Package ‘nflseedR’

March 24, 2025

Title Functions to Efficiently Simulate and Evaluate NFL Seasons
Version 2.0.0

Description A set of functions to simulate National Football League
seasons including the sophisticated tie-breaking procedures.

License MIT + file LICENSE
URL https://nflseedr.com, https://github.com/nflverse/nflseedR

BugReports https://github.com/nflverse/nflseedR/issues
Depends R (>=4.1.0)

Imports cli, data.table, dplyr, furrr, future, gsubfn, lifecycle,
nflreadr (>= 1.1.3), progressr, purrr, rlang, tibble, tidyr

Suggests gt (>= 0.9.0), knitr, nflplotR (>= 1.2.0), rmarkdown, scales,
testthat (>= 3.0.0)

Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no

Author Sebastian Carl [cre, aut, cph],
Lee Sharpe [aut]

Maintainer Sebastian Carl <mrcaseb@gmail.com>
Repository CRAN
Date/Publication 2025-03-24 14:40:06 UTC

Contents

compute_conference_seedsl
compute_division_ranks L. Lo
compute_draft_order e
dictionary_games e e e e

https://nflseedr.com
https://github.com/nflverse/nflseedR
https://github.com/nflverse/nflseedR/issues

Index

compute_conference_seeds

dictionary_game_SUMMArY v ¢ v v v v v vt e e e e e e e e e e 7
dictionary_overall e 8
dictionary_standings e 8
dictionary_team_Wwinso e e e e 9
diVISIONS e e e 9
fmt_pct_special L 10
nfl_simulations e 10
nfl_standings 14
nfl_standings_prettify 16
sims_games_example Lol e e e 17
sims_teams_example L e e 18
simulate_ nfl 18
simulations_verify_fct oL 21
summary.nflseedR_simulation L L oo 23

25

compute_conference_seeds

Compute NFL Playoff Seedings using Game Results and Divisional
Rankings

Description

Compute NFL Playoff Seedings using Game Results and Divisional Rankings

Usage

compute_conference_seeds(
teams,
h2h = NULL,
tiebreaker_depth = 3,
.debug = FALSE,
playoff_seeds = 7

)

Arguments
teams The division standings data frame as computed by compute_division_ranks
h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking

functions. It is computed by the function compute_division_ranks.

tiebreaker_depth

A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth = 1 Break all ties with a coinflip. Fastest variant.

compute_division_ranks 3

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

playoff_seeds Number of playoff teams per conference (increased in 2020 from 6 to 7).

Value

A data frame of division standings including playoff seeds and the week in which the season ended
for the respective team (exit).

A list of two data frames:

standings Division standings including playoff seeds.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking functions.

See Also

The examples on the package website

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems

s <- nflseedR::load_sharpe_games() |>
dplyr::filter(season %in% 2019:2020) |>
dplyr::select(sim = season, game_type, week, away_team, home_team, result) |[>
nflseedR: :compute_division_ranks()
nflseedR: :compute_conference_seeds(s, h2h = s$h2h) |>
purrr::pluck(”standings")

»

Restore old options
options(old)

compute_division_ranks
Compute NFL Division Rankings using Game Results

Description

Compute NFL Division Rankings using Game Results

https://nflseedr.com/articles/articles/nflseedR.html

4 compute_division_ranks

Usage
compute_division_ranks(
games,
teams = NULL,

tiebreaker_depth = 3,
.debug = FALSE,
h2h = NULL

Arguments

games A data frame containing real or simulated game scores. The following variables
are required:
sim A simulation ID. Normally 1 - n simulated seasons.
game_type One of 'REG’, "WC’,’DIV’, "CON’, ’SB’ indicating if a game was
a regular season game or one of the playoff rounds.
week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.
teams This parameter is optional. If it is NULL the function will compute it internally,
otherwise it has to be a data frame of all teams contained in the games data frame
repeated for each simulation ID (sim). The following variables are required:
sim A simulation ID. Normally 1 - n simulated seasons.
team Team abbreviation of the team (please see divisions for valid team ab-
breviations).
conf Conference abbreviation of the team (please see divisions for valid team
abbreviations).
division Division of the team (please see divisions for valid division names).
tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth = 1 Break all ties with a coinflip. Fastest variant.
tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking
functions. It is computed by the function compute_division_ranks.

compute_draft_order

Value

A list of two data frames:

standings Division standings.

h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking functions.

