
Package ‘neonstore’
April 8, 2024

Title NEON Data Store

Version 0.5.1

Description The National Ecological Observatory Network (NEON) provides access
to its numerous data products through its REST API,
<https://data.neonscience.org/data-api/>. This package provides a
high-level user interface for downloading and storing NEON data products.
Unlike 'neonUtilities', this package will avoid repeated downloading,
provides persistent storage, and improves performance. 'neonstore' can also
construct a local 'duckdb' database of stacked tables, making it possible
to work with tables that are far to big to fit into memory.

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.0.0)

Imports DBI, duckdb (>= 0.2.3), httr, progress, R.utils, thor, vroom
(>= 1.5.1), zip, duckdbfs, memoise, cachem, glue

RoxygenNote 7.2.3

Suggests tibble, jsonlite, testthat, covr, xml2, spelling, rstudioapi,
neonUtilities, rhdf5, curl, openssl, digest, arrow, dplyr,
R.methodsS3, R.oo, storr

Language en-US

NeedsCompilation no

Author Carl Boettiger [aut, cre] (<https://orcid.org/0000-0002-1642-628X>),
Quinn Thomas [aut] (<https://orcid.org/0000-0003-1282-7825>),
Christine Laney [aut] (<https://orcid.org/0000-0002-4944-2083>),
Claire Lunch [aut] (<https://orcid.org/0000-0001-8753-6593>),
Noam Ross [ctb] (<https://orcid.org/0000-0002-2136-0000>)

Maintainer Carl Boettiger <cboettig@gmail.com>

Repository CRAN

Date/Publication 2024-04-08 07:22:59 UTC

1

https://data.neonscience.org/data-api/
https://orcid.org/0000-0002-1642-628X
https://orcid.org/0000-0003-1282-7825
https://orcid.org/0000-0002-4944-2083
https://orcid.org/0000-0001-8753-6593
https://orcid.org/0000-0002-2136-0000

2 neon_citation

R topics documented:

neon_citation . 2
neon_cloud . 3
neon_data . 5
neon_db . 6
neon_db_dir . 7
neon_delete_db . 8
neon_dir . 8
neon_disconnect . 9
neon_download . 9
neon_export . 12
neon_export_db . 13
neon_filename_parser . 14
neon_import . 15
neon_import_db . 16
neon_index . 17
neon_pane . 18
neon_products . 19
neon_read . 20
neon_remote . 22
neon_remote_db . 22
neon_sites . 23
neon_store . 23
neon_sync_db . 25
neon_table . 25
show_deprecated_data . 26
standardize_export_names . 28

Index 29

neon_citation Generate the appropriate citation for your data

Description

Generate the appropriate citation for your data

Usage

neon_citation(product = NULL, download_date = Sys.Date(), dir = neon_dir())

neon_cloud 3

Arguments

product A NEON productCode or list of product codes, see examples.

download_date Date of download to be included in citation. default is today’s date, see details.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

Details

Note that the neon_download() does not record download date for each file. Citing a single product
download date is after all rather meaningless, as parts of a products may not have all been down-
loaded on different dates. Indeed, neon_download() is designed in precisely this way, to allow
easy updating of downloads without re-downloading older data.

Value

returns a utils::bibentry object, which can be used as text or formatted for bibtex.

References

https://www.neonscience.org/data-samples/data-policies-citation

Examples

may be slow
neon_citation("DP1.10003.001")

or the citation for all products in store:
neon_citation()

as bibtex
format(neon_citation("DP1.10003.001"), "bibtex")

neon_cloud neon cloud

Description

neon cloud

4 neon_cloud

Usage

neon_cloud(
table,
product,
start_date = NA,
end_date = NA,
site = NA,
type = "basic",
release = NA,
quiet = FALSE,
api = "https://data.neonscience.org/api/v0",
unify_schemas = FALSE,
.token = Sys.getenv("NEON_TOKEN")

)

Arguments

table NEON table name

product A NEON productCode or list of product codes, see examples.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

site 4-letter site code(s) to filter on. Leave as NA to search all.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

release Select only data files associated with a particular release tag, see https://www.
neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

quiet Should download progress be displayed?

api the URL to the NEON API, leave as default.

unify_schemas if cloud-read fails to collect data due to miss-matched schemas, set this to TRUE.
Warning: Results in much slower reads and may demand more memory due to
parsing the schema of each file, especially when many files are involved.

