value of maxfev to 100*(length(par) + 1) if maxfev
= integer(), where par is the list or vector of parameters to be optimized.

nprint is an integer; set nprint to be positive to enable printing of iterates

solveType tells if ‘nlm‘ will use nlmixr2’s analytical gradients when available (finite differ-
ences will be used for event-related parameters like parameters controlling lag
time, duration/rate of infusion, and modeled bioavailability). This can be:
- ‘"hessian"‘ which will use the analytical gradients to create a Hessian with
finite differences.
- ‘"gradient"‘ which will use the gradient and let ‘nlm‘ calculate the finite dif-
ference hessian
- ‘"fun"‘ where nlm will calculate both the finite difference gradient and the
finite difference Hessian
When using nlmixr2’s finite differences, the "ideal" step size for either central
or forward differences are optimized for with the Shi2021 method which may
give more accurate derivatives

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

eventType Event gradient type for dosing events; Can be "central" or "forward"

shiErr This represents the epsilon when optimizing the ideal step size for numeric dif-
ferentiation using the Shi2021 method

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

useColor Boolean indicating if focei can use ASCII color codes

110 nlsControl

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

nlsControl 111

• mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

112 nlsControl

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

nlsControl 113

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

trace logical value indicating if a trace of the iteration progress should be printed. De-
fault is FALSE. If TRUE the residual (weighted) sum-of-squares, the convergence
criterion and the parameter values are printed at the conclusion of each iteration.
Note that format() is used, so these mostly depend on getOption("digits").
When the "plinear" algorithm is used, the conditional estimates of the linear
parameters are printed after the nonlinear parameters. When the "port" algo-
rithm is used the objective function value printed is half the residual (weighted)
sum-of-squares.

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

returnNls logical; when TRUE, will return the nls object instead of the nlmixr object

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

114 nlsControl

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Additional optional arguments. None are used at present.

Value

nls control object

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
tka <- 0.45
tcl <- log(c(0, 2.7, 100))
tv <- 3.45
add.sd <- 0.7

})
model({

ka <- exp(tka)
cl <- exp(tcl)
v <- exp(tv)
linCmt() ~ add(add.sd)

})
}

Uses nlsLM from minpack.lm if available

fit1 <- nlmixr(one.cmt, nlmixr2data::theo_sd, est="nls", nlsControl(algorithm="LM"))

Uses port and respect parameter boundaries
fit2 <- nlmixr(one.cmt, nlmixr2data::theo_sd, est="nls", nlsControl(algorithm="port"))

You can access the underlying nls object with `$nls`
fit2$nls

nmNearPD 115

nmNearPD C++ implementation of Matrix’s nearPD

Description

With ‘ensureSymmetry‘ it makes sure it is symmetric by applying 0.5*(t(x) + x) before using nm-
NearPD

Usage

nmNearPD(
x,
keepDiag = FALSE,
do2eigen = TRUE,
doDykstra = TRUE,
only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06,
conv.tol = 1e-07,
posd.tol = 1e-08,
maxit = 100L,
trace = FALSE

)

Arguments

x numeric n × n approximately positive definite matrix, typically an approxima-
tion to a correlation or covariance matrix. If x is not symmetric (and ensureSymmetry
is not false), symmpart(x) is used.

keepDiag logical, generalizing corr: if TRUE, the resulting matrix should have the same
diagonal (diag(x)) as the input matrix.

do2eigen logical indicating if a posdefify() eigen step should be applied to the result of
the Higham algorithm.

doDykstra logical indicating if Dykstra’s correction should be used; true by default. If false,
the algorithm is basically the direct fixpoint iteration Yk = PU (PS(Yk−1)).

only.values logical; if TRUE, the result is just the vector of eigenvalues of the approximating
matrix.

ensureSymmetry logical; by default, symmpart(x) is used whenever isSymmetric(x) is not true.
The user can explicitly set this to TRUE or FALSE, saving the symmetry test.
Beware however that setting it FALSE for an asymmetric input x, is typically
nonsense!

eig.tol defines relative positiveness of eigenvalues compared to largest one, λ1. Eigen-
values λk are treated as if zero when λk/λ1 ≤ eig.tol.

116 nmNearPD

conv.tol convergence tolerance for Higham algorithm.

posd.tol tolerance for enforcing positive definiteness (in the final posdefify step when
do2eigen is TRUE).

maxit maximum number of iterations allowed.

trace logical or integer specifying if convergence monitoring should be traced.

Details

This implements the algorithm of Higham (2002), and then (if do2eigen is true) forces positive
definiteness using code from posdefify. The algorithm of Knol and ten Berge (1989) (not imple-
mented here) is more general in that it allows constraints to (1) fix some rows (and columns) of the
matrix and (2) force the smallest eigenvalue to have a certain value.

Note that setting corr = TRUE just sets diag(.) <- 1 within the algorithm.

Higham (2002) uses Dykstra’s correction, but the version by Jens Oehlschlägel did not use it (ac-
cidentally), and still gave reasonable results; this simplification, now only used if doDykstra =
FALSE, was active in nearPD() up to Matrix version 0.999375-40.

Value

unlike the matrix package, this simply returns the nearest positive definite matrix

Author(s)

Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.

References

Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Sym-
metric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097–1110.

Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by
a proper one. Psychometrika 54, 53–61.

Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA
Journal of Numerical Analysis 22, 329–343.

