Package ‘mpathsenser’

March 29, 2024

Title Process and Analyse Data from m-Path Sense
Version 1.2.3

Description Overcomes one of the major challenges in mobile (passive)
sensing, namely being able to pre-process the raw data that comes from
a mobile sensing app, specifically 'm-Path Sense' <https://m-path.io>.
The main task of 'mpathsenser’ is therefore to read 'm-Path Sense'
JSON files into a database and provide several convenience functions
to aid in data processing.

License GPL (>=3)

URL https://gitlab.kuleuven.be/ppw-okpiv/researchers/u@134047/mpathsenser/,
https://ppw-okpiv.pages.gitlab.kuleuven.be/researchers/u@134047/mpathsenser/
BugReports https:
//gitlab.kuleuven.be/ppw-okpiv/researchers/u@134047/mpathsenser/-/issues/
Depends R (>=4.0.0)

Imports DBI, dbplyr, dplyr, furrr, jsonlite, lifecycle, lubridate,
purrr, rlang, RSQLite, stats, tibble, tidyr

Suggests cli, curl, ggplot2, httr, kableExtra, knitr, lintr,
progressr, rmarkdown, rvest, sodium, spelling, testthat (>=
3.0.0), vroom

VignetteBuilder knitr
Config/Needs/website tidyverse/tidytemplate
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.1

Language en-GB

NeedsCompilation no

Author Koen Niemeijer [aut, cre] (<https://orcid.org/0000-0002-0816-534X>),
Kristof Meers [ctb] (<https://orcid.org/0000-0002-9610-7712>),
KU Leuven [cph, fnd]

Maintainer Koen Niemeijer <koen.niemeijer@kuleuven.be>

1

https://m-path.io
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/
https://ppw-okpiv.pages.gitlab.kuleuven.be/researchers/u0134047/mpathsenser/
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/-/issues/
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/-/issues/
https://orcid.org/0000-0002-0816-534X
https://orcid.org/0000-0002-9610-7712

2 R topics documented:

Repository CRAN
Date/Publication 2024-03-29 16:00:02 UTC

R topics documented:

add_gaps e 3
APP_CALEZOTY .+« o v v o e 5
bin_data e 6
CCOPY v v o e e e e e e e e e e e e e e e e e 8
close_db e 9
copy_db . . . 10
COVETAZE .« « v v v v v e 11
create_db e 12
decTypt_gps . . . o o e e e e 13
device_info L e e 14
first_date e 15
fiX_JSONS 16
freq e 17
gEOCOAR_TEV o i i e e e e e e e 18
get_data e 19
GELLITOWS © . v v v it et e e e e e e e e e e e 20
get_participants e e 21
get_processed_files L L 22
get_studies e e e e 23
haversine e 23
identify_gaps 24
IMPOTt o o o e e 26
index_db e 28
installed_apps e e e 29
last_date e 30
link . . . 30
link_db 35
link_gaps 37
MOVINZ_AVETAZE . . .« « o v v v v v e e e e e e e e e e e e e e e 38
open_db e e 40
plot.coverage 41
SEIISOTS & . v v v v e v e e e e e e e e e e e e e e e e e e e 42
TBSE_JSOMS « . v v o v e e e e e e e e e e e e e e e e e 42
unzip_data L e e e e e e 44
vacuum_db . . oL L L e e 45

Index 46

add_gaps 3

add_gaps Add gap periods to sensor data

Description

[Stable]

Since there may be many gaps in mobile sensing data, it is pivotal to pay attention to them in
the analysis. This function adds known gaps to data as "measurements”, thereby allowing easier
calculations for, for example, finding the duration. For instance, consider a participant spent 30
minutes walking. However, if it is known there is gap of 15 minutes in this interval, we should
somehow account for it. add_gaps accounts for this by adding the gap data to sensors data by
splitting intervals where gaps occur.

Usage
add_gaps(data, gaps, by = NULL, continue = FALSE, fill = NULL)

Arguments
data A data frame containing the data. See get_data() for retrieving data from an
mpathsenser database.
gaps A data frame (extension) containing the gap data. See identify_gaps() for
retrieving gap data from an mpathsenser database. It should at least contain
the columns from and to (both in a date-time format), as well as any specified
columns in by.
by A character vector indicating the variable(s) to match by, typically the partici-
pant IDs. If NULL, the default, x_join() will perform a natural join, using all
variables in common across x and y°.
continue Whether to continue the measurement(s) prior to the gap once the gap ends.
fill A named list of the columns to fill with default values for the extra measurements
that are added because of the gaps.
Details

In the example of 30 minutes walking where a 15 minute gap occurred (say after 5 minutes),
add_gaps() adds two rows: one after 5 minutes of the start of the interval indicating the start
of the gap(if needed containing values from fill), and one after 20 minutes of the start of the in-
terval signalling the walking activity. Then, when calculating time differences between subsequent
measurements, the gap period is appropriately accounted for. Note that if multiple measurements
occurred before the gap, they will both be continued after the gap.

Value

A tibble containing the data and the added gaps.

4 add_gaps

Warning

Depending on the sensor that is used to identify the gaps (though this is typically the highest fre-
quency sensor, such as the accelerometer or gyroscope), there may be a small delay between the
start of the gap and the acrual start of the gap. For example, if the accelerometer samples every 5
seconds, it may be after 4.99 seconds after the last accelerometer measurement (so just before the
next measurement), the app was killed. However, within that time other measurements may still
have taken place, thereby technically occurring "within" the gap. This is especially important if you
want to use these gaps in add_gaps since this issue may lead to erroneous results.

An easy way to solve this problem is by taking into account all the sensors of interest when iden-
tifying the gaps, thereby ensuring there are no measurements of these sensors within the gap. One
way to account for this is to (as in this example) search for gaps 5 seconds longer than you want
and then afterwards increasing the start time of the gaps by 5 seconds.

See Also

identify_gaps() for finding gaps in the sampling; link_gaps() for linking gaps to ESM data,
analogous to 1ink().

Examples

Define some data
dat <- data.frame(
participant_id = "12345",
time = as.POSIXct(c("2022-05-10 10:00:00", "2022-05-10 10:30:00", "2022-05-10 11:30:00")),
type = c("WALKING", "STILL", "RUNNING"),
confidence = c(80, 100, 20)
)

Get the gaps from identify_gaps, but in this example define them ourselves
gaps <- data.frame(

participant_id = "12345",

from = as.POSIXct(c("2022-05-10 10:05:00", "2022-05-10 10:50:00")),

to = as.POSIXct(c(”2022-05-10 10:20:00", "2022-05-10 11:10:00"))

)
Now add the gaps to the data
add_gaps(

data = dat,

gaps = gaps,

by = "participant_id"
)
You can use fill if you want to get rid of those pesky NA's
add_gaps(

data = dat,

gaps = gaps,

by = "participant_id",
fill = list(type = "GAP", confidence = 100)

app_category 5

app_category Find the category of an app on the Google Play Store

Description

[Stable]

This function scrapes the Google Play Store by using name as the search term. From there it selects
the first result in the list and its corresponding category and package name.