.token an authentication token from NEON. A token is not required but will allow ac-
cess to a higher number of requests before rate limiting applies, see https://
data.neonscience.org/data-api/rate-limiting/#api-tokens. Note that
once files are downloaded once, neonstore provides persistent access to them
without further interaction required with the API.

Value

lazy data frame

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://data.neonscience.org/data-api/rate-limiting/#api-tokens
https://data.neonscience.org/data-api/rate-limiting/#api-tokens

neon_data 5

neon_data Query the NEON API for URLs of matching data products Repeated
requests will be cached

Description

Query the NEON API for URLs of matching data products Repeated requests will be cached

Usage

neon_data(
product,
start_date = NA,
end_date = NA,
site = NA,
type = NA,
release = NA,
quiet = FALSE,
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")

)

Arguments

product A NEON productCode or list of product codes, see examples.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

site 4-letter site code(s) to filter on. Leave as NA to search all.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

release Select only data files associated with a particular release tag, see https://www.
neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

quiet Should download progress be displayed?

api the URL to the NEON API, leave as default.

.token an authentication token from NEON. A token is not required but will allow ac-
cess to a higher number of requests before rate limiting applies, see https://
data.neonscience.org/data-api/rate-limiting/#api-tokens. Note that
once files are downloaded once, neonstore provides persistent access to them
without further interaction required with the API.

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://data.neonscience.org/data-api/rate-limiting/#api-tokens
https://data.neonscience.org/data-api/rate-limiting/#api-tokens

6 neon_db

Value

a data.frame containing the name, filesize (in bytes), checksums (columns md5, crc32, or crc32c,
though each product will use only one of these), url, and release status.

Examples

x <- neon_data("DP1.10003.001")
x <- neon_data("DP1.10003.001", release="RELEASE-2021")

neon_db Cache-able duckdb database connection

Description

Cache-able duckdb database connection

Usage

neon_db(
dir = neon_db_dir(),
read_only = TRUE,
memory_limit = getOption("duckdb_memory_limit", NA),
...

)

Arguments

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

read_only allow concurrent connections by enforcing read_only. See details.

memory_limit Set a memory limit for duckdb, in GB. This can also be set for the session by us-
ing options, e.g. options(duckdb_memory_limit=10) for a limit of 10GB. On
most systems duckdb will automatically set a limit to 80% of machine capacity
if not set explicitly.

... additional arguments to dbConnect

neon_db_dir 7

Details

Creates a connection to a permanent duckdb database instance in the provided directory (see neon_dir()).
This connection is also cached, so that code which repeatedly calls [neon_db] will not stall or hang.
Only read_only connections will be cached.

NOTE: [duckdb::duckdb()] can only support a single read-write connection at a time. The default
option of read_only = TRUE allows multiple connections. [neon_store()] will automatically set
this to FALSE to allow data import.

Examples

tempfile used for illustration only
neon_db(tempfile())

neon_db_dir Default directory for persistent NEON database

Description

Use neon_db_dir() to view or access the currently active database directory. By default, this uses
the appropriate application directory for your operating system, see tools::R_user_dir(). This
location can be overridden by setting the environmental variable NEONSTORE_DB.

Usage

neon_db_dir()

Value

the active neonstore directory.

Examples

neon_db_dir()

Override with an environmental variable:
Sys.setenv(NEONSTORE_DB = tempdir())
neon_db_dir()
Unset
Sys.unsetenv("NEONSTORE_DB")

8 neon_dir

neon_delete_db delete the local NEON database

Description

delete the local NEON database

Usage

neon_delete_db(db_dir = neon_db_dir(), ask = interactive())

Arguments

db_dir neon database location (configurable with the NEONSTORE_DB environmen-
tal variable)

ask Ask for confirmation first?

Details

Just a helper function that deletes the NEON database files, which are found under file.path(neon_dir(),
"database"). This does not delete downloaded raw data, which can easily be re-loaded with
neon_store(). Usually unnecessary but can be helpful in resetting a corrupt database.

If you want to delete all raw data files downloaded by neonstore as well, simply delete the entire
directory given by neon_dir()

Examples

Create a db
dir <- tempfile()
db <- neon_db(dir)

Delete it
neon_delete_db(dir, ask = FALSE)

neon_dir Default directory for persistent NEON file store

Description

Use neon_dir() to view or access the currently active local store. By default, neon_download()
downloads files into the neon_dir(), which uses an appropriate application directory for your op-
erating system, see tools::R_user_dir(). This location can be overridden by setting the environ-
mental variable NEONSTORE_HOME. neonstore functions (e.g. neon_index(), and neon_read())
look for files in the neon_dir() directory by default. (All functions can also take a one-off argu-
ment to dir in the function call in place of the calling neon_dir() to access the default.

neon_disconnect 9

Usage

neon_dir()

Value

the active neonstore directory.