See Also

A first version of this (with non-optional corr=TRUE) has been available as nearcor(); and more
simple versions with a similar purpose posdefify(), both from package sfsmisc.

Examples

set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))

near.m <- nmNearPD(m)

nmObjGetControl.bobyqa 117

round(near.m, 2)
norm(m - near.m) # 1.102 / 1.08

round(nmNearPD(m, only.values=TRUE), 9)

A longer example, extended from Jens' original,
showing the effects of some of the options:

pr <- matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)

nc <- nmNearPD(pr)

nmObjGetControl.bobyqa

Get control object from fit

Description

Get control object from fit

Usage

S3 method for class 'bobyqa'
nmObjGetControl(x, ...)

S3 method for class 'lbfgsb3c'
nmObjGetControl(x, ...)

S3 method for class 'n1qn1'
nmObjGetControl(x, ...)

S3 method for class 'newuoa'
nmObjGetControl(x, ...)

S3 method for class 'nlm'
nmObjGetControl(x, ...)

S3 method for class 'nlme'
nmObjGetControl(x, ...)

S3 method for class 'nlminb'

118 nmObjGetControl.bobyqa

nmObjGetControl(x, ...)

S3 method for class 'nls'
nmObjGetControl(x, ...)

nmObjGetControl(x, ...)

S3 method for class 'focei'
nmObjGetControl(x, ...)

S3 method for class 'foce'
nmObjGetControl(x, ...)

S3 method for class 'foi'
nmObjGetControl(x, ...)

S3 method for class 'fo'
nmObjGetControl(x, ...)

S3 method for class 'posthoc'
nmObjGetControl(x, ...)

S3 method for class 'saem'
nmObjGetControl(x, ...)

Default S3 method:
nmObjGetControl(x, ...)

S3 method for class 'optim'
nmObjGetControl(x, ...)

S3 method for class 'uobyqa'
nmObjGetControl(x, ...)

Arguments

x nlmixr fit object

... Other parameters

Value

Control object of estimation method

Author(s)

Matthew L. Fidler

nmObjGetEstimationModel 119

nmObjGetEstimationModel

Get the estimation model for a fit object depending on the object type

Description

By default it gets the focei models if available.

Usage

nmObjGetEstimationModel(x)

Arguments

x nlmixr fit object

Value

returns the estimation ‘$model‘ for the estimation type

nmObjGetFoceiControl.nlme

Method for getting focei compatible control object from nlmixr object

Description

Method for getting focei compatible control object from nlmixr object

Usage

S3 method for class 'nlme'
nmObjGetFoceiControl(x, ...)

nmObjGetFoceiControl(x, ...)

Default S3 method:
nmObjGetFoceiControl(x, ...)

S3 method for class 'saem'
nmObjGetFoceiControl(x, ...)

Arguments

x nlmixr composed fit object

... Other parameters

120 nmObjGetPredOnly

Value

foceiControl translated from current control

nmObjGetIpredModel Get the ipred model for a fit object depending on the object type

Description

By default it gets the focei models if available.

Usage

nmObjGetIpredModel(x)

S3 method for class 'saem'
nmObjGetIpredModel(x)

Default S3 method:
nmObjGetIpredModel(x)

S3 method for class 'saem'
nmObjGetEstimationModel(x)

Default S3 method:
nmObjGetEstimationModel(x)

Arguments

x nlmixr fit object

Value

ipred ‘rxode2‘ model

nmObjGetPredOnly Get the pred-only model for a fit depending on the object type

Description

By default it gets the focei models if available

nmObjHandleControlObject.bobyqaControl 121

Usage

nmObjGetPredOnly(x)

S3 method for class 'saem'
nmObjGetPredOnly(x)

Default S3 method:
nmObjGetPredOnly(x)

Arguments

x nlmixr fit object

Value

rxode2 pred-only model

nmObjHandleControlObject.bobyqaControl

Handle the control object

Description

Handle the control object

Usage

S3 method for class 'bobyqaControl'
nmObjHandleControlObject(control, env)

S3 method for class 'lbfgsb3cControl'
nmObjHandleControlObject(control, env)

S3 method for class 'n1qn1Control'
nmObjHandleControlObject(control, env)

S3 method for class 'newuoaControl'
nmObjHandleControlObject(control, env)

S3 method for class 'nlmControl'
nmObjHandleControlObject(control, env)

S3 method for class 'nlmeControl'
nmObjHandleControlObject(control, env)

S3 method for class 'nlminbControl'
nmObjHandleControlObject(control, env)

122 nmObjHandleModelObject

S3 method for class 'nlsControl'
nmObjHandleControlObject(control, env)

nmObjHandleControlObject(control, env)

S3 method for class 'foceiControl'
nmObjHandleControlObject(control, env)

S3 method for class 'saemControl'
nmObjHandleControlObject(control, env)

Default S3 method:
nmObjHandleControlObject(control, env)

S3 method for class 'optimControl'
nmObjHandleControlObject(control, env)

S3 method for class 'uobyqaControl'
nmObjHandleControlObject(control, env)

Arguments

control Control object

env fit environment

Value

Nothing, called for side effects

Author(s)

Matthew L. Fidler

nmObjHandleModelObject

Handle Model Object

Description

Handle Model Object

nmObjUiSetCompressed 123

Usage

nmObjHandleModelObject(model, env)

S3 method for class 'saemModelList'
nmObjHandleModelObject(model, env)

S3 method for class 'foceiModelList'
nmObjHandleModelObject(model, env)