Usage

app_category(name, num = 1, rate_limit = 5, exact = TRUE)

Arguments
name The name of the app to search for.
num Which result should be selected in the list of search results. Defaults to one.
rate_limit The time interval to keep between queries, in seconds. If the rate limit is too
low, the Google Play Store may reject further requests or even ban your entirely.
exact In m-Path Sense, the app names of the AppUsage sensor are the last part of the
app’s package names. When exact is TRUE, the function guarantees that name
is exactly equal to the last part of the selected package from the search results.
Note that when exact is TRUE, it interacts with num in the sense that it no longer
selects the top search result but instead the top search result that matches the last
part of the package name.
Value

A list containing the following fields:

package the package name that was selected from the Google Play search
genre the corresponding genre of this package

Warning

Do not abuse this function or you will be banned by the Google Play Store. The minimum delay
between requests seems to be around 5 seconds, but this is untested. Also make sure not to do batch
lookups, as many subsequent requests will get you blocked as well.

Examples
app_category("whatsapp”)

Example of a generic app name where we can't find a specific app
app_category("weather”) # Weather forecast channel

Get OnePlus weather

6 bin_data

app_category("net.oneplus.weather")

bin_data Create bins in variable time series

Description

[Stable]

In time series with variable measurements, an often recurring task is calculating the total time spent
(i.e. the duration) in fixed bins, for example per hour or day. However, this may be difficult when
two subsequent measurements are in different bins or span over multiple bins.

Usage
bin_data(
data,
start_time,
end_time,
by = C(”SeC”, "min"’ llhour_ll’ Hdayll)’
fixed = TRUE
)
Arguments
data A data frame or tibble containing the time series.
start_time The column name of the start time of the interval, a POSIXt.
end_time The column name of the end time of the interval, a POSIXt.
by A binning specification.
fixed Whether to create fixed bins. If TRUE, bins will be rounded to, for example,
whole hours or days (depending on by). If FALSE, bins will be created based on
the first timestamp.
Value

A tibble containing the group columns (if any), date, hour (if by = "hour"), and the duration in
seconds.

See Also

link_gaps() for linking gaps to data.

bin_data

Examples

library(dplyr)

data <- tibble(
participant_id = 1,
datetime = c(
"2022-06-21 15:00:00", "2022-06-21 15:55:00",
"2022-06-21 17:05:00", "2022-06-21 17:10:00"
),
confidence = 100,
type = "WALKING”
)

get bins per hour, even if the interval is longer than one hour
data |>
mutate(datetime = as.POSIXct(datetime)) |>
mutate(lead = lead(datetime)) |>
bin_data(
start_time = datetime,
end_time = lead,
by = "hour"”
)

Alternatively, you can give an integer value to by to create custom-sized
bins, but only if fixed = FALSE. Not that these bins are not rounded to,
as in this example 30 minutes, but rather depends on the earliest time
in the group.
data |>
mutate(datetime = as.POSIXct(datetime)) |[>
mutate(lead = lead(datetime)) |>
bin_data(
start_time = datetime,
end_time = lead,
by = 1800L,
fixed = FALSE
)

More complicated data for showcasing grouping:
data <- tibble(
participant_id = 1,
datetime = c(
"2022-06-21 15:00:00", "2022-06-21 15:55:00",
"2022-06-21 17:05:00", "2022-06-21 17:10:00"
),
confidence = 100,
type = c(”STILL”, "WALKING”, "STILL", "WALKING")
)

binned_intervals also takes into account the prior grouping structure
out <- data [|>

mutate(datetime = as.POSIXct(datetime)) |>

group_by(participant_id) [>

8 ccopy

mutate(lead = lead(datetime)) |>
group_by(participant_id, type) |>
bin_data(
start_time = datetime,
end_time = lead,
by = "hour”
)
print(out)

To get the duration for each bin (note to change the variable names in sum):
purrr: :map_dbl(

out$bin_data,

~ sum(as.double(.x$lead) - as.double(.x$datetime),

na.rm = TRUE
)
)
Or:
out [|>
tidyr::unnest(bin_data, keep_empty = TRUE) |>
mutate(duration = .data$lead - .data$datetime) |>
group_by(bin, .add = TRUE) |>
summarise(duration = sum(.data$duration, na.rm = TRUE), .groups = "drop")
ccopy Copy mpathsenser zip files to a new location
Description
[Stable]

Copy zip files from a source destination to an origin destination where they do not yet exist. That
is, it only updates the target folder from the source folder.

Usage

ccopy(from, to, recursive = TRUE)

Arguments

from A path to copy files from.

to A path to copy files to.

recursive Should files from subdirectories be copied?
Value

A message indicating how many files were copied.

close_db 9

Examples

Not run:
ccopy ("K:/data/myproject/", "~/myproject”)

End(Not run)

close_db Close a database connection

Description

[Stable]

This is a convenience function that is simply a wrapper around DBI: :dbDisconnect().

Usage
close_db(db)

Arguments

db A database connection to an m-Path Sense database.

Value

Returns invisibly regardless of whether the database is active, valid, or even exists.

See Also

open_db() for opening an mpathsenser database.

Examples

First create a database in a temporary directory
db <- create_db(tempdir(), "mydb.db")

Then close it
close_db(db)

You can even try to close a database that is already closed. This will not trigger an error.
close_db(db)

Cleanup
file.remove(file.path(tempdir(), "mydb.db"))

10 copy_db

copy_db Copy (a subset of) a database to another database

Description

[Stable]

Usage

copy_db(source_db, target_db, sensor = "All")

Arguments
source_db A mpathsenser database connection from where the data will be transferred.
target_db A mpathsenser database connection where the data will be transferred to. create_db()
to create a new database.
sensor A character vector containing one or multiple sensors. See sensors for a list of
available sensors. Use "All" for all available sensors.
Value

Returns TRUE invisibly, called for side effects.

Examples

First create two databases in a temporary directory
db1 <- create_db(tempdir(), "mydbl.db")
db2 <- create_db(tempdir(), "mydb2.db")

Populate the first database with some data
DBI: :dbExecute(dbl, "INSERT INTO Study VALUES ('study_1', 'default')")
DBI::dbExecute(db1, "INSERT INTO Participant VALUES ('1', 'study_1')")
DBI: :dbExecute(db1, "INSERT INTO Activity VALUES(

123", '1', '2024-01-01', '08:00:00', '100', 'WALKING')")

Then copy the first database to the second database
copy_db(db1, db2)

Check that the second database has the same data as the first database
get_data(db2, "Activity")

Cleanup

close_db(db1)

close_db(db2)
file.remove(file.path(tempdir(), "mydbl1.db"))
file.remove(file.path(tempdir(), "mydb2.db"))

coverage

11

coverage

Create a coverage chart of the sampling rate

Description

[Stable]

Only applicable to non-reactive sensors with ’continuous’ sampling

Usage

coverage(
db,

participant_id,

sensor = NULL,

frequency = mpathsenser::freq,
relative = TRUE,

offset = "None",

start_date =

NULL,

end_date = NULL,
plot = deprecated()

Arguments

db
participant_id

sensor

frequency

relative

offset

start_date

end_date

plot

Value

A valid database connection. Schema must be that as it is created by open_db.
A character string of one participant ID.

A character vector containing one or multiple sensors. See sensors for a list of
available sensors. Use NULL for all available sensors.

A named numeric vector with sensors as names and the number of expected
samples per hour

Show absolute number of measurements or relative to the expected number?
Logical value.

Currently not used.