Examples

neon_dir()

Override with an environmental variable:
Sys.setenv(NEONSTORE_HOME = tempdir())
neon_dir()
Unset
Sys.unsetenv("NEONSTORE_HOME")

neon_disconnect Disconnect from the neon database

Description

Disconnect from the neon database

Usage

neon_disconnect(db = neon_db())

Arguments

db link to an existing database connection

neon_download Download NEON data products into a local store

Description

Download NEON data products into a local store

10 neon_download

Usage

neon_download(
product,
table = NA,
site = NA,
start_date = NA,
end_date = NA,
type = "basic",
release = NA,
quiet = FALSE,
verify = TRUE,
unique = TRUE,
dir = neon_dir(),
get_zip = FALSE,
unzip = FALSE,
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")

)

Arguments

product A NEON productCode or list of product codes, see examples.

table Include only files matching this table name (or regex pattern). (optional).

site 4-letter site code(s) to filter on. Leave as NA to search all.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

release Select only data files associated with a particular release tag, see https://www.
neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

quiet Should download progress be displayed?

verify Should downloaded files be compared against the MD5 hash reported by the
NEON API to verify integrity? (default TRUE)

unique Should we skip downloads of files we already have? Note: file comparisons are
based on file hash, which will omit files that have identical content but different
names.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases

neon_download 11

get_zip should we attempt to download .zip archive versions of files? default FALSE, as
zip archives are being deprecated from NEON API starting in early 2021.

unzip should we extract .zip files? (default TRUE). Note: .zip files are preserved in
the store to avoid repeated downloads. Use of .zip files in NEON API is now
deprecated in favor of requesting individual files.

api the URL to the NEON API, leave as default.

.token an authentication token from NEON. A token is not required but will allow ac-
cess to a higher number of requests before rate limiting applies, see https://
data.neonscience.org/data-api/rate-limiting/#api-tokens. Note that
once files are downloaded once, neonstore provides persistent access to them
without further interaction required with the API.

Details

Each NEON data product consists of a collection of objects (e.g. tables), which are in turn broken
into individual files by site and sampling month. Additionally, many NEON products have been
expanded, including some additional columns. Consequently, users must specify if they want the
"basic" or "expanded" version of this data.

In the products table (see neon_products), the productHasExpanded column indicates if the data
product has expanded, and the columns productHasBasicDescription and productHasExpandedDescription
provide a detailed explanation of the differences between the "expanded" and "basic" versions of
that particular product.

The API allows users to request component files directly. By default, neon-download() will down-
load all available extensions. Users can request only products of a certain format (e.g. .csv or .h5)
by altering the file_regex argument (see examples).

Prior to 2021, the API provided access to a .zip file containing all the component objects (e.g.
tables) for that product at that site and sampling month.

neon_download() will avoid downloading metadata files which are bitwise identical to other files
in the same download request, as indicated by the crc32 hash reported by the API. These typically
include metadata that are shared across the product as a whole, but are for some reason included in
each sampling month for each site – potentially thousands of duplicates. These duplicates are also
packaged within the .zip downloads where it is not possible to exclude them from the download.

Examples

Omit dir=tempfile() to use persistent storage
neon_download("DP1.10003.001",

start_date = "2018-01-01",
end_date = "2019-01-01",
site = "YELL",
dir = tempfile())

Advanced use: filter for a particular table in the product
neon_download(product = "DP1.10003.001",

start_date = "2018-01-01",
end_date = "2019-01-01",

https://data.neonscience.org/data-api/rate-limiting/#api-tokens
https://data.neonscience.org/data-api/rate-limiting/#api-tokens

12 neon_export

site = "YELL",
table = "countdata",
dir = tempfile())

neon_export export local neon store as a zip archive

Description

Export all or select files from your neon store as a zip archive. This can be useful if you want to
bypass accessing the API, such as for archiving the files required for your analysis so that they can
be re-created by other users without an API key, or without waiting for the individual download, or
any other tiem you want to share or distribute your local store.

