O

GUIDE TO THE
ngram PACKAGE

FAST N-GRAM TOKENIZATION

MARCH 13, 2022

DREW SCHMIDT
WRATHEMATICSQGMAIL.COM

CHRISTIAN HECKENDORF
HECKENDORFCOGMAIL.COM

XX

VERSION 3.2.1

(©) 2014-2015 Drew Schmidt and Christian Heckendorf.

Permission is granted to make and distribute verbatim copies of this vignette and its source
provided the copyright notice and this permission notice are preserved on all copies.

This manual may be incorrect or out-of-date. The authors assume no responsibility for errors
or omissions, or for damages resulting from the use of the information contained herein.

Cover art is Hydra, uploaded to openclipart.org by Tavin.

This publication was typeset using IATEX.

openclipart.org

Contents

1 Introduction 1
2 Installation 1
2.1 Installing from Source 1
2.2 Installing from CRAN 1
3 Background and Utilities 2
31 T/O . oo 2
3.2 Concatenating Multiple Strings 2
3.3 Splitting Stringso 3
3.4 Dealing withtm o 4
3.5 Summarizing L L e e e 4
4 Using the Package 4
4.1 Creating 0 e e e 5
4.2 Printing L e 5
4.3 Summarizing e e e e e e e 6
4.4 Babbling 7
4.5 Important Notes About the Internal Representation 8
5 Benchmarks 8
9.1 tau ... L 8
52 RWeka o o 10

References 11

2 INSTALLATION 1of 11

1 Introduction

An n-gram is an ordered sequence of n “words” taken from a body of text. For example, consider
the string formed by the sequence of characters A B A C A B B. This is the “blood code” for the
video game Mortal Kombat for the Sega Genesis, but you can pretend it’s a biological sequence or
something boring if you prefer. If we examine the 2-grams (or bigrams) of this sequence, they are:

¢

That is, we take the input string and group the “words” 2 at a time (because n=2). If we form
all of the n-grams and record the next “words” for each n-gram (and their frequency), then we
can generate new text which has the same statistical properties as the input.

The ngram package (Schmidt, 2016) is an R package for constructing n-grams and generating
new text as described above. It also contains a few preprocessing utilities to aid in this process.
Additionally, the C code underlying this library can be compiled as a standalone shared library.

2 Installation

2.1 Installing from Source

The sourcecode for this package is available (and actively maintained) on GitHub. To install an
R package from source on Windows, you will need to first install the Rtools package. To install
an R package from source on a Mac, you will need to install the latest Xcode, which you can get
from the App store.

The easiest way to install ngram from GitHub is via the devtools package by Hadley Wickham.
To install ngram using devtools, simply issue the command:

library (devtools)
install_github("wrathematics/ngram")

from R.

2.2 Installing from CRAN
The usual

install.packages ("ngram")

from an R session should do it.

http://cran.r-project.org/bin/windows/Rtools/Rtools216.exe
http://cran.r-project.org/web/packages/devtools/index.html

3 BACKGROUND AND UTILITIES 2of 11

3 Background and Utilities

The n-gram processor in the ngram package changes its behavior depending on the way the input
is formatted. If the input is given as a single string, n-grams crossing “sentence” boundaries will
be considered valid. To prevent this from occuring, a vector of sentences may be used as input
rather than a single string containing the entire text.

The n-gram tokenizer in the ngram package accepts a custom string containing characters to be
used as word separators. There may be texts that use a wide variety of word separators, making
it impractical to generate a string containing all of them.

The ngram package offers several useful utilities to simplify the text and assist with transforming
the input to get the appropriate sentence handling behavior.

3.1 I/0

Generally speaking, the facilities in base R should be sufficient. Specifically, readLines() is a
good choice for handling I/O of plain text files. However, for reading in multiple files (say, all
.txt files in some directory), we offer a simple utility multiread (). This function will read all
specified files into a named list, where the names are the filenames, and the values are the text
contained in the given file as a single string.

So for example, if you want to read in all files ending in .txt at some directory/path of interest
path, you could call:

library (ngram)
multiread (path, extension="txt")

In multiread (), the extensions *.txt, *txt, .txt, and txt are all treated the same.

