
Package ‘mnorm’
November 29, 2023

Type Package

Title Multivariate Normal Distribution

Version 1.2.2

Date 2023-11-29

Description Calculates and differentiates probabilities and density of (conditional) multivariate nor-
mal distribution and Gaussian copula (with various marginal distributions) using methods de-
scribed in A. Genz (2004) <doi:10.1023/B:STCO.0000035304.20635.31>, A. Genz, F. Bretz (2009) <doi:10.1007/978-
3-642-01689-
9>, H. I. Gassmann (2003) <doi:10.1198/1061860032283> and E. Kossova, B. Potanin (2018) <https:
//ideas.repec.org/a/ris/apltrx/0346.html>.

License GPL (>= 2)

Imports Rcpp (>= 1.0.10), hpa (>= 1.3.1)

LinkingTo Rcpp, RcppArmadillo, hpa

RoxygenNote 7.2.3

NeedsCompilation yes

Author Bogdan Potanin [aut, cre, ctb],
Sofiia Dolgikh [ctb]

Maintainer Bogdan Potanin <bogdanpotanin@gmail.com>

Repository CRAN

Date/Publication 2023-11-29 07:10:02 UTC

R topics documented:
cmnorm . 2
dmnorm . 5
fromBase . 10
halton . 11
pbetaDiff . 12
pmnorm . 13
qnormFast . 23
rmnorm . 24

1

https://doi.org/10.1023/B:STCO.0000035304.20635.31
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1007/978-3-642-01689-9
https://doi.org/10.1198/1061860032283
https://ideas.repec.org/a/ris/apltrx/0346.html
https://ideas.repec.org/a/ris/apltrx/0346.html

2 cmnorm

seqPrimes . 26
stdt . 26
toBase . 28

Index 30

cmnorm Parameters of conditional multivariate normal distribution

Description

This function calculates mean (expectation) and covariance matrix of conditional multivariate nor-
mal distribution.

Usage

cmnorm(
mean,
sigma,
given_ind,
given_x,
dependent_ind = numeric(),
is_validation = TRUE,
is_names = TRUE,
control = NULL,
n_cores = 1L

)

Arguments

mean numeric vector representing expectation of multivariate normal vector (distribu-
tion).

sigma positively defined numeric matrix representing covariance matrix of multivariate
normal vector (distribution).

given_ind numeric vector representing indexes of multivariate normal vector which are
conditioned at values given by given_x argument.

given_x numeric vector which i-th element corresponds to the given value of the given_ind[i]-
th element (component) of multivariate normal vector. If given_x is numeric
matrix then it’s rows are such vectors of given values.

dependent_ind numeric vector representing indexes of unconditional elements (components) of
multivariate normal vector.

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

is_names logical value indicating whether output values should have row and column
names. Set it to FALSE to get performance boost (default value is TRUE).

control a list of control parameters. See Details.

cmnorm 3

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

Details

Consider m-dimensional multivariate normal vector X = (X1, ..., Xm)T ∼ N(µ,Σ), where
E(X) = µ and Cov(X) = Σ are expectation (mean) and covariance matrix respectively.

Let’s denote vectors of indexes of conditioned and unconditioned elements of X by Ig and Id
respectively. By x(g) denote deterministic (column) vector of given values of XIg . The func-
tion calculates expected value and covariance matrix of conditioned multivariate normal vector
XId |XIg = x(g). For example if Ig = (1, 3) and x(g) = (−1, 1) then Id = (2, 4, 5) so the function
calculates:

µc = E ((X2, X4, X5) |X1 = −1, X3 = 1)

Σc = Cov ((X2, X4, X5) |X1 = −1, X3 = 1)

In general case:

µc = E
(
XId |XIg = x(g)

)
= µId +

(
x(g) − µIg

)(
Σ(Id,Ig)Σ

−1
(Ig,Ig)

)T
Σc = Cov

(
XId |XIg = x(g)

)
= Σ(Id,Id) − Σ(Id,Ig)Σ

−1
(Ig,Ig)

Σ(Ig,Id)

Note that Σ(A,B), where A,B ∈ {d, g}, is a submatrix of Σ generated by intersection of IA rows
and IB columns of Σ.

Below there is a correspondence between aforementioned theoretical (mathematical) notations and
function arguments:

• mean - µ.

• sigma - Σ.

• given_ind - Ig .

• given_x - x(g).

• dependent_ind - Id

Moreover Σ(Ig,Id) is a theoretical (mathematical) notation for sigma[given_ind, dependent_ind].
Similarly µg represents mean[given_ind].

By default dependent_ind contains all indexes that are not in given_ind. It is possible to omit and
duplicate indexes of dependent_ind. But at least single index should be provided for given_ind
without any duplicates. Also dependent_ind and given_ind should not have the same elements.
Moreover given_ind should not be of the same length as mean so at least one component should
be unconditioned.

If given_x is a vector then (if possible) it will be treated as a matrix with the number of columns
equal to the length of mean.

Currently control has no input arguments intended for the users. This argument is used for some
internal purposes of the package.

4 cmnorm

Value

This function returns an object of class "mnorm_cmnorm".

An object of class "mnorm_cmnorm" is a list containing the following components:

• mean - conditional mean.

• sigma - conditional covariance matrix.

• sigma_d - covariance matrix of unconditioned elements.

• sigma_g - covariance matrix of conditioned elements.

• sigma_dg - matrix of covariances between unconditioned and conditioned elements.

• s12s22 - equals to the matrix product of sigma_dg and solve(sigma_g).

Note that mean corresponds to µc while sigma represents Σc. Moreover sigma_d is ΣId,Id , sigma_g
is ΣIg,Ig and sigma_dg is ΣId,Ig .

Since Σc do not depend on X(g) the output sigma does not depend on given_x. In particular
output sigma remains the same independent of whether given_x is a matrix or vector. Oppositely
if given_x is a matrix then output mean is a matrix which rows correspond to conditional means
associated with given values provided by corresponding rows of given_x.

The order of elements of output mean and output sigma depends on the order of dependet_ind
elements that is ascending by default. The order of given_ind elements does not matter. But,
please, check that the order of given_ind match the order of given values i.e. the order of given_x
columns.