Usage

neon_export(
archive = paste(Sys.Date(), "neonstore.zip", sep = "-"),
product = NA,
table = NA,
site = NA,
start_date = NA,
end_date = NA,
type = NA,
ext = NA,
timestamp = NA,
hash = NULL,
dir = neon_dir()

)

Arguments

archive path to the zip archive to be created.#’

product A NEON productCode or list of product codes, see examples.

table Include only files matching this table name (or regex pattern). (optional).

site 4-letter site code(s) to filter on. Leave as NA to search all.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

ext only match files with this file extension(s)

neon_export_db 13

timestamp only match timestamps prior this. See details in neon_index(). Should be a
datetime POSIXct object (or coerce-able string)

hash name of a hashing algorithm to check file integrity. Can be "md5", "sha1", or
"sha256" currently; or set to NULL (default) to skip hash computation.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

Value

table of selected files and metadata, from neon_index(), invisibly.

See Also

neon_import(), neon_citation()

Examples

archive <- tempfile()
dir <- tempdir()
neon_export(archive, dir = dir)

neon_export_db Export NEON database to parquet

Description

Export your current database. This can be important to (1) archive and share your database files with
another user or machine, (2) expose your database using an S3 bucket using neon_remote_db(), (3)
assist in upgrading your duckdb version.

Usage

neon_export_db(dir = file.path(neon_dir(), "parquet"), db = neon_db())

Arguments

dir directory to which parquet export is written.

db Connection to your local NEON database

14 neon_filename_parser

neon_filename_parser NEON filename parser

Description

Parse filenames into their component metadata. See details for definition of each metadata field, or
consult the NEON documentation linked below. https://data.neonscience.org/file-naming-conventions

Usage

neon_filename_parser(x)

Arguments

x vector of NEON filenames

Details

Metadata components::
• NEON A four-character alphanumeric code, denoting the organizational origin of the data

product and identifying the product as operational; data collected as part of a special data
collection exercise are designated by a separate, unique alphanumeric code created by the PI.

• DOM A three-character alphanumeric code, referring to the domain of data acquisition (D01
- D20).

• SITE A four-character alphanumeric code, referring to the site of data acquisition; all sites
are designated by a standardized four-character alphabetic code.

• DPL A three-character alphanumeric code, referring to data product processing level.
• PRNUM A five-character numeric code, referring to the data product number (see the Data

Product Catalog at http://data.neonscience.org/data-product-catalog).
• REV A three-digit designation, referring to the revision number of the data product. The

REV value is incremented by 1 each time a major change is made in instrumentation, data
collection protocol, or data processing such that data from the preceding revision is not di-
rectly comparable to the new.

• HOR A three-character alphanumeric code for Spatial Index #1. Refers to measurement
locations within one horizontal plane. For example, if five surface measurements were taken,
one at each of the five soil array plots, the number in the HOR field would range from 001-
005.

• VER A three-character alphanumeric code for Spatial Index #2. Refers to measurement
locations within one vertical plane. For example, if eight temperature measurements are
collected, one at each tower vertical level, the number in the VER field would range from
010-080.

• TMI A three-character alphanumeric code for the Temporal Index. Refers to the temporal
representation, averaging period, or coverage of the data product (e.g., minute, hour, month,
year, sub-hourly, day, lunar month, single instance, seasonal, annual, multi-annual). 000 =
native resolution, 001 = native resolution or 1 minute, 002 = 2 minute, 005 = 5 minute, 015
= 15 minute, 030 = 30 minute, 060 = 60 minutes or 1 hour, 101-103 = native resolution

https://data.neonscience.org/file-naming-conventions

neon_import 15

of replicate sensor 1, 2, and 3 respectively, 999 = Sensor conducts measurements at varied
interval depending on air mass.

• DESC An abbreviated description of the data file or table.
• YYYY-MM Represents the year and month of the data in the file.
• PKGTYPE The type of data package downloaded. Options are ’basic’, representing the basic

download package, or ’expanded’, representing the expanded download package (see more
information below).

• GENTIME The date-time stamp when the file was generated, in UTC. The format of the
date-time stamp is YYYYMMDDTHHmmSSZ.

AOP Products Only (Airborne Observation Platform)::

• FLHTDATE Date of flight, YYYYMMDD
• FLIGHTSTRT Start time of flight, YYYYMMDDHH
• FLHTSTRT Start time of flight, YYMMDDHH
• IMAGEDATETIME Date and time of image capture, YYYYMMDDHHmmSS
• CCCCCC Digital camera serial number
• NNNN Sequential number for indexing files
• NNN Planned flightline number
• R Repeat number
• FFFFFF Numeric code for an individual flightline
• EEEEEE UTM easting of lower left corner
• NNNNNNN UTM northing of lower left corner

Value

a data frame in which filenames have been split into metadata components. Column names indicate
the metadata field code, see details section for complete descriptions.

