
Package ‘nlWaldTest’
October 13, 2022

Version 1.1.3

Date 2016-03-22

Title Wald Test of Nonlinear Restrictions and Nonlinear CI

Description Wald Test for nonlinear restrictions on model parameters and confidence
intervals for nonlinear functions of parameters using delta-method. Applicable
after ANY model, provided parameters estimates and their covariance matrix are
available.

Author Oleh Komashko

Maintainer Oleh Komashko <oleg_komashko@ukr.net>

Depends R (>= 3.0.2)

License GPL (>= 2)

LazyData yes

Repository CRAN

NeedsCompilation no

Date/Publication 2016-03-25 00:12:23

R topics documented:
CESdata . 1
nlConfint . 2
nlWaldtest . 4

Index 7

CESdata Data for testing CES production function

Description

Data for estimation and testing CES production function: q-output, l-labor, k-capital

1

2 nlConfint

Usage

CESdata

Format

A data frame with 25 observations on the following 3 variables.

k capital

l labor

q output

Source

EViews, coef_test.wf1

Examples

attach(CESdata)

nlConfint Confidence intervals for nonlinear functions of parameters

Description

Computes confidence intervals for nonlinear functions of a model parameters. Delta method is used
to compute standard errors. Applicable after any model provided estimates of parameters and their
covariance matrix are available.

Usage

nlConfint(obj = NULL, texts, level = 0.95, coeff = NULL,
Vcov = NULL, df2 = NULL, x = NULL)

Standard:
nlConfint(obj, texts) # based on z-statistics
nlWaldtest(obj, texts, df2 = T) # based on z-statistics

If coef(obj) and vcov(obj) are not available
nlWaldtest(texts = funcions, coeff = vector, Vcov = matrix)

Arguments

obj model object of any class, for which vcov.class(obj) and coef.class(obj)
methods are defined. Otherwise, both coeff and Vcov should be inputted di-
rectly.

texts function(s) of parameters, b[i], as string or vector of strings. Several functions
can be inputted as a string, separated by semicolon, or as a character vector,
e.g. texts = "b[1]^b[2]-1; b[3]", or texts = c("b[1]^b[2]-1", "b[3]");
b’s should be numbered as in coeff vector.

nlConfint 3

level confidence level, a number in (0, 1). Default is 0.95.
coeff vector of parameter estimates. If missing, it is set for coef(obj) when avail-

able. It allows, for example, to compute CI for functions of marginal effects and
elasticities provided their covariance matrix is inputted.

Vcov covariance matrix of parameters. If missing, it is set to coef(obj) when avail-
able. If coeff and/or Vcov are inputed, theirs counterparts from obj are super-
seded.

df2 defines whether CI will be computed based on z (the default method) or t statis-
tics. To compute t-based intervals, one can use df2 = T, provided a method for
df.residual is available. Otherwise, one could input df2 = n, where n is a nat-
ural number. df2 is the df in the t statistics. If df2 = T but df.residuals(obj)
doesn’t exist, z-based intervals are forced, followed by a message.

x number, or numeric vector. Provides a way to supply cumbersome coefficients
into functions, e.g. texts = "b[1]^x[1] + x[2]", x = c(0.1234, 5.6789) to
compute CI for b[1]^0.1234 + 5.6789.

Details

The function should be applicable after (almost) any regression-type model, estimated using cross-
section, time series, or panel data. If there are no methods for coef(obj) and/or vcov(obj), coeff
and Vcov arguments should be inputted directly. To realize the delta-method, the function first tries
to compute analytical derivatives using deriv. If failed, it computes numerical derivatives, calling
numericDeriv.

Value

an r by 3 matrix, where r is the number of functions in texts argument. The first column is formed
of values of the functions computed at parameters estimates. The two last columns are confidence
bounds.

Author(s)

Oleh Komashko

References

Greene, W.H. (2011). Econometric Analysis, 7th edition. Upper Saddle River, NJ: Prentice Hall

See Also

nlWaldtest

Examples

set.seed(13)
x1<-rnorm(30);x2<-rnorm(30);x3<-rnorm(30);y<-rnorm(30)
set.seed(NULL)
lm1a<-lm(y~x1+x2+x3)
nlConfint(lm1a, c("b[2]^3+b[3]*b[1]","b[2]"))

4 nlWaldtest

nlWaldtest Nonlinear restriction(s) Wald test

Description

Tests restriction(s) on model parameters of the form R(b)=q, where R is vector or scalar valued
(non)linear function of b, the vector of model parameters, and q is numeric vector or scalar. Delta
method is used for covariance matrix. Applicable after any model provided parameters estimates
and their covariance matrix are available.