See Also

The examples on the package website

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems
nflseedR::load_sharpe_games() |>
dplyr::filter(season %in% 2019:2020) |>
dplyr::select(sim = season, game_type, week, away_team, home_team, result) |>
nflseedR: :compute_division_ranks() |>
purrr::pluck(”standings")
»

Restore old options
options(old)

compute_draft_order Compute NFL Draft Order using Game Results and Divisional Rank-
ings

Description

Compute NFL Draft Order using Game Results and Divisional Rankings

Usage

compute_draft_order(
teams,
games,
h2h = NULL,
tiebreaker_depth = 3,
.debug = FALSE

https://nflseedr.com/articles/articles/nflseedR.html

6 compute_draft_order

Arguments

teams The division standings data frame including playoff seeds as computed by compute_conference_seeds

games A data frame containing real or simulated game scores. The following variables
are required:
sim A simulation ID. Normally 1 - n simulated seasons.
game_type One of 'REG’,”WC’, ’DIV’, "CON’, ’SB’ indicating if a game was
aregular season game or one of the playoff rounds.
week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.
h2h A data frame that is used for head-to-head tiebreakers across the tie-breaking
functions. It is computed by the function compute_division_ranks.
tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:
tiebreaker_depth = 1 Break all ties with a coinflip. Fastest variant.

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

Value
A data frame of standings including the final draft pick number and the variable exit which indi-
cates the week number of the teams final game (Super Bowl Winner is one week higher).

See Also

The examples on the package website

Examples

Change some options for better output
old <- options(list(digits = 3, tibble.print_min = 64))
library(dplyr, warn.conflicts = FALSE)

try({#to avoid CRAN test problems

games <-
nflseedR: :load_sharpe_games() |>
dplyr::filter(season %in% 2018:2019) |>

https://nflseedr.com/articles/articles/nflseedR.html

dictionary_games

dplyr::select(sim = season, game_type, week, away_team, home_team, result)

s <- games |> nflseedR::compute_division_ranks()

s <- nflseedR::compute_conference_seeds(s, h2h = s$h2h, playoff_seeds = 6)
nflseedR: :compute_draft_order(s, games = games, h2h = s$h2h)

»

Restore old options
options(old)

dictionary_games Data Dictionary: Simulations | Games

Description

A dataframe containing the data dictionary of the simulation output table "games"

Usage

dictionary_games

Format

An object of class data. frame with 9 rows and 2 columns.

See Also

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

dictionary_game_summary
Data Dictionary: Simulations | Game Summary

Description

A dataframe containing the data dictionary of the simulation output table "game_summary"

Usage

dictionary_game_summary

Format

An object of class data. frame with 11 rows and 2 columns.

See Also

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output
https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

8 dictionary_standings

dictionary_overall Data Dictionary: Simulations | Overall

Description

A dataframe containing the data dictionary of the simulation output table "overall"

Usage

dictionary_overall

Format

An object of class data. frame with 11 rows and 2 columns.

See Also

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

dictionary_standings Data Dictionary: Simulations | Standings

Description

A dataframe containing the data dictionary of the simulation output table "standings"

Usage

dictionary_standings

Format

An object of class data. frame with 21 rows and 2 columns.

See Also

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output
https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

dictionary_team_wins 9

dictionary_team_wins Data Dictionary: Simulations | Team Wins

Description

A dataframe containing the data dictionary of the simulation output table "team_wins"

Usage

dictionary_team_wins

Format

An object of class data. frame with 4 rows and 2 columns.

See Also

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

divisions NFL team names and the conferences and divisions they belong to

Description

NFL team names and the conferences and divisions they belong to

Usage

divisions

Format

A data frame with 36 rows and 4 variables containing NFL team level information, including fran-
chises in multiple cities:

team Team abbreviation

conf Conference abbreviation

division Division name

sdiv Division abbreviation

This data frame is created using the teams_colors_logos data frame of the nflfastR package.

Please see data-raw/divisions.R for the code to create this data.