Default S3 method:
nmObjHandleModelObject(model, env)

Arguments

model model list should have at least:
- ‘predOnly‘ – this is the prediction model with all the left handed equations
added so they will be added the table. The model should have ‘rx_pred_‘, the
model based prediction, as the first defined lhs component. The second com-
ponent should be ‘rx_r_‘, the variance of the prediction. These variables may
change based on distribution type. In additional all interesting calculated vari-
ables should be included.
- ‘predNoLhs‘ – This is the prediction model. It only has the prediction and no
left handed equations.

env Environment for the fit information

Value

This returns the ‘$model‘ object for a fit. It is a s3 method because it may be different between
different model types

nmObjUiSetCompressed Set if the nlmixr2 object will return a compressed ui

Description

Set if the nlmixr2 object will return a compressed ui

Usage

nmObjUiSetCompressed(type)

Arguments

type is a boolean indicating if the compressed ui will be returned (‘TRUE‘) or not be
returned (‘FALSE‘)

124 nmsimplex

Value

invisible logical type

Author(s)

Matthew L. Fidler

Examples

nmObjUiSetCompressed(FALSE) # now the $ui will return an environment
nmObjUiSetCompressed(TRUE) # now the $ui will return a compressed value

nmsimplex Nelder-Mead simplex search

Description

Nelder-Mead simplex search

Usage

nmsimplex(start, fr, rho = NULL, control = list())

Arguments

start initials

fr objective function

rho evaluation environment

control additional optimization options

Value

a list of ...

ofv 125

ofv Return the objective function

Description

Return the objective function

Usage

ofv(x, type, ...)

Arguments

x object to return objective function value

type Objective function type value to retrieve or add.

• focei For most models you can specify "focei" and it will add the focei
objective function.

• nlme This switches/chooses the nlme objective function if applicable. This
objective function cannot be added if it isn’t present.

• fo FO objective function value. Cannot be generated

• foce FOCE object function value. Cannot be generated

• laplace# This adds/retrieves the Laplace objective function value. The #
represents the number of standard deviations requested when expanding
the Gaussian Quadrature. This can currently only be used with saem fits.

• gauss#.# This adds/retrieves the Gaussian Quadrature approximation of the
objective function. The first number is the number of nodes to use in the
approximation. The second number is the number of standard deviations to
expand upon.

... Other arguments sent to ofv for other methods.

Value

Objective function value

Author(s)

Matthew Fidler

126 optimControl

optimControl nlmixr2 optim defaults

Description

nlmixr2 optim defaults

Usage

optimControl(
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),
trace = 0,
fnscale = 1,
parscale = 1,
ndeps = 0.001,
maxit = 10000,
abstol = 1e-08,
reltol = 1e-08,
alpha = 1,
beta = 0.5,
gamma = 2,
REPORT = NULL,
warn.1d.NelderMead = TRUE,
type = NULL,
lmm = 5,
factr = 1e+07,
pgtol = 0,
temp = 10,
tmax = 10,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
eventType = c("central", "forward"),
shiErr = (.Machine$double.eps)^(1/3),
shi21maxFD = 20L,
solveType = c("grad", "fun"),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
gradTo = 1,
rxControl = NULL,

optimControl 127

optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
returnOptim = FALSE,
addProp = c("combined2", "combined1"),
calcTables = TRUE,
compress = TRUE,
covMethod = c("r", "optim", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

method The method to be used. See ‘Details’. Can be abbreviated.

trace Non-negative integer. If positive, tracing information on the progress of the
optimization is produced. Higher values may produce more tracing information:
for method ‘"L-BFGS-B"‘, there are six levels of tracing. See ‘optim()‘ for more
information

fnscale An overall scaling to be applied to the value of ‘fn‘ and ‘gr‘ during optimization.
If negative, turns the problem into a maximization problem. Optimization is
performed on ‘fn(par)/fnscale‘

parscale A vector of scaling values for the parameters. Optimization is performed on
‘par/parscale‘ and these should be comparable in the sense that a unit change
in any element produces about a unit change in the scaled value. Not used (nor
needed) for ‘method = "Brent"‘

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
‘par/parscale‘ scale. Defaults to ‘1e-3‘

maxit The maximum number of iterations. Defaults to ‘100‘ for the derivative-based
methods, and ‘500‘ for ‘"Nelder-Mead"‘.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as
a tolerance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factor of ‘reltol * (abs(val) + reltol)‘ at a step

alpha Reflection factor for the ‘"Nelder-Mead"‘ method.

beta Contraction factor for the ‘"Nelder-Mead"‘ method

gamma Expansion factor for the ‘"Nelder-Mead"‘ method

REPORT The frequency of reports for the ‘"BFGS"‘, ‘"L-BFGS-B"‘ and ‘"SANN"‘ meth-
ods if ‘control$trace‘ is positive. Defaults to every 10 iterations for ‘"BFGS"‘
and ‘"L-BFGS-B"‘, or every 100 temperatures for ‘"SANN"‘

128 optimControl

warn.1d.NelderMead

a logical indicating if the (default) ‘"Nelder-Mead"‘ method should signal a
warning when used for one-dimensional minimization. As the warning is some-
times inappropriate, you can suppress it by setting this option to ‘FALSE‘

type for the conjugate-gradients method. Takes value ‘1‘ for the Fletcher-Reeves
update, ‘2‘ for Polak-Ribiere and ‘3‘ for Beale-Sorenson.

lmm is an integer giving the number of BFGS updates retained in the ‘"L-BFGS-B"‘
method, It defaults to ‘5‘

factr controls the convergence of the ‘"L-BFGS-B"‘ method. Convergence occurs
when the reduction in the objective is within this factor of the machine tolerance.
Default is ‘1e7‘, that is a tolerance of about ‘1e-8‘.

pgtol helps control the convergence of the ‘"L-BFGS-B"’ method. It is a tolerance
on the projected gradient in the current search direction. This defaults to zero,
when the check is suppressed

temp controls the ‘"SANN"‘ method. It is the starting temperature for the cooling
schedule. Defaults to ‘10‘.

tmax is the number of function evaluations at each temperature for the ‘"SANN"‘
method. Defaults to ‘10‘.

