Package 'newFocus'

October 13, 2022

Type Package

Title True Discovery Guarantee by Combining Partial Closed Testings

Version 1.1

Date 2021-06-22

Author Ningning Xu

Maintainer Ningning Xu <n.xu@lumc.nl>

Description Closed testing has been proved powerful for true discovery guarantee. The computation of closed testing is, however, quite burdensome. A general way to reduce computational complexity is to combine partial closed testings for some prespecified feature sets of interest. Partial closed testings are performed at Bonferroni-corrected alpha level to guarantee the lower bounds for the number of true discoveries in prespecified sets are simultaneously valid. For any post hoc chosen sets of interest, coherence property is used to get the lower bound. In this package, we implement closed testing with globaltest to calculate the lower bound for number of true discoveries, see Ningning Xu et.al (2021) <arXiv:2001.01541> for detailed description.

License GPL (≥ 2)

Depends ctgt

NeedsCompilation no

Repository CRAN

Date/Publication 2021-07-05 15:50:06 UTC

R topics documented:

																																			9
pick	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	·	•	•	•	• •	•	•	•	•	·	•	•	•	•	•	7
newFocus																																			
discov		•					•	•	•		•		•		 •				•		•		•		•					•	•	•			5
ctbab		•					•	•	•		•				 •			•	•		•		•		•			•		•	•	•			4
choosepath								•	•		•		•		 •				•		•		•		•										3
newFocus-package	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•		•		·	·	•	•	•	•	•	•	2

Index

newFocus-package

Description

Closed testing has been proved powerful for true discovery guarantee. The computation of closed testing is, however, quite burdensome. A general way to reduce computational complexity is to combine partial closed testings for some prespecified feature sets of interest. Partial closed testings are performed at Bonferroni-corrected alpha level to guarantee the lower bounds for the number of true discoveries in prespecified sets are simultaneously valid. For any post hoc chosen sets of interest, coherence property is used to get the lower bound. In this package, we implement closed testing with globaltest to calculate the lower bound for number of true discoveries, see Ningning Xu et.al (2021) <arXiv:2001.01541> for detailed description.

Details

The DESCRIPTION file:

Package:	newFocus
Туре:	Package
Title:	True Discovery Guarantee by Combining Partial Closed Testings
Version:	1.1
Date:	2021-06-22
Author:	Ningning Xu
Maintainer:	Ningning Xu <n.xu@lumc.nl></n.xu@lumc.nl>
Description:	Closed testing has been proved powerful for true discovery guarantee. The computation of closed testing
License:	GPL (>= 2)
Depends:	ctgt
NeedsCompilation:	no
Packaged:	2021-06-22 09:50:32 UTC; nxu
Repository:	CRAN

Index of help topics:

choosepath	A set of focus set index
ctbab	Closed testing with branch and bound
discov	True discoveries
newFocus	The new focus level procedure
newFocus-package	True Discovery Guarantee by Combining Partial
	Closed Testings
pick	True discoveries for non-focus level node

For the GO (Gene Ontology) terms chosen as focus level nodes, newFocus function will return the minimum number of true discoveries. For GO terms that are non-focus level nodes, we use pick to count the number of true discoveries based on the result of newFocus.

choosepath

Author(s)

Ningning Xu

Maintainer: Ningning Xu <n.xu@lumc.nl>

References

Ningning Xu, Aldo solari, Jelle Goeman, Clsoed testing with global test, with applications on metabolomics data, arXiv:2001.01541, https://arxiv.org/abs/2001.01541

Jelle J. Goeman, Sara A. van de Geer, Floor de Kort, Hans C. van Houwelingen, A global test for groups of genes: testing association with a clinical outcome, Bioinformatics, Volume 20, Issue 1, 1 January 2004, Pages 93-99, https://doi.org/10.1093/bioinformatics/btg382

choosepath

A set of focus set index

Description

The function aims to find out the focus set index for which the true discoveries is the most and all other focus sets that are disjoint with it .

Usage

choosepath(startingindex = 1, fsets, lowdv)

Arguments

startingindex	The index of focus set that has the first largest number of true discovereis
fsets	A list of focus level gene sets, or GO (Gene Ontology) terms
lowdv	A non-negative integer vector, which are the number of true discovereis, the length of the vector is the same as the list of focus level sets

Value

The function will return an integer or a numeric vector.