Examples

str(divisions)

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output

10

nfl_simulations

fmt_pct_special Format Numerical Values to Special Percentage Strings

Description

This function formats numeric vectors with values between 0 and 1 into percentage strings with
special specifications. Those specifications are:

Usage

0 and 1 are converted to "0%" and "100%" respectively (takes machine precision into account)
all other values < 0.01 are converted to "<1%"

all other values between 0.01 and 0.995 are rounded to percentages without decimals

values between 0.995 and 0.999 are rounded to percentages with 1 decimal

values between 0.999 and 1 are converted to ">99.9%" unless closer to 1 than machine preci-
sion.

fmt_pct_special (x)

Arguments

X

Value

A vector of numerical values

A character vector

Examples

x <- c(0, 0.004, ©.009, 0.011, 0.9, 0.98, 0.994,

.995, .9989, .999, .9991, .99999999)

fmt <- fmt_pct_special(x)
data.frame(x = x, fmt = fmt)

nfl_simulations Simulate an NFL Season

Description

Simulate NFL games based on a user provided games/schedule object that holds matchups with
and without results. Missing results are computed using the argument compute_results and pos-

sible further arguments to compute_resultsin ..

. (please see simulations_verify_fct for further

information.).

It is possible to let the function calculate playoff participants and simulate the post-season. The
code is also developed for maximum performance and allows parallel computation by splitting the
number of simulations into chunks and calling the appropriate future::plan. Progress updates can
be activated by calling progressr::handlers before the start of the simulations. Please see the below
given section "Details" for further information.

nfl_simulations 11

Usage

nfl_simulations(
games,
compute_results = nflseedR_compute_results,

playoff_seeds = 7L,

simulations = 10000L,

chunks = 8L,

byes_per_conf = 1L,

tiebreaker_depth = c("”S0S", "PRE-SOV", "RANDOM"),
sim_include = c("”DRAFT", "REG", "POST"),
verbosity = c("MIN"”, "MAX", "NONE")

Arguments

games A data frame containing real or simulated game scores. Outside of simulations,
this is simply the output of nflreadr::load_schedules. The following variables
are required as a minimum:

sim or season A season or simulation ID. Normally 1 - n simulated seasons.

game_type One of 'REG’,”WC’, ’DIV’, ’CON’, ’SB’ indicating if a game was
aregular season game or one of the playoff rounds.

week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.

If tiebreakers beyond SOS are to be used, then the actual scores of the home

(home_score) and away (away_score) teams must also be available.
compute_results

Defaults to the nflseedR function nflseedR_compute_results. A function to

compute results of games. Uses team, schedule, and week number as arguments.

Please see simulations_verify_fct for further information.

Additional parameters passed on to the function compute_results.

playoff_seeds If NULL (the default), will compute all 16 conference ranks. This means, the
function applies conference tiebreakers to all conference ranks. For better per-
formance, it is possible to set this to a value < 16 to make the function skip
tiebreakers of those conference ranks.

simulations Equals the number of times the given NFL season shall be simulated

chunks The number of chunks simulations should be split into and potentially be pro-
cessed parallel. This parameter controls the number of simulations per chunk.
There is no obvious way to determine the ideal number of chunks in advance
because there are too many dependencies on the hardware. Too many chunks
can be just as slow as too few. It is therefore up to the user to determine the
optimum number themselves.

12

nfl_simulations

byes_per_conf The number of teams with a playoff bye week per conference. This number

tiebreaker_depth
One of "S0S"”, "PRE-SOV", "POINTS" or "RANDOM". Controls which tiebreakers
are to be applied. The implemented tiebreakers are documented here https:
//nflseedr.com/articles/tiebreaker.html. The values mean:

sim_include

verbosity

Details

influences the number of wildcard games that are simulated.

e "SOS" (default): Apply all tiebreakers through Strength of Schedule. If
there are still remaining ties, break them through coin toss.

* "PRE-SOV": Apply all tiebreakers before Strength of Victory. If there are
still remaining ties, break them through coin toss. Why Pre SOV? It’s the
first tiebreaker that requires knowledge of how OTHER teams played.

* "POINTS": Apply all tiebreakers through point differential. If there are still
remaining ties, break them through coin toss. This will go beyond SOS
and requires knowledge of points scored and points allowed. As this is not
usually part of season simulations, caution is advised in this case. These
tiebreakers should only be used if the scores are real or are deliberately
simulated.

