
Package ‘ndtv’
July 4, 2024

Type Package

Title Network Dynamic Temporal Visualizations

Version 0.13.4

Date 2024-06-30

Depends R (>= 3.0), network (>= 1.13),networkDynamic (>=
0.9),animation (>= 2.4),sna,

Imports MASS, statnet.common, tsna, jsonlite, base64, htmlwidgets,
scatterplot3d

Suggests tergm (>= 3.6), ergm, testthat, knitr

Description Renders dynamic network data from 'networkDynamic' objects as movies, interactive ani-
mations, or other representations of changing relational structures and attributes.

License GPL-3 + file LICENSE

URL https://github.com/statnet/ndtv

NeedsCompilation no

Author Skye Bender-deMoll [cre, aut],
Martina Morris [ctb]

Maintainer Skye Bender-deMoll <skyebend@uw.edu>

Repository CRAN

Date/Publication 2024-07-04 12:50:02 UTC

Contents
ndtv-package . 2
compute.animation . 3
effectFun . 6
export.dot . 7
export.pajek.net . 9
filmstrip . 10
install.ffmpeg . 11
install.graphviz . 12
layout.center . 14

1

https://github.com/statnet/ndtv

2 ndtv-package

layout.distance . 15
msm.sim . 16
ndtvAnimationWidget . 17
network.layout.animate . 19
proximity.timeline . 22
render.animation . 25
render.d3movie . 30
stergm.sim.1 . 34
timeline . 35
timePrism . 38
toy_epi_sim . 40
transmissionTimeline . 42

Index 45

ndtv-package Network Dynamic Temporal Visualization (ndtv)

Description

Construct visualizations such as timelines and animated movies of networkDynamic objects to show
changes in structure and attributes over time.

Details

For version and license information, run packageDescription('ndtv')

Uses network objects with dynamics encoded using networkDynamic.

Key features:

• Compute a dynamic layout using compute.animation.

• Render it as a movie using render.animation.

• Render animations to a web page using render.d3movie

• Plot multiple ’stills’ of a movie with filmstrip

• Plot a timeline of edge and vertex activity with timeline

• Plot network geodesic proximities as a stream graph with proximity.timeline

To view package vignettes and extended examples, see browseVignettes(package='ndtv').

For a more indepth tutorial, see https://statnet.org/workshop-ndtv/ndtv_workshop.html

The package includes several example datasets:

• msm.sim output of a stergm simulation of basic sex contact network model

• short.stergm.sim Very Very Basic stergm simulation output (25 time steps)

• stergm.sim.1 Very Very Basic stergm simulation output (100 time steps)

• toy_epi_sim Toy Epidemic Simulation Output from the EpiModel package

Report bugs at: https://github.com/statnet/ndtv/issues

https://statnet.org/workshop-ndtv/ndtv_workshop.html
https://github.com/statnet/ndtv/issues

compute.animation 3

Author(s)

Skye Bender-deMoll, and the Statnet Commons team Maintainer: Skye <skyebend@uw.edu>

References

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for Managing and Ani-
mating Longitudinal Network Data: dynamicnetwork and rSoNIA Journal of Statistical Software
24:7.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). doi:10.18637/jss.v024.i03.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). doi:10.18637/jss.v024.i02.

Carter T. Butts, Ayn Leslie-Cook, Pavel N. Krivitsky and Skye Bender-deMoll (2015). networkDy-
namic: Dynamic Extensions for Network Objects. R package version 0.7. https://statnet.org

Skye Bender-deMoll and McFarland, Daniel A. (2006) The Art and Science of Dynamic Network
Visualization. Journal of Social Structure. Volume 7, Number 2 https://www.cmu.edu/joss/
content/articles/volume7/deMollMcFarland/

See Also

networkDynamic, compute.animation,render.animation for examples, and the package vignette
vignette(package='ndtv').

compute.animation Compute a sequence of vertex layouts over time suitable for rendering
an animation.

Description

Steps through a networkDynamic object and applies layout algorithms at specified intervals, storing
the calculated coordinates in the network for later use by the render.animation function. Generally
the layout are done in a sequence with each using the previously calculated positions as initial seed
coordinates in order to smooth out the resulting movie. Not all network layout algorithms give good
results.

Usage

compute.animation(net, slice.par = NULL, animation.mode = "kamadakawai",
seed.coords = NULL, layout.par = list(),
default.dist = NULL, weight.attr = NULL, weight.dist=FALSE,
chain.direction=c('forward','reverse'),
verbose = TRUE,...)

https://doi.org/10.18637/jss.v024.i03
https://doi.org/10.18637/jss.v024.i02
https://statnet.org
https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/

4 compute.animation

Arguments

net A networkDynamic network object describing the temporal evolution of a net-
work.

slice.par A list of parameters which specify the time steps and aggregation that should be
used when moving through the network. Example: slice.par=list(start=0,end=100,interval=1,
aggregate.dur=1,rule='latest')

The parameters are:

• start The time point at which the sequence of layouts should begin
• end The time point at which the sequence of layouts should finish
• interval The amount of time between successive layouts
• aggregate.dur The duration of time over which the network should be

aggregated to derive the network for each layout
• rule The aggregation rule to be used when collapsing the network.

animation.mode The name of the network animation layout to be used. These layouts are name
network.layout.animate.something but will be matched using the final part of
the name. Current useful values are:

• network.layout.animate.kamadakawai essentially wrapper for the Ka-
madakawai layout included in the network package.

• network.layout.animate.MDSJ a wrapper to do a Stress Majorization op-
timized MDS layout using the Multi Dimensional Scaling for Java package.
Note, due to license restrictions, this algorithm is for non-commercial use
only)

• network.layout.animate.useAttribute applies coordinates stored in a
user-generated dynamic network attribute

• network.layout.animate.Graphviz a wrapper for the Graphviz software
library –if the library is installed on your system.

seed.coords (optional) an array of initial positions to be used for the very first layout in the
sequence

layout.par A list of parameters to be passed to the layout algorithm.

default.dist The default distance to be used to separate nodes (or disconnected network com-
ponents). Default to sqrt(network.size(net)). See layout.distance.

weight.attr charater providing the name of a (possibly dynamic) numeric edge attribute
defining weights for the edges in each time slice. The values activity.duration
or activity.count can be used to weight edges by the duration or count of the
edge’s activity spells in the time slice.

weight.dist logical, defaults to FALSE, meaning that the edge weight values provided by
weight.attr will be treated as similarities (larger values means closer). A value
of TRUE means that weights should be intrepreted as distances. See layout.distance
for more information.

chain.direction

a value of 'forward' indicates the chain of layouts should be computes in for-
ward temporal order. A value 'reverse' runs the chain backwards. For some
layouts, reverse-chaining means that isolated vertices are more likely to have
positions close to the partners they will be tied to.

compute.animation 5

verbose If true, additional information about the layout process and progress will be
returned to console.

... possible additional arguments to be passed to sub processes

Details

This function is under active development so implementation and parameters will continue to
change.

Value

Invisibly returns original network argument (which is also modified in-place), with the addition
of a network variable slice.par storing the slice parameters used, and dynamic node attributes
animation.x and animation.y storing the coordinates calculated for each time point.

Author(s)

Skye Bender-deMoll, and the statnet team.

References

See docs for specific layout functions.

Bender-deMoll, S., Morris, M. and Moody, J. (2008) Prototype Packages for Managing and Ani-
mating Longitudinal Network Data: dynamicnetwork and rSoNIA Journal of Statistical Software
24:7.

Krivitsky P and Handcock M (2012). Fit, Simulate and Diagnose Models for Network Evoluation
based on Exponential-Family Random Graph Models. Version 3.0-999. Project home page at
https://statnet.org, https://cran.r-project.org/package=tergm.

Butts CT (2008). network: A Package for Managing Relational Data in R. Journal of Statistical
Software, 24(2). doi:10.18637/jss.v024.i02.

Skye Bender-deMoll and McFarland, Daniel A. (2006) The Art and Science of Dynamic Network
Visualization. Journal of Social Structure. Volume 7, Number 2 https://www.cmu.edu/joss/
content/articles/volume7/deMollMcFarland/

See Also

See also layout.distance, render.animation, network.layout.animate.MDSJ,ndtv, package
vignette (vignette('ndtv')) for examples.

https://statnet.org
https://cran.r-project.org/package=tergm
https://doi.org/10.18637/jss.v024.i02
https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/

6 effectFun

effectFun functions to manipulate graphic attributes of network for ’special ef-
fects’

Description

Functions that can return appropriate graphic attributes (i.e. color interpolation) based on properties
of the network (ages of edges,etc)

Usage

effectFun(name, ...)
effect.edgeAgeColor (net, onset, fade.dur,

start.color = "#000000FF", end.color = "#00000000",
na.color = "#CCCCCC55")

effect.vertexAgeColor (net, onset, fade.dur, start.color = "#000000FF",
end.color = "#00000000", na.color = "#CCCCCC55")

Arguments

name the short name of the effect function to be returned. i.e 'edgeAgeColor' will
return the effect.edgeAgeColor function

... additional arguments to be passed in to effect functions

net a network object to be evaluated

onset the time at which the network should be evaluated

fade.dur (effect property) numeric value giving the color duration of the interpolation

start.color (effect property) color name for color value to be used at start of interpolation

end.color (effect property) color name for color value to be used at start of interpolation

na.color (effect property) default color name for color value to be used for edge/vertices
that are not currently active

Details

The special effects functions can be called directly for use as graphic parameters with standard
network plots, or via effectFun which will return the effect in a functional form so that it can
evaluated/substituted at each time point as plot control function to render.animation

effect.edgeAgeColor calculates the edge of each edge in net at the time onset and uses the value
to return a color interpolated between start.color and end.color by comparing the time of each
edge to the fade.dur parameter

effect.vertexAgeColor does the same, but for vertices.

Users can also define functions to be called in this way

export.dot 7

Value

effectFun returns the function named by its first argument, with any arguments matching in ...
substituted.

