
Package ‘nanoparquet’
February 22, 2025

Title Read and Write 'Parquet' Files

Version 0.4.2

Description Self-sufficient reader and writer for flat 'Parquet' files.
Can read most 'Parquet' data types. Can write many 'R' data types,
including factors and temporal types. See docs for limitations.

Depends R (>= 4.0.0)

License MIT + file LICENSE

URL https://github.com/r-lib/nanoparquet,

https://nanoparquet.r-lib.org/

BugReports https://github.com/r-lib/nanoparquet/issues

Encoding UTF-8

Suggests arrow, bit64, DBI, duckdb, hms, mockery, pillar, processx,
rprojroot, spelling, testthat, tzdb, withr

RoxygenNote 7.3.2.9000

Config/testthat/edition 3

Config/Needs/website tidyverse/tidytemplate, r-lib/pkgdown, dplyr, gt,
gtExtras, knitr, nycflights13, prettyunits, quarto, rmarkdown,
sessioninfo, svglite

Language en-US

Biarch true

NeedsCompilation yes

Author Gábor Csárdi [aut, cre],
Hannes Mühleisen [aut, cph] (<https://orcid.org/0000-0001-8552-0029>),
Google Inc. [cph],
Apache Software Foundation [cph],
Posit Software, PBC [cph],
RAD Game Tools [cph],
Valve Software [cph],
Tenacious Software LLC [cph],
Facebook, Inc. [cph]

1

https://github.com/r-lib/nanoparquet
https://nanoparquet.r-lib.org/
https://github.com/r-lib/nanoparquet/issues
https://orcid.org/0000-0001-8552-0029


2 nanoparquet-package

Maintainer Gábor Csárdi <csardi.gabor@gmail.com>

Repository CRAN

Date/Publication 2025-02-22 10:50:03 UTC

Contents
nanoparquet-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
append_parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
infer_parquet_schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
nanoparquet-types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
parquet-encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
parquet_column_types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
parquet_options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
parquet_schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
read_parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
read_parquet_info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
read_parquet_metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
read_parquet_schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
write_parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Index 25

nanoparquet-package nanoparquet: Read and Write ’Parquet’ Files

Description

Self-sufficient reader and writer for flat ’Parquet’ files. Can read most ’Parquet’ data types. Can
write many ’R’ data types, including factors and temporal types. See docs for limitations.

Details

nanoparquet is a reader and writer for a common subset of Parquet files.

Features::
• Read and write flat (i.e. non-nested) Parquet files.
• Can read most Parquet data types.
• Can read a subset of columns from a Parquet file.
• Can write many R data types, including factors and temporal types to Parquet.
• Can append a data frame to a Parquet file without first reading and then rewriting the whole

file.
• Completely dependency free.
• Supports Snappy, Gzip and Zstd compression.
• Competitive with other tools in terms of speed, memory use and file size.

Limitations::

https://nanoparquet.r-lib.org/reference/nanoparquet-types.html
https://nanoparquet.r-lib.org/dev/articles/benchmarks.html


nanoparquet-package 3

• Nested Parquet types are not supported.
• Some Parquet logical types are not supported: INTERVAL, UNKNOWN.
• Only Snappy, Gzip and Zstd compression is supported.
• Encryption is not supported.
• Reading files from URLs is not supported.
• nanoparquet always reads the data (or the selected subset of it) into memory. It does not work

with out-of-memory data in Parquet files like Apache Arrow and DuckDB does.

Installation:
Install the R package from CRAN:

install.packages("nanoparquet")

Usage:
Read:
Call read_parquet() to read a Parquet file:

df <- nanoparquet::read_parquet("example.parquet")

To see the columns of a Parquet file and how their types are mapped to R types by read_parquet(),
call read_parquet_schema() first:

nanoparquet::read_parquet_schema("example.parquet")

Folders of similar-structured Parquet files (e.g. produced by Spark) can be read like this:

df <- data.table::rbindlist(lapply(
Sys.glob("some-folder/part-*.parquet"),
nanoparquet::read_parquet

))

Write:
Call write_parquet() to write a data frame to a Parquet file:

nanoparquet::write_parquet(mtcars, "mtcars.parquet")

To see how the columns of the data frame will be mapped to Parquet types by write_parquet(),
call infer_parquet_schema() first:

nanoparquet::infer_parquet_schema(mtcars)

Inspect:
Call read_parquet_info(), read_parquet_schema(), or read_parquet_metadata() to see
various kinds of metadata from a Parquet file:

• read_parquet_info() shows a basic summary of the file.
• read_parquet_schema() shows all columns, including non-leaf columns, and how they

are mapped to R types by read_parquet().
• read_parquet_metadata() shows the most complete metadata information: file meta data,

the schema, the row groups and column chunks of the file.

nanoparquet::read_parquet_info("mtcars.parquet")
nanoparquet::read_parquet_schema("mtcars.parquet")
nanoparquet::read_parquet_metadata("mtcars.parquet")

If you find a file that should be supported but isn’t, please open an issue here with a link to the
file.



4 nanoparquet-package

Options:
See also ?parquet_options() for further details.

• nanoparquet.class: extra class to add to data frames returned by read_parquet(). If it is
not defined, the default is "tbl", which changes how the data frame is printed if the pillar
package is loaded.

• nanoparquet.compression_level: See ?parquet_options() for the defaults and the pos-
sible values for each compression method. Inf selects maximum compression for each
method.