"RANDOM": Breaks all tiebreakers with a coin toss. I don’t really know, why
I allow this...

One of "REG”, "POST", "DRAFT" (the default). Simulation will behave as fol-
lows:

e "REG": Simulate the regular season and compute standings, division ranks,
and playoff seeds

* "POST": Do "REG" + simulate the postseason
e "DRAFT" (default): Do "POST" + compute draft order

One of "MIN", "MAX", or "NONE" allowing the user to set the grade of verbosity
of status reports. They mean:

e "MIN" (default): Prints main steps of the process.
* "MAX": Prints all steps of the complete tiebreaking process.
* "NONE": No status reports at all. Do this to maximize the performance.

More Speed Using Parallel Processing:

We recommend choosing a default parallel processing method and saving it as an environment
variable in the R user profile to make sure all futures will be resolved with the chosen method by
default. This can be done by following the below given steps.

First, run the below line and the user profile should be opened automatically. If you haven’t saved
any environment variables yet, this will be an empty file.

usethis::edit_r_environ()

In the opened file add the next line, then save the file and restart your R session. Please note that
this example sets "multisession” as default. For most users this should be the appropriate plan but
please make sure it truly is.

R_FUTURE_PLAN="multisession"

https://nflseedr.com/articles/tiebreaker.html
https://nflseedr.com/articles/tiebreaker.html

nfl_simulations 13

After the session is freshly restarted please check if the above method worked by running the next
line. If the output is FALSE you successfully set up a default non-sequential future: :plan(). If
the output is TRUE all functions will behave like they were called with purrr: :map() and NOT
in multisession.

inherits(future::plan(), "sequential")

For more information on possible plans please see the future package Readme.

Get Progress Updates while Functions are Running:

nflseedR is able to show progress updates using progressr: :progressor () if they are turned
on before the function is called. There are at least two basic ways to do this by either activating
progress updates globally (for the current session) with

progressr: :handlers(global = TRUE)
or by piping the function call into progressr: :with_progress():

nflseedR::nfl_simulations(
games = nflseedR::sims_games_example,
simulations = 4,
chunks = 2

) 1>

progressr: :with_progress()

For more information how to work with progress handlers please see progressr::progressr.

Reproducible Random Number Generation (RNG):

It is to be expected that some form of random number generation is required in the function in ar-
gument compute_results. For better performance, nflseedR uses the furrr package to parallelize
chunks. furrr functions are guaranteed to generate the exact same sequence of random numbers
given the same initial seed if, and only if, the initial seed is of the type "L’Ecuyer-CMRG". So if
you want a consistent seed to be used across all chunks, you must ensure that the correct type is
specified in set. seed, e.g. with the following code

set.seed(5, "L'Ecuyer-CMRG")

It is sufficient to set the seed before nfl_simulations is called. To check that the type has been set
correctly, you can use the following code.

RNGkind()
"L'Ecuyer-CMRG" "Inversion” "Rejection”

Should be a integer vector of length 7
.Random. seed
10407 1157214768 -1674567567 -1532971138 -1249749529 1302496508 -253670963

For more information, please see the section "Reproducible random number generation (RNG)"
in furrr::furrr_options.

https://github.com/futureverse/future/blob/develop/README.md

14 nfl_standings

Value

An nflseedR_simulation object containing a list of 6 data frames with the results of all simulated
games, the final standings in each simulated season, summary statistics across all simulated seasons,
and the simulation parameters. For a full list, please see the package website.

See Also

The examples on the package website

The method summary.nflseedR_simulation() that creates a pretty html summary table.