Examples

Consider multivariate normal vector:
X = (X1, X2, X3, X4, X5) ~ N(mean, sigma)

Prepare multivariate normal vector parameters
expected value

mean <- c(-2, -1, 0, 1, 2)
n_dim <- length(mean)

correlation matrix
cor <- c(1, 0.1, 0.2, 0.3, 0.4,

0.1, 1, -0.1, -0.2, -0.3,
0.2, -0.1, 1, 0.3, 0.2,
0.3, -0.2, 0.3, 1, -0.05,
0.4, -0.3, 0.2, -0.05, 1)

cor <- matrix(cor, ncol = n_dim, nrow = n_dim, byrow = TRUE)
covariance matrix

sd_mat <- diag(c(1, 1.5, 2, 2.5, 3))
sigma <- sd_mat %*% cor %*% t(sd_mat)

Estimate parameters of conditional distribution i.e.
when the first and the third components of X are conditioned:
(X2, X4, X5 | X1 = -1, X3 = 1)
given_ind <- c(1, 3)
given_x <- c(-1, 1)
par <- cmnorm(mean = mean, sigma = sigma,

dmnorm 5

given_ind = given_ind,
given_x = given_x)

E(X2, X4, X5 | X1 = -1, X3 = 1)
par$mean

Cov(X2, X4, X5 | X1 = -1, X3 = 1)
par$sigma

Additionally calculate E(X2, X4, X5 | X1 = 2, X3 = 3)
given_x_mat <- rbind(given_x, c(2, 3))
par1 <- cmnorm(mean = mean, sigma = sigma,

given_ind = given_ind,
given_x = given_x_mat)

par1$mean

Duplicates and omitted indexes are allowed for dependent_ind
For given_ind duplicates are not allowed
Let's calculate conditional parameters for (X5, X2, X5 | X1 = -1, X3 = 1):
dependent_ind <- c(5, 2, 5)
par2 <- cmnorm(mean = mean, sigma = sigma,

given_ind = given_ind,
given_x = given_x,
dependent_ind = dependent_ind)

E(X5, X2, X5 | X1 = -1, X3 = 1)
par2$mean

Cov(X5, X2, X5 | X1 = -1, X3 = 1)
par2$sigma

dmnorm Density of (conditional) multivariate normal distribution

Description

This function calculates and differentiates density of (conditional) multivariate normal distribution.

Usage

dmnorm(
x,
mean,
sigma,
given_ind = numeric(),
log = FALSE,
grad_x = FALSE,
grad_sigma = FALSE,
is_validation = TRUE,
control = NULL,
n_cores = 1L

)

6 dmnorm

Arguments

x numeric vector representing the point at which density should be calculated. If
x is a matrix then each row determines a new point.

mean numeric vector representing expectation of multivariate normal vector (distribu-
tion).

sigma positively defined numeric matrix representing covariance matrix of multivariate
normal vector (distribution).

given_ind numeric vector representing indexes of multivariate normal vector which are
conditioned at values of x with corresponding indexes i.e. x[given_x] or x[,
given_x] if x is a matrix.

log logical; if TRUE then probabilities (or densities) p are given as log(p) and deriva-
tives will be given respect to log(p).

grad_x logical; if TRUE then the vector of partial derivatives of the density function will
be calculated respect to each element of x. If x is a matrix then gradients will be
estimated for each row of x.

grad_sigma logical; if TRUE then the vector of partial derivatives (gradient) of the density
function will be calculated respect to each element of sigma. If x is a matrix
then gradients will be estimated for each row of x.

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

control a list of control parameters. See Details.

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

Details

Consider notations from the Details section of cmnorm. The function calculates density f(x(d)|x(g))
of conditioned multivariate normal vector XId |XIg = x(g). Where x(d) is a subvector of x asso-
ciated with XId i.e. unconditioned components. Therefore x[given_ind] represents x(g) while
x[-given_ind] is x(d).

If grad_x is TRUE then function additionally estimates the gradient respect to both unconditioned
and conditioned components:

∇f(x(d)|x(g)) =

(
∂f(x(d)|x(g))

∂x1
, ...,

∂f(x(d)|x(g))
∂xm

)
,

where each xi belongs either to x(d) or x(g) depending on whether i ∈ Id or i ∈ Ig correspondingly.
In particular subgradients of density function respect to x(d) and x(g) are of the form:

∇x(d) ln f(x(d)|x(g)) = −
(
x(d) − µc

)
Σ−1c

∇x(g) ln f(x(d)|x(g)) = −∇x(d)f(x(d)|x(g))Σd,gΣ−1g,g

dmnorm 7

If grad_sigma is TRUE then function additionally estimates the gradient respect to the elements of
covariance matrix Σ. For i ∈ Id and j ∈ Id the function calculates:

∂ ln f(x(d)|x(g))
∂Σi,j

=

(
∂ ln f(x(d)|x(g))

∂xi
× ∂ ln f(x(d)|x(g))

∂xj
− Σ−1c,(i,j)

)
/ (1 + I(i = j)) ,

where I(i = j) is an indicator function which equals 1 when the condition i = j is satisfied and 0
otherwise.

For i ∈ Id and j ∈ Ig the following formula is used:

∂ ln f(x(d)|x(g))
∂Σi,j

= −∂ ln f(x(d)|x(g))
∂xi

×
((
x(g) − µg

)
Σ−1g,g

)
qg(j)
−

−
nd∑
k=1

(1 + I(qd(i) = k))× (Σd,gΣ
−1
g,g)k,qg(j) ×

∂ ln f(x(d)|x(g))
∂Σi,q−1

d (k)

,

where qg(j) =
m∑
k=1

I (Ig,k ≤ j) and qd(i) =
m∑
k=1

I (Id,k ≤ i) represent the order of the i-th and j-th

elements in Ig and Id correspondingly i.e. xi = x
(d)
qd(i)

= xId,qd(i)
and xj = x

(g)
qg(j)

= xIg,qg(j)
.

Note that qg(j)−1 and qd(i)−1 are inverse functions. Number of conditioned and unconditioned

components are denoted by ng =
m∑
k=1

I(k ∈ Ig) and nd =
m∑
k=1

I(k ∈ Id) respectively. For the case

i ∈ Ig and j ∈ Id the formula is similar.

For i ∈ Ig and j ∈ Ig the following formula is used:

∂ ln f(x(d)|x(g))
∂Σi,j

= −∇x(d) ln f(x(d)|x(g))×
(
x(g) × (Σd,g × Σ−1g,g × I∗g × Σ−1g,g)

T
)T
−

−
nd∑
k1=1

nd∑
k2=k1

∂ ln f(x(d)|x(g))
∂Σqd(k1)−1,qd(k2)−1

(
Σd,g × Σ−1g,g × I∗g × Σ−1g,g × ΣTd,g

)
qd(k1)−1,qd(k2)−1 ,

where I∗g is a square ng-dimensional matrix of zeros except I∗g,(i,j) = I∗g,(j,i) = 1.

Argument given_ind represents Ig and it should not contain any duplicates. The order of given_ind
elements does not matter so it has no impact on the output.

More details on abovementioned differentiation formulas could be found in the appendix of E.
Kossova and B. Potanin (2018).

Currently control has no input arguments intended for the users. This argument is used for some
internal purposes of the package.

Value

This function returns an object of class "mnorm_dmnorm".

An object of class "mnorm_dmnorm" is a list containing the following components:

• den - density function value at x.

• grad_x - gradient of density respect to x if grad_x or grad_sigma input argument is set to
TRUE.

8 dmnorm

• grad_sigma - gradient respect to the elements of sigma if grad_sigma input argument is set
to TRUE.

If log is TRUE then den is a log-density so output grad_x and grad_sigma are calculated respect to
the log-density.

