Package 'mvDFA'

June 15, 2023

Type Package

Title Multivariate Detrended Fluctuation Analysis

Description This R package provides an implementation of multivariate extensions of a wellknown fractal analysis technique, Detrended Fluctuations Analysis (DFA; Peng et al., 1995<doi:10.1063/1.166141>), for multivariate time series: multivariate DFA (mvDFA). Several coefficients are implemented that take into account the correlation structure of the multivariate time series to varying degrees. These coefficients may be used to analyze long memory and changes in the dynamic structure that would by univariate DFA. Therefore, this R package aims to extend and complement the original univariate DFA (Peng et al., 1995) for estimating the scaling properties of nonstationary time series.

Version 0.0.4

Author Julien Patrick Irmer [aut, cre, cph] (<https://orcid.org/0000-0002-7544-6483>), Sebastian Wallot [aut, ctb]

Maintainer Julien Patrick Irmer <jirmer@psych.uni-frankfurt.de>

URL https://github.com/jpirmer/mvDFA

BugReports https://github.com/jpirmer/mvDFA/issues

License GPL-3

Imports longmemo, stats, pbapply, deSolve, RobPer, mvtnorm, pracma

Encoding UTF-8

RoxygenNote 7.2.3

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-06-15 17:40:02 UTC

R topics documented:

A	. 2
DFA	. 3
nt.DFA	. 5
ıt.mvDFA	. 5
ulate_cMTS	. 6
ulate_Lorenz_noise	. 7
ulate_MTS_mixed_white_pink_brown	. 9
	- 11

Index

DFA

Analyze univariate time series and estimate long memory using Detrended Fluctuations Analysis (DFA; Peng et al., 1995)

Description

Analyze univariate time series and estimate long memory using Detrended Fluctuations Analysis (DFA; Peng et al., 1995)

Usage

```
DFA(X, steps = 50, brownian = FALSE, degree = 1, verbose = TRUE, cores = 1)
```

Arguments

Х	Univariate time series.
steps	Maximum number of window sizes. These are spread logarithmically. If time series is short and steps is large, fewer window sizes are drawn. Default to 50.
brownian	Indicator whether time series is assumed to be brownian (i.e. variance increases proportional to time)
degree	The maximum order of the detrending polynomial in the segments. This influences the smallest window size minS such that minS = degree + 2.
verbose	Indicator whether additional info should be printed. Default to TRUE.
cores	Number of cores used in computation. Default to 1.

Value

Returns list of Root Mean Squares per window size RMS_s, the window sizes S and the estimated long memory coefficient L - the Hurst Exponent.

References

Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos, 5, 82–87. <doi:10.1063/1.166141>

mvDFA

Examples

m∨DFA	Analyze multivariate correlated time series and estimate long mem-
	ory by the extension of the using univariate Detrended Fluctuations
	Analysis (DFA; Peng et al., 1995) to multivariate time series: mvDFA

Description

Analyze multivariate correlated time series and estimate long memory by the extension of the using univariate Detrended Fluctuations Analysis (DFA; Peng et al., 1995) to multivariate time series: mvDFA

Usage

```
mvDFA(
    X,
    steps = 50,
    degree = 1,
    verbose = FALSE,
    cores = 1,
    covlist = FALSE,
    brownian = FALSE
)
```

Х	Matrix or data.frame containing the time series in long format.
steps	Maximum number of window sizes. These are spread logarithmically. If time series is short and steps is large, fewer window sizes are drawn. Default to 50. The dimensions $(ncol(X))$ and the degree influence the smallest possible window size.
degree	The maximum order of the detrending polynomial in the segments. This influences the smallest window size minS such that $minS = d + degree + 2$, where d is the dimension of the time series.
verbose	Indicator whether additional info should be printed. Default to TRUE.
cores	Number of cores used in computation. Default to 1.
covlist	Indicator whether covariance of the time series per window size should be saved in a list.
brownian	Indicator whether time series are assumed to be brownian (i.e. variance increases proportional to time)