Examples

library(nflseedR)

Activate progress updates
progressr::handlers(global = TRUE)

Parallel processing can be activated via the following line
future::plan("multisession”)

sim <- nflseedR::nfl_simulations(
games = nflseedR::sims_games_example,
simulations = 4,
chunks = 2

)

Overview output
str(sim, max.level = 3)

nfl_standings Compute NFL Standings

Description

Compute NFL Standings

Usage

nfl_standings(
games,
ranks = c("CONF", "DIV", "DRAFT", "NONE"),
tiebreaker_depth = c("”S0S", "PRE-SOV", "POINTS", "RANDOM"),
playoff_seeds = NULL,
verbosity = c("MIN”, "MAX", "NONE")

https://nflseedr.com/articles/articles/nflsim2.html#simulation-output
https://nflseedr.com/articles/articles/nflsim2.html

nfl_standings

Arguments

games

ranks

15

A data frame containing real or simulated game scores. Outside of simulations,

this is simply the output of nflreadr::load_schedules. The following variables

are required as a minimum:

sim or season A season or simulation ID. Normally 1 - n simulated seasons.

game_type One of 'REG’, "WC’,’DIV’, "CON’, ’SB’ indicating if a game was
a regular season game or one of the playoff rounds.

week The week of the corresponding NFL season.

away_team Team abbreviation of the away team (please see divisions for
valid team abbreviations).

home_team Team abbreviation of the home team (please see divisions for
valid team abbreviations).

result Equals home score - away score.

If tiebreakers beyond SOS are to be used, then the actual scores of the home

(home_score) and away (away_score) teams must also be available.

currently not used

One of "DIV", "CONF", "DRAFT", or "NONE" to specify which ranks - and thus
the associated tiebreakers - are to be determined.
e "DIV": Adds the division ranking variable div_rank
e "CONF" (default): "DIV" + the conference variable conf_rank. For better
performance, it is possible to set playoff_seeds to a value < 16 to make
the function skip tiebreakers of irrelevant conference ranks.
e "DRAFT": "CONF" + the draft variable draft_rank. This is the actual pick
in the draft based off game results. No trades of course.

tiebreaker_depth

playoff_seeds

One of "S0S"”, "PRE-SOV", "POINTS" or "RANDOM". Controls which tiebreakers
are to be applied. The implemented tiebreakers are documented here https:
//nflseedr.com/articles/tiebreaker.html. The values mean:

e "S0S" (default): Apply all tiebreakers through Strength of Schedule. If
there are still remaining ties, break them through coin toss.

* "PRE-SOV": Apply all tiebreakers before Strength of Victory. If there are
still remaining ties, break them through coin toss. Why Pre SOV? It’s the
first tiebreaker that requires knowledge of how OTHER teams played.

e "POINTS": Apply all tiebreakers through point differential. If there are still
remaining ties, break them through coin toss. This will go beyond SOS
and requires knowledge of points scored and points allowed. As this is not
usually part of season simulations, caution is advised in this case. These
tiebreakers should only be used if the scores are real or are deliberately
simulated.

* "RANDOM": Breaks all tiebreakers with a coin toss. I don’t really know, why
I allow this...

If NULL (the default), will compute all 16 conference ranks. This means, the
function applies conference tiebreakers to all conference ranks. For better per-
formance, it is possible to set this to a value < 16 to make the function skip
tiebreakers of those conference ranks.

https://nflseedr.com/articles/tiebreaker.html
https://nflseedr.com/articles/tiebreaker.html

16 nfl_standings_prettify

verbosity One of "MIN", "MAX", or "NONE" allowing the user to set the grade of verbosity
of status reports. They mean:
e "MIN" (default): Prints main steps of the process.
* "MAX": Prints all steps of the complete tiebreaking process.
* "NONE": No status reports at all. Do this to maximize the performance.

Details

nflseedR does not support all levels of tie-breakers at the moment. The deepest tie-breaker currently
is "best net points in all games". After that, the decision is made at random. However, the need for
the last level ("best net touchdowns in all games") is extremely unlikely in practice. Deeper levels
than strength of schedule have never actually been needed to resolve season-end standings since the
NFL expanded to 32 teams.

Value

A data.table of NFL standings including the ranks selected in the argument ranks

See Also

For more information on the implemented tiebreakers, see https://nflseedr.com/articles/
tiebreaker.html

Examples

try({#to avoid CRAN test problems

games <- nflreadr::load_schedules(2021:2022)
1)
standings <- nflseedR::nfl_standings(games)
print(standings, digits = 3)

nfl_standings_prettify
Compute Pretty NFL Standings Table

Description

Uses the R package gt to create a pretty html table of NFL standings.