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

eventType Event gradient type for dosing events; Can be "central" or "forward"

shiErr This represents the epsilon when optimizing the ideal step size for numeric dif-
ferentiation using the Shi2021 method

shi21maxFD The maximum number of steps for the optimization of the forward difference
step size when using dosing events (lag time, modeled duration/rate and bioavail-
ability)

solveType tells if ‘optim‘ will use nlmixr2’s analytical gradients when available (finite dif-
ferences will be used for event-related parameters like parameters controlling
lag time, duration/rate of infusion, and modeled bioavailability). This can be:
- ‘"gradient"‘ which will use the gradient and let ‘optim‘ calculate the finite
difference hessian
- ‘"fun"‘ where optim will calculate both the finite difference gradient and the
finite difference Hessian
When using nlmixr2’s finite differences, the "ideal" step size for either central
or forward differences are optimized for with the Shi2021 method which may
give more accurate derivatives
These are only applied in the gradient based methods: "BFGS", "CG", "L-
BFGS-B"

useColor Boolean indicating if focei can use ASCII color codes

optimControl 129

printNcol Number of columns to printout before wrapping parameter estimates/gradient

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

130 optimControl

• mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

optimControl 131

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

132 optimControl

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

gradTo this is the factor that the gradient is scaled to before optimizing. This only works
with scaleType="nlmixr2".

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

returnOptim logical; when TRUE this will return the optim list instead of the nlmixr2 fit
object

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod allows selection of "r", which uses nlmixr2’s ‘nlmixr2Hess()‘ for the hessian cal-
culation or "optim" which uses the hessian from ‘stats::optim(.., hessian=TRUE)‘

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

optimControl 133

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig

• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-
tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Further arguments to be passed to fn and gr.

Value

optimControl object for nlmixr2

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({
E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="optim", optimControl(method="BFGS"))
fit2

134 residuals.nlmixr2FitData

print.saemFit Print an SAEM model fit summary

Description

Print an SAEM model fit summary

Usage

S3 method for class 'saemFit'
print(x, ...)

Arguments

x a saemFit object

... others

Value

a list

residuals.nlmixr2FitData

Extract residuals from the FOCEI fit

Description

Extract residuals from the FOCEI fit

Usage

S3 method for class 'nlmixr2FitData'
residuals(
object,
...,
type = c("ires", "res", "iwres", "wres", "cwres", "cpred", "cres")

)

Arguments

object focei.fit object

... Additional arguments

type Residuals type fitted.

saemControl 135

Value

residuals

Author(s)

Matthew L. Fidler

saemControl Control Options for SAEM

Description

Control Options for SAEM

Usage

saemControl(
seed = 99,
nBurn = 200,
nEm = 300,
nmc = 3,
nu = c(2, 2, 2),
print = 1,
trace = 0,
covMethod = c("linFim", "fim", "r,s", "r", "s", ""),
calcTables = TRUE,
logLik = FALSE,
nnodesGq = 3,
nsdGq = 1.6,
optExpression = TRUE,
literalFix = FALSE,
adjObf = TRUE,
sumProd = FALSE,
addProp = c("combined2", "combined1"),
tol = 1e-06,
itmax = 30,
type = c("nelder-mead", "newuoa"),
powRange = 10,
lambdaRange = 3,
odeRecalcFactor = 10^(0.5),
maxOdeRecalc = 5L,
perSa = 0.75,
perNoCor = 0.75,
perFixOmega = 0.1,
perFixResid = 0.1,
compress = TRUE,
rxControl = NULL,

136 saemControl

sigdig = NULL,
sigdigTable = NULL,
ci = 0.95,
muRefCov = TRUE,
muRefCovAlg = TRUE,
handleUninformativeEtas = TRUE,
...

)

Arguments

seed Random Seed for SAEM step. (Needs to be set for reproducibility.) By default
this is 99.

nBurn Number of iterations in the first phase, ie the MCMC/Stochastic Approximation
steps. This is equivalent to Monolix’s K_0 or K_b.

nEm Number of iterations in the Expectation-Maximization (EM) Step. This is equiv-
alent to Monolix’s K_1.

nmc Number of Markov Chains. By default this is 3. When you increase the number
of chains the numerical integration by MC method will be more accurate at the
cost of more computation. In Monolix this is equivalent to L.

nu This is a vector of 3 integers. They represent the numbers of transitions of the
three different kernels used in the Hasting-Metropolis algorithm. The default
value is c(2,2,2), representing 40 for each transition initially (each value is
multiplied by 20).
The first value represents the initial number of multi-variate Gibbs samples are
taken from a normal distribution.
The second value represents the number of uni-variate, or multi- dimensional
random walk Gibbs samples are taken.
The third value represents the number of bootstrap/reshuffling or uni-dimensional
random samples are taken.

print The number it iterations that are completed before anything is printed to the
console. By default, this is 1.

trace An integer indicating if you want to trace(1) the SAEM algorithm process. Use-
ful for debugging, but not for typical fitting.