A date (or convertible to a date using base: :as.Date()) indicating the earliest
date to show. Leave empty for all data. Must be used with end_date.

A date (or convertible to a date using base::as.Date()) indicating the latest
date to show.Leave empty for all data. Must be used with start_date.

[Deprecated] Instead of built-in functionality, use plot.coverage() to plot the
output.

A ggplot of the coverage results if plot is TRUE or a tibble containing the hour, type of measure (i.e.
sensor), and (relative) coverage.

12 create_db

Examples
Not run:
freq <- c(

Accelerometer = 720, # Once per 5 seconds. Can have multiple measurements.
AirQuality = 1,

AppUsage = 2, # Once every 30 minutes

Bluetooth = 60, # Once per minute. Can have multiple measurements.
Gyroscope = 720, # Once per 5 seconds. Can have multiple measurements.
Light = 360, # Once per 10 seconds

Location = 60, # Once per 60 seconds

Memory = 60, # Once per minute

Noise = 120,

Pedometer = 1,

Weather = 1,

Wifi = 60 # once per minute

coverage(
db = db,
participant_id = "12345",
sensor = c("Accelerometer”, "Gyroscope"”),
frequency = mpathsenser::freq,
start_date = "2021-01-01",
end_date = "2021-05-01"

End(Not run)

create_db Create a new mpathsenser database

Description

[Stable]

Usage

create_db(path = getwd(), db_name = "sense.db"”, overwrite = FALSE)

Arguments
path The path to the database.
db_name The name of the database.
overwrite In case a database with db_name already exists, indicate whether it should be
overwritten or not. Otherwise, this option is ignored.
Value

A database connection using prepared database schemas.

decrypt_gps 13

Examples

Create a new database in a temporary directory
db <- create_db(tempdir(), "mydb.db")

You can also create an in-memory database
db2 <- create_db(path = NULL, ":memory:")

Cleanup

close_db(db)

close_db(db2)
file.remove(file.path(tempdir(), "mydb.db"))

decrypt_gps Decrypt GPS data from a curve25519 public key

Description

[Stable]

By default, the latitude and longitude of the GPS data collected by m-Path Sense are encrypted
using an asymmetric curve25519 key to provide extra protection for these highly sensitive data.
This function takes a character vector and decrypts its longitude and latitude columns using the
provided key.

Usage

decrypt_gps(data, key, ignore = ":")
Arguments

data A character vector containing hexadecimal (i.e. encrypted) data.

key A curve25519 private key.

ignore A string with characters to ignore from data. See sodium: :hex2bin().
Value

A vector of doubles of the decrypted GPS coordinates.

Parallel

This function supports parallel processing in the sense that it is able to distribute it’s computation
load among multiple workers. To make use of this functionality, run future: :plan("multisession”)
before calling this function.

https://rdrr.io/cran/future/man/plan.html

14 device_info

Examples

library(dplyr)
library(sodium)
Create some GPS coordinates.
data <- data.frame(
participant_id = "12345",
time = as.POSIXct(c(
"2022-12-02 12:00:00",
"2022-12-02 12:00:01",
"2022-12-02 12:00:02"
),
longitude = c("50.12345", "50.23456", "50.34567"),
latitude = c("4.12345", "4.23456", "4.345678")

Generate keypair
key <- sodium::keygen()
pub <- sodium: :pubkey(key)

Encrypt coordinates with pubkey
You do not need to do this for m-Path Sense
as this is already encrypted
encrypt <- function(data, pub) {
data <- lapply(data, charToRaw)
data <- lapply(data, function(x) sodium::simple_encrypt(x, pub))
data <- lapply(data, sodium::bin2hex)
data <- unlist(data)
data
3
data$longitude <- encrypt(data$longitude, pub)
datas$latitude <- encrypt(data$latitude, pub)

Once the data has been collected, decrypt it using decrypt_gps().
data [>
mutate(longitude = decrypt_gps(longitude, key)) |>
mutate(latitude = decrypt_gps(latitude, key))

device_info Get the device info for one or more participants

Description

[Stable]

Usage

device_info(db, participant_id = NULL)

first_date 15

Arguments

db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A tibble containing device info for each participant

Examples

Not run:
Open the database
db <- open_db("path/to/db")

Get device info for all participants
device_info(db)

Get device info for a specific participant
device_info(db, participant_id = 1)

End(Not run)

first_date Extract the date of the first entry

Description

[Stable]

A helper function for extracting the first date of entry of (of one or all participant) of one sensor.
Note that this function is specific to the first date of a sensor. After all, it wouldn’t make sense
to extract the first date for a participant of the accelerometer, while the first device measurement
occurred a day later.

Usage

first_date(db, sensor, participant_id = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

16 fix_jsons

Value

A string in the format *YYY Y-mm-dd’ of the first entry date.

Examples

Not run:
db <- open_db()
first_date(db, "Accelerometer”, "12345")

End(Not run)

fix_jsons Fix the end of JSON files

Description

[Experimental]
When copying data directly coming from m-Path Sense, JSON files are sometimes corrupted due
to the app not properly closing them. This function attempts to fix the most common problems
associated with improper file closure by m-Path Sense.

Usage
fix_jsons(path = getwd(), files = NULL, recursive = TRUE)

Arguments
path The path name of the JSON files.
files Alternatively, a character list of the input files
recursive Should the listing recurse into directories?
Details

There are two distinct problems this functions tries to tackle. First of all, there are often bad file
endings (e.g. no]) because the app was closed before it could properly close the file. There are
several cases that may be wrong (or even multiple), so it unclear what the precise problems are. As
this function is experimental, it may even make it worse by accidentally inserting an incorrect file
ending.

Secondly, in rare scenarios there are illegal ASCII characters in the JSON files. Not often does this
happen, and it is likely because of an OS failure (such as a flush error), a disk failure, or corrupted
data during transmit. Nevertheless, these illegal characters make the file completely unreadable.
Fortunately, they are detected correctly by test_jsons, but they cannot be imported by import. This
functions attempts to surgically remove lines with illegal characters, by removing that specific line
as well as the next line, as this is often a comma. It may therefore be too liberal in its approach
— cutting away more data than necessary — or not liberal enough when the corruption has spread
throughout multiple lines. Nevertheless, it is a first step in removing some straightforward corrup-
tion from files so that only a small number may still need to be fixed by hand.

freq 17

Value

A message indicating how many files were fixed, and the number of fixed files invisibly.

Parallel

This function supports parallel processing in the sense that it is able to distribute it’s computation
load among multiple workers. To make use of this functionality, run future: :plan(”"multisession”)
before calling this function.

Progress

You can be updated of the progress of this function by using the progressr: :progress() package.
See progressr’s vignette on how to subscribe to these updates.

Examples

Not run:
future::plan("multisession”)
files <- test_jsons()
fix_jsons(files = files)

End(Not run)

freq Measurement frequencies per sensor

Description

A numeric vector containing (an example) of example measurement frequencies per sensor. Such
input is needed for coverage().

Usage

freq

Format

An object of class numeric of length 11.

Value

This vector contains the following information:

Sensor Frequency (per hour) Full text

Accelerometer 720 Once per 5 seconds. Can have multiple instances.
AirQuality 1 Once per hour.

AppUsage 2 Once every 30 minutes. Can have multiple instances.