An object of class mvDFA containing long memory coefficients (Hurst exponents) and corresponding further informations:

the estimated long memory coefficient for the multivariate time series using the total variance approach
the generalized approach
the average covariance approach
average Hurst exponent across all time series
univariate Hurst exponents
R-squared of total variance approach in regression of log10(RMS) vs log10(S)
R-squared of generalized variance approach in regression of log10(RMS) vs $\mbox{log10}(S)$
R-squared of covariance approach in regression of log10(RMS) vs log10(S)
average R-squared across all time series in regression of log10(RMS) vs log10(S)
A
R-squares of single time series approach in regression of $log10 (RMS) vs log10 (S)$
a list of Root Mean Squares per window size corresponding to the total variance approach
a list of Root Mean Squares per window size corresponding to the total general- ized approach
a list of Root Mean Squares per window size corresponding to the covariance approach
window sizes used
a list of covariance matrices per S may be returned

References

Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time-series. Chaos, 5, 82–87. <doi:10.1063/1.166141>

Examples

print.DFA

Description

print object of class DFA

Usage

S3 method for class 'DFA'
print(x, ...)

Arguments

Х	object of class DFA to print.
	further parameters.

Value

Truncates the output printed into the console of objects of class DFA, but does not change object itself.

print.mvDFA print object of class mvDFA

Description

print object of class mvDFA

Usage

S3 method for class 'mvDFA'
print(x, ...)

Arguments

Х	object of class DFA to print.
	further parameters.

Value

Truncates the output printed into the console of objects of class mvDFA, but does not change object itself.

```
simulate_cMTS
```

Description

Approximation of correlated time series with given "Hurst" exponents. Internally longmemo::simFGN0 or longmemo::simFGN.fft are used which simulate Gaussian series by generating fractional ARIMA(0,h,0) models (with \$h=H-1/2\$, longmemo::FGN0), or fractional Gaussian noise longmemo::FGN.fft. We cautiously note that we use empirical scaling (i.e., the variances are scaled to be 1 in the sample not the population), hence the between sample variance may be underrepresented. We further note that the covariance estimates for correlated time series (not using increments) is unstable.

Usage

```
simulate_cMTS(
    N,
    H,
    Sigma,
    simulation_process = "FGN0",
    decomposition = "chol",
    cor_increments = TRUE,
    X0 = rep(0, ncol(Sigma))
)
```

Ν	Length of Times Series
Н	Hurst Exponents for d time series. These are then mixed using one of two dif- ferent decompositions of the given covariance matrix Sigma.
Sigma	Positive semi definite covariance matrix of desired multi-dimensional time series.
simulation_proc	ess
	The simulation process passed to the longmemo::sim function. Can either be longmemo::simFGN.fft (using FFT) or longmemo::simFGN0 (using fractional gaussian processes). FGN0 looks more like rnorm, when H=0.5. DEFAULT to "FGN0". Use simulation_process="FGN.fft" to use the FFT based version.
decomposition	Character whether the Cholesky decomposition "chol" (or "cholesky") should be used or whether the eigen decomposition should be used (decomposition = "eigen"). DEFAULT to "chol".
cor_increments	Logical, whether to correlate the increments or the time series themselves. Default to \ensuremath{TRUE} .
X0	Starting values for the time series if increments are correlated. Default to rep(0, ncol(Sigma)), i.e., the zero vector of required length.

Returns a multivariate correlated time series with covariance matrix Sigma. The Hurst exponents are only approximating the univariate ones, since they result from mixed time series. Uncorrelated time series keep their univariate Hurst exponents H.

Examples

simulate_Lorenz_noise Simulate the Lorenz System with noise

Description

Simulate the Lorenz System with noise

Usage

```
simulate_Lorenz_noise(
 N = 1000,
 delta_t = NULL,
  tmax = 50,
 X0 = 0,
  Y0 = 1,
 Z0 = 1,
  sdX = NULL,
  sdY = NULL,
  sdZ = NULL,
  sdnoiseX,
  sdnoiseY,
  sdnoiseZ,
 s = 10,
 r = 28,
 b = 8/3,
 naive = FALSE,
  return_time = TRUE
)
```