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of each individual’s gradient
cross-product (evaluated at the individual empirical Bayes estimates).
"linFim" Use the Linearized Fisher Information Matrix to calculate the covari-
ance.
"fim" Use the SAEM-calculated Fisher Information Matrix to calculate the co-
variance.
"r,s" Uses the sandwich matrix to calculate the covariance, that is: R−1×S ×
R−1

"r" Uses the Hessian matrix to calculate the covariance as 2×R−1

"s" Uses the crossproduct matrix to calculate the covariance as 4× S−1

"" Does not calculate the covariance step.

saemControl 137

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

logLik boolean indicating that log-likelihood should be calculate by Gaussian quadra-
ture.

nnodesGq number of nodes to use for the Gaussian quadrature when computing the likeli-
hood with this method (defaults to 1, equivalent to the Laplacian likelihood)

nsdGq span (in SD) over which to integrate when computing the likelihood by Gaussian
quadrature. Defaults to 3 (eg 3 times the SD)

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

tol This is the tolerance for the regression models used for complex residual errors
(ie add+prop etc)

itmax This is the maximum number of iterations for the regression models used for
complex residual errors. The number of iterations is itmax*number of parame-
ters

type indicates the type of optimization for the residuals; Can be one of c("nelder-
mead", "newuoa")

powRange This indicates the range that powers can take for residual errors; By default this
is 10 indicating the range is c(-10, 10)

lambdaRange This indicates the range that Box-Cox and Yeo-Johnson parameters are con-
strained to be; The default is 3 indicating the range c(-3,3)

138 saemControl

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

perSa This is the percent of the time the ‘nBurn‘ iterations in phase runs runs a simu-
lated annealing.

perNoCor This is the percentage of the MCMC phase of the SAEM algorithm where the
variance/covariance matrix has no correlations. By default this is 0.75 or 75
Monte-carlo iteration.

perFixOmega This is the percentage of the ‘nBurn‘ phase where the omega values are unfixed
to allow better exploration of the likelihood surface. After this time, the omegas
are fixed during optimization.

perFixResid This is the percentage of the ‘nBurn‘ phase where the residual components are
unfixed to allow better exploration of the likelihood surface.

compress Should the object have compressed items

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

sigdig Specifies the "significant digits" that the ode solving requests. When specified
this controls the relative and absolute tolerances of the ODE solvers. By de-
fault the tolerance is 0.5*10^(-sigdig-2) for regular ODEs. For the sensitiv-
ity equations the default is 0.5*10\^(-sigdig-1.5) (sensitivity changes only
applicable for liblsoda). This also controls the atol/rtol of the steady state
solutions. The ssAtol/ssRtol is 0.5*10\^(-sigdig) and for the sensitivities
0.5*10\^(-sigdig+0.625). By default this is unspecified (NULL) and uses the
standard atol/rtol.

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

muRefCov This controls if mu-referenced covariates in ‘saem‘ are handled differently than
non mu-referenced covariates. When ‘TRUE‘, mu-referenced covariates have
special handling. When ‘FALSE‘ mu-referenced covariates are treated the same
as any other input parameter.

muRefCovAlg This controls if algebraic expressions that can be mu-referenced are treated as
mu-referenced covariates by:
1. Creating a internal data-variable ‘nlmixrMuDerCov#‘ for each algebraic mu-
referenced expression
2. Change the algebraic expression to ‘nlmixrMuDerCov# * mu_cov_theta‘
3. Use the internal mu-referenced covariate for saem
4. After optimization is completed, replace ‘model()‘ with old ‘model()‘ expres-
sion
5. Remove ‘nlmixrMuDerCov#‘ from nlmix2 output
In general, these covariates should be more accurate since it changes the system
to a linear compartment model. Therefore, by default this is ‘TRUE‘.

setCov 139

handleUninformativeEtas

boolean that tells nlmixr2’s saem to calculate uninformative etas and handle
them specially (default is ‘TRUE‘).

... Other arguments to control SAEM.

Value

List of options to be used in nlmixr2 fit for SAEM.

Author(s)

Wenping Wang & Matthew L. Fidler

See Also

Other Estimation control: foceiControl(), nlmixr2NlmeControl()

setCov Set the covariance type based on prior calculated covariances

Description

Set the covariance type based on prior calculated covariances

Usage

setCov(fit, method)

Arguments

fit nlmixr2 fit

method covariance method (see the ‘covMethod‘ argument for the control options for
the choices)

Value

Fit object with covariance updated

Author(s)

Matt Fidler

See Also

foceiControl(), saemControl()

140 sqrtm

setOfv Set/get Objective function type for a nlmixr2 object

Description

Set/get Objective function type for a nlmixr2 object

Usage

setOfv(x, type)

getOfvType(x)

Arguments

x nlmixr2 fit object

type Type of objective function to use for AIC, BIC, and $objective

Value

Nothing

Author(s)

Matthew L. Fidler

sqrtm Return the square root of general square matrix A

Description

Return the square root of general square matrix A

Usage

sqrtm(m)

Arguments

m Matrix to take the square root of.