• nanoparquet.num_rows_per_row_group: The number of rows to put into a row group by
write_parquet(), if row groups are not specified explicitly. It should be an integer scalar.
Defaults to 10 million.

• nanoparquet.use_arrow_metadata: unless this is set to FALSE, read_parquet() will make
use of Arrow metadata in the Parquet file. Currently this is used to detect factor columns.

• nanoparquet.write_arrow_metadata: unless this is set to FALSE, write_parquet() will
add Arrow metadata to the Parquet file. This helps preserving classes of columns, e.g. factors
will be read back as factors, both by nanoparquet and Arrow.

• nanoparquet.write_data_page_version: Data version to write by default. Possible val-
ues are 1 and 2. Default is 1.

• nanoparquet.write_minmax_values: Whether to write minimum and maximum values per
row group, for data types that support this in write_parquet().

License:
MIT

Author(s)

Maintainer: Gábor Csárdi <csardi.gabor@gmail.com>

Authors:

• Hannes Mühleisen (ORCID) [copyright holder]

Other contributors:

• Google Inc. [copyright holder]
• Apache Software Foundation [copyright holder]
• Posit Software, PBC [copyright holder]
• RAD Game Tools [copyright holder]
• Valve Software [copyright holder]
• Tenacious Software LLC [copyright holder]
• Facebook, Inc. [copyright holder]

See Also

Useful links:

• https://github.com/r-lib/nanoparquet

• https://nanoparquet.r-lib.org/

• Report bugs at https://github.com/r-lib/nanoparquet/issues

https://orcid.org/0000-0001-8552-0029
https://github.com/r-lib/nanoparquet
https://nanoparquet.r-lib.org/
https://github.com/r-lib/nanoparquet/issues


append_parquet 5

append_parquet Append a data frame to an existing Parquet file

Description

The schema of the data frame must be compatible with the schema of the file.

Usage

append_parquet(
x,
file,
compression = c("snappy", "gzip", "zstd", "uncompressed"),
encoding = NULL,
row_groups = NULL,
options = parquet_options()

)

Arguments

x Data frame to append.

file Path to the output file.

compression Compression algorithm to use for the newly written data. See write_parquet().

encoding Encoding to use for the newly written data. It does not have to be the same as
the encoding of data in file. See write_parquet() for possible values.

row_groups Row groups of the new, extended Parquet file. append_parquet() can only
change the last existing row group, and if row_groups is specified, it has respect
this. I.e. if the existing file has n rows, and the last row group starts at k (k <=
n), then the first row group in row_groups that refers to the new data must start
at k or n+1. (It is simpler to specify num_rows_per_row_group in options, see
parquet_options() instead of row_groups. Only use row_groups if you need
complete control.)

options Nanoparquet options, for the new data, see parquet_options(). The keep_row_groups
option also affects whether append_parquet() overwrites existing row groups
in file.

Warning

This function is not atomic! If it is interrupted, it may leave the file in a corrupt state. To work
around this create a copy of the original file, append the new data to the copy, and then rename the
new, extended file to the original one.



6 infer_parquet_schema

About row groups

A Parquet file may be partitioned into multiple row groups, and indeed most large Parquet files are.
append_parquet() is only able to update the existing file along the row group boundaries. There
are two possibilities:

• append_parquet() keeps all existing row groups in file, and creates new row groups for
the new data. This mode can be forced by the keep_row_groups option in options, see
parquet_options().

• Alternatively, write_parquet will overwrite the last row group in file, with its existing con-
tents plus the (beginning of) the new data. This mode makes more sense if the last row group
is small, because many small row groups are inefficient.

By default append_parquet chooses between the two modes automatically, aiming to create row
groups with at least num_rows_per_row_group (see parquet_options()) rows. You can cus-
tomize this behavior with the keep_row_groups options and the row_groups argument.

See Also

write_parquet().

infer_parquet_schema Infer Parquet schema of a data frame

Description

Infer Parquet schema of a data frame

Usage

infer_parquet_schema(df, options = parquet_options())

Arguments

df Data frame.

options Return value of parquet_options(), may modify the R to Parquet type map-
pings.

Value

Data frame, the inferred schema. It has the same columns as the return value of read_parquet_schema():
file_name, name, r_type, type, type_length, repetition_type, converted_type, logical_type,
num_children, scale, precision, field_id.

See Also

read_parquet_schema() to read the schema of a Parquet file, parquet_schema() to create a Par-
quet schema from scratch.



nanoparquet-types 7

nanoparquet-types nanoparquet’s type maps

Description

How nanoparquet maps R types to Parquet types.

R’s data types

When writing out a data frame, nanoparquet maps R’s data types to Parquet logical types. The
following table is a summary of the mapping. For the details see below.

R type Parquet type Default Notes
character STRING (BYTE_ARRAY) x I.e. STRSXP. Converted to UTF-8.
" BYTE_ARRAY
" FIXED_LEN_BYTE_ARRAY
" ENUM
" UUID
Date DATE x
difftime INT64 x If not hms::hms. Arrow metadata marks it as Duration(NS).
factor STRING x Arrow metadata marks it as a factor.
" ENUM
hms::hms TIME(true, MILLIS) x Sub-milliseconds precision is lost.
integer INT(32, true) x I.e. INTSXP.
" INT64
" INT96
" DECIMAL (INT32)
" DECIMAL (INT64)
" INT(8, *)
" INT(16, *)
" INT(32, signed)
list BYTE_ARRAY Must be a list of raw vectors. Messing values are NULL.
" FIXED_LEN_BYTE_ARRAY Must be a list of raw vectors of the same length. Missing values are NULL.
logical BOOLEAN x I.e. LGLSXP.
numeric DOUBLE x I.e. REALSXP.
" INT96
" FLOAT
" DECIMAL (INT32)
" DECIMAL (INT64)
" INT(*, *)
" FLOAT16
POSIXct TIMESTAMP(true, MICROS) x Sub-microsecond precision is lost.