Author(s)

skyebend@uw.edu

Examples

library(ndtv)
data('short.stergm.sim')
render a plot with edges colored by age at time 24
edges labeld with age
plot(short.stergm.sim,edge.col=effect.edgeAgeColor(short.stergm.sim,

fade.dur=25,
start.color = 'red',
end.color='blue',
onset=24),

edge.label=edges.age.at(short.stergm.sim,24),
edge.lwd=5)

Not run:
render an animation where edges are colored dynamically by their age
starting out red and fading to blue
compute.animation(short.stergm.sim,slice.par = list(start=0,

end=25,
interval=1, a
ggregate.dur=5,
rule='latest'))

render.animation(short.stergm.sim,edge.col=effectFun('edgeAgeColor',
fade.dur=5,
start.color = 'red',
end.color='blue'))

End(Not run)

export.dot Export a network file as Graphviz .dot formatted text file.

Description

A crude exporter for saving out a network in the Graphviz .dot format. https://graphviz.org/
content/dot-language

Usage

export.dot(x, file = "", coords = NULL, all.dyads = FALSE,
vert.attrs = NULL, edge.attrs = NULL)

https://graphviz.org/content/dot-language
https://graphviz.org/content/dot-language

8 export.dot

Arguments

x The network object to be exported

file The file name where network should be saved

coords Optional node coordinates to include

all.dyads FALSE, a numeric value, or a symetric matrix of distances providing the desired
lengths for all dyads.. If numeric, entries are written out for all possible dyads
in the network, and the numeric value will be used to fill in the values for all
the dyads in the matrix not linked by an edge (see default.dist param to
layout.distance). This is necessary for some uses cases, but will generate
dramatically larger files and slower performance. For the matrix and numeric
cases, the values will be written as Graphviz ’len’ edge attributes, and the values
of edge.attrs will be ignored.

vert.attrs optional character vector listing the names of any vertex attributes of the network
that should be included as attributes of the nodes in the Graphviz dot file. (e.g.
’label’, ’width’)

edge.attrs optional character vector listing the names of any edge attributes of the network
that should be included as attributes of edges in the Graphviz dot file. (e.g.
’weight’,’penwidth’)

Details

A crude exporter for saving out a network in the Graphviz .dot format. https://graphviz.org/
content/dot-language

Value

Returns nothing but creates a file in .dot format: https://graphviz.org/content/dot-language

Note

This is still a partial implementation focusing on edges, edge wights, and node coordinates in order
to pass the information to graphViz to use it as an external layout engine rather than a renderer.

Author(s)

Skye Bender-deMoll

References

https://graphviz.org/content/dot-language

Examples

library(network)
net <- network.initialize(5)
net[1,] <-1
net[2,3] <-2
export.dot(net,file="testNet.dot")

https://graphviz.org/content/dot-language
https://graphviz.org/content/dot-language
https://graphviz.org/content/dot-language
https://graphviz.org/content/dot-language

export.pajek.net 9

clean up file afterwords (just for testing)
file.remove("testNet.dot")

export.pajek.net Export a network file as a Pajek .net formatted text file.

Description

A basic tool for exporting a network as a Pajek http://mrvar.fdv.uni-lj.si/pajek/ .net format
http://mrvar.fdv.uni-lj.si/pajek/DrawEPS.htm text file. Does not yet encode attributes,
layout information or timing info.

Usage

export.pajek.net(net, filename)

Arguments

net a network object

filename the file where the network object should be saved

Details

.net is basically an edgelist format with sections for vertices, arcs and edges. Vertex attributes for
’label’, coordinates named ’x’,’y’,’z’, ’color’ as ’ic’ (inner color), ’shape’ as a shape value will be
written in the appropriate Pajek format. An edge attribute of ’weight’ will be written as the edge
value, ’width’ as ’w’ and ’color’ as ’c’. See read.paj for reading pajek files (time info supported)

Value

A file is written out containing the vertex and edge data.

Note

This is a very minimal implementation, mostly used for testing layout algorithms. Timing informa-
tion is not yet supported.

Author(s)

Skye Bender-deMoll

References

Pajek software: http://mrvar.fdv.uni-lj.si/pajek/

Pajek file format documentation: http://vlado.fmf.uni-lj.si/pub/networks/pajek/svganim/
1.10.7.1/PajekToSvgAnim.pdf

http://mrvar.fdv.uni-lj.si/pajek/
http://mrvar.fdv.uni-lj.si/pajek/DrawEPS.htm
http://mrvar.fdv.uni-lj.si/pajek/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/svganim/1.10.7.1/PajekToSvgAnim.pdf
http://vlado.fmf.uni-lj.si/pub/networks/pajek/svganim/1.10.7.1/PajekToSvgAnim.pdf

10 filmstrip

Examples

data('toy_epi_sim')
toy_epi_sim%v%'color'<-'blue'
export.pajek.net(toy_epi_sim,filename='toy_epi_sim.net')

clean up file afterwards (just for testing)
file.remove('toy_epi_sim.net')

filmstrip Create a ‘small multiples‘ plot of a networkDynamic object.

Description

Plots several frames of a network animation of a networkDynamic object in a single static image as
a way to provide a quick visual summary of the dynamics of the network.

Usage

filmstrip(nd, frames = 9, slice.par, render.par, mfrow, verbose = FALSE, ...)

Arguments

nd networkDynamic object to be plotted

frames integer number of frames to extract and render

slice.par optional list of parameters to control binning of network, overrides frames ar-
gument. See compute.animation

render.par optional list of parameters to control rendering of network. See render.animation

mfrow optional two-element numeric vector giving the number of rows and columns
for the layout grid. See par.

verbose boolean,(defaults to FALSE) verbose argument to be passed to compute.animationrender.animation/

... additional arguments to be passed to plot.network via render.animation

Details

If the networkDynamic object does not already have animation coordinates, calls compute.animation
to calculate coordinates for the appropriate number of frames. The frames argument determines
the number of evenly-spaced network slices to be rendered by render.animation (with the nor-
mal plot recording disabled) as images on the final plot grid. Note that if the layout has coordinates
pre-computed by compute.animation, the slices selected by the frames argument may not align
exactly with the previously compute slices. Passing in a slice.par argument will overide frames
to determine exactly which slices will be rendered.

The layout of plot grid can be changed via the mfrow argument.

Value

Generates plots on the active graphics device.

install.ffmpeg 11

Note

This is a DRAFT version of the function.

Author(s)

skyebend

See Also

See also compute.animation, render.animation.

Examples

data(stergm.sim.1)
filmstrip(stergm.sim.1,displaylabels=FALSE)
print an overall title for the main plot
title('stergm.sim.1 at 9 time points')

adjust margins of individual plots to make more room
par(mar=c(1,1,1,1))
filmstrip(stergm.sim.1)

install.ffmpeg Instructions for installing ffmpeg on various platforms

Description

The animation package uses ffmpeg to export movies into video formats. This internal function
doesn’t actually install the ffmpeg library, it just gives instructions on how to do the installation –
which really just point to these docs.

Usage

install.ffmpeg()

Details

Here are some all-too-brief instructions for the various platforms. After you have installed FFmpeg
on your system, you can verify that R knows where to find it by typing Sys.which('ffmpeg') in
the R terminal. You many need to first restart R after the install.

Installing in Windows:
• Download the recent ’static’ build from https://ffmpeg.org/download.html

• Downloads are compressed with 7zip, so you may need to first install a 7zip decompression
program before you can unpack the installer.

• Decompress the package and store contents on your computer (probably in Program Files)
• Edit your system path variable to include the path to the directory containing ffmpeg.exe

https://ffmpeg.org/download.html

12 install.graphviz

Installing on a Mac:

• Download most recent build from https://www.evermeet.cx/ffmpeg/

• The binary files are compressed with 7zip so may need to install an unarchiving utility:
https://theunarchiver.com/

• Copy ffmpeg to /usr/local/bin/ffmpeg

Installing in Linux/Unix (ffmpeg or avconv):

• FFmpeg is a standard package on many linux systems. You can check if it is installed with a
command like dpkg -s ffmpeg. If it is not installed, you should be able to install with your
system’s package manager. i.e. sudo apt-get install ffmpeg or search ’ffmpeg’ in the
Software Center on Ubuntu.

• Ubuntu and Debian systems may use an alternate program named "avconv" which can be in-
stalled with sudo apt-get install libav-tools or by searching ’libav-tools’ in Ubuntu’s
Software Center. Verify that R knows where to find it by typing ‘Sys.which(’avconv’)‘ in the
R terminal. You many need to first restart R after the install. The animation library should
automatically use ’avconv’ if it sees it instead of ’ffmpeg’. If it doesn’t, you can tell it to by
typing ani.options(ffmpeg='avconv') in your R session

Value

On winddows: Will open a web browser window to the ffmpeg website and give instructions how
to open this help file.

References

https://ffmpeg.org

install.graphviz Instructions for installing the Graphviz libraries on various platforms

Description

The network.layout.animate.Graphviz layout provides an interface for calling the various lay-
outs provided by the Graphviz library (https://www.graphviz.org) if it is installed on your sys-
tem. Since Graphviz is not an R package, you must manually install it on your system to get it to
work.

Usage

install.graphviz()

https://theunarchiver.com/
https://ffmpeg.org
https://www.graphviz.org

install.graphviz 13

Details

This function doesn’t actually install Graphviz, it just points to these docs which give a very brief
overview of how to do it on each platform.

Installing on Windows:

• download the "current stable release" installer from https://graphviz.org/download/

• run the installer
• Edit your system path variable to include the path to the directory containing the graphviz

.exe files.

Installing on a Mac: It seems that there is no longer a .pkg for the mac, but it can be installed
easily via homebrew

• install the brew package manager from https://brew.sh/

• from the Terminal, run brew install graphviz

Installing in Linux/unix:

• Graphviz is a standard package on many linux distributions. You can check if it is installed
with a command like dpkg -s graphivz. If it is not installed, you should be able to install
it with your system’s package manager. i.e. sudo apt-get install graphviz or search
’graphivz’ in the Software Center on Ubuntu.

