
Package ‘multiApply’
March 28, 2023

Title Apply Functions to Multiple Multidimensional Arrays or Vectors

Version 2.1.4

Description The base apply function and its variants, as well as the related
functions in the 'plyr' package, typically apply user-defined functions to a
single argument (or a list of vectorized arguments in the case of mapply). The
'multiApply' package extends this paradigm with its only function, Apply, which
efficiently applies functions taking one or a list of multiple unidimensional
or multidimensional arrays (or combinations thereof) as input. The input
arrays can have different numbers of dimensions as well as different dimension
lengths, and the applied function can return one or a list of unidimensional or
multidimensional arrays as output. This saves development time by preventing the
R user from writing often error-prone and memory-inefficient loops dealing with
multiple complex arrays. Also, a remarkable feature of Apply is the transparent
use of multi-core through its parameter 'ncores'. In contrast to the base apply
function, this package suggests the use of 'target dimensions' as opposite
to the 'margins' for specifying the dimensions relevant to the function to be
applied.

Depends R (>= 3.2.0)

Imports doParallel, foreach, plyr

Suggests testthat

License GPL-3

URL https://earth.bsc.es/gitlab/ces/multiApply

BugReports https://earth.bsc.es/gitlab/ces/multiApply/-/issues

Encoding UTF-8

RoxygenNote 7.2.0

NeedsCompilation no

Author BSC-CNS [aut, cph],
Nicolau Manubens [aut],
Alasdair Hunter [aut],
An-Chi Ho [ctb, cre],
Nuria Perez [ctb]

Maintainer An-Chi Ho <an.ho@bsc.es>

1

https://earth.bsc.es/gitlab/ces/multiApply
https://earth.bsc.es/gitlab/ces/multiApply/-/issues

2 Apply

Repository CRAN

Date/Publication 2023-03-28 13:10:08 UTC

R topics documented:
Apply . 2

Index 6

Apply Apply Functions to Multiple Multidimensional Arrays or Vectors

Description

This function efficiently applies a given function, which takes N vectors or multi-dimensional arrays
as inputs (which may have different numbers of dimensions and dimension lengths), and applies it
to a list of N vectors or multi-dimensional arrays with at least as many dimensions as expected
by the given function. The user can specify which dimensions of each array the function is to be
applied over with the margins or target_dims parameters. The function to be applied can receive
other helper parameters and return any number of vectors or multidimensional arrays. The target
dimensions or margins can be specified by their names, as long as the inputs are provided with
dimension names (recommended). This function can also use multi-core in a transparent way if
requested via the ncores parameter.

The following steps help to understand how Apply works:

- The function receives N arrays with Dn dimensions each.
- The user specifies, for each of the arrays, which of its dimensions are ’target’ dimensions (dimen-
sions which the function provided in ’fun’ operates with) and which are ’margins’ (dimensions to
be looped over).
- Apply will generate an array with as many dimensions as margins in all of the input arrays. If a
margin is repeated across different inputs, it will appear only once in the resulting array.
- For each element of this resulting array, the function provided in the parameter’fun’ is applied to
the corresponding sub-arrays in ’data’.
- If the function returns a vector or a multidimensional array, the additional dimensions will be
prepended to the resulting array (in left-most positions).
- If the provided function returns more than one vector or array, the process above is carried out for
each of the outputs, resulting in a list with multiple arrays, each with the combination of all target
dimensions (at the right-most positions) and resulting dimensions (at the left-most positions).

Usage

Apply(
data,
target_dims = NULL,
fun,
...,

Apply 3

output_dims = NULL,
margins = NULL,
use_attributes = NULL,
extra_info = NULL,
guess_dim_names = TRUE,
ncores = NULL,
split_factor = 1

)

Arguments

data One or a list of vectors, matrices or arrays. They must be in the same order as
expected by the function provided in the parameter ’fun’. The dimensions do
not necessarily have to be ordered. If the ’target_dims’ require a different order
than the provided, Apply will automatically reorder the dimensions as needed.