Bluetooth 12 Once every 5 minutes. Can have multiple instances.

https://rdrr.io/cran/future/man/plan.html
https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

18 geocode_rev
Gyroscope 720 Once per 5 seconds. Can have multiple instances.
Light 360 Once per 10 seconds.
Location 60 Once every 60 seconds.
Memory 60 Once per minute
Noise 120 Once every 30 seconds. Microphone cannot be used in the background in Android 1
Weather 1 Once per hour.
Wifi 60 Once per minute.
Examples
freq
geocode_rev Reverse geocoding with latitude and longitude
Description
[Experimental]

This functions allows you to extract information about a place based on the latitude and longitude
from the OpenStreetMaps nominatim API.

Usage

geocode_rev(lat, lon, zoom = 18, email =

Arguments

lat
lon
zoom
email

rate_limit

format

Value

nn

, rate_limit = 1, format = "jsonv2")

The latitude of the location (in degrees)
The longitude of the location (in degrees)
The desired zoom level from 1-18. The lowest level, 18, is building level.

If you are making large numbers of request please include an appropriate email
address to identify your requests. See Nominatim’s Usage Policy for more de-
tails.

The time interval to keep between queries, in seconds. If the rate limit is too
low, OpenStreetMaps may reject further requests or even ban your entirely.

The format of the response. Either "jsonv2", "geojson", or"geocodejson". See
Nomatims documentation for more details.

A list of information about the location. See Nominatim’s documentation for more details. The
response may also be an error message in case of API errors, or NA if the client or API is offline.

https://nominatim.org/release-docs/develop/api/Reverse/#example-with-formatjsonv2

get_data 19

Warning

Do not abuse this function or you will be banned by OpenStreetMap. The maximum number of
requests is around 1 per second. Also make sure not to do too many batch lookups, as many
subsequent requests will get you blocked as well.

Examples

Frankfurt Airport
geocode_rev(50.037936, 8.5599631)

get_data Extract data from an m-Path Sense database

Description

[Stable]

This is a convenience function to help extract data from an m-Path sense database.

Usage

get_data(db, sensor, participant_id = NULL, start_date = NULL, end_date = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.
Details

Note that this function returns a lazy (also called remote) tibble. This means that the data is not
actually in R until you call a function that pulls the data from the database. This is useful for various
functions in this package that work with a lazy tibble, for example identify_gaps(). You may
manually want to modify this lazy tibble by using dplyr functions such as dplyr::filter() or
dplyr::mutate() before pulling the data into R. These functions will be executed in-database, and
will therefore be much faster than having to first pull all data into R and then possibly removing a
large part of it. Importantly, data can pulled into R using dplyr::collect().

20 get_nrows

Value

A lazy tbl containing the requested data.

Examples

Not run:
Open a database
db <- open_db()

Retrieve some data
get_data(db, "Accelerometer”, "12345")

Or within a specific window
get_data(db, "Accelerometer”, "12345", "2021-01-01", "2021-01-05")

End(Not run)

get_nrows Get the number of rows per sensor in a mpathsenser database

Description

[Stable]

Usage

get_nrows(
db,
sensor = "All",
participant_id = NULL,
start_date = NULL,
end_date = NULL

)
Arguments
db db A database connection, as created by create_db().
sensor A character vector of one or multiple vectors. Use sensor = "Al1" for all sen-

sors. See sensors for a list of all available sensors.

participant_id A character string identifying a single participant. Use get_participants()
to retrieve all participants from the database. Leave empty to get data for all
participants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using base: :as.Date(). Use first_date() to find the date of
the first entry for a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using base: :as.Date(). Use last_date() to find the date of the
last entry for a participant.

get_participants

Value

A named vector containing the number of rows for each sensor.

Examples

Not run:
Open a database connection
db <- open_db("path/to/db")

Get the number of rows for all sensors
get_nrows(db, sensor = NULL)

Get the number of rows for the Accelerometer and Gyroscope sensors
get_nrows(db, c("Accelerometer”, "Gyroscope"))

Remember to close the connection
close_db(db)

End(Not run)

21

get_participants Get all participants

Description

[Stable]

Usage

get_participants(db, lazy = FALSE)

Arguments
db db A database connection, as created by create_db().
lazy Whether to evaluate lazily using dbplyr.

Value

A data frame containing all participant_id and study_id.

Examples

Create a database
db <- create_db(tempdir(), "mydb.db")

Add some participants
DBI: :dbExecute(db, "INSERT INTO Study VALUES('studyl', 'data_format1')")

DBI: :dbExecute(db, "INSERT INTO Participant VALUES('participantl', 'study1')")

22 get_processed_files

Get the participants
get_participants(db)

Cleanup
close_db(db)
file.remove(file.path(tempdir(), "mydb.db"))

get_processed_files Get all processed files from a database

Description

[Stable]

Usage

get_processed_files(db)

Arguments

db A database connection, as created by create_db().

Value

A data frame containing the file_name, participant_id, and study_id of the processed files.

Examples

Create a database
db <- create_db(tempdir(), "mydb.db")

Add some processed files

DBI::dbExecute(db, "INSERT INTO Study VALUES('studyl', 'data_formatl')")
DBI::dbExecute(db, "INSERT INTO Participant VALUES('participant1', 'studyl')")

DBI: :dbExecute(db, "INSERT INTO ProcessedFiles VALUES('filel', 'participantl', 'study1')")

Get the processed files
get_processed_files(db)

Cleanup
close_db(db)
file.remove(file.path(tempdir(), "mydb.db"))

get_studies

23

get_studies Get all studies

Description

[Stable]

Usage

get_studies(db, lazy = FALSE)

Arguments

db db A database connection, as created by create_db().
lazy Whether to evaluate lazily using dbplyr.

Value

A data frame containing all studies.

Examples

Create a database
db <- create_db(tempdir(), "mydb.db")

Add some studies
DBI: :dbExecute(db, "INSERT INTO Study VALUES('studyl', 'data_format1')")

Get the studies
get_studies(db)

Cleanup
close_db(db)
file.remove(file.path(tempdir(), "mydb.db"))

haversine Calculate the Great-Circle Distance between two points in kilometers

Description

[Stable]

Calculate the great-circle distance between two points using the Haversine function.

Usage

haversine(latl1, lon1, lat2, lon2, r = 6371)

24

Arguments

lat1
lon1
lat2
lon2

r

Value

The latitude of point 1 in degrees.
The longitude of point 1 in degrees.
The latitude of point 2 in degrees.
The longitude of point 2 in degrees.

The average earth radius.

A numeric value of the distance between point 1 and 2 in kilometers.

Examples

fra <- c(50.03333, 8.570556) # Frankfurt Airport
ord <- c(41.97861, -87.90472) # Chicago O'Hare International Airport
haversine(fral[1], fral[2], ord[1], ord[2]) # 6971.059 km

identify_gaps

identify_gaps

Identify gaps in mpathsenser mobile sensing data

Description

[Stable]

Oftentimes in mobile sensing, gaps appear in the data as a result of the participant accidentally
closing the app or the operating system Kkilling the app to save power. This can lead to issues later
on during data analysis when it becomes unclear whether there are no measurements because no
events occurred or because the app quit in that period. For example, if no screen on/off event occur
in a 6-hour period, it can either mean the participant did not turn on their phone in that period or
that the app simply quit and potential events were missed. In the latter case, the 6-hour missing
period has to be compensated by either removing this interval altogether or by subtracting the gap
from the interval itself (see examples).