Ν	Length of Times Series
delta_t	Step size for time scale. If NULL this is derived using N and tmax. DEFAULT to NULL.

tmax	Upper bound of the time scale. This argument is ignored if delta_t is provided. DEFAULT to 50.
XØ	Initial value for X at t=0. DEFAULT to 0 .
YØ	Initial value for Y at $t=0$. DEFAULT to 1.
Z0	Initial value for Z at $t=0$. DEFAULT to 1.
sdX	Use this argument to rescale the X-coordinate to have the desired standard devi- ation (exactly). This is ignored if set to NULL. DEFAULT to NULL.
sdY	Use this argument to rescale the Y-coordinate to have the desired standard devi- ation (exactly). This is ignored if set to NULL. DEFAULT to NULL.
sdZ	Use this argument to rescale the Z-coordinate to have the desired standard devi- ation (exactly). This is ignored if set to NULL. DEFAULT to NULL.
sdnoiseX	Standard deviation of Gaussian noise of X-coordinate. If set to 0, no noise is created.
sdnoiseY	Standard deviation of Gaussian noise of Y-coordinate. If set to 0, no noise is created.
sdnoiseZ	Standard deviation of Gaussian noise of Z-coordinate. If set to 0, no noise is created.
S	s-parameter of the Lorenz ODE. See Vignette for further details. DEFAULT to 10, which is the original value chosen by Lorenz.
r	r-parameter of the Lorenz ODE. See Vignette for further details. DEFAULT to 28, which is the original value chosen by Lorenz.
b	b-parameter of the Lorenz ODE. See Vignette for further details. DEFAULT to 8/3, which is the original value chosen by Lorenz.
naive	Logical whether naive calculation should be used. DEFAULT to FALSE.
return_time	Logical whether the time-coordinate should be included in the returned data.frame. DEFAULT to TRUE.

Returns a three dimensional time series as data.frame following the Lorenz system (Lorenz, 1963, <doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2>).

References

Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2), 130-141. <doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2>

simulate_MTS_mixed_white_pink_brown

Approximate correlated time series from white, pink and brown noise from independent realization of normal variables

Description

Approximation of correlated time series representing "white", "pink" or "brown" noise from independent realization of normal variates Internally normal variables are simulated using rnorm and then are cumulated for white or brown noise and we use RobPer::TK95 for the generation of pink noise. We cautiously note that we use empirical scaling (i.e., the variances are scaled to be 1 in the sample not the population), hence the between sample variance may be underrepresented. We further note that the covariance estimates for correlated time series (not using increments) is unstable.

Usage

```
simulate_MTS_mixed_white_pink_brown(
    N,
    Sigma,
    process = "white",
    decomposition = "chol",
    cor_increments = TRUE,
    X0 = rep(0, ncol(Sigma))
)
```

Ν	Length of multivariate Times Series
Sigma	Positive semi definite covariance matrix the increments of desired multi dimen- sional time series. The dimensionality of Sigma sets the dimension of the time series. The variance scale the time. If the variances are all 1, then each data point represents one unit of time.
process	Type of process. Can either be "white", "brown" or "pink". Default to "white". If process is a vector, a mixture of the three process is generated, correlated by Sigma.
decomposition	Character whether the Cholesky decomposition "chol" (or "cholesky") should be used or whether the eigen decomposition should be used (decomposition = "eigen"). DEFAULT to "chol".
cor_increments	Logical, whether to correlate the increments or the time series themselves. Default to TRUE.
XØ	Starting values for the time series if increments are correlated. Default to rep(0, ncol(Sigma)), i.e., the zero vector of required length.

Returns a multivariate correlated time series with covariance matrix 'Sigma'. The Hurst exponents are only approximating the univariate ones, since they result from mixed time series. Here, a mixture of "white", "pink" and "brown" noise can be chosen from. Uncorrelated time series keep their univariate Hurst exponent 'H'.

Examples

Index

DFA, <mark>2</mark>

mvDFA, 3

print.DFA, 5
print.mvDFA, 5

simulate_cMTS, 6
simulate_Lorenz_noise, 7
simulate_MTS_mixed_white_pink_brown, 9