Output grad_x is a Jacobian matrix which rows are gradients of the density function calculated for
each row of x. Therefore grad_x[i, j] is a derivative of the density function respect to the j-th
argument at point x[i,].

Output grad_sigma is a 3D array such that grad_sigma[i, j, k] is a partial derivative of the
density function respect to the sigma[i, j] estimated for the observation x[k,].

References

E. Kossova., B. Potanin (2018). Heckman method and switching regression model multivariate
generalization. Applied Econometrics, vol. 50, pages 114-143.

Examples

Consider multivariate normal vector:
X = (X1, X2, X3, X4, X5) ~ N(mean, sigma)

Prepare multivariate normal vector parameters
expected value

mean <- c(-2, -1, 0, 1, 2)
n_dim <- length(mean)

correlation matrix
cor <- c(1, 0.1, 0.2, 0.3, 0.4,

0.1, 1, -0.1, -0.2, -0.3,
0.2, -0.1, 1, 0.3, 0.2,
0.3, -0.2, 0.3, 1, -0.05,
0.4, -0.3, 0.2, -0.05, 1)

cor <- matrix(cor, ncol = n_dim, nrow = n_dim, byrow = TRUE)
covariance matrix

sd_mat <- diag(c(1, 1.5, 2, 2.5, 3))
sigma <- sd_mat %*% cor %*% t(sd_mat)

Estimate the density of X at point (-1, 0, 1, 2, 3)
x <- c(-1, 0, 1, 2, 3)
d.list <- dmnorm(x = x, mean = mean, sigma = sigma)
d <- d.list$den
print(d)

Estimate the density of X at points
x=(-1, 0, 1, 2, 3) and y=(-1.2, -1.5, 0, 1.2, 1.5)
y <- c(-1.5, -1.2, 0, 1.2, 1.5)
xy <- rbind(x, y)
d.list.1 <- dmnorm(x = xy, mean = mean, sigma = sigma)
d.1 <- d.list.1$den
print(d.1)

Estimate the density of Xc=(X2, X4, X5 | X1 = -1, X3 = 1) at

dmnorm 9

point xd=(0, 2, 3) given conditioning values xg=(-1, 1)
given_ind <- c(1, 3)
d.list.2 <- dmnorm(x = x, mean = mean, sigma = sigma,

given_ind = given_ind)
d.2 <- d.list.2$den
print(d.2)

Estimate the gradient of density respect to the argument and
covariance matrix at points 'x' and 'y'
d.list.3 <- dmnorm(x = xy, mean = mean, sigma = sigma,

grad_x = TRUE, grad_sigma = TRUE)
Gradient respect to the argument
grad_x.3 <- d.list.3$grad_x

at point 'x'
print(grad_x.3[1,])

at point 'y'
print(grad_x.3[2,])
Partial derivative at point 'y' respect
to the 3-rd argument
print(grad_x.3[2, 3])
Gradient respect to the covariance matrix
grad_sigma.3 <- d.list.3$grad_sigma
Partial derivative respect to sigma(3, 5) at
point 'y'
print(grad_sigma.3[3, 5, 2])

Estimate the gradient of the log-density function of
Xc=(X2, X4, X5 | X1 = -1, X3 = 1) and Yc=(X2, X4, X5 | X1 = -1.5, X3 = 0)
respect to the argument and covariance matrix at
points xd=(0, 2, 3) and yd=(-1.2, 0, 1.5) respectively given
conditioning values xg=(-1, 1) and yg=(-1.5, 0) correspondingly
d.list.4 <- dmnorm(x = xy, mean = mean, sigma = sigma,

grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)

Gradient respect to the argument
grad_x.4 <- d.list.4$grad_x

at point 'xd'
print(grad_x.4[1,])

at point 'yd'
print(grad_x.4[2,])
Partial derivative at point 'xd' respect to 'xg[2]'
print(grad_x.4[1, 3])
Partial derivative at point 'yd' respect to 'yd[5]'
print(grad_x.4[2, 5])
Gradient respect to the covariance matrix
grad_sigma.4 <- d.list.4$grad_sigma
Partial derivative respect to sigma(3, 5) at
point 'yd'
print(grad_sigma.4[3, 5, 2])

Compare analytical gradients from the previous example with
their numeric (forward difference) analogues at point 'xd'
given conditioning 'xg'

10 fromBase

delta <- 1e-6
grad_x.num <- rep(NA, 5)
grad_sigma.num <- matrix(NA, nrow = 5, ncol = 5)
for (i in 1:5)
{

x.delta <- x
x.delta[i] <- x[i] + delta
d.list.delta <- dmnorm(x = x.delta, mean = mean, sigma = sigma,

grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)

grad_x.num[i] <- (d.list.delta$den - d.list.4$den[1]) / delta
for(j in 1:5)
{

sigma.delta <- sigma
sigma.delta[i, j] <- sigma[i, j] + delta
sigma.delta[j, i] <- sigma[j, i] + delta
d.list.delta <- dmnorm(x = x, mean = mean, sigma = sigma.delta,

grad_x = TRUE, grad_sigma = TRUE,
given_ind = given_ind, log = TRUE)

grad_sigma.num[i, j] <- (d.list.delta$den - d.list.4$den[1]) / delta
}

}
Comparison of gradients respect to the argument
h.x <- cbind(analytical = grad_x.4[1,], numeric = grad_x.num)
rownames(h.x) <- c("xg[1]", "xd[1]", "xg[2]", "xd[3]", "xd[4]")
print(h.x)
Comparison of gradients respect to the covariance matrix
h.sigma <- list(analytical = grad_sigma.4[, , 1], numeric = grad_sigma.num)
print(h.sigma)

fromBase Convert base representation of a number into integer

Description

Converts base representation of a number into integer.

Usage

fromBase(x, base = 2L)

Arguments

x vector of positive integer coefficients representing the number in base that is
base.

base positive integer representing the base.

Value

The function returns a positive integer that is a conversion from base under given coefficients x.

halton 11

Examples

fromBase(c(1, 2, 0, 2, 3), 5)

halton Halton sequence

Description

Calculate elements of the Halton sequence and of some other pseudo-random sequences.

Usage

halton(
n = 1L,
base = as.integer(c(2)),
start = 1L,
random = "NO",
type = "halton",
scrambler = "NO",
is_validation = TRUE,
n_cores = 1L

)

Arguments

n positive integer representing the number of sequence elements.

base vector of positive integers greater then one representing the bases for each of the
sequences.

start non-negative integer representing the index of the first element of the sequence
to be included in the output sequence.

random string representing the method of randomization to be applied to the sequence. If
random = "NO" (default) then there is no randomization. If random = "Tuffin"
then standard uniform random variable will be added to each element of the
sequence and the difference between this sum and it’s ’floor’ will be returned as
a new element of the sequence.

type string representing type of the sequence. Default is "halton" that is Halton se-
quence. The alternative is "richtmyer" corresponding to Richtmyer sequence.

scrambler string representing scrambling method for the Halton sequence. Possible options
are "NO" (default), "root" and "negroot" which described in S. Kolenikov
(2012).