Usage
identify_gaps(
db,
participant_id = NULL,
min_gap = 60,
sensor "Accelerometer”

identify_gaps 25

Arguments

db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-

ticipants.
min_gap The minimum time (in seconds) passed between two subsequent measurements
for it to be considered a gap.
sensor One or multiple sensors. See sensors for a list of available sensors.
Details

While any sensor can be used for identifying gaps, it is best to choose a sensor with a very high,
near-continuous sample rate such as the accelerometer or gyroscope. This function then creates
time between two subsequent measurements and returns the period in which this time was larger
than min_gap.

Note that the from and to columns in the output are character vectors in UTC time.

Value

A tibble containing the time period of the gaps. The structure of this tibble is as follows:

participant_id the participant_id of where the gap occurred

from the time of the last measurement before the gap
to the time of the first measurement after the gap
gap the time passed between from and to, in seconds

Warning

Depending on the sensor that is used to identify the gaps (though this is typically the highest fre-
quency sensor, such as the accelerometer or gyroscope), there may be a small delay between the
start of the gap and the actual start of the gap. For example, if the accelerometer samples every 5
seconds, it may be after 4.99 seconds after the last accelerometer measurement (so just before the
next measurement), the app was killed. However, within that time other measurements may still
have taken place, thereby technically occurring "within" the gap. This is especially important if you
want to use these gaps in add_gaps since this issue may lead to erroneous results.

An easy way to solve this problem is by taking into account all the sensors of interest when iden-
tifying the gaps, thereby ensuring there are no measurements of these sensors within the gap. One
way to account for this is to (as in this example) search for gaps 5 seconds longer than you want
and then afterwards increasing the start time of the gaps by 5 seconds.

Examples

Not run:

Find the gaps for a participant and convert to datetime

gaps <- identify_gaps(db, "12345", min_gap = 60) |>
mutate(across(c(to, from), ymd_hms)) |>
mutate(across(c(to, from), with_tz, "Europe/Brussels”))

26 import

Get some sensor data and calculate a statistic, e.g. the time spent walking
You can also do this with larger intervals, e.g. the time spent walking per hour
walking_time <- get_data(db, "Activity”, "12345") |>

collect() |>

mutate(datetime = ymd_hms(paste(date, time))) [|>

mutate(datetime = with_tz(datetime, "Europe/Brussels”)) |>

arrange(datetime) |>

mutate(prev_time = lag(datetime)) |>

mutate(duration = datetime - prev_time) |[>

filter(type == "WALKING")

Find out if a gap occurs in the time intervals
walking_time |>
rowwise() |>
mutate(gap = any(gaps$from >= prev_time & gaps$to <= datetime))

End(Not run)

import Import m-Path Sense files into a database

Description

[Stable]

Import JSON files from m-Path Sense into a structured database. This function is the bread and
butter of this package, as it populates the database with data that most of the other functions in this
package use. It is recommend to first run test_jsons() and, if necessary, fix_jsons() to repair
JSON files with problematic syntax.

Usage

import(
path = getwd(),
db,
sensors = NULL,
batch_size = 24,
backend = "RSQLite",
recursive = TRUE

)
Arguments
path The path to the file directory
db Valid database connection, typically created by create_db().
sensors Select one or multiple sensors as in sensors. Leave NULL to extract all sensor

data.

batch_size The number of files that are to be processed in a single batch.

import 27

backend Name of the database backend that is used. Currently, only RSQLite is sup-
ported.
recursive Should the listing recurse into directories?
Details

import allows you to specify which sensors to import (even though there may be more in the files)
and it also allows batching for a speedier writing process. If processing in parallel is active, it is
recommended that batch_size be a scalar multiple of the number of CPU cores the parallel cluster
can use. If a single JSON file in the batch causes and error, the batch is terminated (but not the
function) and it is up to the user to fix the file. This means that if batch_size is large, many files
will not be processed. Set batch_size to 1 for sequential (one-by-one) file processing.

Currently, only SQLite is supported as a backend. Due to its concurrency restriction, parallel pro-
cessing works for cleaning the raw data, but not for importing it into the database. This is because
SQLite does not allow multiple processes to write to the same database at the same time. This is a
limitation of SQLite and not of this package. However, while files are processing individually (and
in parallel if specified), writing to the database happens for the entire batch specified by batch_size
at once. This means that if a single file in the batch causes an error, the entire batch is skipped. This
is to ensure that the database is not left in an inconsistent state.

Value

A message indicating how many files were imported. If all files were imported successfully, this
functions returns an empty string invisibly. Otherwise the file names of the files that were not
imported are returned visibly.

Parallel

This function supports parallel processing in the sense that it is able to distribute it’s computation
load among multiple workers. To make use of this functionality, run future: :plan(”"multisession”)
before calling this function.

Progress

You can be updated of the progress of this function by using the progressr: :progress() package.
See progressr’s vignette on how to subscribe to these updates.

See Also

create_db() for creating a database for import() to use, close_db() for closing this database;
index_db() to create indices on the database for faster future processing, and vacuum_db() to
shrink the database to its minimal size.

Examples

Not run:

path <- "some/path”

Create a database

db <- create_db(path = path, db_name = "my_db")

https://rdrr.io/cran/future/man/plan.html
https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

28 index_db

Import all JSON files in the current directory
import(path = path, db = db)

Import all JSON files in the current directory, but do so sequentially
import(path = path, db = db, batch_size = 1)

Import all JSON files in the current directory, but only the accelerometer data
import(path = path, db = db, sensors = "accelerometer")

Import all JSON files in the current directory, but only the accelerometer and gyroscope data
import(path = path, db = db, sensors = c("accelerometer”, "gyroscope"))

Remember to close the database
close_db(db)

End(Not run)

index_db Create indexes for an mpathsenser database

Description

[Stable]
Create indexes for an mpathsenser database on the participant_id, date, and a combination of
these variable for all the tables in the database. This will speed up queries that use these variables
in the WHERE clause.

Usage
index_db(db)

Arguments

db A database connection to an m-Path Sense database.

Value

Returns TRUE invisibly, called for side effects.

Examples

Not run:
First create a database in a temporary directory
db <- create_db(tempdir(), "mydb.db")

Import some files
import(path = "path/to/jsons”, db = db)

installed_apps 29

Then index it to speed up the database
index_db(db)

End(Not run)

installed_apps Get installed apps

Description

[Stable]

Extract installed apps for one or all participants. Contrarily to other get_* functions in this package,
start and end dates are not used since installed apps are assumed to be fixed throughout the study.

Usage

installed_apps(db, participant_id = NULL)

Arguments

db A database connection to an mpathsenser database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A tibble containing app names.

Examples

Not run:
db <- open_db()

Get installed apps for all participants
installed_apps(db)

Get installed apps for a single participant
installed_apps(db, "12345")

End(Not run)

30 link

last_date Extract the date of the last entry

Description

[Stable]

A helper function for extracting the last date of entry of (of one or all participant) of one sensor.
Note that this function is specific to the last date of a sensor. After all, it wouldn’t make sense to
extract the last date for a participant of the device info, while the last accelerometer measurement
occurred a day later.