References

https://data.neonscience.org/file-naming-conventions

neon_import Import a previously exported zip archive of raw NEON files

Description

neon_import() only reads in previously saved archives from neon_export(). This can be useful
in cases where see neon_download() to download data directly from NEON.

Usage

neon_import(archive, overwrite = TRUE, dir = neon_dir())

16 neon_import_db

Arguments

archive path to the zip archive to be imported

overwrite should we overwrite any existing files?

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

See Also

neon_export()

Examples

tempfiles for example purposes only!
archive <- tempfile()
neondir <- tempdir()

neon_export(archive, dir = neondir)
neon_import(archive)

neon_import_db Import a NEON database exported from neon_export_db()

Description

Import a NEON database exported from neon_export_db()

Usage

neon_import_db(
dir = file.path(neon_dir(), "parquet"),
db = neon_db(read_only = FALSE)

)

Arguments

dir directory to which parquet export is written.

db Connection to your local NEON database

neon_index 17

neon_index Show information about all files downloaded to the local store

Description

NEON products consist of several individual components, which are in turn broken up by site and
sampling month. By storing these individual files, neonstore enables more reproducible workflows
that can be traced back to original, unaltered input data. These atomized files can be quickly and
easily combined into unified tables, see neon_read.

Usage

neon_index(
product = NA,
table = NA,
site = NA,
start_date = NA,
end_date = NA,
type = NA,
ext = NA,
timestamp = NA,
release = NA,
hash = NULL,
dir = neon_dir(),
deprecated = TRUE

)

Arguments

product A NEON productCode or list of product codes, see examples.

table Include only files matching this table name (or regex pattern). (optional).

site 4-letter site code(s) to filter on. Leave as NA to search all.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

ext only match files with this file extension(s)

timestamp only match timestamps prior this. See details in neon_index(). Should be a
datetime POSIXct object (or coerce-able string)

release Select only data files associated with a particular release tag, see https://www.
neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases

18 neon_pane

hash name of a hashing algorithm to check file integrity. Can be "md5", "sha1", or
"sha256" currently; or set to NULL (default) to skip hash computation.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

deprecated Should the index include files that have since been deprecated by more recent
downloads? logical, default TRUE.

Details

File names include metadata such as the file productCode, table name, site, and sampling month,
as well as timestamp of creation. neon_index() parses this metadata from the file name string and
returns the information in a convenient table, along with a path to each file.

Regarding timestamps: NEON will occasionally publish new versions of previously-released
raw data files (which may or may not actually differ). The NEON download API, and hence
neon_download(), only serve the most recent of such files, but earlier versions may still exist
in your local neonstore if you downloaded them before the updated files were released. By de-
fault, neon_read() will always select the most recent of such files, thus avoiding duplication and
providing the most updated data. For reproducibility however, it may be necessary to access older
version instead. Setting the timestamp argument allows the user to filter out newer files and select
the original ones instead. Unfortunately, at this time users cannot request the outdated data files
from NEON API. For strict reproducibility, users should also archive their local store.

See Also

neon_download()

Examples

neon_index()

Just bird survey product
neon_index("DP1.10003.001")

neon_pane Open NEON database connection pane in RStudio

Description

This function launches the RStudio "Connection" pane to interactively explore the database.

neon_products 19

Usage

neon_pane()

Examples

if (!is.null(getOption("connectionObserver"))) neon_pane()

neon_products Table of all NEON Data Products

Description

Return a table of all NEON Data Products, including product descriptions and the productCode
needed for neon_download. (including list-columns).

Usage

neon_products(
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")

)

Arguments

api the URL to the NEON API, leave as default.

.token an authentication token from NEON. A token is not required but will allow ac-
cess to a higher number of requests before rate limiting applies, see https://
data.neonscience.org/data-api/rate-limiting/#api-tokens. Note that
once files are downloaded once, neonstore provides persistent access to them
without further interaction required with the API.

See Also

neon_download

Examples

products <- neon_products()

Or search for a keyword
i <- grepl("bird", products$keywords)
products[i, c("productCode", "productName")]

https://data.neonscience.org/data-api/rate-limiting/#api-tokens
https://data.neonscience.org/data-api/rate-limiting/#api-tokens

20 neon_read

neon_read read in neon tabular data

Description

read in neon tabular data

Usage

neon_read(
table = NA,
product = NA,
site = NA,
start_date = NA,
end_date = NA,
ext = NA,
timestamp = NA,
release = NA,
dir = neon_dir(),
files = NULL,
sensor_metadata = TRUE,
keep_filename = FALSE,
altrep = FALSE,
...