When Graphviz is installed correctly on any platform the R command Sys.which('neato') should
print out the path to the installed libraries.

Value

On some platforms this function will open a web browser pointing to the download page for
Graphviz.

Author(s)

skyebend

References

John Ellson et.al (2001) "Graphviz – open source graph drawing tools" Lecture Notes in Computer
Science. Springer-Verlag. p483-484 https://www.graphviz.org

See Also

See network.layout.animate.Graphviz for more details about how ndtv usees Graphviz.

https://graphviz.org/download/
https://brew.sh/
https://www.graphviz.org

14 layout.center

layout.center Functions to center and normalize the coordinates of a network plot
within a window.

Description

The layout.center function takes a matrix of coordinates and an x- and y-coordinate range and
centers the input coordinates within the range.

The layout.normalize function takes a matrix of coordinates and rescales them to the range (-1,1).
If keep.aspect.ratio=FALSE, x- and y-coords are rescaled independently.

Usage

layout.center(coords, xlim, ylim)
layout.normalize(coords, keep.aspect.ratio = TRUE)

Arguments

coords two column numeric matrix of coordinates.
xlim two element numeric vector giving min and max of x axis
ylim two element numeric vector giving min and max of y axis
keep.aspect.ratio

boolean, if FALSE, x- and y-axis will be rescaled indpendently

Details

These functions are used internally, but can also be called by the user when manipulating coordi-
nates for layouts, especially when the coordinate ranges for a sequence of layouts do not match up
well. TODO: add barycenter function, and center on vertex function

Value

The input two column numeric matrix of coordinates with positions transformed.

Author(s)

skyebend

Examples

data(McFarland_cls33_10_16_96)
coords<-plot(cls33_10_16_96)

center layout coords with 100 unit area
layout.center(coords,xlim=c(0,100),ylim=c(0,100))

rescale layout coords to unit interval
layout.normalize(coords)

layout.distance 15

layout.distance Provides a default way to convert a network into a set of euclidian
distances suitable for MDS-style layout optimization.

Description

Computes a geodesic path distance matrix for a network after symmetrizing, replacing Inf values
with default.dist

Usage

layout.distance(net, default.dist = NULL, weight.attr = NULL,
weight.dist = FALSE)

Arguments

net The network that the distance matrix should be computed for

default.dist An (optional) value to be used to replace undefined values created by isolates
and disconnected components.

weight.attr character, (optional) the name of an edge attribute of net containing numeric
values to use for edge distances.

weight.dist logical, should the edge values given by weight.attr be interpreted as dis-
tances (larger values should place vertices farther apart) ? Default (FALSE) as-
sumes values are similarities (larger values means stronger connection means
vertices closer together).

Details

If no default.dist is provided the value sqrt(network.size(net)) will be used. If input is
similarity, it will be recoded/reversed to distances by subtracting each non-zero value from the max
value of the matrix and adding the min value of the matrix. If the network is directed, the matrix
will then be symmatrized to either the max value of i-j relation (if weight.dist=FALSE) or min
value of i-j relation (if weight.dist=TRUE). Note that if the network is marked as undirected but
includes bi-directional edges, the (i,j) value will be chosen instead of (j,i).

Value

A distance matrix assumed to be appropriate for the network.

Author(s)

Skye Bender-deMoll

16 msm.sim

Examples

test<-network.initialize(4)
add.edges(test,tail=1:2,head=2:3)
in adjacency matrix form
as.matrix(test)
as matrix of geodesic distances
layout.distance(test,1.5)

msm.sim MSM.sim : output of a stergm simulation of basic sex contact network
model

Description

A 1000 vertex networkDynamic object that contains the output of 10 timesteps of a discrete stergm
simulation of a basic sex contact network model. The model has two vertex types (’races’) with
different contact preferencs expressed with a nodematch parameter. The output network object is
included as an example because re-running the model can take a while.

Usage

data(msm.sim)

Format

a networkDynamic object

Details

The model was built with the following stergm:

msm.net <- network.initialize(1000, directed=F)
msm.net %v% 'race' <- rep(c(1,2),500)
sm.form.constraints <- ~bd(maxout=2)
msm.form.formula <- ~edges+nodematch('race')+
degree(2)
msm.target.stats <- c(450,375,50)
msm.diss.formula <- ~offset(edges)+offset(nodematch("race"))
msm.theta.diss <- c(2.944, -0.747)
msm.fit <- stergm(msm.net,
formation= msm.form.formula,
dissolution= msm.diss.formula,
targets="formation",
target.stats= msm.target.stats,
offset.coef.diss = msm.theta.diss,
form.constraints=msm.form.constraints,
estimate = "EGMME",

ndtvAnimationWidget 17

control=control.stergm(SA.plot.progress=TRUE)
)
msm.sim <- simulate(msm.fit,nsim=1,time.slices=100)

However, the tergm-related output that would normally be attached to the network (toggles, etc) has
been removed.

Source

statnet project stergm tutorial.

Examples

require(network)
require(networkDynamic)
data(msm.sim)
show the network, aggregating 5 timesteps
plot(network.extract(msm.sim,onset=0,terminus=5),

vertex.col=msm.sim%v%"race",vertex.cex=0.5,edge.col="gray")

this could take 10 minutes, so don't run in example checking
Not run:
use ndtv to render a movie of the momentary view of the network
render.animation(msm.sim,vertex.col=msm.sim%v%'race',vertex.cex=.5)
ani.replay()
saveVideo(ani.replay(),video.name="msm.simMomentary.mp4", other.opts="-b 5000k",clean=TRUE)

another version, this time with more temporal aggregation
msm.sim <- compute.animation(msm.sim,slice.par=list(start=0,

end=10,
interval=1,
aggregate.dur=3,
rule='latest'))

also more render more inbetween frames
render.animation(msm.sim,render.par = list(tween.frames = 15,show.times=TRUE),

vertex.col=msm.net%v%'race',vertex.cex=.5)
saveVideo(ani.replay(),video.name="msm.sim3Aggregated.mp4", other.opts="-b 5000k",clean=TRUE)

End(Not run)

ndtvAnimationWidget htmlwidgets wrapper functions for including ndtv-d3 animations in
shinyapps

Description

Wrapper functions to provide ndtv-d3 animation as an htmlwidgetfor use within an RStudio "shiny"
web application. These functions are not normally called by R users directly. For example shiny app
template code please see the ’server.R’ and ’ui.R’ files at https://github.com/statnet/ndtv/
tree/master/htmlWidgetShinyTest

https://github.com/statnet/ndtv/tree/master/htmlWidgetShinyTest
https://github.com/statnet/ndtv/tree/master/htmlWidgetShinyTest

18 ndtvAnimationWidget

Usage

ndtvAnimationWidget(out, options, width = NULL, height = NULL)

renderNdtvAnimationWidget(expr, env = parent.frame(), quoted = FALSE)

ndtvAnimationWidgetOutput(outputId, width = "100%", height = "500px")

Arguments

out the data structure describing the network animation. produced internally by
render.d3movie

options usually the 'd3.options' from render.d3movie

width Display width for the widget. Must be a valid CSS unit (like "100%", "400px",
"auto") or a number, which will be coerced to a string and have "px" appended.

height Display eight for the widget. Must be a valid CSS unit (like "100%", "400px",
"auto") or a number, which will be coerced to a string and have "px" appended.

outputId See htmlwidgets-shiny

expr An expression that does any necessary network processing and generates an
HTML widget (usually via render.d3move). See htmlwidgets-shiny

env The environment in which to evaluate expr. See htmlwidgets-shiny

quoted Is expr a quoted expression (with quote())? This is useful if you want to save an
expression in a variable. See htmlwidgets-shiny

Details

The ndtv-d3 interactive HTML5 network animation can normally be produced via render.d3movie(...,output.mode='htmlWidget').
These functions are wrappers to make it possible to embed the animations as part of a ’Shiny’
(https://shiny.posit.co/) web application.

renderNdtvAnimationWidget should be used as the wraper for the render.d3movie call within
the app’s server.R file and ndtvAnimationWidgetOutput is the corresponding ui component to
include in the ui.R file. See htmlwidgets-shiny

ndtvAnimationWidget initializes the widget, usually called automatically inside render.d3movie
when output.mode='htmlWidget'.

Author(s)

skyebend@uw.edu

See Also

htmlwidgets-package, render.d3movie

https://shiny.posit.co/

network.layout.animate 19

network.layout.animate

Sequentially-stable network layout algorithms suitable for generating
network animations.

Description

The network.layout.animate.* layouts are often adaptations or wrappers for existing static lay-
out algorithms with some appropriate presets. They all accept the coordinates of the ‘previous’
layout as an argument so that they can try to construct a suitably smooth sequence of node posi-
tions. Usually these layouts are not called directly and instead selected by specifying the appropriate
animation.mode argument to compute.animation

Usage

network.layout.animate.kamadakawai(net, dist.mat = NULL, default.dist = NULL,
seed.coords = NULL, layout.par = list(),verbose=FALSE)

network.layout.animate.MDSJ(net, dist.mat = NULL, default.dist = NULL,
seed.coords = NULL, layout.par=list(max_iter=50, dimensions =
2),verbose=TRUE)

network.layout.animate.useAttribute(net, dist.mat = NULL, default.dist = NULL,
seed.coords = NULL, layout.par = list(x = "x", y = "y"), verbose = TRUE)

network.layout.animate.Graphviz(net, dist.mat = NULL, default.dist = NULL,
seed.coords = NULL, layout.par = list(), verbose = TRUE)

Arguments

net The network (or temporal sub-network) that will be used to determine vertex
positions.

dist.mat A (usually optional) matrix of distances between vertices that should be used
to define node positions. This is important to provide if network edge weights
need special handling - for example to be fliped from similarities to distances,
symmetrized, etc.

default.dist A default distance value which a layout may use to fill in for undefined dyads to
space out isolates and disconnected components.

seed.coords A two-column by n-vertex matrix of starting coordinates for the layout to use,
usually the coordinates of the previous layout.

layout.par A list of named layout parameters specific to the algorithm.

verbose Print more information about the layout process

20 network.layout.animate

Details

These layouts are generally called by compute.animation on a sequence of extracted networks,
with each layout fed the output of the previous layout

Usually if the dist.mat is not included, one will be calculated using the layout.distance func-
tion which will compute the geodesic path length distance between nodes after symmetrizing the
network and replacing Inf values with either sqrt(network.size) or the passed in default.dist

KamadaKawai
The KamadaKawai option provides resonably good dynamically stable layouts. It computes a sym-
metric geodesic distance matrix from the input network (replacing infinite values with default.dist,
and seeds the initial coordinates for each slice with the results of the previous slice in an attempt to
find solutions that are as close as possible to the previous positions. However, it performs poorly on
large networks and is not as stable as MDSJ. See network.layout.kamadakawai for more details
about the implementation and parameters

MDSJ
The MDSJ layout uses the MDSJ Java library written by Christian Pich, Algorithmics Group, De-
partment of Computer & Information Science, University of Konstanz, Germany http://algo.uni-konstanz.de/software/mdsj/
(original url), 2009. The library does Multidimensional Scaling (MDS) of the distance matrix using
SMACOF optimization. Because MDSJ is released under a creative commons by-nc-sa license it is
not distributed with the ndtv package, but an installer is included.