Usage

last_date(db, sensor, participant_id = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A string in the format *YYYY-mm-dd’ of the last entry date.

Examples

Not run:
db <- open_db()
first_date(db, "Accelerometer”, "12345")

End(Not run)

link Link y to the time scale of x

Description

[Stable]

One of the key tasks in analysing mobile sensing data is being able to link it to other data. For
example, when analysing physical activity data, it could be of interest to know how much time
a participant spent exercising before or after an ESM beep to evaluate their stress level. 1ink()
allows you to map two data frames to each other that are on different time scales, based on a pre-
specified offset before and/or after. This function assumes that both x and y have a column called
time containing DateTimeClasses.

link 31
Usage
link(
X ’
Y,
by = NULL,
time,
end_time = NULL,
y_time,
offset_before = 0,
offset_after = 0,
add_before = FALSE,
add_after = FALSE,
name = "data”,
split = by
)
Arguments
X,y A pair of data frames or data frame extensions (e.g. a tibble). Both x and y must
have a column called time.
by A character vector indicating the variable(s) to match by, typically the partici-
pant IDs. If NULL, the default, *_join() will perform a natural join, using all
variables in common across x and y. Therefore, all data will be mapped to each
other based on the time stamps of x and y. A message lists the variables so that
you can check they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c('a' ="'b") will match x$a to y$b.
To join by multiple variables, use a vector with length > 1. For example, by
=c('a', 'b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by =c('a' ='b", 'c¢' =
'd") will match x$a to y$b and x$c to y$d.
To perform a cross-join (when x and y have no variables in common), use by =
character (). Note that the split argument will then be set to 1.
time The name of the column containing the timestamps in x.
end_time Optionally, the name of the column containing the end time in x. If speci-
fied, it means time defines the start time of the interval and end_time the end
time. Note that this cannot be used at the same time as offset_before or
offset_after.
y_time The name of the column containing the timestamps in y.

offset_before

offset_after

add_before

The time before each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate: :as.period().

The time after each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate: :as.period().

Logical value. Do you want to add the last measurement before the start of each
interval?

32 link

add_after Logical value. Do you want to add the first measurement after the end of each
interval?

name The name of the column containing the nested y data.

split An optional grouping variable to split the computation by. When working with

large data sets, the computation can grow so large it no longer fits in your com-
puter’s working memory (after which it will probably fall back on the swap file,
which is very slow). Splitting the computation trades some computational ef-
ficiency for a large decrease in RAM usage. This argument defaults to by to
automatically suppress some of its RAM usage.

Details

y is matched to the time scale of x by means of time windows. These time windows are defined as
the period between x - of fset_before and x + of fset_after. Note that either of fset_before or
of fset_after can be 0, but not both. The "interval" of the measurements is therefore the associated
time window for each measurement of x and the data of y that also falls within this period. For
example, an offset_before of minutes(30) means to match all data of y that occurred before
each measurement in x. An offset_after of 900 (i.e. 15 minutes) means to match all data of
y that occurred after each measurement in x. When both of fset_before and of fset_after are
specified, it means all data of y is matched in an interval of 30 minutes before and 15 minutes after
each measurement of x, thus combining the two arguments.

The arguments add_before and add_after let you decide whether you want to add the last mea-
surement before the interval and/or the first measurement after the interval respectively. This could
be useful when you want to know which type of event occurred right before or after the interval
of the measurement. For example, at of fset_before = "30 minutes”, the data may indicate that
a participant was running 20 minutes before a measurement in x, However, with just that informa-
tion there is no way of knowing what the participant was doing the first 10 minutes of the interval.
The same principle applies to after the interval. When add_before is set to TRUE, the last mea-
surement of y occurring before the interval of x is added to the output data as the first row, having
the time of x - offset_before (i.e. the start of the interval). When add_after is set to TRUE,
the first measurement of y occurring after the interval of x is added to the output data as the last
row, having the time of x + of fset_after (i.e. the end of the interval). This way, it is easier to
calculate the difference to other measurements of y later (within the same interval). Additionally,
an extra column (original_time) is added in the nested data column, which is the original time of
the y measurement and NULL for every other observation. This may be useful to check if the added
measurement isn’t too distant (in time) from the others. Note that multiple rows may be added if
there were multiple measurements in y at exactly the same time. Also, if there already is a row with
a timestamp exactly equal to the start of the interval (for add_before = TRUE) or to the end of the
interval (add_after = TRUE), no extra row is added.

Value
A tibble with the data of x with a new column data with the matched data of y according to
offset_before and offset_after.

Warning

Note that setting add_before and add_after each add one row to each nested tibble of the data
column. Thus, if you are only interested in the total count (e.g. the number of total screen changes),

link 33

remember to set these arguments to FALSE or make sure to filter out rows that do not have an
original_time. Simply subtracting 1 or 2 does not work as not all measurements in x may have a
measurement in y before or after (and thus no row is added).

Examples

Define some data

x <- data.frame(
time = rep(seq.POSIXt(as.POSIXct("”2021-11-14 13:00:00"), by = "1 hour”, length.out = 3), 2),
participant_id = c(rep(”12345", 3), rep("23456", 3)),
item_one = rep(c(40, 50, 60), 2)

)

Define some data that we want to link to x

y <- data.frame(
time = rep(seq.POSIXt(as.POSIXct("2021-11-14 12:50:00"), by = "5 min", length.out = 30), 2),
participant_id = c(rep(”12345", 30), rep("”23456", 30)),
x = rep(1:30, 2)

)

Now link y within 30 minutes before each row in x
until the measurement itself:

link(
X = X,
y =Y,

by = "participant_id",
time = time,
y_time = time,

offset_before = "30 minutes”
)
We can also link y to a period both before and after
each measurement in x.
Also note that time, end_time and y_time accept both
quoted names as well as character names.
link(
X = X,
y=y,
by = "participant_id",
time = "time”,
y_time = "time",
offset_before = "15 minutes”,
offset_after = "15 minutes”
)

It can be important to also know the measurements

just preceding the interval or just after the interval.

This adds an extra column called 'original_time' in the

nested data, containing the original time stamp. The

actual timestamp is set to the start time of the interval.
link(

X = X,

y =y,

34

by = "participant_id",

time = time,

y_time = time,

offset_before = "15 minutes”,
offset_after = "15 minutes”,
add_before = TRUE,

add_after = TRUE

)
If you participant_id is not important to you
(i.e. the measurements are interchangeable),
you can ignore them by leaving by empty.
However, in this case we'll receive a warning
since x and y have no other columns in common
(except time, of course). Thus, we can perform
a cross-join:
link(

X = X,

y =y,

by = character(),

time = time,

y_time = time,

offset_before = "30 minutes”

Alternatively, we can specify custom intervals.
That is, we can create variable intervals
without using fixed offsets.
<- data.frame(
start_time = rep(
X = as.POSIXct(c(
"2021-11-14 12:40:00",
"2021-11-14 13:30:00",
"2021-11-14 15:00:00"
),

times = 2

X # o #

),
end_time = rep(
X = as.POSIXct(c(
"2021-11-14 13:20:00",
"2021-11-14 14:10:00",
"2021-11-14 15:30:00"
),
times = 2
),
participant_id = c(rep("”12345", 3), rep("23456", 3)),
item_one = rep(c(40, 50, 60), 2)

)

link(
X = X,
y =y,

by = "participant_id",
time = start_time,

link

link_db 35

end_time = end_time,
y_time = time,
add_before = TRUE,
add_after = TRUE

)
link_db Link two sensors OR one sensor and an external data frame using an
mpathsenser database
Description
[Deprecated]

This function is specific to mpathsenser databases. It is a wrapper around 1ink () but extracts data
in the database for you. It is now soft deprecated as I feel this function’s use is limited in comparison
to 1ink().