)

Arguments

table the name of a downloaded NEON table in the store, see neon_index
product A NEON productCode or list of product codes, see examples.
site 4-letter site code(s) to filter on. Leave as NA to search all.
start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to

the most recent available data.
end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all

prior data.
ext only match files with this file extension(s)
timestamp only match timestamps prior this. See details in neon_index(). Should be a

datetime POSIXct object (or coerce-able string)
release Select only data files associated with a particular release tag, see https://www.

neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases

neon_read 21

files optionally, specify a vector of file paths directly (e.g. as provided from neon_index)
and specify table argument as NULL.

sensor_metadata

logical, default TRUE. Should we add metadata fields from file names of sensor
data into the table? Adds DomainID, SiteID, horizontalPosition, verticalPosi-
tion, and publicationDate. Results in slower parsing.

keep_filename Should we include a column indicating the original file name for each row? Can
be a useful source of additional metadata that NEON may omit from the raw
files (i.e. siteID), but will also result in slower parsing. Default FALSE.

altrep enable or disable altrep. Logical, default FALSE. Setting to TRUE can speed up
reading, but may cause vroom::vroom to throw mapping error: Too many open files.

... additional arguments to vroom::vroom, can usually be omitted.

Details

NEON’s tabular data files are separated out into separate .csv files for each site for each month of
sampling. In principle, each file has identical columns. vroom::vroom can read in a data table that
has been sharded into many files like this much much faster than other parsers can read in each table
iteratively, (and thus can greatly out-perform the ’stacking" methods in neonUtilities).

When reading in very large numbers of files, it may be helpful to set altrep = FALSE to opt out of
vroom’s fast altrep mechanism, which can cause neon_read() to fail when stacking thousands of
files.

Unfortunately, not all datasets are entirely consistent in their use of columns. neon_read works
around this by parsing such tables in groups of matching schema, which is still reasonably fast.

NEON sensor data products currently do not include important metadata columns containing Do-
mainID, SiteID, horizontalPosition, verticalPosition, and publicationDate in the data files them-
selves, but only encode this in the in the raw file names. All though these values are shared across a
raw data file, this information is lost when stacking the tables unless explicit columns are added to
the data. This requires us to parse the files one-by-one, which is much slower. By default this infor-
mation is added to the table, altering the stacked table schema from that of the raw table. Disable
this behavior by setting sensor_metadata = FALSE. Future NEON sensor data products may start
including this information in the raw data files, as is already the case for observational data.

Examples

neon_read("brd_countdata-expanded")

Sensor inputs will add metadata columns by default
neon_read("waq_instantaneous", site = c("CRAM","SUGG"))

22 neon_remote_db

neon_remote neon_remote select a table from the remote connection

Description

neon_remote

select a table from the remote connection

Usage

neon_remote(table = "", product = "", type = "", db = neon_remote_db())

Arguments

table table name (pattern match regex)

product product code

type basic or extended (if necessary to distinguish)

db a neon_remote_db connection. If not provided, one will be created, but it is
faster to pass this on for re-use in multiple neon_remote calls.

Value

a arrow::FileSystemDataset object, or a named list of such objects if multiple matches are found.
This table is not downloaded but remains on the remote storage location, but can be filtered with
dplyr functions like filter and select, and can also be grouped and summarised, all without ever
downloading the whole table. Use dplyr::collect() to download the (possibly filtered) table
into and pull into memory.

neon_remote_db Establish a remote database connection using arrow

Description

Establish a remote database connection using arrow

Usage

neon_remote_db(
bucket = arrow::s3_bucket("neon4cast-targets/neon", endpoint_override =
"data.ecoforecast.org")

)

Arguments

bucket an [arrow::s3_bucket] connection or other arrow::SubTreeFileSystem object.

neon_sites 23

Examples

db <- neon_remote_db()

neon_sites Table of all NEON sites

Description

Returns a table of all NEON sites by making a single API call to the /sites endpoint.