When the MDSJ layout is called it checks for working Java installation, and then checks if MDSJ
is installed. If not, it prompts the user and (optionally) downloads and installs MDSJ. If MDSJ is
not installed, it falls back to calling the KamadaKawai layout instead.

MDSJ is quite fast for larger networks, but relatively less efficient for smaller ones because of
the overhead of system calls and Java start up for each layout. The verbose option prints more
information on the Java process. The max_iter parameter sets the maximum of minimization steps
the algorithm can try. In cases where it seems like the layout has not completely finished, this
can be set higher. The dimensions argument sets the number of dimensions the layout should be
performed in and indirectly the number of columns expected and produced for coordinate matrices.

useAttribute
The useAttribute layout makes it possible to define vertex positions using a static or dynamic
vertex attributes to provide the x and y coordinates for each time step. The names of the attributes to
be used are passed in via the layout.par argument. For example layout.par = list(x = "myX",
y = "myY") The attribute must have values defined for each time point that the network plotted.

Graphviz

The Graphviz layout is a wrapper for the Graphviz https://www.graphviz.org software library.
If the library is installed on your system (see install.graphviz), it provides a number of addi-
tional high-quality layouts. When layout is called it checks for a working Graphviz installation
(falling back to KamadaKawai if Graphviz cannot be found) and writes the network to a temp file
using export.dot. Then the appropriate Graphviz layout engine (default is neato) is executed via
a system call, and the coordinates of the vertices are parsed from the output.

Currently, the arguments to layout.par can be used to specify the Graphviz layout engine to use
(i.e. gv.engine='neato' for stress-minimized, gv.engine='dot' for hierarchal, gv.engine='fdp'
for force-directed, etc) and additional command-line control parameters can be passed in via gv.args.
For example, to use the ’dot’ layout, but change layout rank direction to Left-Right: layout.par=list(gv.engine='dot',gv.args='-Grankdir=LR').

https://www.graphviz.org

network.layout.animate 21

See https://graphviz.gitlab.io/doc/info/command.html. Note that Graphviz’s graphic ren-
dering parameters are not used to control network plot rendering (but they may impact layout posi-
tions).

It is also possible to pass edge attributes of the network directly through to the Graphviz .dot file by
passing in the names of the attributes using gv.edge.attrs argument to layout.par. For example,
layout.par=list(gv.edge.attrs='len') will write the value of the edge attribute ’len’ to a gv
attribute ’len’, which would control the edge lengths when using neato or fdp https://graphviz.
gitlab.io/docs/attrs/len/.

The Graphviz layout normally ignores the values in dist.mat, but for compatibility with other
layouts, it is possible to use the values in dist.mat to influence Graphviz’s edge length by setting
layout.par gv.len.mode='ndtv.distance.matrix' instead of its default 'gv.edge.len'. This
writes out all of the possible edges to the file and will overide any other edge attributes.

Value

A two-column by n-vertex matrix of coordinates.

Note

The MDSJ algorithm can only be used for non-comercial projects as it is available under the terms
and conditions of the Creative Commons License "by-nc-sa" 3.0. https://creativecommons.
org/licenses/by-nc-sa/3.0/

Author(s)

Skye Bender-deMoll

References

Algorithmics Group. MDSJ: Java Library for Multidimensional Scaling (Version 0.2). Available at
http://algo.uni-konstanz.de/software/mdsj/. University of Konstanz, 2009.

Kamada, T. and Kawai, S. (1989). An Algorithm for Drawing General Undirected Graphs. Infor-
mation Processing Letters, 31(1):7-15.

John Ellson et.al (2001) "Graphviz – open source graph drawing tools" Lecture Notes in Computer
Science. Springer-Verlag. p483-484 https://www.graphviz.org

See Also

See Also network.layout.kamadakawai,layout.distance,compute.animation

https://graphviz.gitlab.io/doc/info/command.html
https://graphviz.gitlab.io/docs/attrs/len/
https://graphviz.gitlab.io/docs/attrs/len/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.graphviz.org

22 proximity.timeline

proximity.timeline Plot a chart of a networkDynamic object in which vertices trace out
paths in time, positioned vertically so that their proximity corresponds
to their relative geodesic distance at the sampled time points.

Description

This a DRAFT version of the function, parameters are likely to change. Creates a ’phase plot’ chart
of vertex geodesic distance proximities overtime time, with the ability to size and color the lines
corresponding to each vertex with arguments similar to plot.network

Usage

proximity.timeline(nd, start = NULL, end = NULL, time.increment = NULL,
onsets = NULL, termini = NULL, rule='earliest', default.dist = NULL,
vertex.col = "#55555555", label = network.vertex.names(nd),
labels.at = NULL, label.cex = 1,
vertex.cex = 2, splines = -0.2, render.edges=FALSE, grid=!render.edges,
edge.col='#00000055', edge.lwd=4,
mode=c('isoMDS','sammon','cmdscale','gvNeato','MDSJ'),
coords=NULL,
draw.inactive=NULL,
spline.style=c('default','inactive.ghost','inactive.gaps',

'inactive.ignore','color.attribute'),
chain.direction=c('forward','reverse'),
verbose=TRUE, ...)

Arguments

nd a networkDynamic object to be plotted.

start optional numeric value giving the time to start the network sampling to be passed
to link{get.networks}

end optional numeric value giving the time to end the network sampling to be passed
to link{get.networks}

time.increment optional numeric value to increment network sampling to be passed to link{get.networks}

onsets optional numeric vector of sampling onset time points to be passed to link{get.networks}

termini optional numeric vector of sampling terminus time points to be passed to link{get.networks}

rule attribute aggregation rule (default 'earliest') to be passed to network.collapse

default.dist numeric default distance parameter to space apart isolates and disconnected
components. Usually defaults to square root of network size (see layout.distance)

vertex.col either a character color value, a vector of values of length equal to the size of
the network, or the name of a vertex attribute containing color values to be used
to color each of the vertices splines. Note that partially transparent colors work
much better than opaque colors, as it is easier to see when lines overlap. When

proximity.timeline 23

used with spline.style='color.attribute', vertex.col can be a function
with a special limited set of arguments (see Details of render.animation)
which will be evaluated at the onset of each segment.

labels.at numeric value or vector of values specifying the time(s) at which vertex labels
should be plotted on the splines. If NULL (default), labels will not be drawn.

label character vector of labels for vertices or name of vertex attribute to be expanded.
Default is network.vertex.names. Labels only drawn if labels.at argument has
a value.

label.cex numeric character expansion factor for vertex labels

vertex.cex either a numeric value, a vector of values of length equal to the size of the
network, or the name of a vertex attribute containing numeric values to be used
to scale the width of the lines (lwd) for each vertex.

splines numeric. value controls how tightly the splines meet their control points. A
value of 0 draws straight lines and sharp corners, values less than zero cause the
spline to pass through the control point, values greater than zero will approxi-
mate the point. See the shape argument of xspline.

render.edges logical (default FALSE). Should overlapping virtical lines corresponding to the
edges be drawn between the the splines corresponding to the vertices at the time
points of edge onsets?

edge.col color value or edge attribute name to be used for the edge lines if render.edges=TRUE

edge.lwd numeric line width value or edge attribute name to be used for the width of the
edge lines if render.edges=TRUE

grid logical. if TRUE, vertical lines in the background color will be drawn at the
beginning of each time slice to make it easier to determine where on the splines
the positions are actually set. Usually this is not used with render.edges

mode name of MDS algorithm to be used. Currently one of isoMDS,sammon,cmdscale

coords optional numeric matrix of pre-computed coordinates to be used instead of the
algorithm in mode. The number of matrix rows must be equal to the network
size and columns equal to number of time bins implied by other arguments)

draw.inactive DEPRECATED. see spline.style

spline.style options to control how vertices with inactive spells or changing attribute values
should be drawn:

• 'inactive.ignore' ignores activity spells and draws an unbroken spline
for each vertex (fastest).

• 'inactive.gaps' leaves gaps in the splines when vertices are inactive
• 'inactive.ghost' draws faint gray dotted lines under the spline so they

appear in the gaps
• 'default' does 'inactive.ignore' if there are no gaps in encountered,

otherwise 'inactive.ghost'

• 'color.attribute' uses the activity spells of the vertex color TEA (in-
dicated by the vertex.col argument) to break the splines in to color seg-
ments – ignoring the the vertices activity spells

24 proximity.timeline

chain.direction

value of 'forward' means that the slice layouts should be computed in temporal
order, with each layout initialized with the coordinates from the previous. A
value of 'reverse' causes layouts to be computed in reverse temporal order
(for some layouts, this will cause less spline crossing as vertices will tend to be
closer to their final state).

verbose logical, default is TRUE, in which case status messages about the computations
are printed to the console, at some speed cost

... arguments to be passed to network.collapse (via get.networks) to control
how the network should be aggregated during slicing

Details

The passed network dynamic object is sliced up into a series of networks. It loops over the networks,
converting each to a distance matrix based on geodesic path distance with layout.distance. The
distances are fed into an MDS algorithm (specified by mode) that lays them out in one dimension:
essentially trying to position them along a vertical line. The sequence of 1D layouts are arranged
along a timeline, and a spline is drawn for each vertex connecting its positions at each time point.
The idea is that closely-linked clusters form bands of lines that move together through the plot.