Value

A square root general square matrix of m

summary.saemFit 141

summary.saemFit Print an SAEM model fit summary

Description

Print an SAEM model fit summary

Usage

S3 method for class 'saemFit'
summary(object, ...)

Arguments

object a saemFit object

... others

Value

a list

tableControl Output table/data.frame options

Description

Output table/data.frame options

Usage

tableControl(
npde = NULL,
cwres = NULL,
nsim = 300,
ties = TRUE,
censMethod = c("truncated-normal", "cdf", "ipred", "pred", "epred", "omit"),
seed = 1009,
cholSEtol = (.Machine$double.eps)^(1/3),
state = TRUE,
lhs = TRUE,
eta = TRUE,
covariates = TRUE,
addDosing = FALSE,
subsetNonmem = TRUE,
cores = NULL,

142 tableControl

keep = NULL,
drop = NULL

)

Arguments

npde When TRUE, request npde regardless of the algorithm used.
cwres When TRUE, request CWRES and FOCEi likelihood regardless of the algorithm

used.
nsim represents the number of simulations. For rxode2, if you supply single subject

event tables (created with [eventTable()])
ties When ‘TRUE‘ jitter prediction-discrepancy points to discourage ties in cdf.
censMethod Handle censoring method:

- ‘"truncated-normal"‘ Simulates from a truncated normal distribution under the
assumption of the model and censoring.
- ‘"cdf"‘ Use the cdf-method for censoring with npde and use this for any other
residuals (‘cwres‘ etc)
- ‘"omit"‘ omit the residuals for censoring

seed an object specifying if and how the random number generator should be initial-
ized

cholSEtol The tolerance for the ‘rxode2::choleSE‘ function
state is a Boolean indicating if ‘state‘ values will be included (default ‘TRUE‘)
lhs is a Boolean indicating if remaining ‘lhs‘ values will be included (default ‘TRUE‘)
eta is a Boolean indicating if ‘eta‘ values will be included (default ‘TRUE‘)
covariates is a Boolean indicating if covariates will be included (default ‘TRUE‘)
addDosing Boolean indicating if the solve should add rxode2 EVID and related columns.

This will also include dosing information and estimates at the doses. Be de-
fault, rxode2 only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic rxode2 EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE rxode2 will also include extra event types (EVID) for
ending infusion and modeled times:

• EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)
• EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

• EVID=-10 When the specified rate infusions are turned off (matches rate>0)
• EVID=-20 When the specified dur infusions are turned off (matches dur>0)
• EVID=101,102,103,... Modeled time where 101 is the first model time,

102 is the second etc.
subsetNonmem subset to NONMEM compatible EVIDs only. By default TRUE.
cores Number of cores used in parallel ODE solving. This is equivalent to calling

setRxThreads()

keep is the keep sent to the table
drop is the dropped variables sent to the table

uobyqaControl 143

Details

If you ever want to add CWRES/FOCEi objective function you can use the addCwres

If you ever want to add NPDE/EPRED columns you can use the addNpde

Value

A list of table options for nlmixr2

Author(s)

Matthew L. Fidler

uobyqaControl Control for uobyqa estimation method in nlmixr2

Description

Control for uobyqa estimation method in nlmixr2

Usage

uobyqaControl(
npt = NULL,
rhobeg = NULL,
rhoend = NULL,
iprint = 0L,
maxfun = 100000L,
returnUobyqa = FALSE,
stickyRecalcN = 4,
maxOdeRecalc = 5,
odeRecalcFactor = 10^(0.5),
useColor = crayon::has_color(),
printNcol = floor((getOption("width") - 23)/12),
print = 1L,
normType = c("rescale2", "mean", "rescale", "std", "len", "constant"),
scaleType = c("nlmixr2", "norm", "mult", "multAdd"),
scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleTo = 1,
rxControl = NULL,
optExpression = TRUE,
sumProd = FALSE,
literalFix = TRUE,
literalFixRes = TRUE,
addProp = c("combined2", "combined1"),

144 uobyqaControl

calcTables = TRUE,
compress = TRUE,
covMethod = c("r", ""),
adjObf = TRUE,
ci = 0.95,
sigdig = 4,
sigdigTable = NULL,
...

)

Arguments

npt The number of points used to approximate the objective function via a quadratic
approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1. (bobyqa)

rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default
this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted. (bobyqa)

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
10^(-sigdig-1) will be used. (bobyqa)

iprint The value of ‘iprint‘ should be set to an integer value in ‘0, 1, 2, 3, ...‘, which
controls the amount of printing. Specifically, there is no output if ‘iprint=0‘ and
there is output only at the start and the return if ‘iprint=1‘. Otherwise, each
new value of ‘rho‘ is printed, with the best vector of variables so far and the
corresponding value of the objective function. Further, each new value of the
objective function with its variables are output if ‘iprint=3‘. If ‘iprint > 3‘, the
objective function value and corresponding variables are output every ‘iprint‘
evaluations. Default value is ‘0‘.

maxfun The maximum allowed number of function evaluations. If this is exceeded, the
method will terminate.