The non-default mappings can be selected via the schema argument. E.g. to write out a factor
column called ’name’ as ENUM, use



8 nanoparquet-types

write_parquet(..., schema = parquet_schema(name = "ENUM"))

The detailed mapping rules are listed below, in order of preference. These rules will likely change
until nanoparquet reaches version 1.0.0.

1. Factors (i.e. vectors that inherit the factor class) are converted to character vectors using
as.character(), then written as a STRSXP (character vector) type. The fact that a column is a
factor is stored in the Arrow metadata (see below), unless the nanoparquet.write_arrow_metadata
option is set to FALSE.

2. Dates (i.e. the Date class) is written as DATE logical type, which is an INT32 type internally.

3. hms objects (from the hms package) are written as TIME(true, MILLIS). logical type, which
is internally the INT32 Parquet type. Sub-milliseconds precision is lost.

4. POSIXct objects are written as TIMESTAMP(true, MICROS) logical type, which is internally
the INT64 Parquet type. Sub-microsecond precision is lost.

5. difftime objects (that are not hms objects, see above), are written as an INT64 Parquet
type, and noting in the Arrow metadata (see below) that this column has type Duration with
NANOSECONDS unit.

6. Integer vectors (INTSXP) are written as INT(32, true) logical type, which corresponds to the
INT32 type.

7. Real vectors (REALSXP) are written as the DOUBLE type.

8. Character vectors (STRSXP) are written as the STRING logical type, which has the BYTE_ARRAY
type. They are always converted to UTF-8 before writing.

9. Logical vectors (LGLSXP) are written as the BOOLEAN type.

10. Other vectors error currently.

You can use infer_parquet_schema() on a data frame to map R data types to Parquet data types.

To change the default R to Parquet mapping, use parquet_schema() and the schema argument of
write_parquet(). Currently supported non-default mappings are:

• integer to INT64,

• integer to INT96,

• double to INT96,

• double to FLOAT,

• character to BYTE_ARRAY,

• character to FIXED_LEN_BYTE_ARRAY,

• character to ENUM,

• factor to ENUM,

• integer to DECIAML & INT32,

• integer to DECIAML & INT64,

• double to DECIAML & INT32,

• double to DECIAML & INT64,

• integer to INT(8, *), INT(16, *), INT(32, signed),



nanoparquet-types 9

• double to INT(*, *),

• character to UUID,

• double to FLOAT16,

• list of raw vectors to BYTE_ARRAY,

• list of raw vectors to FIXED_LEN_BYTE_ARRAY.

Parquet’s data types

When reading a Parquet file nanoparquet also relies on logical types and the Arrow metadata (if
present, see below) in addition to the low level data types. The following table summarizes the
mappings. See more details below.

Parquet type R type Notes
Logical types
BSON character
DATE Date
DECIMAL numeric REALSXP, potentially losing precision.
ENUM character
FLOAT16 numeric REALSXP
INT(8, *) integer
INT(16, *) integer
INT(32, *) integer Large unsigned values may overflow!
INT(64, *) numeric REALSXP
INTERVAL list(raw) Missing values are NULL.
JSON character
LIST Not supported.
MAP Not supported.
STRING factor If Arrow metadata says it is a factor. Also UTF8.
" character Otherwise. Also UTF8.
TIME hms::hms Also TIME_MILLIS and TIME_MICROS.
TIMESTAMP POSIXct Also TIMESTAMP_MILLIS and TIMESTAMP_MICROS.
UUID character In 00112233-4455-6677-8899-aabbccddeeff form.
UNKNOWN Not supported.
Primitive types
BOOLEAN logical
BYTE_ARRAY factor If Arrow metadata says it is a factor.
" list(raw) Otherwise. Missing values are NULL.
DOUBLE numeric REALSXP
FIXED_LEN_BYTE_ARRAY list(raw) Missing values are NULL.
FLOAT numeric REALSXP
INT32 integer
INT64 numeric REALSXP
INT96 POSIXct

The exact rules are below. These rules will likely change until nanoparquet reaches version 1.0.0.

1. The BOOLEAN type is read as a logical vector (LGLSXP).



10 nanoparquet-types

2. The STRING logical type and the UTF8 converted type is read as a character vector with UTF-8
encoding.

3. The DATE logical type and the DATE converted type are read as a Date R object.

4. The TIME logical type and the TIME_MILLIS and TIME_MICROS converted types are read as an
hms object, see the hms package.

5. The TIMESTAMP logical type and the TIMESTAMP_MILLIS and TIMESTAMP_MICROS converted
types are read as POSIXct objects. If the logical type has the UTC flag set, then the time zone
of the POSIXct object is set to UTC.

6. INT32 is read as an integer vector (INTSXP).

7. INT64, DOUBLE and FLOAT are read as real vectors (REALSXP).

8. INT96 is read as a POSIXct read vector with the tzone attribute set to "UTC". It was an old
convention to store time stamps as INT96 objects.

9. The DECIMAL converted type (FIXED_LEN_BYTE_ARRAY or BYTE_ARRAY type) is read as a real
vector (REALSXP), potentially losing precision.