Currently,

• mode='sammon' tends to produce much equally spaced lines, making it easier to follow indi-
vidual vertices, but harder to see clusters

• mode='isoMDS' does a better job with clusters, but in some layouts converges too soon and
just produces straight lines,

• mode='cmdscale' does a great job with clusters, but is highly unstable (coordinates will
reshuffle dramatically on nearly identical networks).

• mode='gvNeato' tries to do a 1D Graphviz neato layout (experimental) network.layout.animate.Graphviz.

• mode='MDSJ' tries a 1D network.layout.animate.MDSJ layout.

For most of the layouts it is necessary to manually adjust the default dist parameter to find a value
that sufficently groups together linked clusters and spaces out isolates.

Note for RStudio users: the spline rendering seems to be much slower on RStudio’s graphics device
than on other graphics devices such as x11().

Value

Produces a plot with horizontal splines corresponding the vertices of the network and vertical prox-
imities approximately proportional to geodesic distance. Invisibly returns a numeric matrix of co-
ordinates corresponding to computed positions of each vertex at each time bin. This can be passed
in via the coords argument.

Note

This is still very much a work in progress, the 1D optimization are not very stable, especially for
cmdscale

render.animation 25

Author(s)

skyebend@uw.edu

References

Some inspirational examples here: http://skyeome.net/wordpress/?p=604

See Also

See also timeline for plotting spells of vertices and edges without proximity positioning.

Examples

use the classroom interaction dataset
data(McFarland_cls33_10_16_96)

divide the first 20 minutes of time into
overlapping 2.5 minute bins
and make the lines for the instructors much larger
proximity.timeline(cls33_10_16_96,

onsets=seq(0,20,0.5),
termini=seq(2.5,22.5,0.5),
vertex.cex=(cls33_10_16_96%v%'type'=='instructor')*4+1,
labels.at=16)

load the infection sim dataset
data(toy_epi_sim)
render a timeline with vertices colored by infection status
show only the first 5 timesteps
proximity.timeline(toy_epi_sim,vertex.col = 'ndtvcol',

spline.style='color.attribute',
mode='sammon',default.dist=20,
chain.direction='reverse',
start=1,end=5)

render.animation Render animations of networkDynamic objects as movies in various
formats

Description

Takes a network object which describes a sequence of changes in properties of a network and
graphically renders it out as a sequence of plots to create an animation. Normally the coordinates
determining the vertex positions at specified time points should have been calculated and stored
in the network object, along with the slice.par list of parameters describing when and how the
network should be divided up in time. If the coordinate data is not found, compute.animation will
be called with default arguments.

Appropriate ‘static’ networks for each time region will be generated by network.collapse. The
rendering of each frame is drawn by plot.network and most arguments are supported and are

http://skyeome.net/wordpress/?p=604

26 render.animation

passed through to control the details of rendering. The rendered images are stored using the
animation package and can be played in the plot window (ani.replay) or saved to a movie file
with saveVideo.

Usage

render.animation(net, render.par = list(tween.frames = 10, show.time = TRUE,
show.stats = NULL, extraPlotCmds=NULL, initial.coords=0),
plot.par = list(bg='white'), ani.options = list(interval=0.1),
render.cache = c('plot.list','none'), verbose=TRUE, ...)

Arguments

net The networkDynamic object to be rendered, usually containing pre-computed
vertex positions as dynamic attributes.

render.par Named list of parameters to specify the behavior of the animation.

• tween.frames the number of interpolated frames to generate between each
calculated network layout (default 10).

• show.time If TRUE, labels the plot with onset and terminus time for each
slice.

• show.stats NULL, or a string containing a formula to be passed to sum-
mary.stergm to display the network statistics for the current slice on the
plot. e.g. "~edges+gwesp(0,fixed=TRUE)"

• extraPlotCmds NULL, or additional plot commands to draw on each frame
of the animation.

• initial.coords default initial coords to be assigned to vertices. Can be a
two-column numeric coordinate matrix, or a numeric values to be formed
into a matrix.

plot.par list of ‘high-level’ plotting control arguments to be passed to par. e.g. bg for
background color, margins, fonts, etc.

ani.options list of control arguments for the animation library. For example. interval
controls the delay between frames in playback, ani.dev and ani.type can be
used to set non-default graphics devices for rendering (i.e 'jpeg' instead of
'png'). See ani.options

render.cache the default value of 'plot.list' causes each frame of the animation to be
cached in an internal list by the ani.record function of the animation library.
This is very useful for testing and replaying animations in R’s plot window, but
can be very slow (or cause out-of-memory errors) for large animations. If the
value is set to 'none', the plot will not be recorded (but can be saved to disk via
saveVideo, see examples below) and cannot be replayed via the ani.replay()
function.

verbose If TRUE, update text will be printed to the console to report the status of the
rendering process.

... Other parameters to control network rendering. See plot.network.default.
Most parameters can be set to TEA attribute names, or specified as a function to
be evaluated at each timestep

render.animation 27

Details

Most of the network plotting arguments are passed directly to plot.network.default. All of the
plot.network arguments pased in via ... can be specified as a TEA or special type of function
to be evaluated at each time step. For example, if there was a dynamic vertex attribute named
’wealth’, it could be mapped to vertex size by providing the TEA name vertex.cex='wealth'.
If the wealth value needed transformation to be an appropriate vertex size, it can be specified as a
function: vertex.cex=function(slice){slice%v%'wealth'*5-3}

The arguments of plot control functions must draw from a specific set of named arguments which
will be substituted in and evaluated at each time point before plotting. The set of valid argument
names is:

• net is the original (uncollapsed) network

• slice is the network collapsed with the appropriate onset and terminus

• s is the slice number

• onset is the onset (start time) of the slice to be rendered

• terminus is the terminus (end time) of the slice to be rendered

A few of the plot parameters have defaults that are different from the ones given by plot.network:

• jitter defaults to FALSE to prevent unwanted bouncing

• xlim and ylim default to the ranges of the entire set of network coordinates. Although they
can be set to function values for interesting effects...

• xlab defaults to a function to display the time range: function(onset,terminus){paste("t=",onset,"-",terminus,sep='')}.
It also will be overidden if show.stats is set.

If no slice.par network attribute is found to define the time range to render, it will make one up
using the smallest and largest non-Inf time values, unit-length non-overlapping time steps and an
aggregation rule of ’latest’.

If no dynamic coordinate information has been stored, compute.animation will be called with
default values to try to do the layout before giving up.

Additional plot commands passed in via the extraPlotCmds argument will be passed to eval()
after each frame is rendered and can be used to add extra annotations to the plot.

One some installations, the default output from saveVideo() (really ffmpeg) produces videos in a
slightly non-standard .mp4 format that won’t play in Windows Media Player or QuickTime. Users
have reported that adding the argument other.opts='-pix_fmt yuv420p" to saveVideo corrects
the problem. Recent versions of the animation library will include this argument by default.

To avoid performance issues with the RStudio graphics device, RStudio users will see a message that
ndtv is attempting to open another type of plot window. It will try to guess a platform-appropriate
device type, but specific device can be pre-specified by the user by setting the R_DEFAULT_DEVICE
environment variable

Value

A sequence of plots will be generated on the active plot device. If render.cache='plot.list'
the recorded plots are stored as a list in .ani.env$.images.

28 render.animation

Note

A few of the network drawing arguments have slightly different interpretations than their plot.network
equivalents:

• xlab will be used to display time and network statistics if those render.par parameters are
set

• xlim and ylim will be set using max and min observed coordinate values so that all network
slices will appear on the plot

• label if not set explicitly, will default to the vertex names for the appropriate slice network.

If the background color is transparent and not explicitly set, it will be reset to white to prevent
unintentional behavior when exporting movies via ffmpeg.

Author(s)

Skye Bender-deMoll, and the statnet team.

References

Skye Bender-deMoll and McFarland, Daniel A. (2006) The Art and Science of Dynamic Network
Visualization. Journal of Social Structure. Volume 7, Number 2 https://www.cmu.edu/joss/
content/articles/volume7/deMollMcFarland/

See Also

compute.animation for generating the movie coordinates, ani.replay, plot.network and the
package vignette vignette('ndtv'). Also render.d3movie for displaying movies as interactive
HTML5 animations in a web browser

Examples

require(ndtv)
trivial example

triangle <- network.initialize(3) # create a toy network
add.edge(triangle,1,2)
add an edge between vertices 1 and 2
add.edge(triangle,2,3)
add a more edges
activate.edges(triangle,at=1) # turn on all edges at time 1 only
activate.edges(triangle,onset=2, terminus=3,
e=get.edgeIDs(triangle,v=1,alter=2))
add.edges.active(triangle,onset=4, length=2,tail=3,head=1)
render.animation(triangle)
ani.replay()

an example with changing TEA attributes
wheel <- network.initialize(10) # create a toy network
add.edges.active(wheel,tail=1:9,head=c(2:9,1),onset=1:9, terminus=11)
add.edges.active(wheel,tail=10,head=c(1:9),onset=10, terminus=12)
set a dynamic value for edge widths

https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/
https://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/

render.animation 29

activate.edge.attribute(wheel,'width',1,onset=0,terminus=3)
activate.edge.attribute(wheel,'width',5,onset=3,terminus=7)
activate.edge.attribute(wheel,'width',10,onset=3,terminus=Inf)
set a value for vertex sizes
activate.vertex.attribute(wheel,'mySize',1, onset=-Inf,terminus=Inf)
activate.vertex.attribute(wheel,'mySize',3, onset=5,terminus=10,v=4:8)
set values for vertex colors
activate.vertex.attribute(wheel,'color','gray',onset=-Inf,terminus=Inf)
activate.vertex.attribute(wheel,'color','red',onset=5,terminus=6,v=4)
activate.vertex.attribute(wheel,'color','green',onset=6,terminus=7,v=5)
activate.vertex.attribute(wheel,'color','blue',onset=7,terminus=8,v=6)
activate.vertex.attribute(wheel,'color','pink',onset=8,terminus=9,v=7)
render it all
render.animation(wheel,edge.lwd='width',vertex.cex='mySize',vertex.col='color')

an example with functional attributes
set.network.attribute(wheel,'slice.par',

list(start=1,end=10,interval=1, aggregate.dur=1,rule='latest'))
render vertex size as betweeness
render.animation(wheel,vertex.cex=function(slice){(betweenness(slice)+1)/5})

render it directly to a movie file without caching the plots (faster)
Not run:
saveVideo(render.animation(wheel,edge.lwd='width',vertex.cex='mySize',vertex.col='color',

render.cache='none'))