returnUobyqa return the uobyqa output instead of the nlmixr2 fit

stickyRecalcN The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

odeRecalcFactor

The ODE recalculation factor when ODE solving goes bad, this is the factor the
rtol/atol is reduced

useColor Boolean indicating if focei can use ASCII color codes

printNcol Number of columns to printout before wrapping parameter estimates/gradient

uobyqaControl 145

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

normType This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr2. These are used with scaleType of.
With the exception of rescale2, these come from Feature Scaling. The rescale2
The rescaling is the same type described in the OptdesX software manual.
In general, all all scaling formula can be described by:

vscaled

= (
vunscaled − C1

)/
C2

Where
The other data normalization approaches follow the following formula

vscaled

= (
vunscaled − C1

)/
C2

• rescale2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C1

= (max(all unscaled values)+min(all unscaled values))/2

C2

= (max(all unscaled values) - min(all unscaled values))/2
• rescale or min-max normalization. This rescales all parameters from (0

to 1). As in the rescale2 the relative differences are preserved. In this
approach:

C1

= min(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

146 uobyqaControl

• mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from 0 to 1. In this approach:

C1

= mean(all unscaled values)

C2

= max(all unscaled values) - min(all unscaled values)
• std or standardization. This standardizes by the mean and standard devia-

tion. In this approach:

C1

= mean(all unscaled values)

C2

= sd(all unscaled values)
• len or unit length scaling. This scales the parameters to the unit length. For

this approach we use the Euclidean length, that is:

C1

= 0

C2

= √
(v21 + v22 + · · ·+ v2n)

• constant which does not perform data normalization. That is

C1

= 0

C2

= 1

scaleType The scaling scheme for nlmixr2. The supported types are:

• nlmixr2 In this approach the scaling is performed by the following equa-
tion:

vscaled

= (
vcurrent − vinit

)*scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

uobyqaControl 147

• norm This approach uses the simple scaling provided by the normType ar-
gument.

• mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.
In this case:

vscaled

=
vcurrent

/
vinit

*scaleTo
• multAdd This approach changes the scaling based on the parameter being

specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

vscaled

= (
vcurrent − vinit

) + scaleTo
Otherwise the parameter is scaled multiplicatively.

vscaled

=
vcurrent

/
vinit

*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.

scaleCmin Minimum value of the scaleC to prevent underflow.

scaleC The scaling constant used with scaleType=nlmixr2. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

• For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

• For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

• Factorials are scaled by abs(1/digamma(initial_estimate+1))
• parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estimate)

148 uobyqaControl

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.
While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleTo Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

rxControl ‘rxode2‘ ODE solving options during fitting, created with ‘rxControl()‘

optExpression Optimize the rxode2 expression to speed up calculation. By default this is turned
on.

sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.

literalFix boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

literalFixRes boolean, substitute fixed population values as literals and re-adjust ui and pa-
rameter estimates after optimization; Default is ‘TRUE‘.

addProp specifies the type of additive plus proportional errors, the one where standard
deviations add (combined1) or the type where the variances add (combined2).
The combined1 error type can be described by the following equation:

y = f + (a+ b× f c)× ε

The combined2 error model can be described by the following equation:

y = f +
√
a2 + b2 × f2×c × ε

Where:
- y represents the observed value
- f represents the predicted value
- a is the additive standard deviation
- b is the proportional/power standard deviation
- c is the power exponent (in the proportional case c=1)

calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

compress Should the object have compressed items

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

• "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

• "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

• "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

• "" Does not calculate the covariance step.

uobyqaControl 149

adjObf is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM’s default objective function. By default this is TRUE

ci Confidence level for some tables. By default this is 0.95 or 95% confidence.

sigdig Optimization significant digits. This controls:

• The tolerance of the inner and outer optimization is 10^-sigdig
• The tolerance of the ODE solvers is 0.5*10^(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the default is 0.5*10^(-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)

• The tolerance of the boundary check is 5 * 10 ^ (-sigdig + 1)

sigdigTable Significant digits in the final output table. If not specified, then it matches the
significant digits in the ‘sigdig‘ optimization algorithm. If ‘sigdig‘ is NULL, use
3.

... Ignored parameters

Value

uobyqa control structure

Author(s)

Matthew L. Fidler

Examples

A logit regression example with emax model

dsn <- data.frame(i=1:1000)
dsn$time <- exp(rnorm(1000))
dsn$DV=rbinom(1000,1,exp(-1+dsn$time)/(1+exp(-1+dsn$time)))

mod <- function() {
ini({

E0 <- 0.5
Em <- 0.5
E50 <- 2
g <- fix(2)

})
model({

v <- E0+Em*time^g/(E50^g+time^g)
ll(bin) ~ DV * v - log(1 + exp(v))

})
}

fit2 <- nlmixr(mod, dsn, est="uobyqa")

print(fit2)

you can also get the nlm output with fit2$nlm

150 vpcSim

fit2$uobyqa

The nlm control has been modified slightly to include
extra components and name the parameters

vpcSim VPC simulation

Description

VPC simulation

Usage

vpcSim(
object,
...,
keep = NULL,
n = 300,
pred = FALSE,
seed = 1009,
nretry = 50,
minN = 10,
normRelated = TRUE

)

Arguments

object This is the nlmixr2 fit object

... Other arguments sent to ‘rxSolve()‘

keep Column names to keep in the output simulated dataset

n Number of simulations

pred Should predictions be added to the simulation

seed Seed to set for the VPC simulation

nretry Number of times to retry the simulation if there is NA values in the simulation

minN With retries, the minimum number of studies to restimulate (by default 10)

normRelated should the VPC style simulation be for normal related variables only

Value

data frame of the VPC simulation

vpcSim 151

Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(0, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

})
model({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

})
}

fit <- nlmixr(one.cmt, theo_sd, est="focei")

head(vpcSim(fit, pred=TRUE))