target_dims One or a list of vectors (or NULLs) containing the dimensions to be input into
fun for each of the objects in the data. If a single vector of target dimensions
is specified and multiple inputs are provided in ’data, then the single set of tar-
get dimensions is re-used for all of the inputs. These vectors can contain either
integers specifying the position of the dimensions, or character strings corre-
sponding to the dimension names. This parameter is mandatory if ’margins’ are
not specified. If both ’margins’ and ’target_dims’ are specified, ’margins’ takes
priority.

fun Function to be applied to the arrays. Must receive as many inputs as provided
in ’data’, each with as many dimensions as specified in ’target_dims’ or as the
total number of dimensions in ’data’ minus the ones specified in ’margins’. The
function can receive other additional fixed parameters (see parameter ’...’ of
Apply). The function can return one or a list of vectors or multidimensional
arrays, optionally with dimension names which will be propagated to the final
result. The returned list can optionally be named, with a name for each output,
which will be propagated to the resulting array. The function can optionally be
provided with the attributes ’target_dims’ and ’output_dims’. In that case, the
corresponding parameters of Apply do not need to be provided. The function can
expect named dimensions for each of its inputs, in the same order as specified
in ’target_dims’ or, if no ’target_dims’ have been provided, in the same order as
provided in ’data’. The function can access the variable .margin_indices, a
named numeric vector that provides the indices of the current iteration over the
margins, as well as any other variables specified in the parameter extra_info
or input attributes specified in the parameter use_attributes.

... Additional fixed arguments expected by the function provided in the parameter
’fun’.

output_dims Optional list of vectors containing the names of the dimensions to be output
from the fun for each of the objects it returns (or a single vector if the function
has only one output).

margins One or a list of vectors (or NULLs) containing the ’margin’ dimensions to be
looped over for each input in ’data’. If a single vector of margins is specified and
multiple inputs are provided in ’data’, then the single set of margins is re-used for

4 Apply

all of the inputs. These vectors can contain either integers specifying the position
of the margins, or character strings corresponding to the dimension names. If
both ’margins’ and ’target_dims’ are specified, ’margins’ takes priority.

use_attributes List of vectors of character strings with names of attributes of each object in
’data’ to be propagated to the subsets of data sent as inputs to the function speci-
fied in ’fun’. If this parameter is not specified (NULL), all attributes are dropped.
This parameter can be specified as a named list (then the names of this list must
match those of the names of parameter ’data’), or as an unnamed list (then the
vectors of attribute names will be assigned in order to the input arrays in ’data’).

extra_info Named list of extra variables to be defined for them to be accessible from within
the function specified in ’fun’. The variable names will automatically be prepended
a heading dot (’.’). So, if the variable ’name = "Tony"’ is sent through this pa-
rameter, it will be accessible from within ’fun’ via ’.name’.

guess_dim_names

Whether to automatically guess missing dimension names for dimensions of
equal length across different inputs in ’data’ with a warning (TRUE; default),
or to crash whenever unnamed dimensions of equa length are identified across
different inputs (FALSE).

ncores The number of parallel processes to spawn for the use for parallel computation
in multiple cores.

split_factor Factor telling to which degree the input data should be split into smaller pieces
to be processed by the available cores. By default (split_factor = 1) the data is
split into 4 pieces for each of the cores (as specified in ncores). A split_factor
of 2 will result in 8 pieces for each of the cores, and so on. The special value
’greatest’ will split the input data into as many pieces as possible.

Details

When using a single object as input, Apply is almost identical to the apply function (as fast or
slightly slower in some cases; with equal or improved -smaller- memory footprint).

Value

List of arrays or matrices or vectors resulting from applying ’fun’ to ’data’.

References

Wickham, H (2011), The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical
Software.

Examples

#Change in the rate of exceedance for two arrays, with different
#dimensions, for some matrix of exceedances.
data <- list(array(rnorm(1000), c(5, 10, 20)),

array(rnorm(500), c(5, 10, 10)),
array(rnorm(50), c(5, 10)))

test_fun <- function(x, y, z) {
((sum(x > z) / (length(x))) /

Apply 5

(sum(y > z) / (length(y)))) * 100
}
test <- Apply(data, target = list(3, 3, NULL), test_fun)

Index

Apply, 2

6

	Apply
	Index