End(Not run)

simulation based example
disabled to save time when testing
Not run:
require(tergm)
load in example data, results of a basic stergm sim
data(stergm.sim.1)

(optional) pre-compute coordinates for set time range
(optional) limit time range to a few steps to speek example
slice.par=list(start=0,end=10,interval=1, aggregate.dur=1,rule='latest')
compute.animation(stergm.sim.1,slice.par=slice.par)

define the number of inbetween frames and a formula for stats to display
render.par<-list(tween.frames=5,show.time=TRUE,

show.stats="~edges+gwesp(0,fixed=TRUE)")

render the movie, with labels, smaller vertices, etc
render.animation(stergm.sim.1,render.par=render.par,

edge.col="darkgray",displaylabels=TRUE,
label.cex=.6,label.col="blue")

preview the movie in the plot window

30 render.d3movie

ani.replay()

save the movie as mp4 compressed video (if FFMPEG installed)
saveVideo(ani.replay(),video.name="stergm.sim.1.mp4",

other.opts="-b 5000k",clean=TRUE)

End(Not run)

render.d3movie Render out a web-based animation of a networkDynamic object using
ndtv-d3 player app

Description

Exports a self-contained HTML file including an SVG animation of the networkDynamic object
and displays it in a web browser. See render.animation for details of animation construction.

Usage

render.d3movie(net, filename=tempfile(fileext = '.html'),
render.par=list(tween.frames=10,

show.time=TRUE,
show.stats=NULL,
extraPlotCmds=NULL,
initial.coords=0),

plot.par=list(bg='white'),
d3.options,
output.mode=c('HTML','JSON','inline','htmlWidget'),
script.type=c('embedded','remoteSrc'),
launchBrowser=TRUE,
verbose=TRUE,...)

Arguments

net The network (usally networkDynamic) object to be rendered, usually containing
pre-computed vertex positions as dynamic attributes cached by compute.animation

filename The file name of the HTML or JSON file to be generated. Must end the proper
file extension (’.json’ for JSON ’.html’ for HTML) for correct browser display.

render.par Named list of parameters to specify the behavior of the animation.

tween.frames the number of interpolated frames to generate between each cal-
culated network layout (default 10).

show.time If TRUE, labels the plot with onset and terminus time for each slice.
show.stats NULL, or a string containing a formula to be passed to summary.stergm

to display the network statistics for the current slice on the plot. e.g. "~edges+gwesp(0,fixed=TRUE)"
extraPlotCmds NULL, or additional plot commands to draw on each frame of

the animation.

render.d3movie 31

initial.coords default initial coords to be assigned to vertices. Can be a two-
column numeric coordinate matrix, or a numeric values to be formed into a
matrix.

plot.par list of ‘high-level’ plotting control arguments to be passed to par. e.g. bg main
for background color, margins, fonts, etc. MANY OF THESE ARE NOT YET
SUPPORTED BY THE NDTV-D3 PLAYER. See list in Details below.

d3.options list of options to configure ndtv-d3 player app. list(animationDuration=800,
scrubDuration=0, enterExitAnimationFactor=0, nodeSizeFactor=0.01,
playControls=TRUE, animateOnLoad=FALSE, slider=TRUE, debugFrameInfo=FALSE,
debugDurationControl=FALSE,) See Details below for explanations

output.mode character string, one of 'HTML','JSON' or 'inline'. The first exports an HTML
file with embedded javascript player app including the JSON data structure de-
scribing the animation. The second just exports the JSON data structure (for
loading into an existing page). The 3rd renders the HTML inside an iframe
tag and supresses all other output in an attempt to make it embedable in rmark-
down documents. The 4th generates a htmlWidget suitable for displaying in an
RStudio plot window or Shiny app.

script.type if script.type='embedded', the scripts will be embedded directly in the out-
put html page. This option is the most portable, but will require large file sizes.
If script.type='remoteSrc', only the links to the scripts will be included, so
the page will require an active internet connection to play the animation.

launchBrowser if TRUE, after exporting the file R will attempt to open it in a browser

verbose If TRUE, update text will be printed to the console to report the status of the
rendering process.

... Other parameters to control network rendering. See plot.network.default.
Most parameters can be set to TEA attribute names, or specified as a function
to be evaluated at each timestep. NOT ALL PLOT PARAMS ARE IMPLE-
MENTED YET

Details

Animations are generated using a process nearly identical to render.animation. However, instead
of using R’s plotting functions and the animation library, the relevant information is cached and
written into a JSON-formatted file, embedded into a web page along with ndtv-d3 player, and
displayed in a web browser as an interactive HTML5 SVG animation.

The ndtv-d3 player app is not a fully-featured R plot device. It only attempts to emulate the
elements of plot normally used by plot.network and it understands the graphic elements and a
somewhat higher level so that it will be able to handle interaction with edge and vertex objects.

However, ndtv-d3 includes several nice features to support exploring the network:

• controller buttons for playing, pausing and stepping through the animation

• time slider for jumping and ’scrubing’ to parts of the movie

• pan and zoom into the network using the mouse-wheel

• click on vertices and edges to reveal their ids or abitrary text attached using the vertex.tooltip
and edge.tooltip properties

32 render.d3movie

• double-click on a vertex to highlight all of the connected edges and vertices

If passed a static network, by default only a single slice will be rendered and the time slider
and controllers will be disabled. For consistency with plot.network the static mode also sup-
ports passing in a matrix of coordinates via coord argument which will prevent the default call to
compute.animation.

Another advantage of ndtv-d3 is that it does not require installing system libraries such as ffmpeg
to render out the movie.

The coordinates for vertex postitions are read from the animation.x and animation.y TEA at-
tributes, normally created using compute.animation

The list of currently supported plot,plot.network and par elements is

xlab : label caption below the render, on the xaxis

main : main headline above the render

displaylabels : should vertex labels be displayed?

usearrows : should arrows be drawn on edges?

bg : background color (must be html compatible? need to check this)

vertex.cex : vertex expansion scale factor

label : labels for vertices (defaults to vertex.names)

label.col : color of vertex labels

label.cex : vertex label expansion scale factor

vertex.col : vertex fill colors

vertex.sides : number of sides for vertex polygon (shape)

vertex.rot : rotation for vertex polygon

vertex.border : color of vertex border stroke

vertex.lwd : width of vertex border stroke

edge.lwd : width of edge stroke

edge.col : edge stroke color

All of the above properties can be defined as dynamic (TEA) attributes. Noteably, curved edges,
edge labels, and label positioning are not yet implemented and will be ignored. The main and xlab
params will not be positioned exactly as they are in plot

There are a few special plot parameters that are only supported by render.d3move:

vertex.tooltip arbitrary text or html to be displayed when a vertex is clicked (default is the
vertex id)

edge.tooltip arbitrary text or html to be displayed when an edge is clicked (default is the edge
id)

vertex.css.class properties for adding arbitrary class attributes for use in CSS styling of vertices

edge.css.class properties for adding arbitrary class attributes for use in CSS styling of edges

vertex.label.css.class properties for adding arbitrary class attributes for use in CSS styling of
vertex labels

render.d3movie 33

ndtv-d3 has its own configuration properties passed in via the d3.options argument list, shown
below with their default properties. Values which are set to NULL or omitted will be set to the
ndtv-d3 player defaults.

animationDuration=800 Duration (milliseconds) of each animation step during play or step ac-
tions

enterExitAnimationFactor=0 Fraction (0-1) of total step animation time that edge enter/exit
animations should take

nodeSizeFactor=0.01 Sets default node (vertex) size, as a fraction of viewport size.

playControls=TRUE Show the player controls (play, pause, step, etc)

animateOnLoad=FALSE If true, animation will start playing as soon as page loads.

slider=TRUE Show the time slider control

margin=list(x=20,y=10) SVG margins - may be overridden when setting fixed aspect ratio

debugFrameInfo=FALSE Show the slice timing info in corner

durationControl=TRUE Show a control to change speed of animation under the menu in the upper
right corner

Value

If output.mode='HTML', a file will be generated including the necessary javascript and JSON data
structures If output.mode='JSON', a JSON file will be generated including a section describing
all of the rendered slices, and a seperate section including the entire networkDynamic object.
If output.mode='inline', HTML code for an iframe elment suitible for embedding in mark-
down documents will be printed, all other output supressed. If output.mode='htmlWidget', a
htmlwidgets object will be returned which, will produce appropriate html when ’printed’ or emed-
ded in a Shiny app

Note

This is a very preliminary draft implementation. The animations preform poorly in the Linux Fire-
fox browser, but are ok in Firefox on other platforms and excellent in the Chrome web browser.