3.2 Concatenating Multiple Strings

Since the n-gram tokenizer expects only single strings, we offer the simple concatenate () func-
tion:

> str(letters)
Chr [1:26] ||all "bll IICII lld" Ile" llfll Ilg" llhll Ili" |lj||

concatenate(letters)
[1] "a bc de f ghijklmnopgqrstuvwzxyz"

concatenate (concatenate (letters, collapse=""), letters)

[1] "abcdefghijklmnopqrstuvwxyz a b c d e £f g h i j k 1 mn o
Pgrstuvw

wxyz"

So if data is coming from multiple files, the simplest way to merge them together would be to
call multiread() (described above) if possible. Then you can call concatenate() directly on

3 BACKGROUND AND UTILITIES 3of 11

the returned list to produce a single string from all files, or use the tokenizer iteratively, using,
say, an lapply (). Here is a more explicit example without the use of multiread():

x <- readLines("filel")
y <- readLines("file2")

str <- concatenate(x, y)

3.3 Splitting Strings

The ngram tokenizer always splits words at one or more of the characters provided in the
sep argument. You can preprocess the input string with R’s regular expression utilities, such
as gsub(). But for most tasks, the preprocess() and charsplitter utilities in the ngram
package should be more than sufficient.

The preprocess() function is a simple utility for making letter case uniform, as well as op-
tionally splitting at punctuation (so that punctuation itself becomes a “word” in the n-gram
analysis). Here is a simple example:

x <- "Watch out for snakes! "

preprocess (x)
[1] "watch out for snakes!"

preprocess(x, case="upper", remove.punct=TRUE)
[1] "WATCH OUT FOR SNAKES"

Perhaps more useful is the charsplitter() function. Suppose that for the purposes of n-gram
tokenization, instead of wanting to call things separated by spaces “words”, you wish to treat
every letter as a “word”. This could be accomplished by using sep="" when calling ngram(),
but for the sake of introducing charsplitter(), it can also be done simply in this way:

x <- "abacabb"
splitter (x, split.char=TRUE)
[1] "a b a c a b b"

By default, this will preserve spaces as a special token (an underscore by default). You may wish
to ignore spaces entirely during tokenization. This too is simple to handle during preprocessing;:

y <- "abacabb abacabb"

splitter (y, split.space=TRUE)

[1] "abacabb _ abacabb"

splitter (y, split.space=FALSE, split.char=TRUE)
[1] "a b a c a b b abacabhb"
splitter(y, split.space=TRUE, split.char=TRUE)
[1] "a b a c a b b abacabb"

4 USING THE PACKAGE 4 of 11

3.4 Dealing with tm

The tm package (Feinerer et al., 2008) requires that all data be in the form of its fairly compli-
cated Corpus object. The ngram package offers no direct methods for dealing with data in this
format. To use tm-encapsulated data, you will first need to extract it into a single string or a
vector of strings depending on what processing behavior is required.

If you want to extract the text from all documents in a corpus as a single string, you can do
something like:

str <- concatenate(lapply(myCorpus, "[", 1))

3.5 Summarizing

While not strictly related to n-gram modeling, you may wish to get some basic summary counts
of your text. With the assumption that the text is a single string with words separated by one
or more spaces, we can very quickly generate these counts via the string.summary () function:

x <- "a b acabb"
string. summary (x)

Chars: 13
Letters: 7
Whitespace: 6
Punctuation: O
Digits: 0
Words: 7
Sentences: 0
Lines: 1
Wordlens: 0
9
Senlens: 0
H## 1
Syllens: 0
9

= N

= W

Now, this “model” is based only on very simple counts, and is easily fooled. For example, the
sentence S.T.A.R. Labs is a research facility in the DC comics universe. would be
treated as though it were 5 separate sentences. However, the counts are constructed extremely
quickly, and so they are still useful as a first pass in an analysis.

4 Using the Package

The general process for using the ngram package goes something like:
1. Prepare the input string; you may find the utilities in Section 3 useful.
2. Tokenize with the ngram() function.

3. Generate new text with babble(), and/or

4 USING THE PACKAGE 5of 11

4. Extract pieces of the processed ngram data with the get.*() functions.

4.1 Creating
Let us return to the example sequence of letters from Section 1. If we store this string in x:

x <- "ABACAZBB"

The next step is to process with ngram():

library(ngram)
ng <- ngram(x, n=2)

Simple as that! And the tokenization was designed to be extremely fast; see Section 5 for
benchmarks.