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

12 pbetaDiff

Details

Function seqPrimes could be used to provide the prime numbers for the base input argument.

Value

The function returns a matrix which i-th column is a sequence with base base[i] and elements
with indexes from start to start + n.

References

J. Halton (1964) <doi:10.2307/2347972>

S. Kolenikov (2012) <doi:10.1177/1536867X1201200103>

Examples

halton(n = 100, base = c(2, 3, 5), start = 10)

pbetaDiff Differentiate Regularized Incomplete Beta Function.

Description

Calculate derivatives of the regularized incomplete beta function that is a cumulative distribution
function of the beta distribution.

Usage

pbetaDiff(x, p = 10, q = 0.5, n = 10L, is_validation = TRUE, control = NULL)

Arguments

x numeric vector of values between 0 and 1. It is similar to q argument of pbeta
function.

p similar to shape1 argument of pbeta function.

q similar to shape2 argument of pbeta function.

n positive integer representing the number of iterations used to calculate the deriva-
tives. Greater values provide higher accuracy by the cost of more computational
resources.

is_validation logical; if TRUE then input arguments are validated. Set to FALSE to slightly
increase the performance of the function.

control list of control parameters. Currently not intended for the users.

Details

The function implements differentiation algorithm of R. Boik and J. Robinson-Cox (1998). Cur-
rently only first-order derivatives are considered.

pmnorm 13

Value

The function returns a list which has the following elements:

• dx - numeric vector of derivatives respect to each element of x.

• dp - numeric vector of derivatives respect to p for each element of x.

• dq - numeric vector of derivatives respect to q for each element of x.

References

Boik, R. J. and Robinson-Cox, J. F. (1998). Derivatives of the Incomplete Beta Function. Journal
of Statistical Software, 3 (1), pages 1-20.

Examples

Some values from Table 1 of R. Boik and J. Robinson-Cox (1998)
pbetaDiff(x = 0.001, p = 1.5, q = 11)
pbetaDiff(x = 0.5, p = 1.5, q = 11)

Compare analytical and numeric derivatives
delta <- 1e-6
x <- c(0.01, 0.25, 0.5, 0.75, 0.99)
p <- 5
q <- 10
out <- pbetaDiff(x = x, p = p, q = q)
p0 <- pbeta(q = x, shape1 = p, shape2 = q)

Derivatives respect to x
p1 <- pbeta(q = x + delta, shape1 = p, shape2 = q)
data.frame(numeric = (p1 - p0) / delta, analytical = out$dx)

Derivatives respect to p
p1 <- pbeta(q = x, shape1 = p + delta, shape2 = q)
data.frame(numeric = (p1 - p0) / delta, analytical = out$dp)

Derivatives respect to q
p1 <- pbeta(q = x, shape1 = p, shape2 = q + delta)
data.frame(numeric = (p1 - p0) / delta, analytical = out$dq)

pmnorm Probabilities of (conditional) multivariate normal distribution

Description

This function calculates and differentiates probabilities of (conditional) multivariate normal distri-
bution.

14 pmnorm

Usage

pmnorm(
lower,
upper,
given_x = numeric(),
mean = numeric(),
sigma = matrix(),
given_ind = numeric(),
n_sim = 1000L,
method = "default",
ordering = "mean",
log = FALSE,
grad_lower = FALSE,
grad_upper = FALSE,
grad_sigma = FALSE,
grad_given = FALSE,
is_validation = TRUE,
control = NULL,
n_cores = 1L,
marginal = NULL,
grad_marginal = FALSE,
grad_marginal_prob = FALSE

)

Arguments

lower numeric vector representing lower integration limits. If lower is a matrix then
each row determines new limits. Negative infinite values are allowed while pos-
itive infinite values are prohibited.

upper numeric vector representing upper integration limits. If upper is a matrix then
each row determines new limits. Positive infinite values are allowed while neg-
ative infinite values are prohibited.

given_x numeric vector which i-th element corresponds to the given value of the given_ind[i]-
th element (component) of multivariate normal vector. If given_x is numeric
matrix then it’s rows are such vectors of given values.

mean numeric vector representing expectation of multivariate normal vector (distribu-
tion).

sigma positively defined numeric matrix representing covariance matrix of multivariate
normal vector (distribution).

given_ind numeric vector representing indexes of multivariate normal vector which are
conditioned at values given by given_x argument.

n_sim positive integer representing the number of draws from Richtmyer sequence in
GHK algorithm. More draws provide more accurate results by the cost of addi-
tional computational burden. Alternative types of sequences could be provided
via random_sequence argument.

pmnorm 15

method string representing the method to be used to calculate multivariate normal prob-
abilities. Possible options are "GHK" and "Gassmann" recommended for high
dimensional (more than 5) and low dimensional probabilities correspondingly.
Additional option "default" selects optimal method depending on the number
of dimensions. See ’Details’ for additional information.

ordering string representing the method to be used to order the integrals. See Details
section below.

log logical; if TRUE then probabilities (or densities) p are given as log(p) and deriva-
tives will be given respect to log(p).

grad_lower logical; if TRUE then the vector of partial derivatives of the probability will be
calculated respect to each element of lower. If lower is a matrix then gradients
will be estimated for each row of lower.

grad_upper logical; if TRUE then the vector of partial derivatives of the probability will be
calculated respect to each element of upper. If upper is a matrix then gradients
will be estimated for each row of upper.

grad_sigma logical; if TRUE then the vector of partial derivatives (gradient) of the probability
will be calculated respect to each element of sigma. If lower and upper are
matrices then gradients will be estimated for each row of these matrices.

grad_given logical; if TRUE then the vector of partial derivatives of the density function will
be calculated respect to each element of given_x. If given_x is a matrix then
gradients will be estimated for each row of given_x.

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

control a list of control parameters. See Details.

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

marginal list such that marginal[[i]] represents parameters of marginal distribution of
the i-th component of the random vector and names(marginal)[i] is a name of
this distribution. If names(marginal)[i] = "logistic" or names(marginal)[i]
= "normal" then marginal[[i]] should be an empty vector or NULL. If names(marginal)[i]
= "student" then marginal[[i]] should contain a single element representing
degrees of freedom. If names(marginal)[i] = "PGN" or names(marginal)[i]
= "hpa" then marginal[[i]] should be a numeric vector which elements cor-
respond to pc argument of phpa0.

grad_marginal logical; if TRUE then the vector of partial derivatives (gradient) of probability will
be calculated respect to each parameter of marginal distributions i.e. respect to
each element of marginal. The gradient respect to the parameters of the i-th
marginal distribution will be stored in the grad_marginal[[i]] output matrix
which j-th column stores derivatives respect to marginal[[i]][j].

grad_marginal_prob

logical; if TRUE then the vector of partial derivatives (gradient) of probability
will be calculated respect to each cumulative marginal probability of marginal
distributions.