Usage

nfl_standings_prettify(
standings,

grp_by = c("div", "conf", "nfl"),
order_by = c("div_rank”, "conf_rank”, "draft_rank"),
reverse = FALSE

https://nflseedr.com/articles/tiebreaker.html
https://nflseedr.com/articles/tiebreaker.html

sims_games_example

Arguments

standings

grp_by

order_by

reverse

Value

17

A table of NFL standings. Usually computed by nfl_standings()

Currently unused. The function errors if objects are passed to the dots, i.e. when
unnamed arguments are provided.

Group the output table by Division ("div"), Conference ("conf"), or complete
league ("nfl")

Order teams by division rank, conference rank, or draft rank

Teams are sorted by the argument order_by in ascending order by default. If
reverse is set to TRUE, order will be reversed.

An object of class gt_tbl.

Output of below examples

Examples

Calculate standings
s <- nflreadr::load_schedules(2024) |>
nflseedR::nfl_standings(ranks = "DRAFT")

Create table

tbl1 <- nfl_standings_prettify(s, grp_by = "conf”, order_by = "conf_rank")

tbl2 <- nfl_standings_prettify(s, grp_by

"nfl”, order_by = "draft_rank")

The output of tbll and tbl2 is given in the above images.

sims_games_example Example Games Data used in NFL Simulations

Description

Example Games Data used in NFL Simulations

Usage

sims_games_example

Format

A data frame with 284 rows and 9 variables containing NFL schedule information.

18 simulate_nfl

Details

Please see data-raw/sim_examples.R for the code to create this data.

Examples

str(sims_games_example)

sims_teams_example Example Teams Data used in NFL Simulations

Description

Example Teams Data used in NFL Simulations

Usage

sims_teams_example

Format

A data frame with 64 rows and 5 variables containing team name and division information.

Details

Please see data-raw/sim_examples.R for the code to create this data.

Examples

str(sims_teams_example)

simulate_nfl Simulate an NFL Season

Description

This function simulates a given NFL season multiple times using custom functions to estimate and
simulate game results and computes the outcome of the given season including playoffs and draft
order. It is possible to run the function in parallel processes by calling the appropriate plan. Progress
updates can be activated by calling handlers before the start of the simulations. Please see the below
given section "Details" for further information.

simulate_nfl 19

Usage

simulate_nfl(
nfl_season = NULL,
process_games = NULL,

playoff_seeds = ifelse(nfl_season >= 2020, 7, 6),
if_ended_today = FALSE,

fresh_season = FALSE,

fresh_playoffs = FALSE,

tiebreaker_depth = 3,

test_week = NULL,

simulations = 1000,

sims_per_round = max(ceiling(simulations/future::availableCores() * 2), 100),
.debug = FALSE,

print_summary = FALSE,

sim_include = c("DRAFT", "REG", "POST")

Arguments

nfl_season Season to simulate

process_games A function to estimate and simulate the results of games. Uses team, schedule,
and week number as arguments.

Additional parameters passed on to the function process_games.
playoff_seeds Number of playoff teams per conference (increased in 2020 from 6 to 7).

if_ended_today Either TRUE or FALSE. If TRUE, ignore remaining regular season games and cut
to playoffs based on current regular season data.

fresh_season Either TRUE or FALSE. Whether to blank out all game results and simulate the
the season from scratch (TRUE) or take game results so far as a given and only
simulate the rest (FALSE).

fresh_playoffs Either TRUE or FALSE. Whether to blank out all playoff game results and simulate
the postseason from scratch (TRUE) or take game results so far as a given and
only simulate the rest (FALSE).

tiebreaker_depth
A single value equal to 1, 2, or 3. The default is 3. The value controls the
depth of tiebreakers that shall be applied. The deepest currently implemented
tiebreaker is strength of schedule. The following values are valid:

tiebreaker_depth =1 Break all ties with a coinflip. Fastest variant.

tiebreaker_depth = 2 Apply head-to-head and division win percentage tiebreak-
ers. Random if still tied.

tiebreaker_depth = 3 Apply all tiebreakers through strength of schedule. Ran-
dom if still tied.

test_week Aborts after the simulator reaches this week and returns the results from your
process games call.

simulations Equals the number of times the given NFL season shall be simulated

20

simulate_nfl

sims_per_round The number of simulations can be split into multiple rounds and be processed

parallel. This parameter controls the number of simulations per round. The
default value determines the number of locally available cores and calculates
the number of simulations per round to be equal to half of the available cores
(various benchmarks showed this results in optimal performance).