Usage

link_db(
db,
sensor_one,
sensor_two = NULL,
external = NULL,
external_time = "time",
offset_before = 0,
offset_after = 0,
add_before = FALSE,
add_after = FALSE,
participant_id = NULL,
start_date = NULL,
end_date = NULL,
reverse = FALSE,
ignore_large = FALSE

)
Arguments
db A database connection to an m-Path Sense database.
sensor_one The name of a primary sensor. See sensors for a list of available sensors.
sensor_two The name of a secondary sensor. See sensors for a list of available sensors.
Cannot be used together with external.
external Optionally, specify an external data frame. Cannot be used at the same time as

a second sensor. This data frame must have a column called time.

external_time The name of the column containing the timestamps in external.

36

offset_before

offset_after

add_before

add_after

participant_id

start_date

end_date

reverse

ignore_large

Value

link_db

The time before each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate::as.period().

The time after each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate: :as.period().

Logical value. Do you want to add the last measurement before the start of each
interval?

Logical value. Do you want to add the first measurement after the end of each
interval?

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

Switch sensor_one with either sensor_two or external? Particularly useful
in combination with external.

Safety override to prevent long wait times. Set to TRUE to do this function on
lots of data.

A tibble with the data of sensor_one with a new column data with the matched data of either
sensor_two or external according to of fset_before or offset_after. The other way around
when reverse = TRUE.

See Also
link()

Examples

Not run:
Open a database

db <- open_db("path/to/db")

Link two sensors
link_db(db, "accelerometer”, "gyroscope", offset_before = 300, offset_after = 300)

Link a sensor with an external data frame
link_db(db, "accelerometer”,
external = my_external_data,

external_time =

)

End(Not run)

"time", offset_before = 300, offset_after = 300

link_gaps

37

link_gaps

Link gaps to (ESM) data

Description

[Stable]

Gaps in mobile sensing data typically occur when the app is stopped by the operating system or the
user. While small gaps may not pose problems with analyses, greater gaps may cause bias or skew
your data. As a result, gap data should be considered in order to inspect and limit their influence.
This function, analogous to 1ink(), allows you to connect gaps to other data (usually ESM/EMA
data) within a user-specified time range.

Usage

link_gaps(
data,
gaps,
by = NULL,

of fset_before = 0,

offset_after

:®’

raw_data = FALSE

Arguments

data

gaps

by

offset_before

A data frame or an extension to a data frame (e.g. a tibble). While gap data can
be linked to any other type of data, ESM data is most commonly used.

A data frame (extension) containing the gap data. See identify_gaps() for
retrieving gap data from an mpathsenser database. It should at least contain
the columns from and to (both in a date-time format), as well as any specified
columns in by.

A character vector indicating the variable(s) to match by, typically the partici-
pant IDs. If NULL, the default, x_join() will perform a natural join, using all
variables in common across x and y. Therefore, all data will be mapped to each
other based on the time stamps of x and y. A message lists the variables so that
you can check they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c('a'="'b") will match x$a to y$b.

To join by multiple variables, use a vector with length > 1. For example, by
=c('a', 'b") will match x$a to y$a and x$b to y$b. Use a named vector
to match different variables in x and y. For example, by =c('a' ="'b', 'c' =
'd") will match x$a to y$b and x$c to y$d.

To perform a cross-join (when x and y have no variables in common), use by =
character(). Note that the split argument will then be set to 1.

The time before each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate: :as.period().

38 moving_average

offset_after The time after each measurement in x that denotes the period in which y is
matched. Must be convertible to a period by lubridate::as.period().

raw_data Whether to include the raw data (i.e. the matched gap data) to the output as
gap_data.

Value

The original data with an extra column duration indicating the gap during within the interval in
seconds (if duration is TRUE), or an extra column called gap_data containing the gaps within the
interval. The function ensures all durations and gap time stamps are within the range of the interval.

See Also

bin_data() for linking two sets of intervals to each other; identify_gaps() for finding gaps in
the sampling; add_gaps () for adding gaps to sensor data;

Examples

Create some data

x <- data.frame(
time = rep(seq.POSIXt(as.POSIXct("2021-11-14 13:00:00"), by = "1 hour”, length.out = 3), 2),
participant_id = c(rep(”12345", 3), rep("23456", 3)),
item_one = rep(c(40, 50, 60), 2)

)

Create some gaps

gaps <- data.frame(
from = as.POSIXct(c(”2021-11-14 13:00:00", "2021-11-14 14:00:00")),
to = as.POSIXct(c("2021-11-14 13:30:00", "2021-11-14 14:30:00")),
participant_id = c("12345", "23456")

)

Link the gaps to the data
link_gaps(x, gaps, by = "participant_id", offset_before = @, offset_after = 1800)

Link the gaps to the data and include the raw data
link_gaps(

X,

gaps,

by = "participant_id",

offset_before = 0,

offset_after = 1800,

raw_data = TRUE

moving_average Moving average for values in an mpathsenser database

moving_average 39

Description

[Experimental]

Usage

moving_average(
db,
sensor,
cols,
n,
participant_id = NULL,
start_date = NULL,
end_date = NULL

)
Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.
cols Character vectors of the columns in the sensor table to average over.
n The number of seconds to average over. The index of the result will be centered

compared to the rolling window of observations.
participant_id A character vector identifying one or multiple participants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.
Value

A tibble with the same columns as the input, modified to be a moving average.

Examples

Not run:

path <- system.file("testdata”, "test.db"”, package = "mpathsenser")
db <- open_db(NULL, path)

moving_average(

db = db,
sensor = "Light”,
cols = c("mean_lux", "max_lux"),

n =5, # seconds
participant_id = "12345"

)
close_db(db)

End(Not run)

40 open_db

open_db Open an mpathsenser database.

Description

[Stable]

Usage

open_db(path = getwd(), db_name = "sense.db")

Arguments
path The path to the database. Use NULL to use the full path name in db_name.
db_name The name of the database.

Value

A connection to an mpathsenser database.

See Also

close_db() for closing a database; copy_db() for copying (part of) a database; index_db() for
indexing a database; get_data() for extracting data from a database.

Examples

First create a database in a temporary directory
db <- create_db(tempdir(), "mydb.db")

close_db(db)

DBI::dbIsValid(db) # db is closed

Then re-open it
db2 <- open_db(tempdir(), "mydb.db")
DBI: :dbIsValid(db2) # db is opened

Cleanup
close_db(db2)
file.remove(file.path(tempdir(), "mydb.db"))

plot.coverage

41

plot.coverage Plot a coverage overview

Description

Plot a coverage overview

Usage
S3 method for class 'coverage'
plot(x, ...)
Arguments
X A tibble with the coverage data coming from coverage().
Other arguments passed on to methods. Not currently used.
Value

A ggplot2::ggplot object.