16 pmnorm

Details

Consider notations from the Details sections of cmnorm and dmnorm. The function calculates prob-
abilities of the form:

P
(
x(l) ≤ XId ≤ x(u)|XIg = x(g)

)
where x(l) and x(u) are lower and upper integration limits respectively i.e. lower and upper cor-
respondingly. Also x(g) represents given_x. Note that lower and upper should be matrices of the
same size. Also given_x should have the same number of rows as lower and upper.

To calculate bivariate probabilities the function applies the method of Drezner and Wesolowsky
described in A. Genz (2004). In contrast to the classical implementation of this method the function
applies Gauss-Legendre quadrature with 30 sample points to approximate integral (1) of A. Genz
(2004). Classical implementations of this method use up to 20 points but requires some additional
transformations of (1). During preliminary testing it has been found that approach with 30 points
provides similar accuracy being slightly faster because of better vectorization capabilities.

To calculate trivariate probabilities the function uses Drezner method following formula (14) of A.
Genz (2004). Similarly to bivariate case 30 points are used in Gauss-Legendre quadrature.

The function may apply the method of Gassmann (2003) for estimation of m > 3 dimensional
normal probabilities. It uses matrix 5 representation of Gassmann (2003) and 30 points of Gauss-
Legendre quadrature.

For m-variate probabilities, where m > 1, the function may apply GHK algorithm described in
section 4.2 of A. Genz and F. Bretz (2009). The implementation of GHK is based on deterministic
Halton sequence with n_sim draws and uses variable reordering suggested in section 4.1.3 of A.
Genz and F. Bretz (2009). The ordering algorithm may be determined via ordering argument.
Available options are "NO", "mean" (default), and "variance".

Univariate probabilities are always calculated via standard approach so in this case method will not
affect the output. If method = "Gassmann" then the function uses fast (aforementioned) algorithms
for bivariate and trivariate probabilities or the method of Gassmann for m > 3 dimensional proba-
bilities. If method = "GHK" then GHK algorithm is used. If method = "default" then "Gassmann"
is used for bivariate and trivariate probabilities while "GHK" is used for m > 3 dimensional prob-
abilities. During future updates "Gassmann" may become a default method for calculation of the
4− 5 dimensional probabilities.

We are going to provide alternative estimation algorithms during future updates. These methods
will be available via method argument.

The function is optimized to perform much faster when all upper integration limits upper are fi-
nite while all lower integration limits lower are negative infinite. The derivatives could be also
calculated much faster when some integration limits are infinite.

For simplicity of notations further let’s consider unconditioned probabilities. Derivatives respect
to conditioned components are similar to those mentioned in Details section of dmnorm. We also
provide formulas for m ≥ 3. But the function may calculate derivatives for m ≤ 2 using some
simplifications of the formulas mentioned below.

If grad_upper is TRUE then function additionally estimates the gradient respect to upper:

∂P
(
x(l) ≤ X ≤ x(u)

)
∂x

(u)
i

= P
(
x
(l)
(−i) ≤ X(−i) ≤ x

(u)
(−i)|Xi = x

(u)
i

)
fXi

(
x
(u)
i ;µi,Σi,i

)

pmnorm 17

If grad_lower is TRUE then function additionally estimates the gradient respect to lower:

∂P
(
x(l) ≤ X ≤ x(u)

)
∂x

(l)
i

= −P
(
x
(l)
(−i) ≤ X(−i) ≤ x

(u)
(−i)|Xi = x

(l)
i

)
fXi

(
x
(l)
i ;µi,Σi,i

)
If grad_sigma is TRUE then function additionally estimates the gradient respect to sigma. For i 6= j
the function calculates derivatives respect to the covariances:

∂P
(
x(l) ≤ X ≤ x(u)

)
∂Σi,j

=

= P
(
x
(l)
(−(i,j)) ≤ X−(i,j) ≤ x

(u)
(−(i,j))|Xi = x

(u)
i , Xj = x

(u)
j

)
fXi,Xj

(
x
(u)
i , x

(u)
j ;µ(i,j),Σ(i,j),(i,j)

)
−

−P
(
x
(l)
(−(i,j)) ≤ X−(i,j) ≤ x

(u)
(−(i,j))|Xi = x

(l)
i , Xj = x

(u)
j

)
fXi,Xj

(
x
(l)
i , x

(u)
j ;µ(i,j),Σ(i,j),(i,j)

)
−

−P
(
x
(l)
(−(i,j)) ≤ X−(i,j) ≤ x

(u)
(−(i,j))|Xi = x

(u)
i , Xj = x

(l)
j

)
fXi,Xj

(
x
(u)
i , x

(l)
j ;µ(i,j),Σ(i,j),(i,j)

)
+

+P
(
x
(l)
(−(i,j)) ≤ X−(i,j) ≤ x

(u)
(−(i,j))|Xi = x

(l)
i , Xj = x

(l)
j

)
fXi,Xj

(
x
(l)
i , x

(l)
j ;µ(i,j),Σ(i,j),(i,j)

)
Note that if some of integration limits are infinite then some elements of this equation converge to
zero which highly simplifies the calculations.

Derivatives respect to variances are calculated using derivatives respect to covariances and integra-
tion limits:

∂P
(
x(l) ≤ X ≤ x(u)

)
∂Σi,i

=

−
∂P
(
x(l) ≤ X ≤ x(u)

)
∂x

(l)
i

x
(l)
i

2Σi,i
−
∂P
(
x(l) ≤ X ≤ x(u)

)
∂x

(u)
i

x
(u)
i

2Σi,i
−

−
∑
j 6=i

∂P
(
x(l) ≤ X ≤ x(u)

)
∂Σi,j

Σi,j
2Σi,i

If grad_given is TRUE then function additionally estimates the gradient respect to given_x using
formulas similar to those described in Details section of dmnorm.

More details on abovementioned differentiation formulas could be found in the appendix of E.
Kossova and B. Potanin (2018).

If marginal is not empty then Gaussian copula will be used instead of a classical multivariate
normal distribution. Without loss of generality let’s assume that µ is a vector of zeros and introduce
some additional notations:

q
(u)
i = Φ−1

(
Pi

(
x
(u)
i

σi

))

18 pmnorm

q
(l)
i = Φ−1

(
Pi

(
x
(l)
i

σi

))
where Φ(.)−1 is a quantile function of a standard normal distribution and Pi is a cumulative dis-
tribution function of the standartized (to zero mean and unit variance) marginal distribution which
name and parameters are defined by names(marginal)[i] and marginal[[i]] correspondingly.
For example if marginal[i] = "logistic" then:

Pi(t) =
1

1 + e−πt/
√
3

Let’s denote by X∗ random vector which is distributed with Gaussian (its covariance matrix is
Σ) copula and marginals defined by marginal. Then probabilities for these random vector are
calculated as follows:

P
(
x(l) ≤ X∗ ≤ x(u)

)
= P

(
σq(l) ≤ X ≤ σq(u)

)
= P0

(
σq(l), σq(u)

)
where q(l) = (q

(l)
1 , ..., q

(l)
m), q(u) = (q

(u)
1 , ..., q

(u)
m) and σ = (

√
Σ1,1, ...,

√
Σm,m). Therefore

probabilities of X∗ may be calculated using probabilities of multivariate normal random vector
X (with the same covariance matrix) by substituting lower and upper integration limits x(l) and
x(u) with σq(l) and σq(u) correspondingly. Therefore differentiation formulas are similar to those
mentioned above and will be automatically adjusted if marginal is not empty (including conditional
probabilities).