Author(s)

skyebend@uw.edu

References

The github repository for the ndtv-d3 javascript library is at https://github.com/statnet/ndtv-d3/
(which is the statnet release fork of https://github.com/michalgm/ndtv-d3/)

See Also

See also the ndtv-d3 vignette https://cran.r-project.org/package=ndtv/vignettes/ndtv.
pdf, ndtv workshop https://statnet.org/workshop-ndtv/ndtv_workshop.html, render.animation,
compute.animation.

https://github.com/statnet/ndtv-d3/
https://github.com/michalgm/ndtv-d3/
https://cran.r-project.org/package=ndtv/vignettes/ndtv.pdf
https://cran.r-project.org/package=ndtv/vignettes/ndtv.pdf
https://statnet.org/workshop-ndtv/ndtv_workshop.html

34 stergm.sim.1

Examples

render an interactive SVG animation of short.stergm.sim and open it in a browser
data(short.stergm.sim)
render.d3movie(short.stergm.sim)

render interactive widget in rmarkdown or RStudio plot window
render.d3movie(short.stergm.sim,output.mode='htmlWidget')

render a static network as interactive SVG with lots of html tooltip info
data(emon)
render.d3movie(emon[[5]],

vertex.tooltip=paste(emon[[5]]%v%'vertex.names',
emon[[5]]%v%'Command.Rank.Score',
emon[[5]]%v%'Sponsorship',
sep="
"),

edge.tooltip=paste('Frequency:',emon[[5]]%e%'Frequency'),
edge.lwd='Frequency')

Not run:

alternate code for embeding in rmarkdown
```{r,results='asis'}
render.d3movie(short.stergm.sim,output.mode='inline')
```

End(Not run)

stergm.sim.1 Very Very Basic stergm simulation output

Description

Simulation from a crude stergm model based on the flobusiness network. Mostly good for testing
movies ’cause it is small (16 vertices) and fast. The stergm.sim.1 network is 100 simulation steps
in duration. The short.stergm.sim network is an extract of the first 25 steps of stergm.sim.1 –
its shorter duration makes it more suitable for quickly testing animation techniques.

Usage

data(stergm.sim.1)
data(short.stergm.sim)

Format

A networkDynamic object containing the output of the network simulations

timeline 35

Details

The model used to generate the sim was:

require(ergm)
data("florentine")
theta.diss <- log(9)
fit the model
stergm.fit.1 <- stergm(flobusiness,
formation= ~edges+gwesp(0,fixed=T),
dissolution = ~offset(edges),

targets="formation",
offset.coef.diss = theta.diss,
estimate = "EGMME")
simulate from the model
stergm.sim.1 <- simulate(stergm.fit.1,

nsim=1, time.slices = 100)

However, the ergm-related output that would normally be attached to the network (toggles, etc) has
been removed.

Source

See tergm package tutorials.

Examples

data(stergm.sim.1)
range(get.change.times(stergm.sim.1))
data(short.stergm.sim)
range(get.change.times(short.stergm.sim))

timeline Plot a timeline for the edge and vertex spells of a network

Description

Produces a ‘phase plot’ or timeline showing the durations of the activity spells in a networkDynamic
object. Spells are traced out horizontally, with all the activity for each element (vertex or edge) in a
single row.

Usage

timeline(x, v = seq_len(network.size(x)), e = seq_along(x$mel),
plot.vertex.spells = TRUE, plot.edge.spells = TRUE,
slice.par = NULL,
displaylabels = TRUE, e.label=TRUE, e.label.col='purple',

36 timeline

edge.lwd=1,
v.label, v.label.col='blue',
vertex.cex=1, cex, adj=0,
edge.col = rgb(0.5, 0.2, 0.2, 0.5),
vertex.col = rgb(0.2, 0.2, 0.5, 0.5),
xlab, ylab, xlim, ylim, ...)

Arguments

x a networkDynamic object that will have its spells plotted.

v numeric vector of vertex ids to include

e numeric vector of edge ids to include
plot.vertex.spells

logical, should vertex spells be plotted?
plot.edge.spells

logical, should edge spells be plotted?

slice.par (optional) ‘slice.par’ list giving network binning parameters. If included, rectan-
gles corresponding to each bin will be plotted over the spells to indicate which
spell will land in bins. The bins will be drawn with slightly darker left edge
more transparent right edge to evoke the effect of a right-open interval.

displaylabels logical, should labels be drawn for each spell

e.label character vector of edge labels or edge attribute name. Default is edge.id

e.label.col color name or character vector of colors for edge labels (or name of edge at-
tribute to provide them)

v.label character vector of vertex labels or vertex attribute name. Default is network.vertex.names

v.label.col color name or character vector of colors for vertex labels (or name of vertex
attribute to provide them)

vertex.cex numeric scaling factor, vector of numeric scaling factors or attribute name. Trans-
lated width of line (lwd) corresponding to each vertex.

edge.lwd numeric scale factor, numeric vector, or character edge attribute name providing
a numeric value for the width of the lines corresponding to each edge. Note
that this does not behave exactly as edge.lwd in plot.network as it does not
perform scaling based on attribute values.

cex text size scaling for both vertex and edge labels (see plot.default)

adj text justification parameter (see par) for both vertex and edge labels. Labels are
positioned relative to onset of spell.

edge.col color to be used to draw lines for edge spells, or vector of color names corre-
sponding to edges, or name of edge attribute.

vertex.col color to be used to draw lines for vertex spells, or vector of color names corre-
sponding to vertices, or name of vertex attribute.

xlab x-axis label for plot

ylab y-axis label for plot

xlim two-element numeric vector giving the x-range (time bounds) of the plot to
show. Defaults to (non-infinite) max and min time of network.

timeline 37

ylim two-element numeric vector giving the y-range (effectively the number of en-
tities) of plot to show. Defaults to an appropriate mapping of the number of
entities to the available plot size.

... additional arguments to be passed to plot subroutines. See plot.default,lines,text.

Details

When the v argument is included, edges involving vertices not in v are excluded (but the reverse is
not true for the e argument). If xlim range is provided and the spells corresponding to a vertex or
an edge lie entirely outside its bounds they will not be shown.

Many of the arguments correspond to arguments in plot.network but are translated to the timeline
plot context. For example, vertex.cex actually controls the lwd (line width) of the lines cor-
responding to vertex spells. The arguments are expanded using plotArgs.network so that they
should give the expansion behavior and attribute look up as plot.network

Additional plotting arguments can be passed in to modify drawing. For example, lty for line style.
Vertices and edges that are never active are not included on the plot.

Value

A plot is produced.

Note

not fully implemented, would be nice to be able to pass network attribute names for properties..

Author(s)

skyebend@uw.edu

See Also

See also plot.network.

Examples

data(stergm.sim.1)
timeline(stergm.sim.1)

color vertices by priorates, don't show edges
timeline(stergm.sim.1,vertex.col='priorates',plot.edge.spells=FALSE)

show only relationships among a few vertices
timeline(stergm.sim.1,v=1:8)

zoom in on a region of time
timeline(stergm.sim.1,xlim=c(20,40))

label vertices with numbers
and label edges by the tail and head vertices they link
timeline(stergm.sim.1,xlim=c(0,5),v.label=1:network.size(stergm.sim.1),

38 timePrism

e.label=sapply(stergm.sim.1$mel,function(e){paste(e$inl,e$outl,sep='->')}))

show only edge spells, hi-lite edge id 20
set.edge.attribute(stergm.sim.1,'my_color','gray')
set.edge.attribute(stergm.sim.1,'my_color','red',e=20)
timeline(stergm.sim.1,edge.col='my_color',plot.vertex.spells=FALSE)

show binning over the edges
timeline(stergm.sim.1,slice.par=list(start=0,

end=100,
interval=10, aggregate.dur=5,
rule='latest'),

plot.vertex.spells=FALSE)

timePrism Plot a networkDynamic object as sequence of snapshots in a pseudo-
3D space-time prism

Description

Plots an image using scatterplot3d to render multiple network layout ’slices’ in a ’3D’ ortho-
graphic projection in which one axis is time. The coordinates for the networks are assumed to have
been generated by compute.animation

Usage

timePrism(nd, at,
spline.v = NULL,
spline.col = "#55555555",
spline.lwd = 1,
box = TRUE,
axis = TRUE,
planes = FALSE,
plane.col = "#FFFFFF99",
scale.y = 1,
angle = 20,
orientation = c("x", "y", "z"),
...)

Arguments

nd a networkDynamic object to be plotted

at a numeric vector of times at which the network should be sampled and plotted.

spline.v optional integer vector of vertex ids to highlight with a spline linking the ver-
tices” positions at multiple time points

spline.col vector of colors corresponding to spline.v

spline.lwd numeric line width for vector splines

timePrism 39

box a logical value indicating whether a box should be drawn around the plot to
indicate its bounds

axis a logical value indicating whether the x, y, and z axis should be drawn.

planes a logical value indicating whether a ’plane’ should be drawn to indicate the
boundaries of each individual network plot

plane.col a color value to be used to color the planes (usually partially transparent)

scale.y numeric value giving the relative scale of y axis related to x- and z axis. (may
distort network vertex shapes)

angle numeric angle (degrees) between x and y axis (Attention: result depends on
scaling).

orientation three-element charter vector the permutation of which determines the mapping
and orientation of the plot axis relative to the figure. i.e. default c('x','y','z')
will place ’z’ (the time dimension) ’vertically’ up the page, c('z','x','y')
will make the time dimension horizontal, etc.

... additional parameters to plot.network

Details

Implements a common conceptualization of dynamic networks a series of ’layers’ or ’slices’ in
time. Mostly useful for illustrative purposes as this plot type tends to get really crowded if more
than a few network time points are shown, or vertices highlighted.

Value

invisibly returns the result of the scatterplot3d command, which contains useful functions as
$xyz.convert which can be used to convert xyz coordinates into the plot space for additional
annotation.

Note

Not all of the useful argument passthroughs to scatterplot3d and xspline have been implemented
yet. Shapes of vertices and edges can be improperly distorted by coordinate projection.

Author(s)

skyebend@uw.edu

See Also

compute.animation,scatterplot3d, xspline, plot.network. Also filmstrip and proxmity.timeline
for related static views.