4.2 Printing

With ng as above, we can then inspect the sequence:

ng
An ngram object with 5 2-grams

If you don’t have too many n-grams, you may want to print all of them by calling print ()
directly, with the print () argument output="full":

print (ng, output="full")
C A | 1

B {1} |

##
H##
##
##
B B | 1

NULL {1} |
H#

A C |
A {1}
##
A
A

(o0]

Al 1
{1} |

Q

—

(I
1} |

~ @

B {1} |

Here we see each 3-gram, followed by its next possible “words” and each word’s frequency of
occurrence following the given n-gram. So in the above, the first n-gram printed C A has B as a
next possible word, because the sequence C A is only ever followed by the “word” B in the input
string. On the other hand, A B is followed by A once and B once. The sequence B B is terminal,
i.e. followed by nothing; we treat this case specially.

15

16

17

19

20

21

22

23

24

25

4 USING THE PACKAGE 6 of 11

You may just wish to see the first few n-grams; this too is possible, but note that the order here
is not particularly informative, in that the first n-gram shown is not necessarily the most/least
common, etc. We can achieve this with the print() argument output="truncated". How-
ever, in our example, we only have 5 n-grams, and so we will not see any difference between
printing with output="£full" versus output="truncated". So we will construct a slightly more
complicated example:

text <- rcorpus (100, alphabet=letters[1:3], maxwordlen=1)
ng2 <- ngram(text)

ng?2
An ngram object with 9 2-grams

print (ng2, output="truncated")

b a | 14

b {2} | a {1} | ¢ {1} | a {2} | b {1} | a {1} | c {1} | a {1}
| ¢ {1} | b {2}

| NULL {1} |

##

a | 10

a {1} | b {1} | a {1} | ¢ {1} | a {1} | b {1} | a {1} | b {1}

c {1} | a {1}

(@]

|
##
#it
##

a | 12
{1} | b {1} | a {1} | b {1} | ¢ {2} | b {1} | a {1} | c {3}
b {1} |

o p

##
a b | 12

b {1} | a {1} | ¢ {1} | a {1} | b {1} | a {3} | ¢ {2} | b {2}
|

##

c c | 4

a {1} | b {3} |

#H#

[[... results truncated ... 1]

4.3 Summarizing

Once the ngram representation of the text has been generated, it is very simple to get some
interesting summary information. The function get.phrasetable() generates a “phrasetable”,
or more explicitly, a table of n-grams, and their frequency and proportion in the text:

get.phrasetable (ng)

ngrams freq prop
1 A B 2 0.3333333
2 C A 1 0.1666667

4 USING THE PACKAGE 7 of 11

3 B A 1 0.1666667
4 B B 1 0.1666667
5 A C 1 0.1666667

We can perhaps better see the value of this in a more interesting string;:

set.seed (12345)

text <- rcorpus (100, alphabet=letters[1:3], maxwordlen=1)

text

[1] "a b c b b c bcaabbcbcccbaabbacccca
ac

accbocbcbocbaccbcbocbocecbbec

0o 0 o o
0O M T 0
M O 0o T

C
b
b
a

0O T p
oM 0O

c a
a c
c c accbcaaccaacaacab"

head (get.phrasetable (ngram(text, n=3)))

H# ngrams freq prop
1 c b c 12 0.12244898
2 b c b 8 0.08163265
3 ¢c c c 7 0.07142857
4 c a a 6 0.06122449
5 a a c 6 0.06122449
6 c c b 6 0.06122449

Presently, there are two other “getters”, namely get.ngrams() and get.string(). Each of
these basically does what it sounds like. The first produces the unique n-grams as a vector of
strings (in no particular order), while the second produces the input string that was used during
tokenization:

> get.ngrams (ng)

[1] IIC All IIB All IIB B" ||A Cll ||A Bll
> get.string(ng)

[1] noon

4.4 Babbling

We might want to use n-grams as god intended: amusement. We can easily generate new strings
with the same statistical properties as the input strings via a very simple markov chain/sampling
scheme. We for this, we use babble():

babble (ng, 10)
[1] "B B A C A BB BB A"
babble (ng, 10)
[1] "C A B A CABBAGB"
babble (ng, 10)
[1] "A B A C A B A CAB"

5 BENCHMARKS 8 of 11

This generation includes a random process. For this, we developed our own implementation of
MT19937, and so R’s seed management does not apply. To specify your own seed, use the seed=
argument:

babble (ng, 10, seed=10)
[1] "A C A B A CABBEB "
babble (ng, 10, seed=10)
[1] "A C A B A CABBEB "
babble (ng, 10, seed=10)
[1] "A C A B A CABTBZB"

4.5 Important Notes About the Internal Representation

The entirety of the interesting bits of the ngram package take place outside of R (completely in
C). Observe:

str (ng)

Formal class ’ngram’ [package "ngram"] with 6 slots
..0Q str_ptr:<externalptr>

H# ..0@ strlen : int 1

..@n : int 2

..Q@ ngl_ptr:<externalptr>

..0@ ngsize : int 5

.0 sl_ptr :<extermalptr>

So everything is wrangled up top as an S4 class, and underneath the data is stored as 2 linked
lists, outside the purview of R. This means that, for example, that you cannot save the n-gram
object with a call to save(). If you do and you shut down and restart R, the pointers will no
longer be valid.