Argument control is a list with the following input parameters:

• random_sequence – numeric matrix of uniform pseudo random numbers (like Halton se-
quence). The number of columns should be equal to the number of dimensions of multivariate
random vector. If omitted than this matrix will be generated automatically using n_sim num-
ber of simulations.

Value

This function returns an object of class "mnorm_pmnorm".

An object of class "mnorm_pmnorm" is a list containing the following components:

• prob - probability that multivariate normal random variable will be between lower and upper
bounds.

• grad_lower - gradient of probability respect to lower if grad_lower or grad_sigma input
argument is set to TRUE.

• grad_upper - gradient of probability respect to upper if grad_upper or grad_sigma input
argument is set to TRUE.

• grad_sigma - gradient respect to the elements of sigma if grad_sigma input argument is set
to TRUE.

• grad_given - gradient respect to the elements of given_x if grad_given input argument is
set to TRUE.

• grad_marginal - gradient respect to the elements of marginal_par if grad_marginal in-
put argument is set to TRUE. Currently only derivatives respect to the parameters of "PGN"
distribution are available.

pmnorm 19

If log is TRUE then prob is a log-probability so output grad_lower, grad_upper, grad_sigma and
grad_given are calculated respect to the log-probability.

Output grad_lower and grad_upper are Jacobian matrices which rows are gradients of the prob-
abilities calculated for each row of lower and upper correspondingly. Similarly grad_given is a
Jacobian matrix respect to given_x.

Output grad_sigma is a 3D array such that grad_sigma[i, j, k] is a partial derivative of the
probability function respect to the sigma[i, j] estimated for k-th observation.

Output grad_marginal is a list such that grad_marginal[[i]] is a Jacobian matrice which rows
are gradients of the probabilities calculated for each row of lower and upper correspondingly re-
spect to the elements of marginal_par[[i]].

References

Genz, A. (2004), Numerical computation of rectangular bivariate and trivariate normal and t-probabilities,
Statistics and Computing, 14, 251-260.

Genz, A. and Bretz, F. (2009), Computation of Multivariate Normal and t Probabilities. Lecture
Notes in Statistics, Vol. 195. Springer-Verlag, Heidelberg.

E. Kossova, B. Potanin (2018). Heckman method and switching regression model multivariate
generalization. Applied Econometrics, vol. 50, pages 114-143.

H. I. Gassmann (2003). Multivariate Normal Probabilities: Implementing an Old Idea of Plackett’s.
Journal of Computational and Graphical Statistics, vol. 12 (3), pages 731-752.

Examples

Consider multivariate normal vector:
X = (X1, X2, X3, X4, X5) ~ N(mean, sigma)

Prepare multivariate normal vector parameters
expected value

mean <- c(-2, -1, 0, 1, 2)
n_dim <- length(mean)

correlation matrix
cor <- c(1, 0.1, 0.2, 0.3, 0.4,

0.1, 1, -0.1, -0.2, -0.3,
0.2, -0.1, 1, 0.3, 0.2,
0.3, -0.2, 0.3, 1, -0.05,
0.4, -0.3, 0.2, -0.05, 1)

cor <- matrix(cor, ncol = n_dim, nrow = n_dim, byrow = TRUE)
covariance matrix

sd_mat <- diag(c(1, 1.5, 2, 2.5, 3))
sigma <- sd_mat %*% cor %*% t(sd_mat)

Estimate probability:
P(-3 < X1 < 1, -2.5 < X2 < 1.5, -2 < X3 < 2, -1.5 < X4 < 2.5, -1 < X5 < 3)
lower <- c(-3, -2.5, -2, -1.5, -1)
upper <- c(1, 1.5, 2, 2.5, 3)
p.list <- pmnorm(lower = lower, upper = upper,

mean = mean, sigma = sigma)
p <- p.list$prob

20 pmnorm

print(p)

Additionally estimate a probability
lower.1 <- c(-Inf, 0, -Inf, 1, -Inf)
upper.1 <- c(Inf, Inf, 3, 4, 5)
lower.mat <- rbind(lower, lower.1)
upper.mat <- rbind(upper, upper.1)
p.list.1 <- pmnorm(lower = lower.mat, upper = upper.mat,

mean = mean, sigma = sigma)
p.1 <- p.list.1$prob
print(p.1)

Estimate the probabilities
P(-1 < X1 < 1, -3 < X3 < 3, -5 < X5 < 5 | X2 = -2, X4 = 4)
lower.2 <- c(-1, -3, -5)
upper.2 <- c(1, 3, 5)
given_ind <- c(2, 4)
given_x <- c(-2, 4)
p.list.2 <- pmnorm(lower = lower.2, upper = upper.2,

mean = mean, sigma = sigma,
given_ind = given_ind, given_x = given_x)

p.2 <- p.list.2$prob
print(p.2)

Additionally estimate the probability
P(-Inf < X1 < 1, -3 < X3 < Inf, -Inf < X5 < Inf | X2 = 4, X4 = -2)
lower.3 <- c(-Inf, -3, -Inf)
upper.3 <- c(1, Inf, Inf)
given_x.1 <- c(-2, 4)
lower.mat.2 <- rbind(lower.2, lower.3)
upper.mat.2 <- rbind(upper.2, upper.3)
given_x.mat <- rbind(given_x, given_x.1)
p.list.3 <- pmnorm(lower = lower.mat.2, upper = upper.mat.2,

mean = mean, sigma = sigma,
given_ind = given_ind, given_x = given_x.mat)

p.3 <- p.list.3$prob
print(p.3)

Estimate the gradient of previous probabilities respect various arguments
p.list.4 <- pmnorm(lower = lower.mat.2, upper = upper.mat.2,

mean = mean, sigma = sigma,
given_ind = given_ind, given_x = given_x.mat,
grad_lower = TRUE, grad_upper = TRUE,
grad_sigma = TRUE, grad_given = TRUE)

p.4 <- p.list.4$prob
print(p.4)
Gradient respect to 'lower'
grad_lower <- p.list.4$grad_lower

for the first probability
print(grad_lower[1,])

for the second probability
print(grad_lower[2,])
Gradient respect to 'upper'

pmnorm 21

grad_upper <- p.list.4$grad_upper
for the first probability

print(grad_upper[1,])
for the second probability

print(grad_upper[2,])
Gradient respect to 'given_x'
grad_given <- p.list.4$grad_given

for the first probability
print(grad_given[1,])

for the second probability
print(grad_given[2,])
Gradient respect to 'sigma'
grad_given <- p.list.4$grad_given

for the first probability
print(grad_given[1,])

for the second probability
print(grad_given[2,])