10. The ENUM logical type is read as a character vector.

11. The UUID logical type is read as a character vector that uses the 00112233-4455-6677-8899-aabbccddeeff
form.

12. The FLOAT16 logical type is read as a real vector (REALSXP).

13. BYTE_ARRAY is read as a factor object if the file was written by Arrow and the original data
type of the column was a factor. (See ’The Arrow metadata below.)

14. Otherwise BYTE_ARRAY is read a list of raw vectors, with missing values denoted by NULL.

Other logical and converted types are read as their annotated low level types:

1. INT(8, true), INT(16, true) and INT(32, true) are read as integer vectors because they
are INT32 internally in Parquet.

2. INT(64, true) is read as a real vector (REALSXP).

3. Unsigned integer types INT(8, false), INT(16, false) and INT(32, false) are read as
integer vectors (INTSXP). Large positive values may overflow into negative values, this is a
known issue that we will fix.

4. INT(64, false) is read as a real vector (REALSXP). Large positive values may overflow into
negative values, this is a known issue that we will fix.

5. INTERVAL is a fixed length byte array, and nanoparquet reads it as a list of raw vectors. Missing
values are denoted by NULL.

6. JSON columns are read as character vectors (STRSXP).

7. BSON columns are read as raw vectors (RAWSXP).

These types are not yet supported:

1. Nested types (LIST, MAP) are not supported.

2. The UNKNOWN logical type is not supported.

You can use the read_parquet_schema() function to see how R would read the columns of a
Parquet file. Look at the r_type column.



parquet-encodings 11

The Arrow metadata

Apache Arrow (i.e. the arrow R package) adds additional metadata to Parquet files when writing
them in arrow::write_parquet(). Then, when reading the file in arrow::read_parquet(), it
uses this metadata to recreate the same Arrow and R data types as before writing.

nanoparquet::write_parquet() also adds the Arrow metadata to Parquet files, unless the nanoparquet.write_arrow_metadata
option is set to FALSE.

Similarly, nanoparquet::read_parquet() uses the Arrow metadata in the Parquet file (if present),
unless the nanoparquet.use_arrow_metadata option is set to FALSE.

The Arrow metadata is stored in the file level key-value metadata, with key ARROW:schema.

Currently nanoparquet uses the Arrow metadata for two things:

• It uses it to detect factors. Without the Arrow metadata factors are read as string vectors.

• It uses it to detect difftime objects. Without the arrow metadata these are read as INT64
columns, containing the time difference in nanoseconds.

See Also

nanoparquet-package for options that modify the type mappings.

parquet-encodings Parquet encodings

Description

Various Parquet encodings

Nanoparquet defaults

Currently the defaults are decided based on the R types. This might change in the future. In general,
the defaults will likely change until nanoparquet reaches version 1.0.0.

Current encoding defaults:

• Definition levels always use RLE. (Nanoparquet does not currently write repetition levels, but
they’ll also use RLE, once implemented.)

• factor columns use RLE_DICTIONARY.

• logical columns use RLE if the average run length of the first 10,000 values is at least 15.
Otherwise they use the PLAIN encoding.

• integer, double and character columns use RLE_DICTIONARY if at least two third of their
values are repeated. Otherwise they use PLAIN encoding.

• list columns of raw vectors always use the PLAIN encoding currently.



12 parquet-encodings

Parquet encodings

See https://github.com/apache/parquet-format/blob/master/Encodings.md for more de-
tails on Parquet encodings.

PLAIN encoding:
Supported types: all.
In general values are written back to back:

• Integer types are little endian.
• Floating point types follow the IEEE standard.
• BYTE_ARRAY: for each element, there is a little endian 4-byte length and then the bytes them-

selves.
• FIXED_LEN_BYTE_ARRAY: bytes are written back to back.

Nanoparquet can read and write this encoding for all primitive types.

RLE_DICTIONARY encoding:
Supported types: dictionary indices in data pages.
This encoding combines run-length encoding and bit-packing. Repeated sequences of the same
value can be run-length encoded, and non-repeated parts are bit packed. It is used for data pages
of dictionaries. The dictionary pages themselves are PLAIN encoded.
The deprecated PLAIN_DICTIONARY name is treated the same as RLE_DICTIONARY.
Nanoparquet can read and write this encoding.

RLE encoding:
Supported types: BOOLEAN. Also for definition and repetition levels.
This is the same encoding as RLE_DICTIONARY, with a slightly different header. It combines run-
length encoding and bit packing. It is used for BOOLEAN columns, and also for definition and
repetition levels.
Nanoparquet can read and write this encoding.

BIT_PACKED encoding (deprecated in favor of RLE):
Supported types: none. Only for definition and repetition levels, but RLE should be used instead.
This is a simple bit packing encoding for integers, that was previously used for encoding definition
and repetition levels. It is not used in new Parquet files because the the RLE encoding includes it
and it is better.
Nanoparquet currently cannot read or write the BIT_PACKED encoding.

DELTA_BINARY_PACKED encoding:
Supported types: INT32, INT64.
This encoding efficiently encodes integer columns if the differences between consecutive elements
are often the same, and/or the differences between consecutive elements are small. The extreme
case of an arithmetic sequence can be encoded in O(1) space.
Nanoparquet can read this encoding, but cannot currently write it.