Index

∗ Estimation control
foceiControl, 22
nlmixr2NlmeControl, 95
saemControl, 135

∗ datasets
nlmixr2Keywords, 94

.augPredIpredModel, 4

.nlmixr0preProcessCovariatesPresent, 4

.nlmixrPreprocessLiteralFix, 5

.preProcessDataUi, 6

.preProcessZeroOmega, 6

addCwres, 7, 143
addNpde, 8, 143
addTable, 10
AIC, 84
assertNlmixrFit, 11
assertNlmixrFitData, 12
augPred.nlmixr2FitData

(nlmixr2AugPredSolve), 86

BIC, 84
bobyqaControl, 13
boxCox, 20

cholSE, 21

diag, 115

fixed.effects, 85
foceiControl, 22, 100, 139
format, 113

getOfvType (setOfv), 140
getOption, 113
getValidNlmixrControl

(getValidNlmixrCtl.bobyqa), 35
getValidNlmixrCtl

(getValidNlmixrCtl.bobyqa), 35
getValidNlmixrCtl.bobyqa, 35

iBoxCox (boxCox), 20
iYeoJohnson (boxCox), 20

lbfgsb3cControl, 37
logical, 108
logLik, 84

n1qn1, 35
n1qn1Control, 44
nearcor, 116
newuoaControl, 51
nlm, 97, 98
nlmControl, 58
nlme, 76, 84
nlmeControl (nlmixr2NlmeControl), 95
nlminb, 97, 98, 100
nlminbControl, 65
nlmixr (nlmixr2), 73
nlmixr2, 73, 139
nlmixr2AllEst, 86
nlmixr2AugPredSolve, 86
nlmixr2CreateOutputFromUi, 88
nlmixr2Est (nlmixr2Est.bobyqa), 89
nlmixr2Est.bobyqa, 89
nlmixr2Gill83, 91, 93, 94
nlmixr2Hess, 93
nlmixr2Keywords, 94
nlmixr2Logo, 95
nlmixr2NlmeControl, 35, 95, 139
nlmixr2Validate, 101
nlmixr2Version, 101
nlmixrAddObjectiveFunctionDataFrame,

102
nlmixrAddTiming, 102
nlmixrCbind, 103
nlmixrClone, 104
nlmixrWithTiming, 105
nls, 108
nlsControl, 107
nmNearPD, 115

152

INDEX 153

nmObjGetControl
(nmObjGetControl.bobyqa), 117

nmObjGetControl.bobyqa, 117
nmObjGetEstimationModel, 119
nmObjGetEstimationModel.default

(nmObjGetIpredModel), 120
nmObjGetEstimationModel.saem

(nmObjGetIpredModel), 120
nmObjGetFoceiControl

(nmObjGetFoceiControl.nlme),
119

nmObjGetFoceiControl.nlme, 119
nmObjGetIpredModel, 120
nmObjGetPredOnly, 120
nmObjHandleControlObject

(nmObjHandleControlObject.bobyqaControl),
121

nmObjHandleControlObject.bobyqaControl,
121

nmObjHandleModelObject, 122
nmObjUiSetCompressed, 123
nmsimplex, 124
nmTest (nlmixr2Validate), 101
numericDeriv, 108

ofv, 125
optim, 35
optimControl, 126
optimHess, 94

pdClasses, 99
posdefify, 115, 116
print.saemFit, 134

random.effects, 85
residuals.nlmixr2FitData, 134
rxode2, 78
rxSolve, 35

saemControl, 35, 83, 100, 135, 139
setCov, 139
setOfv, 140
setRxThreads(), 142
sqrtm, 140
summary.saemFit, 141
symmpart, 115

tableControl, 141

uobyqaControl, 143

varClasses, 99
vpcSim, 150

warning, 98

yeoJohnson (boxCox), 20

	.augPredIpredModel
	.nlmixr0preProcessCovariatesPresent
	.nlmixrPreprocessLiteralFix
	.preProcessDataUi
	.preProcessZeroOmega
	addCwres
	addNpde
	addTable
	assertNlmixrFit
	assertNlmixrFitData
	bobyqaControl
	boxCox
	cholSE
	foceiControl
	getValidNlmixrCtl.bobyqa
	lbfgsb3cControl
	n1qn1Control
	newuoaControl
	nlmControl
	nlminbControl
	nlmixr2
	nlmixr2AllEst
	nlmixr2AugPredSolve
	nlmixr2CreateOutputFromUi
	nlmixr2Est.bobyqa
	nlmixr2Gill83
	nlmixr2Hess
	nlmixr2Keywords
	nlmixr2Logo
	nlmixr2NlmeControl
	nlmixr2Validate
	nlmixr2Version
	nlmixrAddObjectiveFunctionDataFrame
	nlmixrAddTiming
	nlmixrCbind
	nlmixrClone
	nlmixrWithTiming
	nlsControl
	nmNearPD
	nmObjGetControl.bobyqa
	nmObjGetEstimationModel
	nmObjGetFoceiControl.nlme
	nmObjGetIpredModel
	nmObjGetPredOnly
	nmObjHandleControlObject.bobyqaControl
	nmObjHandleModelObject
	nmObjUiSetCompressed
	nmsimplex
	ofv
	optimControl
	print.saemFit
	residuals.nlmixr2FitData
	saemControl
	setCov
	setOfv
	sqrtm
	summary.saemFit
	tableControl
	uobyqaControl
	vpcSim
	Index