Compare analytical gradients from the previous example with
their numeric (forward difference) analogues for the first probability
n_dependent <- length(lower.2)
n_given <- length(given_x)
n_dim <- n_dependent + n_given
delta <- 1e-6
grad_lower.num <- rep(NA, n_dependent)
grad_upper.num <- rep(NA, n_dependent)
grad_given.num <- rep(NA, n_given)
grad_sigma.num <- matrix(NA, nrow = n_dim, ncol = n_dim)
for (i in 1:n_dependent)
{

respect to lower
lower.delta <- lower.2
lower.delta[i] <- lower.2[i] + delta
p.list.delta <- pmnorm(lower = lower.delta, upper = upper.2,

given_x = given_x,
mean = mean, sigma = sigma,
given_ind = given_ind)

grad_lower.num[i] <- (p.list.delta$prob - p.list.4$prob[1]) / delta
respect to upper
upper.delta <- upper.2
upper.delta[i] <- upper.2[i] + delta
p.list.delta <- pmnorm(lower = lower.2, upper = upper.delta,

given_x = given_x,
mean = mean, sigma = sigma,
given_ind = given_ind)

grad_upper.num[i] <- (p.list.delta$prob - p.list.4$prob[1]) / delta
}
for (i in 1:n_given)
{

respect to lower
given_x.delta <- given_x
given_x.delta[i] <- given_x[i] + delta

22 pmnorm

p.list.delta <- pmnorm(lower = lower.2, upper = upper.2,
given_x = given_x.delta,
mean = mean, sigma = sigma,
given_ind = given_ind)

grad_given.num[i] <- (p.list.delta$prob - p.list.4$prob[1]) / delta
}
for (i in 1:n_dim)
{

for(j in 1:n_dim)
{
respect to sigma
sigma.delta <- sigma
sigma.delta[i, j] <- sigma[i, j] + delta
sigma.delta[j, i] <- sigma[j, i] + delta
p.list.delta <- pmnorm(lower = lower.2, upper = upper.2,

given_x = given_x,
mean = mean, sigma = sigma.delta,
given_ind = given_ind)

grad_sigma.num[i, j] <- (p.list.delta$prob - p.list.4$prob[1]) / delta
}

}
Comparison of gradients respect to lower integration limits
h.lower <- cbind(analytical = p.list.4$grad_lower[1,],

numeric = grad_lower.num)
print(h.lower)
Comparison of gradients respect to upper integration limits
h.upper <- cbind(analytical = p.list.4$grad_upper[1,],

numeric = grad_upper.num)
print(h.upper)
Comparison of gradients respect to given values
h.given <- cbind(analytical = p.list.4$grad_given[1,],

numeric = grad_given.num)
print(h.given)
Comparison of gradients respect to the covariance matrix
h.sigma <- list(analytical = p.list.4$grad_sigma[, , 1],

numeric = grad_sigma.num)
print(h.sigma)

Let's again estimate probability
P(-1 < X1 < 1, -3 < X3 < 3, -5 < X5 < 5 | X2 = -2, X4 = 4)
But assume that standardized (to zero mean and unit variance):
1) X1 and X2 have standardized PGN distribution with coefficients vectors
pc1 = (0.5, -0.2, 0.1) and pc2 = (0.2, 0.05) correspondingly.
2) X3 has standardized student distribution with 5 degrees of freedom
3) X4 has standardized logistic distribution
4) X5 has standard normal distribution
marginal <- list(PGN = c(0.5, -0.2, 0.1), hpa = c(0.2, 0.05),

student = 5, logistic = numeric(), normal = NULL)
p.list.5 <- pmnorm(lower = lower.2, upper = upper.2,

mean = mean, sigma = sigma,
given_ind = given_ind, given_x = given_x,
grad_lower = TRUE, grad_upper = TRUE,
grad_sigma = TRUE, grad_given = TRUE,

qnormFast 23

marginal = marginal, grad_marginal = TRUE)
Lets investigate derivatives respect to parameters
of marginal distributions

respect to pc1 of X1
p.list.5$grad_marginal[[1]]

respect to pc2 of X2
p.list.5$grad_marginal[[2]]

derivative respect to degrees of freedom of X5 is
currently unavailable and will be set to 0

p.list.5$grad_marginal[[3]]

qnormFast Quantile function of a normal distribution

Description

Calculate quantile of a normal distribution using one of the available methods.

Usage

qnormFast(
p,
mean = 0L,
sd = 1L,
method = "Voutier",
is_validation = TRUE,
n_cores = 1L

)

Arguments

p numeric vector of values between 0 and 1 representing levels of the quantiles.

mean numeric value representing the expectation of a normal distribution.

sd positive numeric value representing standard deviation of a normal distribution.

method character representing the method to be used for quantile calculation. Available
options are "Voutier" (default) and "Shore".

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

Details

If method = "Voutier" then the method of P. Voutier (2010) is used which maximum absolute error
is about 0.000025. If method = "Shore" then the approach proposed by H. Shore (1982) is applied
which maximum absolute error is about 0.026 for quantiles of level between 0.0001 and 0.9999.

24 rmnorm

Value

The function returns a vector of p-level quantiles of a normal distribution with mean equal to mean
and standard deviation equal to sd.

References

H. Shore (1982) <doi:10.2307/2347972>

P. Voutier (2010) <doi:10.48550/arXiv.1002.0567>

Examples

qnormFast(c(0.1, 0.9), mean = 1, sd = 2)

rmnorm Random number generator for (conditional) multivariate normal dis-
tribution

Description

This function generates random numbers (i.e. variates) from (conditional) multivariate normal dis-
tribution.

Usage

rmnorm(
n,
mean,
sigma,
given_ind = numeric(),
given_x = numeric(),
dependent_ind = numeric(),
is_validation = TRUE,
n_cores = 1L

)

Arguments

n positive integer representing the number of random variates to be generated from
(conditional) multivariate normal distribution. If given_ind is not empty vector
then n should be be equal to nrow(given_x).

mean numeric vector representing expectation of multivariate normal vector (distribu-
tion).

sigma positively defined numeric matrix representing covariance matrix of multivariate
normal vector (distribution).

given_ind numeric vector representing indexes of multivariate normal vector which are
conditioned at values given by given_x argument.

rmnorm 25

given_x numeric vector which i-th element corresponds to the given value of the given_ind[i]-
th element (component) of multivariate normal vector. If given_x is numeric
matrix then it’s rows are such vectors of given values.

dependent_ind numeric vector representing indexes of unconditional elements (components) of
multivariate normal vector.

is_validation logical value indicating whether input arguments should be validated. Set it to
FALSE to get performance boost (default value is TRUE).

n_cores positive integer representing the number of CPU cores used for parallel comput-
ing. Currently it is not recommended to set n_cores > 1 if vectorized arguments
include less then 100000 elements.