Usage

neon_sites(
api = "https://data.neonscience.org/api/v0",
.token = Sys.getenv("NEON_TOKEN")

)

Arguments

api the URL to the NEON API, leave as default.
.token an authentication token from NEON. A token is not required but will allow ac-

cess to a higher number of requests before rate limiting applies, see https://
data.neonscience.org/data-api/rate-limiting/#api-tokens. Note that
once files are downloaded once, neonstore provides persistent access to them
without further interaction required with the API.

neon_store import neon data into a local database

Description

import neon data into a local database

Usage

neon_store(
table = NA,
product = NA,
type = NA,
dir = neon_dir(),
db = neon_db(neon_db_dir(), read_only = FALSE),
n = 500L,
quiet = FALSE,
...

)

https://data.neonscience.org/data-api/rate-limiting/#api-tokens
https://data.neonscience.org/data-api/rate-limiting/#api-tokens

24 neon_store

Arguments

table Include only files matching this table name (or regex pattern). (optional).

product A NEON productCode or list of product codes, see examples.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

db A connection to a write-able relational database backend, see neon_db().

n number of files that should be read per iteration

quiet show progress?

... Arguments passed on to neon_read

sensor_metadata logical, default TRUE. Should we add metadata fields from
file names of sensor data into the table? Adds DomainID, SiteID, horizon-
talPosition, verticalPosition, and publicationDate. Results in slower pars-
ing.

keep_filename Should we include a column indicating the original file name
for each row? Can be a useful source of additional metadata that NEON
may omit from the raw files (i.e. siteID), but will also result in slower
parsing. Default FALSE.

altrep enable or disable altrep. Logical, default FALSE. Setting to TRUE can
speed up reading, but may cause vroom::vroom to throw mapping error: Too many open files.

files optionally, specify a vector of file paths directly (e.g. as provided from
neon_index) and specify table argument as NULL.

ext only match files with this file extension(s)
timestamp only match timestamps prior this. See details in neon_index().

Should be a datetime POSIXct object (or coerce-able string)
start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to

download up to the most recent available data.
end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to

download all prior data.
site 4-letter site code(s) to filter on. Leave as NA to search all.
release Select only data files associated with a particular release tag, see https:

//www.neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

Value

the index of files read in (invisibly)

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases

neon_sync_db 25

neon_sync_db sync local parquet export to an S3 database

Description

sync local parquet export to an S3 database

Usage

neon_sync_db(s3, dir = file.path(neon_dir(), "parquet"))

Arguments

s3 an [arrow::SubTreeFileSystem], such as a remote connection to an S3 bucket
from [arrow::s3_bucket()].

dir directory to which parquet export is written.

Details

Remote files are named according to the table name (including product id, not according to the
’sanitized’ file name duckdb uses when generating exports.)

neon_table Return a neon table from the database

Description

Return a neon table from the database

Usage

neon_table(
table,
product = NA,
type = NA,
site = NA,
db = neon_db(),
lazy = FALSE

)

26 show_deprecated_data

Arguments

table the name of a downloaded NEON table in the store, see neon_index

product A NEON productCode or list of product codes, see examples.

type filter for basic or expanded. Can be omitted unless you have imported both types
a given table into your database.

site 4-letter site code(s) to filter on. Leave as NA to search all.

db a connection to the database, see [neon_db()].

lazy logical, default FALSE. Should we return a remote dplyr connection to the
table in duckdb? This can substantially improve performance and avoid out-
of-memory errors when working with very large tables. However, not all R
operations can be performed on a remote table, only (most) functions from
dplyr and tidyr, as these can be translated automatically to SQL language
used by the remote database. Use dplyr functions like dplyr::filter(),
dplyr::group_by(), and dplyr::summarise() to subset the data appropri-
ately within the remote table before calling [dplyr::collect()] to import the
data fully into R.

Details

We cannot filter on start_date or end_date since these come only from the filename metadata and
are only added to instrument tables, not observation tables etc.

show_deprecated_data show deprecated data

Description

Show the file information for any raw data files which have been deprecated by the release of
modified historical data to the NEON API.