Examples

data("short.stergm.sim")
compute.animation(short.stergm.sim)
timePrism(short.stergm.sim,at=c(1,10,20),

displaylabels=TRUE,

40 toy_epi_sim

label.cex=0.5)

data(toy_epi_sim)
timePrism(toy_epi_sim,

orientation=c('z','y','x'),
angle=40,
spline.v=c(7, 29, 36, 70, 82, 96), # hilite the infected
spline.col='red',
spline.lwd=2,
box=FALSE,
planes=TRUE,
vertex.col='ndtvcol')

toy_epi_sim Toy Epidemic Simulation Output from the EpiModel package

Description

An example network of a trivial simulated disease process spreading over a simulated dynamic
contact network among 100 individuals for 25 discrete time steps.

Usage

data("toy_epi_sim")

Format

The format is a networkDynamic object with attached attributes for vertex.pid (persistand ids),
and dynamic attributes for ndtvcol (color corresponding to infection status) and testatus (infec-
tion status of vertices)

Details

The toy_epi_sim network is example output from a basic dynamic network STERGM simulation
and trivial "SI" infection simulation generated using the EpiModel package. The model had random
("edges only") edge formation and dissolution effects, with rates calculated to lead to mean edge
durations of 10 time units. The infection simulation had an infection probability of 0.8.

The simulation was generated with the following code:

library(EpiModel)

Network Estimation (using a tergm model)
nw <- network.initialize(n = 100, directed = FALSE)
formation <- ~ edges
target.stats <- 50
dissolution <- ~ offset(edges)
coef.diss <- dissolution_coefs(dissolution, duration = 10)
est <- netest(nw,

toy_epi_sim 41

formation,
dissolution,
target.stats,
coef.diss,
verbose = FALSE)

Epidemic simulation
param <- param.net(inf.prob = 0.8)
init <- init.net(i.num = 5)
control <- control.net(type = "SI", nsteps = 25, nsims = 1, verbose =

FALSE)
sim <- netsim(est, param, init, control)

Use some of EpiModel's default coloring functions to cache colors
toy_epi_sim <- get_network(sim)
toy_epi_sim <- color_tea(toy_epi_sim)

References

Samuel Jenness, Steven M. Goodreau and Martina Morris (2015). EpiModel: Mathematical Mod-
eling of Infectious Disease. R package version 1.1.4. https://CRAN.R-project.org/package=
EpiModel

Statnet EpiModel Tutorial https://www.epimodel.org/

See Also

See also short.stergm.sim for another basic Stergm simulation output, and msm.sim for a larger
and more complex simulation without an infection process.

Examples

data(toy_epi_sim)
timeline(toy_epi_sim)
Not run:

set up layout to draw plots under timeline
layout(matrix(c(1,1,1,2,3,4),nrow=2,ncol=3,byrow=TRUE))
plot a proximity.timeline illustrating infection spread
proximity.timeline(toy_epi_sim,vertex.col = 'ndtvcol',

spline.style='color.attribute',
mode = 'sammon',default.dist=100,
chain.direction='reverse')

plot 3 static cross-sectional networks
(beginning, middle and end) underneath for comparison
plot(network.collapse(toy_epi_sim,at=1),vertex.col='ndtvcol',

main='toy_epi_sim network at t=1')
plot(network.collapse(toy_epi_sim,at=17),vertex.col='ndtvcol',

main='toy_epi_sim network at=17')
plot(network.collapse(toy_epi_sim,at=25),vertex.col='ndtvcol',

https://CRAN.R-project.org/package=EpiModel
https://CRAN.R-project.org/package=EpiModel
https://www.epimodel.org/

42 transmissionTimeline

main='toy_epi_sim network at t=25')
layout(1) # reset the layout

render an animation of the network
render.animation(toy_epi_sim,vertex.col='ndtvcol',displaylabels=FALSE)
ani.replay()

End(Not run)

transmissionTimeline plots network diffusion/transmission tree with generation time vs.
clock/model time

Description

Plots view of a network with positions determined by the timing and generation depth (previously
calculated) in a transmission tree. The horizontal axis is model time, and the vertical axis is the
number of steps from the root of the tree.

Usage

transmissionTimeline(x, time.attr,
label,
displaylabels = !missing(label),
label.cex = 0.7,
label.col = 1,
vertex.col = 2,
vertex.border = 1,
vertex.lwd = 1,
vertex.sides = 50,
vertex.cex = 1,
jitter=FALSE,
edge.col = "gray",
edge.lty = 1,
edge.lwd = 1,
xlab = "time",
ylab = "generation",
...)

Arguments

x an object than can be coerced into a network. The network must be a tree

time.attr name of a vertex attribute containing the transmission/infection/diffusion time
for each vertex

transmissionTimeline 43

label a vector of vertex labels, if desired; defaults to the vertex labels returned by
network.vertex.names. If label has one element and it matches with a vertex
attribute name, the value of the attribute will be used. Note that labels may be
set but hidden by the displaylabels argument.

displaylabels boolean; should vertex labels be displayed?

label.cex character expansion factor for label text.

label.col color for vertex labels; may be given as a vector or a vertex attribute name, if
labels are to be of different colors.

vertex.col color for vertices; may be given as a vector or a vertex attribute name, if vertices
are to be of different colors.

vertex.border border color for vertices; may be given as a vector or a vertex attribute name, if
vertex borders are to be of different colors.

vertex.lwd line width of vertex borders; may be given as a vector or a vertex attribute name,
if vertex borders are to have different line widths.

vertex.sides number of polygon sides for vertices; may be given as a vector or a vertex at-
tribute name, if vertices are to be of different types. NOTE: only values of
3,4,and 50 (circle) are used as they are translated to pch plot symbols.

vertex.cex expansion factor for vertices; may be given as a vector or a vertex attribute name,
if vertices are to be of different sizes.

jitter if TRUE, noise will be added to the coordinates with jitter to make overlapping
vertex positions more noticeable

edge.col color for edges; may be given as a vector, adjacency matrix, or edge attribute
name, if edges are to be of different colors.

edge.lty line type for edge borders; may be given as a vector, adjacency matrix, or edge
attribute name, if edge borders are to have different line types.

edge.lwd line width scale for edges; May be given as a vector or edge attribute name, if
edges are to have different line widths.

xlab y-axis plot label

ylab x-axis plot label

... additional arguments to plot (and par)

Details

Many (but not all) of the graphical arguments to plot.network can be used and are expanded in the
same way. This does not currently use the plot.network code to draw the network as non-square
plot aspect ratios would cause distortion of the vertices when drawn.

Value

produces a plot, invisibly returns the coordinates of the plot.

Author(s)

skyebend@uw.edu

44 transmissionTimeline

See Also

plot.network, proximity.timeline

Examples

an edgelist describing an infection tree
el <-cbind(c(16, 13, 13, 10, 13, 16, 10, 13, 1, 10, 8, 1, 4, 4, 2, 2),

1:16)
a vector of infection times
infectionTimes <- c(583, 494, 634, 40, 712, 701, 224, 719,

674, 0, 749, 621, 453, 665, 709, 575)
make a network object, include the infection time
infTree<-network(el,vertex.attr = list(infectionTimes),

vertex.attrnames = list('infectionTimes'))

transmissionTimeline(infTree,time.attr='infectionTimes')

Index

∗ IO
export.dot, 7
export.pajek.net, 9

∗ datasets
msm.sim, 16
stergm.sim.1, 34
toy_epi_sim, 40

∗ package
ndtv-package, 2

ani.options, 26
ani.record, 26
ani.replay, 26, 28
animation, 26

cmdscale, 23
compute.animation, 2, 3, 3, 10, 11, 19–21,

25, 27, 28, 30, 32, 33, 38, 39

effect.edgeAgeColor (effectFun), 6
effect.vertexAgeColor (effectFun), 6
effectFun, 6
effects (effectFun), 6
export.dot, 7, 20
export.pajek.net, 9

filmstrip, 2, 10

get.networks, 24

htmlwidgets, 33

install.ffmpeg, 11
install.graphviz, 12, 20
isoMDS, 23

layout.center, 14
layout.distance, 4, 5, 8, 15, 20–22
layout.normalize (layout.center), 14
lines, 37

msm.sim, 2, 16, 41

ndtv, 5
ndtv (ndtv-package), 2
ndtv-package, 2
ndtvAnimationWidget, 17
ndtvAnimationWidgetOutput

(ndtvAnimationWidget), 17
network, 2, 42
network.collapse, 22, 24
network.layout.animate, 19
network.layout.animate.Graphviz, 4, 12,

13, 24
network.layout.animate.kamadakawai, 4
network.layout.animate.MDSJ, 4, 5, 24
network.layout.animate.useAttribute, 4
network.layout.kamadakawai, 20, 21
networkDynamic, 2, 3, 10, 16, 30, 38

par, 10, 26, 31, 32, 36
plot, 32, 43
plot.default, 36, 37
plot.network, 10, 22, 25, 27, 28, 31, 32, 36,

37, 39, 43, 44
plot.network.default, 26, 27, 31
plotArgs.network, 37
proximity.timeline, 2, 22, 44

read.paj, 9
render.animation, 2, 3, 5, 6, 10, 11, 23, 25,

30, 31, 33
render.d3movie, 2, 18, 28, 30
renderNdtvAnimationWidget

(ndtvAnimationWidget), 17

sammon, 23
saveVideo, 26
scatterplot3d, 38, 39
short.stergm.sim, 2, 41
short.stergm.sim (stergm.sim.1), 34
slice.par (compute.animation), 3
stergm.sim.1, 2, 34

45

46 INDEX

text, 37
timeline, 2, 25, 35
timePrism, 38
toy_epi_sim, 2, 40
transmissionTimeline, 42

xspline, 23, 39

	ndtv-package
	compute.animation
	effectFun
	export.dot
	export.pajek.net
	filmstrip
	install.ffmpeg
	install.graphviz
	layout.center
	layout.distance
	msm.sim
	ndtvAnimationWidget
	network.layout.animate
	proximity.timeline
	render.animation
	render.d3movie
	stergm.sim.1
	timeline
	timePrism
	toy_epi_sim
	transmissionTimeline
	Index