.debug Either TRUE or FALSE. Controls whether additional messages are printed to the
console showing what the tie-breaking algorithms are currently performing.

print_summary If TRUE, prints the summary statistics to the console.
sim_include One of "REG", "POST", "DRAFT" (the default). Simulation will behave as fol-

lows:

REG Simulate the regular season and compute standings, division ranks, and
playoff seeds

POST Do REG + simulate the postseason

DRAFT Do POST + compute draft order

Details

More Speed Using Parallel Processing:

We recommend choosing a default parallel processing method and saving it as an environment
variable in the R user profile to make sure all futures will be resolved with the chosen method by
default. This can be done by following the below given steps.

First, run the following line and the user profile should be opened automatically. If you haven’t
saved any environment variables yet, this will be an empty file.

usethis::edit_r_environ()

In the opened file add the next line, then save the file and restart your R session. Please note that
this example sets "multisession” as default. For most users this should be the appropriate plan but
please make sure it truly is.

R_FUTURE_PLAN="multisession"

After the session is freshly restarted please check if the above method worked by running the next
line. If the output is FALSE you successfully set up a default non-sequential future: :plan(). If
the output is TRUE all functions will behave like they were called with purrr: :map() and NOT in
multisession.

inherits(future::plan(), "sequential")

For more information on possible plans please see the future package Readme.

Get Progress Updates while Functions are Running:

Most nflfastR functions are able to show progress updates using progressr: :progressor() if
they are turned on before the function is called. There are at least two basic ways to do this by
either activating progress updates globally (for the current session) with

progressr::handlers(global = TRUE)
or by piping the function call into progressr: :with_progress():

simulate_nf1(2020, fresh_season = TRUE) |>
progressr: :with_progress()

For more information how to work with progress handlers please see progressr::progressr.

https://github.com/futureverse/future/blob/develop/README.md

simulations_verify_fct 21

Value

An nflseedR_simulation object containing a list of 6 data frames data frames with the results of
all simulated games, the final standings in each simulated season (incl. playoffs and draft order),
summary statistics across all simulated seasons, and the simulation parameters. For a full list, please
see the package website.

See Also

The examples on the package website

The method summary.nflseedR_simulation() that creates a pretty html summary table.

Examples

library(nflseedR)

Activate progress updates
progressr::handlers(global = TRUE)

Parallel processing can be activated via the following line
future::plan("multisession”)

try({#to avoid CRAN test problems
Simulate the season 4 times in 2 rounds
sim <- nflseedR::simulate_nf1(

nfl_season = 2020,

fresh_season = TRUE,

simulations = 4,

sims_per_round = 2

Overview output
dplyr::glimpse(sim)
»

simulations_verify_fct
Verify Custom NFL Result Simulation Function

Description

nflseedR supports custom functions to compute results in season simulations through the argument
compute_results in the season simulation function nfl_simulations. To ensure that custom func-
tions work as nflseedR expects them to, it is recommended to verify their behavior. This function
first checks the structure of the output and then whether game results are changed as expected.
Whenever a problem is found, the function will error with a hint to the problem (this means that
you might be required to iterate over all problems until the function stops erroring). See below
detail section for more information on expected behavior.

https://nflseedr.com/articles/articles/nflsim.html#simulation-output
https://nflseedr.com/articles/articles/nflsim.html

22 simulations_verity_fct

Usage

simulations_verify_fct(
compute_results,

L

games = nflseedR::sims_games_example,
teams = nflseedR::sims_teams_example
)
Arguments

compute_results
A function to compute results of games. See below detail section for more
information on expected behavior.

Further arguments passed on to compute_results.

games An NFL schedule where some results are missing. compute_results is sup-
posed to compute those results on a weekly base. Defaults to sims_games_example.
Please see this example to understand the required data structure.

teams A list of teams by simulation number. This is usually calculated automatically
and not user facing. It can be used to "transport" team information like elo
ratings from one simulated week to the next. Defaults to sims_teams_example.
Please see this example to understand the required data structure.