Usage

show_deprecated_data(
product = NA,
table = NA,
site = NA,
start_date = NA,
end_date = NA,
type = NA,
ext = NA,
timestamp = NA,
release = NA,
dir = neon_dir()

)

show_deprecated_data 27

Arguments

product A NEON productCode or list of product codes, see examples.

table Include only files matching this table name (or regex pattern). (optional).

site 4-letter site code(s) to filter on. Leave as NA to search all.

start_date Download only files as recent as (YYYY-MM-DD). Leave as NA to download up to
the most recent available data.

end_date Download only files up to end_date (YYYY-MM-DD). Leave as NA to download all
prior data.

type Should we prefer the basic or expanded version of this product? Note that not
all products have expanded formats.

ext only match files with this file extension(s)

timestamp only match timestamps prior this. See details in neon_index(). Should be a
datetime POSIXct object (or coerce-able string)

release Select only data files associated with a particular release tag, see https://www.
neonscience.org/data-samples/data-management/data-revisions-releases,
e.g. "RELEASE-2021". Releases are associated with a specific DOI and the
promise that files associated with a particular release will not change.

dir Location where files should be downloaded. By default will use the appropriate
applications directory for your system (see tools::R_user_dir()). This de-
fault also be configured by setting the environmental variable NEONSTORE_HOME,
see Sys.setenv or Renviron.

Details

NEON data files are sometimes updated to correct errors. Old files are removed from access from
the API, but may be present in your local store from an earlier download. neonstore stacking func-
tions ([neon_read()] and neon_store()) automatically exclude these deprecated files, though
neon_read() can be instructed to use older files by passing a file list.

A data file is identified as deprecated whenever the local file store contains a second data file with
the same product, table, site, month, and position (sensor products only) information, but having
an updated timestamp. If such a change occurs in a file with a non-missing "month" code, it may
indicate a data file has been updated. This could result in changes to the results of any previous
analyses.

Note that metadata files, (readme, variables, positions) are ’pre-stacked’: the metadata file in a given
product-site-month set contains metadata going back to the start and not just for that month. As a
result, each new version deprecates the old metadata file, but the old files are always available from
the NEON API and always present in the store. Users will only need to care about the most recent
ones, and the presence of old files is no cause for concern. This function will only show data files
that have changed, and not metadata files. This can help pinpoint specific altered data.

See Also

neon_index, neon_read

https://www.neonscience.org/data-samples/data-management/data-revisions-releases
https://www.neonscience.org/data-samples/data-management/data-revisions-releases

28 standardize_export_names

Examples

show_deprecated_data()

standardize_export_names

standardize export names

Description

standardize export names

Usage

standardize_export_names(dir = file.path(neon_dir(), "parquet"))

Arguments

dir directory to which parquet export is written.

Details

DUCKDB clobbers database filenames to avoid potentially incompatible characters. This is pretty
unnecessary, so we can restore the original table names for use with S3-based remote access which
assumes parquet files map to the desired table names (i.e. including product numbers.)

However, note that [neon_import_db()] uses native duckdb functions that assume the original
mangled names.

Index

arrow::SubTreeFileSystem, 22

dplyr::collect(), 22
dplyr::filter(), 26
dplyr::group_by(), 26
dplyr::summarise(), 26

neon_citation, 2
neon_citation(), 13
neon_cloud, 3
neon_data, 5
neon_db, 6
neon_db(), 24
neon_db_dir, 7
neon_delete_db, 8
neon_dir, 8
neon_dir(), 7, 8
neon_disconnect, 9
neon_download, 9, 19
neon_download(), 8, 15, 18
neon_export, 12
neon_export(), 15, 16
neon_export_db, 13
neon_filename_parser, 14
neon_import, 15
neon_import(), 13, 15
neon_import_db, 16
neon_index, 17, 20, 21, 24, 26
neon_index(), 8, 13, 17, 20, 24, 27
neon_pane, 18
neon_products, 11, 19
neon_read, 17, 20, 24
neon_read(), 8, 18, 21
neon_remote, 22
neon_remote_db, 22, 22
neon_sites, 23
neon_store, 23
neon_sync_db, 25
neon_table, 25
NULL, 13, 18

Renviron, 3, 6, 10, 13, 16, 18, 20, 24, 27

show_deprecated_data, 26
standardize_export_names, 28
Sys.setenv, 3, 6, 10, 13, 16, 18, 20, 24, 27

tools::R_user_dir(), 3, 6–8, 10, 13, 16, 18,
20, 24, 27

TRUE, 18

utils::bibentry, 3

vroom::vroom, 21, 24

29

	neon_citation
	neon_cloud
	neon_data
	neon_db
	neon_db_dir
	neon_delete_db
	neon_dir
	neon_disconnect
	neon_download
	neon_export
	neon_export_db
	neon_filename_parser
	neon_import
	neon_import_db
	neon_index
	neon_pane
	neon_products
	neon_read
	neon_remote
	neon_remote_db
	neon_sites
	neon_store
	neon_sync_db
	neon_table
	show_deprecated_data
	standardize_export_names
	Index