See Also

coverage()

Examples

Not run:
freq <- c(

Accelerometer = 720, # Once per 5 seconds. Can have multiple measurements.

AirQuality =1,

AppUsage = 2, # Once every 30 minutes

Bluetooth = 6@, # Once per minute. Can have multiple measurements.
Gyroscope = 720, # Once per 5 seconds. Can have multiple measurements.
Light = 360, # Once per 10 seconds

Location = 6@, # Once per 60 seconds

Memory = 60, # Once per minute

Noise = 120,

Pedometer = 1,

Weather = 1,

Wifi = 60 # once per minute

)

data <- coverage(
db = db,
participant_id = "12345",
sensor = c("Accelerometer”, "Gyroscope"),
frequency = mpathsenser::freq,
start_date = "2021-01-01",

42 test_jsons

end_date = "2021-05-01"
)

plot(data)

End(Not run)

sensors Available Sensors

Description

[Stable]

A list containing all available sensors in this package you can work with. This variable was created
S0 it is easier to use in your own functions, e.g. to loop over sensors.

Usage

sensors

Format

An object of class character of length 27.

Value

A character vector containing all sensor names supported by mpathsenser.

Examples

sensors

test_jsons Test JSON files for being in the correct format.

Description

[Stable]

Usage

test_jsons(path = getwd(), files = NULL, db = NULL, recursive = TRUE)

test_jsons 43

Arguments
path The path name of the JSON files.
files Alternatively, a character list of the input files.
db A mpathsenser database connection (optional). If provided, will be used to
check which files are already in the database and check only those JSON files
which are not.
recursive Should the listing recurse into directories?
Value

A message indicating whether there were any issues and a character vector of the file names that
need to be fixed. If there were no issues, an invisible empty string is returned.

Parallel

This function supports parallel processing in the sense that it is able to distribute it’s computation

load among multiple workers. To make use of this functionality, run future: :plan(”"multisession”)

before calling this function.

Progress

You can be updated of the progress of this function by using the progressr: :progress() package.
See progressr’s vignette on how to subscribe to these updates.

Examples
Not run:
Test all files in a directory

test_jsons(path = "path/to/jsons"”, recursive = FALSE)

Test all files in a directory and its subdirectories
test_jsons(path = "path/to/jsons”, recursive = TRUE)

Test specific files
test_jsons(files = c("filel.json", "file2.json"))

Test files in a directory, but skip those that are already in the database
test_jsons(path = "path/to/jsons”, db = db)

End(Not run)

https://rdrr.io/cran/future/man/plan.html
https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

44 unzip_data

unzip_data Unzip m-Path Sense output

Description

[Stable]

Similar to unzip, but makes it easier to unzip all files in a given path with one function call.

Usage

unzip_data(path = getwd(), to = NULL, overwrite = FALSE, recursive = TRUE)

Arguments
path The path to the directory containing the zip files.
to The output path.
overwrite Logical value whether you want to overwrite already existing zip files.
recursive Logical value indicating whether to unzip files in subdirectories as well. These
files will then be unzipped in their respective subdirectory.
Value

A message indicating how many files were unzipped.

Parallel

This function supports parallel processing in the sense that it is able to distribute it’s computation
load among multiple workers. To make use of this functionality, run future: :plan(”"multisession”)
before calling this function.

Progress

You can be updated of the progress of this function by using the progressr: :progress() package.
See progressr’s vignette on how to subscribe to these updates.

Examples

Not run:
Unzip all files in a directory
unzip_data(path = "path/to/zipfiles”, to = "path/to/unzipped”, recursive = FALSE)

Unzip all files in a directory and its subdirectories
unzip_data(path = "path/to/zipfiles”, to = "path/to/unzipped”, recursive = TRUE)

Unzip specific files
unzip_data(
path = "path/to/zipfiles”,

https://rdrr.io/cran/future/man/plan.html
https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

vacuum_db 45

to = "path/to/unzipped”,
files = c("filel.zip"”, "file2.zip")
)

Unzip files in a directory, but skip those that are already unzipped
unzip_data(path = "path/to/zipfiles”, to = "path/to/unzipped”, overwrite = FALSE)

End(Not run)

vacuum_db Vacuum a database

Description

[Stable]

This is a convenience function that calls the VACUUM command on a database. This command will
rebuild the database file, repacking it into a minimal amount of disk space.

Usage
vacuum_db (db)

Arguments

db A database connection to an m-Path Sense database.

Value

a scalar numeric that specifies the number of rows affected by the vacuum.

Examples

Create a database in a temporary directory
db <- create_db(tempdir(), "mydb.db")

Assuming that we have imported some data into the database, we can vacuum it
vacuum_db (db)

Cleanup
close_db(db)
file.remove(file.path(tempdir(), "mydb.db"))

Index

* datasets get_nrows, 20
freq, 17 get_participants, 15, 19, 21, 25, 29, 30, 36
sensors, 42 get_participants(), 20
get_processed_files, 22
add_gaps, 3,4, 25 get_studies, 23
add_gaps (), 38 ggplot2: :ggplot, 41
app_category, 5
as.Date, 19, 36, 39 haversine, 23
base::as.Date(), 11, 20 identify_gaps, 24
bin_data, 6 identify_gaps(), 3, 4, 19, 37, 38
bin_data(), 38 import, 16, 26
index_db, 28
ccopy, 8 index_db(), 27, 40
close_db, 9 installed_apps, 29
close_db(), 27,40
copy_db, 10 last_date, 19, 30, 36, 39
copy_db(), 40 last_date(), 20
coverage, 11 link, 30
coverage(), 17,41 link (), 4, 30, 35-37
create_db, 12 link_db, 35
create_db(), 10, 20-23, 26, 27 link_gaps, 37
) link_gaps(), 4,6
DateTimeClasses, 30 lubridate: :as.period(), 31, 36-38
DBI: :dbDisconnect(), 9
dbplyr, 21, 23 minutes, 32
decrypt_gps, 13 moving_average, 38
device_info, 14
dplyr::collect(), 19 open_db, 11,40
dplyr::filter(), 19 open_db(), 9

dplyr::mutate(), 19
plot.coverage, 41

first_date, 15, 19, 36, 39 plot.coverage(), 11

first_date(), 20 progressr::progress(), 17,27, 43, 44
fix_jsons, 16

fix_jsons(), 26 sensors, 10, 11, 15, 19, 20, 25, 26, 30, 35, 39,
freq, 17 42

sodium: :hex2bin(), 13
geocode_rev, 18

get_data, 19 tbl, 20
get_data(), 3, 40 test_jsons, 16, 42

46

INDEX

test_jsons(), 26

unzip, 44
unzip_data, 44

vacuum_db, 45
vacuum_db (), 27

47

	add_gaps
	app_category
	bin_data
	ccopy
	close_db
	copy_db
	coverage
	create_db
	decrypt_gps
	device_info
	first_date
	fix_jsons
	freq
	geocode_rev
	get_data
	get_nrows
	get_participants
	get_processed_files
	get_studies
	haversine
	identify_gaps
	import
	index_db
	installed_apps
	last_date
	link
	link_db
	link_gaps
	moving_average
	open_db
	plot.coverage
	sensors
	test_jsons
	unzip_data
	vacuum_db
	Index