Author(s)

Ningning Xu

ctbab

Description

Closed testing with branch and bound algorithm specifically for globaltest

Usage

ctbab(y, Cm, Tm, upnode, level, lownode, tmin, ctrue, lf, ls, alpha, count = 0, maxIt = 0)

Arguments

У	The response variable
Cm	The matrix for calculating critical values of globaltest
Tm	The matrix for calculating test statistics of globaltest
upnode	The upper node that is used to bound critical values
level	The level that the GO term of interest
lownode	The lower node that is used to bound critical values
tmin	The minimum test statistic
ctrue	The true critical value corresponding to the minimum test statistic
lf	The lambda vector corresponding to the upper node
ls	The lambda vector corresponding to the lower node
alpha	The significance level
count	An integer stores the repetitions of the branch and bound, i.e. how many time branch and bound is implemented
maxIt	The maximal number of repetitions prespecified by user

Value

It will retrun the rejection indicator by closed testing with branch and bound algorithm.

Author(s)

Ningning Xu

References

Xu, N., & Goeman, J. (2020). Closed testing with Globaltest with applications on metabolomics data. arXiv preprint arXiv:2001.01541.

discov

Description

True discoveries calculated by the partial closed testing

Usage

discov(response, alternative, null, data, maxit = 0, alpha)

Arguments

response	The response variable
alternative	The alternative hypothesis, which is a character vector, i.e. a set of genes
null	The null hypothesis
data	A data frame with response and all covariates included
maxit	The maximal number of repetitions prespecified by user
alpha	The significance level

Value

It will return a non-negative integer: the lower bound for the number of true discovereis of the alternative gene set.

Author(s)

Ningning Xu

newFocus

The new focus level procedure

Description

The new focus level procedure for calculating true discoveries for focus level nodes

Usage

```
newFocus(response, fsets, null, data, maxit = 0, alpha = 0.05, adj = 0)
```

newFocus

Arguments

response	The response variable
fsets	A list of focus level sets
null	The null hypothesis
data	The data frame with response and all covariates included
maxit	The maximal number of repetitions prespecified by user
alpha	The significance level
adj	The number of focus sets that are fully rejected by partial closed testing, which is used to adjust the number of focus sets, The dafault value is 0.

Value

The function will return a focus subject with the lower bound for each focus level node.

Author(s)

Ningning Xu

References

Goeman, J. J., & Mansmann, U. (2008). Multiple testing on the directed acyclic graph of gene ontology. Bioinformatics, 24(4), 537-544.

Examples

```
## example data set
n= 100
m = 5
X = matrix(0, n, m, byrow = TRUE )
for ( i in 1:n){
  set.seed(1234+i)
  X[i,] = as.vector(arima.sim(model = list(order = c(1, 0, 0), ar = 0.2), n = m) )
}
y = rbinom(n, 1, 0.6)
X[which(y==1),1:3] = X[which(y==1),1:3] + 0.8
xs = paste("x", seq(1,m,1), sep="")
colnames(X) = xs
mydata = as.data.frame(cbind(X,y))
## focus level sets
fl = list(c("x1", "x2"), c("x3", "x4"), "x5")
names(fl) = c("12", "34", "5")
## get td for focus level sets
focus_subject = newFocus(response = y, fsets = fl, data = mydata)
## get td for any set of interest given the focus subject
setofinterest = c("x1", "x2", "x3", "x4")
```

```
pick(focus_subject, setofinterest)
```

pick

True discoveries for non-focus level node

Description

The number of true discoveries for the non-focus level GO terms is calculated given the focus subject.

Usage

pick(focus_obj, setofinterest)

Arguments

focus_obj	The focus subject from function newFocus
setofinterest	A gene set or GO term of interest

Value

It will return an integer: the lower bound for the number of true discoveries in the set of interest

Author(s)

Ningning Xu

Examples

```
## example data set
n= 100
m = 5
X = matrix(0, n, m, byrow = TRUE )
for ( i in 1:n){
  set.seed(1234+i)
  X[i,] = as.vector(arima.sim(model = list(order = c(1, 0, 0), ar = 0.2), n = m) )
}
y = rbinom(n, 1, 0.6)
X[which(y==1),1:3] = X[which(y==1),1:3] + 0.8
xs = paste("x", seq(1,m,1), sep="")
colnames(X) = xs
mydata = as.data.frame(cbind(X,y))
## focus level sets
fl = list(c("x1", "x2"), c("x3", "x4"), "x5")
names(fl) = c("12", "34", "5")
```

```
## get td for focus level sets
focus_subject = newFocus(response = y, fsets = fl, data = mydata)
## get td for any set of interest given the focus subject
setofinterest = c("x1", "x2","x3", "x4")
pick(focus_subject, setofinterest)
```

Index

choosepath, 3 ctbab, 4

discov, 5

newFocus, 2, 5, 7
newFocus-package, 2

pick, 2, 7