Usage

nlWaldtest(obj = NULL, texts, rhss = NULL, coeff = NULL,
Vcov = NULL, df2 = NULL, x = NULL)

Standard:
nlWaldtest(obj, texts) # Chi square test
nlWaldtest(obj, texts, df2 = T) # F test

Force different covariance matrix:
nlWaldtest(obj, texts, Vcov = vcovHC(obj))

If coef(obj) and vcov(obj) are not available
nlWaldtest(texts = restrictions, coeff = vector, Vcov = matrix)

Backward compatibility:
nlWaldtest(obj, texts, rhss)

Arguments

obj model object of any class, for which vcov.class(obj) and coef.class(obj)
methods are defined. If missing, both coeff and Vcov should be inputted.

texts left-side(s) of normalized restriction(s), R(b), as string or vector of strings. Mul-
tiple restrictions can be inputted as a character vector or as a character, sepa-
rated by semicolon. Right-hand sides can be included either separated by "=",
or substracted, e.g. texts = "b[1]^b[2] = 1; b[3] = 2", or, the same, texts =
c("a[1]^a[2] - 1", "a[3] = 2"); b’s should be numbered as in coeff vector.

rhss right-side(s) of normalized restriction(s) as number or vector. Retained mostly
for backward compatibility. Set to zero(s), if missing.

coeff vector of parameter estimates. If missing, it is set to coef(obj) when avail-
able. It allows, for example, to test hypotheses in terms of marginal effects and
elasticities provided their covariance matrix is inputted.

Vcov covariance matrix of parameters. If missing, it is set to coef(obj) when avail-
able. If coeff and/or Vcov are inputed, theirs counterparts from obj are super-
seded.

nlWaldtest 5

df2 defines the type of the test. By default, Chi square test is performed. To perfom
F test one can use df2 = T, if a method for df.residual is available. Otherwise,
one could input df2 = n, where n is a natural number. df2 is the denominator df
in the F statistics. If df2 = T but df.residuals(obj) doesn’t exist, Chi square
test is forced, followed by a message.

x number, or numeric vector. Provides a way to supply cumbersome coefficients
into restrictions, e.g. texts = "b[1]^x[1] = x[2]", x = c(0.1234, 5.6789) to
test b[1]^0.1234 = 5.6789. Instead of "b", one can use any valid variable name
excluding "x". The "cumbersome" coefficients must be named only as x[i].

Details

The test should be applicable after (almost) any regression-type model, estimated using cross-
section, time series, or panel data. If there are no methods for coef(obj) and/or vcov(obj), coeff
and Vcov arguments should be inputted directly. To realize the delta-method, the function first tries
to compute analytical derivatives using deriv. If failed, it computes numerical derivatives, calling
numericDeriv.

Value

an object of "htest" class.

Author(s)

Oleh Komashko

References

Greene, W.H. (2011). Econometric Analysis, 7th edition. Upper Saddle River, NJ: Prentice Hall

See Also

nlConfint

Examples

set.seed(13)
x1<-rnorm(30);x2<-rnorm(30);x3<-rnorm(30);y<-rnorm(30)
set.seed(NULL)
lm1<-lm(y~x1+x2+x3)
nlConfint(lm1, "b[2]^3+b[3]*b[1];b[2]")
nlWaldtest(lm1,"a[2]^3+a[3]*a[1] = x[1]; a[2]", x = -0.07)
nlWaldtest(lm1,c("b[2]^3+b[3]*b[1]+0.07", "b[2]"))

Reproduce example in EVievs 8 Users Guide II, pp. 149-151.

Not run:
require(nlme)
nl1<-nls(log(q)~c1+c2*log(c3*(k^c4)+(1-c3)*(l^c4)),

6 nlWaldtest

data=CESdata,start=list(c1=-2.6,c2=1.8,c3=0.0001,c4=-6),
nls.control(maxiter = 100, tol = 1e-05,minFactor = 1/2^15))
nlWaldtest(nl1,"b[2]-1/b[4]",0)
nlWaldtest(nl1,"b[2]*b[4]",1)

End(Not run)

Index

CESdata, 1

deriv, 3, 5
df.residual, 3, 5

nlConfint, 2, 5
nlWaldtest, 3, 4
numericDeriv, 3, 5

7

	CESdata
	nlConfint
	nlWaldtest
	Index