DELTA_LENGTH_BYTE_ARRAY encoding:
Supported types: BYTE_ARRAY.
This encoding uses DELTA_BINARY_PACKED to encode the length of all byte array elements. It is
especially efficient for short byte array elements, i.e. a column of short strings.
Nanoparquet can read this encoding, but cannot currently write it.

https://github.com/apache/parquet-format/blob/master/Encodings.md


parquet_column_types 13

DELTA_BYTE_ARRAY encoding:
Supported types: BYTE_ARRAY, FIXED_LEN_BYTE_ARRAY.
This encoding is efficient if consecutive byte array elements share the same prefix, because each
element can reuse a prefix of the previous element.
Nanoparquet can read this encoding, but cannot currently write it.

BYTE_STREAM_SPLIT encoding:
Supported types: FLOAT, DOUBLE, INT32, INT64, FIXED_LEN_BYTE_ARRAY.
This encoding stores the first bytes of the elements first, then the second bytes, etc. It does not
reduce the size in itself, but may allow more efficient compression.
Nanoparquet can read this encoding, but cannot currently write it.

See Also

write_parquet() on how to select a non-default encoding when writing Parquet files.

parquet_column_types Map between R and Parquet data types

Description

Note that this function is now deprecated. Please use read_parquet_schema() for files, and
infer_parquet_schema() for data frames.

Usage

parquet_column_types(x, options = parquet_options())

Arguments

x Path to a Parquet file, or a data frame.

options Nanoparquet options, see parquet_options().

Details

This function works two ways. It can map the R types of a data frame to Parquet types, to see how
write_parquet() would write out the data frame. It can also map the types of a Parquet file to R
types, to see how read_parquet() would read the file into R.

Value

Data frame with columns:

• file_name: file name.

• name: column name.

• type: (low level) Parquet data type.



14 parquet_options

• r_type: the R type that corresponds to the Parquet type. Might be NA if read_parquet()
cannot read this column. See nanoparquet-types for the type mapping rules.

• repetition_type: whether the column in REQUIRED (cannot be NA) or OPTIONAL (may be
NA). REPEATED columns are not currently supported by nanoparquet.

• logical_type: Parquet logical type in a list column. An element has at least an entry called
type, and potentially additional entries, e.g. bit_width, is_signed, etc.

See Also

read_parquet_metadata() to read more metadata, read_parquet_info() for a very short sum-
mary. read_parquet_schema() for the complete Parquet schema. read_parquet(), write_parquet(),
nanoparquet-types.

parquet_options Nanoparquet options

Description

Create a list of nanoparquet options.

Usage

parquet_options(
class = getOption("nanoparquet.class", "tbl"),
compression_level = getOption("nanoparquet.compression_level", NA_integer_),
keep_row_groups = FALSE,
num_rows_per_row_group = getOption("nanoparquet.num_rows_per_row_group", 10000000L),
use_arrow_metadata = getOption("nanoparquet.use_arrow_metadata", TRUE),
write_arrow_metadata = getOption("nanoparquet.write_arrow_metadata", TRUE),
write_data_page_version = getOption("nanoparquet.write_data_page_version", 1L),
write_minmax_values = getOption("nanoparquet.write_minmax_values", TRUE)

)

Arguments

class The extra class or classes to add to data frames created in read_parquet(). By
default nanoparquet adds the "tbl" class, so data frames are printed differently
if the pillar package is loaded.

compression_level

The compression level in write_parquet(). NA is the default, and it specifies
the default compression level of each method. Inf always selects the highest
possible compression level. More details:

• Snappy does not support compression levels currently.
• GZIP supports levels from 0 (uncompressed), 1 (fastest), to 9 (best). The

default is 6.



parquet_options 15

• ZSTD allows positive levels up to 22 currently. 20 and above require more
memory. Negative levels are also allowed, the lower the level, the faster the
speed, at the cost of compression. Currently the smallest level is -131072.
The default level is 3.

keep_row_groups

This option is used when appending to a Parquet file with append_parquet().
If TRUE then the existing row groups of the file are always kept as is and nanopar-
quet creates new row groups for the new data. If FALSE (the default), then the
last row group of the file will be overwritten if it is smaller than the default row
group size, i.e. num_rows_per_row_group.

num_rows_per_row_group

The number of rows to put into a row group, if row groups are not specified
explicitly. It should be an integer scalar. Defaults to 10 million.

use_arrow_metadata

TRUE or FALSE. If TRUE, then read_parquet() and read_parquet_schema()
will make use of the Apache Arrow metadata to assign R classes to Parquet
columns. This is currently used to detect factor columns, and to detect "difftime"
columns.
If this option is FALSE:

• "factor" columns are read as character vectors.
• "difftime" columns are read as real numbers, meaning one of seconds, mil-

liseconds, microseconds or nanoseconds. Impossible to tell which without
using the Arrow metadata.

write_arrow_metadata

Whether to add the Apache Arrow types as metadata to the file write_parquet().
write_data_page_version

Data version to write by default. Possible values are 1 and 2. Default is 1.
write_minmax_values

Whether to write minimum and maximum values per row group, for data types
that support this in write_parquet(). However, nanoparquet currently does
not support minimum and maximum values for the DECIMAL, UUID and FLOAT16
logical types and the BOOLEAN, BYTE_ARRAY and FIXED_LEN_BYTE_ARRAY prim-
itive types if they are writing without a logical type. Currently the default is
TRUE.

Value

List of nanoparquet options.