Extracting a the data into a native R data structure is not currently possible. Full support is
planned for a later release. Some pieces can be extracted. At this time, get.ngrams() and
get.string() are implemented, but get.nextwords() is not.

get.nextwords (ng)
Error in .local(mng, ...) : Not yet implemented

5 Benchmarks

5.1 tau

The tau (Buchta et al., 2015) package offers, among other things, a framework for constructing
n-grams from a text, via its textcnt () function.

In ngram, the use of get.phrasetable(ngram(x, n=3)) roughly corresponds to textcnt (x,
n=3, split=" ", method="string") in tau. Although get.phrasetable() returns propor-
tions in addition to counts, and in the form of a more costly dataframe compared to tau’s
vector of counts, we are still able to achieve very good performance.

5 BENCHMARKS 9of 11

library (rbenchmark)
library (tau)
library (ngram)

x <- ngram::rcorpus (50000)

reps <- 15
cols <- c("test", "replications", "elapsed", "relative")

benchmark (tau=textcnt (x, n=3, split=" ", method="string"),

ngram=get .phrasetable (ngram(x, n=3)), replications=reps,
columns=cols)

Evaluating this script gives:

test replications elapsed relative
2 ngram 15 0.958 1.000
1 tau 15 137.994 144.044

In fact, a good portion of the time in the ngram runs here is in converting the internal C data
structure over to an R one. The original purpose of the ngram package was merely amusement,
babbling n-grams. If we just compare the run times for this, the difference is striking:

library(tau)
library(ngram)

x <- ngram::rcorpus (100000)

tautime <- system.time(ptl <- textcnt(x, n=3, split=" ",
method="string")) [3]
ngtime <- system.time(pt2 <- ngram(x, n=3)) [3]

cat("tau: ", tautime, "\n")
cat("ngram: ", ngtime, "\n")
cat("tau/ngram: ", tautime/ngtime, "\n")

If we evaluate this, we see:

tau: 36.576
ngram: 0.048
tau/ngram: 762

Here, ngram is primed for babbling, in that it has already stored all “next words”, while tau
only contains what we call the phrasetable of 3-grams.

5 BENCHMARKS

10 of 11

5.2 RWeka

The ngram package has a separate tokenizer to produce returns similar to those in the RWeka

package. However, ngram is significantly faster:

library (memuse)
library (ngram)
library (RWeka)

X = ngram::rcorpus (nwords=1e6, alphabet="a")
memuse (x)
4.292 MiB

system.time (ngram_asweka(x, min=2, max=2))
user system elapsed
0.216 0.044 0.261

system.time (NGramTokenizer (x, Weka_control (min=2,

user system elapsed
500.228 0.528 500.056

max=2)))

REFERENCES 11 of 11

References

Christian Buchta, Kurt Hornik, Ingo Feinerer, and David Meyer. tau: Text Analysis Utilities,
2015. URL http://CRAN.R-project.org/package=tau. R package version 0.0-18.

Ingo Feinerer, Kurt Hornik, and David Meyer. Text mining infrastructure in r. Journal of
Statistical Software, 25(5):1-54, March 2008. URL http://www. jstatsoft.org/v25/i05/.

Drew Schmidt. ngram: Fast n-gram tokenization, 2016. URL https://cran.r-project.org/
package=ngram. R package version 3.0.0.

http://CRAN.R-project.org/package=tau
http://www.jstatsoft.org/v25/i05/
https://cran.r-project.org/package=ngram
https://cran.r-project.org/package=ngram

	Introduction
	Installation
	Installing from Source
	Installing from CRAN

	Background and Utilities
	I/O
	Concatenating Multiple Strings
	Splitting Strings
	Dealing with tm
	Summarizing

	Using the Package
	Creating
	Printing
	Summarizing
	Babbling
	Important Notes About the Internal Representation

	Benchmarks
	tau
	RWeka

	References