Details

This function uses Cholesky decomposition to generate multivariate normal variates from indepen-
dent standard normal variates.

Value

This function returns a numeric matrix which rows a random variates from (conditional) multivari-
ate normal distribution with mean equal to mean and covariance equal to sigma. If given_x and
given_ind are also provided then random variates will be from conditional multivariate normal
distribution. Please, see details section of cmnorm to get additional information on the conditioning
procedure.

Examples

Consider multivariate normal vector:
X = (X1, X2, X3, X4, X5) ~ N(mean, sigma)

Prepare multivariate normal vector parameters
expected value

mean <- c(-2, -1, 0, 1, 2)
n_dim <- length(mean)

correlation matrix
cor <- c(1, 0.1, 0.2, 0.3, 0.4,

0.1, 1, -0.1, -0.2, -0.3,
0.2, -0.1, 1, 0.3, 0.2,
0.3, -0.2, 0.3, 1, -0.05,
0.4, -0.3, 0.2, -0.05, 1)

cor <- matrix(cor, ncol = n_dim, nrow = n_dim, byrow = TRUE)
covariance matrix

sd_mat <- diag(c(1, 1.5, 2, 2.5, 3))
sigma <- sd_mat %*% cor %*% t(sd_mat)

Simulate random variates from this distribution
rmnorm(n = 3, mean = mean, sigma = sigma)

Simulate random variate from (X1, X3, X5 | X1 = -1, X4 = 1)
given_x <- c(-1, 1)
given_ind = c(1, 4)

26 stdt

rmnorm(n = 1, mean = mean, sigma = sigma,
given_x = given_x, given_ind = given_ind)

Simulate random variate from (X1, X3, X5 | X1 = -1, X4 = 1)
and (X1, X3, X5 | X1 = 2, X4 = 3)
given_x = rbind(c(-1, 1), c(2, 3))
rmnorm(n = nrow(given_x), mean = mean, sigma = sigma,

given_x = given_x, given_ind = given_ind)

seqPrimes Sequence of prime numbers

Description

Calculates the sequence of prime numbers.

Usage

seqPrimes(n)

Arguments

n positive integer representing the number of sequence elements.

Value

The function returns a numeric vector containing first n prime numbers. The current (naive) im-
plementation of the algorithm is not efficient in terms of speed so it is suited for low n < 10000 but
requires just O(n) memory usage.

Examples

seqPrimes(10)

stdt Standardized Student t Distribution

Description

These functions calculate and differentiate a cumulative distribution function and density function
of the standardized (to zero mean and unit variance) Student distribution. Quantile function and
random numbers generator are also provided.

stdt 27

Usage

dt0(x, df = 10, log = FALSE, grad_x = FALSE, grad_df = FALSE)

pt0(x, df = 10, log = FALSE, grad_x = FALSE, grad_df = FALSE, n = 10L)

rt0(n = 1L, df = 10)

qt0(x = 1L, df = 10)

Arguments

x numeric vector of quantiles.

df positive real value representing the number of degrees of freedom. Since this
function deals with standardized Student distribution, argument df should be
greater than 2 because otherwise variance is undefined.

log logical; if TRUE then probabilities (or densities) p are given as log(p) and deriva-
tives will be given respect to log(p).

grad_x logical; if TRUE then function returns a derivative respect to x.

grad_df logical; if TRUE then function returns a derivative respect to df.

n positive integer. If rt0 function is used then this argument represents the num-
ber of random draws. Otherwise n states for the number of iterations used to
calculate the derivatives associated with pt0 function via pbetaDiff function.

Details

Standardized (to zero mean and unit variance) Student distribution has the following density and
cumulative distribution functions:

f(x) =
Γ
(
v+1
2

)√
(v − 2)πΓ

(
v
2

) (1 +
x2

v − 2

)− v+1
2

,

F (x) =

{
1− 1

2I(v−2
x2+v−2 ,

v
2 ,

1
2), if x ≥ 0

1
2I(v−2

x2+v−2 ,
v
2 ,

1
2), if x < 0

,

where v > 2 is the number of degrees of freedom df and I(.) is a cumulative distribution function
of beta distribution which is calculated by pbeta function.

Value

Function rt0 returns a numeric vector of random numbers. Function qt0 returns a numeric vector
of quantiles. Functions pt0 and dt0 return a list which may contain the following elements:

• prob - numeric vector of probabilities calculated for each element of x. Exclusively for pt0
function.

• den - numeric vector of densities calculated for each each element of x. Exclusively for dt0
function.

28 toBase

• grad_x - numeric vector of derivatives respect to p for each element of x. This element appears
only if input argument grad_x is TRUE.

• grad_df - numeric vector of derivatives respect to q for each element of x. This element
appears only if input argument grad_df is TRUE.

Examples

Simple examples
pt0(x = 0.3, df = 10, log = FALSE, grad_x = TRUE, grad_df = TRUE)
dt0(x = 0.3, df = 10, log = FALSE, grad_x = TRUE, grad_df = TRUE)
qt0(x = 0.3, df = 10)

Compare analytical and numeric derivatives
delta <- 1e-6
x <- c(-2, -1, 0, 1, 2)
df <- 5

For probabilities
out <- pt0(x, df = df, grad_x = TRUE, grad_df = TRUE)
p0 <- out$prob

grad_x
p1 <- pt0(x + delta, df = df)$prob
data.frame(numeric = (p1 - p0) / delta, analytical = out$grad_x)

grad_df
p1 <- pt0(x, df = df + delta)$prob
data.frame(numeric = (p1 - p0) / delta, analytical = out$grad_df)

For densities
out <- dt0(x, df = df, grad_x = TRUE, grad_df = TRUE)
p0 <- out$den

grad_x
p1 <- dt0(x + delta, df = df)$den
data.frame(numeric = (p1 - p0) / delta, analytical = out$grad_x)

grad_df
p1 <- dt0(x, df = df + delta)$den
data.frame(numeric = (p1 - p0) / delta, analytical = out$grad_df)

toBase Convert integer value to other base

Description

Converts integer value to other base.

Usage

toBase(x, base = 2L)

toBase 29

Arguments

x positive integer representing the number to convert.

base positive integer representing the base.

Value

The function returns a numeric vector containing representation of x in a base given in base.

Examples

toBase(888, 5)

Index

cmnorm, 2, 6, 16, 25

dmnorm, 5, 16, 17
dt0 (stdt), 26

fromBase, 10

halton, 11

pbeta, 12, 27
pbetaDiff, 12, 27
phpa0, 15
pmnorm, 13
pt0 (stdt), 26

qnormFast, 23
qt0 (stdt), 26

rmnorm, 24
rt0 (stdt), 26

seqPrimes, 12, 26
stdt, 26

toBase, 28

30

	cmnorm
	dmnorm
	fromBase
	halton
	pbetaDiff
	pmnorm
	qnormFast
	rmnorm
	seqPrimes
	stdt
	toBase
	Index