Examples

# the effect of using Arrow metadata
tmp <- tempfile(fileext = ".parquet")
d <- data.frame(

fct = as.factor("a"),
dft = as.difftime(10, units = "secs")

)
write_parquet(d, tmp)



16 parquet_schema

read_parquet(tmp, options = parquet_options(use_arrow_metadata = TRUE))
read_parquet(tmp, options = parquet_options(use_arrow_metadata = FALSE))

parquet_schema Create a Parquet schema

Description

You can use this schema to specify how to write out a data frame to a Parquet file with write_parquet().

Usage

parquet_schema(...)

Arguments

... Parquet type specifications, see below. For backwards compatibility, you can
supply a file name here, and then parquet_schema behaves as read_parquet_schema().

Details

A schema is a list of potentially named type specifications. A schema is stored in a data frame.
Each (potentially named) argument of parquet_schema may be a character scalar, or a list. Param-
eterized types need to be specified as a list. Primitive Parquet types may be specified as a string or
a list.

Value

Data frame with the same columns as read_parquet_schema(): file_name, name, r_type, type,
type_length, repetition_type, converted_type, logical_type, num_children, scale, precision,
field_id.

Possible types:

Special type:

• "AUTO": this is not a Parquet type, but it tells write_parquet() to map the R type to Parquet
automatically, using the default mapping rules.

Primitive Parquet types:

• "BOOLEAN"

• "INT32"

• "INT64"

• "INT96"

• "FLOAT"

• "DOUBLE"



parquet_schema 17

• "BYTE_ARRAY"

• "FIXED_LEN_BYTE_ARRAY": fixed-length byte array. It needs a type_length parameter, an
integer between 0 and 2^31-1.

Parquet logical types:

• "STRING"

• "ENUM"

• "UUID"

• "INTEGER": signed or unsigned integer. It needs a bit_width and an is_signed parameter.
bit_width must be 8, 16, 32 or 64. is_signed must be TRUE or FALSE.

• "INT": same as "INTEGER". The Parquet documentation uses "INT", but the actual specifica-
tion uses "INTEGER". Both are supported in nanoparquet.

• "DECIMAL": decimal number of specified scale and precision. It needs the precision and
primitive_type parameters. Also supports the scale parameter, it defaults to zero if not
specified.

• "FLOAT16"

• "DATE"

• "TIME": needs an is_adjusted_utc (TRUE or FALSE) and a unit parameter. unit must be
"MILLIS", "MICROS" or "NANOS".

• "TIMESTAMP": needs an is_adjusted_utc (TRUE or FALSE) and a unit parameter. unit must
be "MILLIS", "MICROS" or "NANOS".

• "JSON"

• "BSON"

Logical types MAP, LIST and UNKNOWN are not supported currently.
Converted types are deprecated in the Parquet specification in favor of logical types, but parquet_schema()
accepts some converted types as a syntactic shortcut for the corresponding logical types:

• INT_8 mean list("INT", bit_width = 8, is_signed = TRUE).
• INT_16 mean list("INT", bit_width = 16, is_signed = TRUE).
• INT_32 mean list("INT", bit_width = 32, is_signed = TRUE).
• INT_64 mean list("INT", bit_width = 64, is_signed = TRUE).
• TIME_MICROS means list("TIME", is_adjusted_utc = TRUE, unit = "MICROS").
• TIME_MILLIS means list("TIME", is_adjusted_utc = TRUE, unit = "MILLIS").
• TIMESTAMP_MICROS means list("TIMESTAMP", is_adjusted_utc = TRUE, unit = "MICROS").
• TIMESTAMP_MILLIS means list("TIMESTAMP", is_adjusted_utc = TRUE, unit = "MILLIS").
• UINT_8 means list("INT", bit_width = 8, is_signed = FALSE).
• UINT_16 means list("INT", bit_width = 16, is_signed = FALSE).
• UINT_32 means list("INT", bit_width = 32, is_signed = FALSE).
• UINT_64 means list("INT", bit_width = 64, is_signed = FALSE).

Missing values:
Each type might also have a repetition_type parameter, with possible values "REQUIRED",
"OPTIONAL" or "REPEATED". "REQUIRED" columns do not allow missing values. Missing val-
ues are allowed in "OPTIONAL" columns. "REPEATED" columns are currently not supported in
write_parquet().



18 read_parquet

Examples

parquet_schema(
c1 = "INT32",
c2 = list("INT", bit_width = 64, is_signed = TRUE),
c3 = list("STRING", repetition_type = "OPTIONAL")

)

read_parquet Read a Parquet file into a data frame

Description

Converts the contents of the named Parquet file to a R data frame.

Usage

read_parquet(file, col_select = NULL, options = parquet_options())

Arguments

file Path to a Parquet file. It may also be an R connection, in which case it first
reads all data from the connection, writes it into a temporary file, then reads the
temporary file, and deletes it. The connection might be open, it which case it
must be a binary connection. If it is not open, then read_parquet() will open
it and also close it in the end.

col_select Columns to read. It can be a numeric vector of column indices, or a character
vector of column names. It is an error to select the same column multiple times.
The order of the columns in the result is the same as the order in col_select.

options Nanoparquet options, see parquet_options().

Value

A data.frame with the file’s contents.

See Also

See write_parquet() to write Parquet files, nanoparquet-types for the R <-> Parquet type map-
ping. See read_parquet_info(), for general information, read_parquet_schema() for informa-
tion about the columns, and read_parquet_metadata() for the complete metadata.

Examples

file_name <- system.file("extdata/userdata1.parquet", package = "nanoparquet")
parquet_df <- nanoparquet::read_parquet(file_name)
print(str(parquet_df))



read_parquet_info 19

read_parquet_info Short summary of a Parquet file

Description

Short summary of a Parquet file

Usage

read_parquet_info(file)

parquet_info(file)

Arguments

file Path to a Parquet file.