Details

The following sections detail the requirements for the compute_results function. If anything is
unclear, please see the source code of nflseedR’s default function nflseedR_compute_results.

Required Function Arguments of compute_results:

The function passed to compute_results is required to support the arguments "teams”, "games”,
and "week_num”. The two leading ones are already described above. The latter is a factor with
a length of 1, which identifies the current week. Regular season weeks are labeled "1", "2", etc.

Playoff weeks are labeled "WC", "DIV", "CON", and "SB".

Required Output Structure of compute_results:

The function passed to compute_results is required to return a list of the two objects "teams”
and "games” as passed to it in the arguments of the same name. The function must not remove
rows or columns. So the last line of compute_results usually looks like

list("teams” = teams, "games"” = games)

Required Behavior of compute_results when Computing Game Results:

nflseedR calls compute_results for every week where a result is missing in games. The vari-
able result is defined as the point differential between the home team and the away team. If
the home team loses, the value is therefore < 0, if it wins > 0 and if it ties == 0. To support
elo-based simulations, this is done in a loop so that elo ratings can be updated based on the re-
sults and "transported" from week to week. You can "transport" ratings or other information by
joining them to the "teams” table. This behavior requires that compute_results only changes
the results of the current week - called week_num. And only if there is not already a result. So
compute_results must only compute a result when

summary.nflseedR_simulation 23

week == week_num & is.na(result)

For the playoffs, there is also the special case that matches cannot end in a tie (result ==). In
most cases, ties are not simulated anyway because they occur so rarely. But in the event that they
are simulated, they must not be in the playoffs.

Value

Returns TRUE invisibly if no problems are found.

Examples

simulations_verify_fct(nflseedR_compute_results)

summary.nflseedR_simulation
Compute Pretty Simulations Summary Table

Description

Uses the R package gt to create a pretty html table of the nflseedR simulation summary data frame.

Usage
S3 method for class 'nflseedR_simulation'
summary (object, ...)

Arguments
object an object for which a summary is desired.

additional arguments passed on to the methods (currently not used).

Output of below example

Examples

library(nflseedR)

set seed for recreation,

internal parallelization requires a L'Ecuyer-CMRG random number generator
set.seed (19980310, kind = "L'Ecuyer-CMRG")

Simulate the season 20 times in 1 round
sim <- nflseedR::simulate_nfl(

nfl_season = 2021,

fresh_season = TRUE,

simulations = 20

24

Create Summary Tables
tbl <- summary(sim)

The output of tbl is given in the above image.

summary.nflseedR_simulation

Index

x datasets sims_games_example, 17, 22
dictionary_game_summary, 7 sims_teams_example, 18, 22
dictionary_games, 7 simulate_nfl, 18
dictionary_overall, 8 simulations_verify_fct, 10, 11,21
dictionary_standings, 8 summary.nflseedR_simulation, 23
dictionary_team_wins, 9 summary.nflseedR_simulation(), /4, 21

divisions, 9
sims_games_example, 17
sims_teams_example, 18

compute_conference_seeds, 2, 6
compute_division_ranks, 2,3,4,6
compute_draft_order, 5

dictionary_game_summary, 7
dictionary_games, 7
dictionary_overall, 8
dictionary_standings, 8
dictionary_team_wins, 9
divisions, 4,6,9, 11,15

fmt_pct_special, 10
furrr::furrr_options, 13
future::plan, 10
future::plan(), 13, 20

handlers, I8

nfl_simulations, 10, 2/
nfl_standings, 14
nfl_standings(), 17
nfl_standings_prettify, 16
nflreadr::load_schedules, /1, 15

plan, I8

progressr: :handlers, 10
progressr: :progressor(), 13, 20
progressr: :progressr, 13, 20
progressr: :with_progress(), 13, 20
purrr::map(), 13, 20

25

	compute_conference_seeds
	compute_division_ranks
	compute_draft_order
	dictionary_games
	dictionary_game_summary
	dictionary_overall
	dictionary_standings
	dictionary_team_wins
	divisions
	fmt_pct_special
	nfl_simulations
	nfl_standings
	nfl_standings_prettify
	sims_games_example
	sims_teams_example
	simulate_nfl
	simulations_verify_fct
	summary.nflseedR_simulation
	Index