Value

Data frame with columns:

• file_name: file name.

• num_cols: number of (leaf) columns.

• num_rows: number of rows.

• num_row_groups: number of row groups.

• file_size: file size in bytes.

• parquet_version: Parquet version.

• created_by: A string scalar, usually the name of the software that created the file. NA if not
available.

See Also

read_parquet_metadata() to read more metadata, read_parquet_schema() for column infor-
mation. read_parquet(), write_parquet(), nanoparquet-types.



20 read_parquet_metadata

read_parquet_metadata Read the metadata of a Parquet file

Description

This function should work on all files, even if read_parquet() is unable to read them, because of
an unsupported schema, encoding, compression or other reason.

Usage

read_parquet_metadata(file, options = parquet_options())

parquet_metadata(file)

Arguments

file Path to a Parquet file.

options Options that potentially alter the default Parquet to R type mappings, see parquet_options().

Value

A named list with entries:

• file_meta_data: a data frame with file meta data:

– file_name: file name.
– version: Parquet version, an integer.
– num_rows: total number of rows.
– key_value_metadata: list column of a data frames with two character columns called
key and value. This is the key-value metadata of the file. Arrow stores its schema here.

– created_by: A string scalar, usually the name of the software that created the file.

• schema: data frame, the schema of the file. It has one row for each node (inner node or leaf
node). For flat files this means one root node (inner node), always the first one, and then one
row for each "real" column. For nested schemas, the rows are in depth-first search order. Most
important columns are:

– file_name: file name.
– name: column name.
– r_type: the R type that corresponds to the Parquet type. Might be NA if read_parquet()

cannot read this column. See nanoparquet-types for the type mapping rules.
– r_type:
– type: data type. One of the low level data types.
– type_length: length for fixed length byte arrays.
– repettion_type: character, one of REQUIRED, OPTIONAL or REPEATED.
– logical_type: a list column, the logical types of the columns. An element has at least

an entry called type, and potentially additional entries, e.g. bit_width, is_signed, etc.



read_parquet_metadata 21

– num_children: number of child nodes. Should be a non-negative integer for the root
node, and NA for a leaf node.

• $row_groups: a data frame, information about the row groups. Some important columns:

– file_name: file name.
– id: row group id, integer from zero to number of row groups minus one.
– total_byte_size: total uncompressed size of all column data.
– num_rows: number of rows.
– file_offset: where the row group starts in the file. This is optional, so it might be NA.
– total_compressed_size: total byte size of all compressed (and potentially encrypted)

column data in this row group. This is optional, so it might be NA.
– ordinal: ordinal position of the row group in the file, starting from zero. This is optional,

so it might be NA. If NA, then the order of the row groups is as they appear in the metadata.
• $column_chunks: a data frame, information about all column chunks, across all row groups.

Some important columns:

– file_name: file name.
– row_group: which row group this chunk belongs to.
– column: which leaf column this chunks belongs to. The order is the same as in $schema,

but only leaf columns (i.e. columns with NA children) are counted.
– file_path: which file the chunk is stored in. NA means the same file.
– file_offset: where the column chunk begins in the file.
– type: low level parquet data type.
– encodings: encodings used to store this chunk. It is a list column of character vec-

tors of encoding names. Current possible encodings: "PLAIN", "GROUP_VAR_INT",
"PLAIN_DICTIONARY", "RLE", "BIT_PACKED", "DELTA_BINARY_PACKED", "DELTA_LENGTH_BYTE_ARRAY",
"DELTA_BYTE_ARRAY", "RLE_DICTIONARY", "BYTE_STREAM_SPLIT".

– path_in_scema: list column of character vectors. It is simply the path from the root
node. It is simply the column name for flat schemas.

– codec: compression codec used for the column chunk. Possible values are: "UNCOM-
PRESSED", "SNAPPY", "GZIP", "LZO", "BROTLI", "LZ4", "ZSTD".

– num_values: number of values in this column chunk.
– total_uncompressed_size: total uncompressed size in bytes.
– total_compressed_size: total compressed size in bytes.
– data_page_offset: absolute position of the first data page of the column chunk in the

file.
– index_page_offset: absolute position of the first index page of the column chunk in the

file, or NA if there are no index pages.
– dictionary_page_offset: absolute position of the first dictionary page of the column

chunk in the file, or NA if there are no dictionary pages.
– null_count: the number of missing values in the column chunk. It may be NA.
– min_value: list column of raw vectors, the minimum value of the column, in binary. If
NULL, then then it is not specified. This column is experimental.

– max_value: list column of raw vectors, the maximum value of the column, in binary. If
NULL, then then it is not specified. This column is experimental.



22 read_parquet_schema

– is_min_value_exact: whether the minimum value is an actual value of a column, or a
bound. It may be NA.

– is_max_value_exact: whether the maximum value is an actual value of a column, or a
bound. It may be NA.

See Also

read_parquet_info() for a much shorter summary. read_parquet_schema() for column infor-
mation. read_parquet() to read, write_parquet() to write Parquet files, nanoparquet-types for
the R <-> Parquet type mappings.

Examples

file_name <- system.file("extdata/userdata1.parquet", package = "nanoparquet")
nanoparquet::read_parquet_metadata(file_name)

read_parquet_schema Read the schema of a Parquet file

Description

This function should work on all files, even if read_parquet() is unable to read them, because of
an unsupported schema, encoding, compression or other reason.

Usage

read_parquet_schema(file, options = parquet_options())

Arguments

file Path to a Parquet file.

options Return value of parquet_options(), options that potentially modify the Par-
quet to R type mappings.

Value

Data frame, the schema of the file. It has one row for
each node (inner node or leaf node). For flat files this means one
root node (inner node), always the first one, and then one row for
each "real" column. For nested schemas, the rows are in depth-first
search order. Most important columns are:
- `file_name`: file name.
- `name`: column name.
- `r_type`: the R type that corresponds to the Parquet type.

Might be `NA` if [read_parquet()] cannot read this column. See
[nanoparquet-types] for the type mapping rules.

- `type`: data type. One of the low level data types.



write_parquet 23

- `type_length`: length for fixed length byte arrays.
- `repettion_type`: character, one of `REQUIRED`, `OPTIONAL` or
`REPEATED`.

- `logical_type`: a list column, the logical types of the columns.
An element has at least an entry called `type`, and potentially
additional entries, e.g. `bit_width`, `is_signed`, etc.

- `num_children`: number of child nodes. Should be a non-negative
integer for the root node, and `NA` for a leaf node.

See Also

read_parquet_metadata() to read more metadata, read_parquet_info() to show only basic
information. read_parquet(), write_parquet(), nanoparquet-types.

write_parquet Write a data frame to a Parquet file

Description

Writes the contents of an R data frame into a Parquet file.

Usage

write_parquet(
x,
file,
schema = NULL,
compression = c("snappy", "gzip", "zstd", "uncompressed"),
encoding = NULL,
metadata = NULL,
row_groups = NULL,
options = parquet_options()

)

Arguments

x Data frame to write.

file Path to the output file. If this is the string ":raw:", then the data frame is written
to a memory buffer, and the memory buffer is returned as a raw vector.

schema Parquet schema. Specify a schema to tweak the default nanoparquet R -> Par-
quet type mappings. Use parquet_schema() to create a schema that you can
use here, or read_parquet_schema() to use the schema of a Parquet file.

compression Compression algorithm to use. Currently "snappy" (the default), "gzip", "zstd",
and "uncompressed" are supported.

encoding Encoding to use. Possible values:



24 write_parquet

• If NULL, the appropriate encoding is selected automatically: RLE or PLAIN
for BOOLEAN columns, RLE_DICTIONARY for other columns with many re-
peated values, and PLAIN otherwise.

• If It is a single (unnamed) character string, then it’ll be used for all columns.
• If it is an unnamed character vector of encoding names of the same length

as the number of columns in the data frame, then those encodings will be
used for each column.

• If it is a named character vector, then the named must be unique and each
name must match a column name, to specify the encoding of that column.
The special empty name ("") applies to the rest of the columns. If there is
no empty name, the rest of the columns will use the default encoding.

If NA_character_ is specified for a column, the default encoding is used for the
column.
If a specified encoding is invalid for a certain column type, or nanoparquet does
not implement it, write_parquet() throws an error.
Currently write_parquet() supports the following encodings:

• PLAIN for all column types,
• PLAIN_DICTIONARY and RLE_DICTIONARY for all column types,
• RLE for BOOLEAN columns.

See parquet-encodings for more about encodings.

metadata Additional key-value metadata to add to the file. This must be a named character
vector, or a data frame with columns character columns called key and value.

row_groups Row groups of the Parquet file. If NULL, then the num_rows_per_row_group
option is used from the options argument, see parquet_options(). Otherwise
it must be an integer vector, specifying the starts of the row groups.

options Nanoparquet options, see parquet_options().

Details

write_parquet() converts string columns to UTF-8 encoding by calling base::enc2utf8(). It
does the same for factor levels.

Value

NULL, unless file is ":raw:", in which case the Parquet file is returned as a raw vector.

See Also

read_parquet_metadata(), read_parquet().

Examples

# add row names as a column, because `write_parquet()` ignores them.
mtcars2 <- cbind(name = rownames(mtcars), mtcars)
write_parquet(mtcars2, "mtcars.parquet")



Index

append_parquet, 5
append_parquet(), 5, 15

base::enc2utf8(), 24

infer_parquet_schema, 6
infer_parquet_schema(), 8, 13

nanoparquet (nanoparquet-package), 2
nanoparquet-package, 2, 11
nanoparquet-types, 7, 14, 18–20, 22, 23

parquet-encodings, 11, 24
parquet_column_types, 13
parquet_info (read_parquet_info), 19
parquet_metadata

(read_parquet_metadata), 20
parquet_options, 14
parquet_options(), 5, 6, 13, 18, 20, 22, 24
parquet_schema, 16
parquet_schema(), 6, 8, 23

read_parquet, 18
read_parquet(), 13–15, 19, 20, 22–24
read_parquet_info, 19
read_parquet_info(), 14, 18, 22, 23
read_parquet_metadata, 20
read_parquet_metadata(), 14, 18, 19, 23,

24
read_parquet_schema, 22
read_parquet_schema(), 6, 10, 13–16, 18,

19, 22, 23

write_parquet, 23
write_parquet(), 5, 6, 8, 13–19, 22, 23

25


	nanoparquet-package
	append_parquet
	infer_parquet_schema
	nanoparquet-types
	parquet-encodings
	parquet_column_types
	parquet_options
	parquet_schema
	read_parquet
	read_parquet_info
	read_parquet_metadata
	read_parquet_schema
	write_parquet
	Index

