
Package ‘mixvlmc’
May 26, 2025

Type Package

Title Variable Length Markov Chains with Covariates

Version 0.2.2

Description Estimates Variable Length Markov Chains (VLMC) models and VLMC with
covariates models from discrete sequences. Supports model selection via
information criteria and simulation of new sequences from an estimated
model. See Bühlmann, P. and Wyner, A. J. (1999) <doi:10.1214/aos/1018031204>
for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022)
<doi:10.1111/jtsa.12615> for VLMC with covariates.

License GPL (>= 3)

URL https://github.com/fabrice-rossi/mixvlmc,

https://fabrice-rossi.github.io/mixvlmc/

BugReports https://github.com/fabrice-rossi/mixvlmc/issues

Encoding UTF-8

LazyData true

Imports assertthat, butcher, ggplot2, methods, nnet, pROC, Rcpp (>=
1.0.8.3), rlang, stats, stringr, VGAM, withr

LinkingTo Rcpp

RoxygenNote 7.3.2

Suggests data.table, foreach, geodist, knitr, rmarkdown, testthat (>=
3.0.0), tibble, vdiffr, waldo

Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first covlmc*

Depends R (>= 2.10)

VignetteBuilder knitr

NeedsCompilation yes

1

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://github.com/fabrice-rossi/mixvlmc
https://fabrice-rossi.github.io/mixvlmc/
https://github.com/fabrice-rossi/mixvlmc/issues

2 Contents

Author Fabrice Rossi [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0003-4638-1286>),

Hugo Le Picard [ctb] (ORCID: <https://orcid.org/0000-0002-7023-2996>),
Guénolé Joubioux [ctb]

Maintainer Fabrice Rossi <Fabrice.Rossi@apiacoa.org>

Repository CRAN

Date/Publication 2025-05-26 12:30:01 UTC

Contents
mixvlmc-package . 3
as_covlmc . 4
as_sequence . 5
as_vlmc . 6
as_vlmc.ctx_tree_cpp . 7
autoplot.tune_covlmc . 8
autoplot.tune_vlmc . 9
children . 10
contexts . 11
contexts.covlmc . 12
contexts.ctx_tree . 14
contexts.vlmc . 16
context_number . 19
context_number.covlmc . 20
counts . 20
covariate_depth . 22
covariate_memory . 22
covlmc . 23
covlmc_control . 25
ctx_tree . 26
cutoff . 27
cutoff.covlmc . 28
cutoff.ctx_node . 29
cutoff.vlmc . 30
depth . 31
draw . 32
draw.covlmc . 33
draw.ctx_tree_cpp . 35
draw.vlmc . 36
draw_control . 37
find_sequence . 38
find_sequence.covlmc . 39
globalearthquake . 40
is_context . 41
is_covlmc . 42
is_ctx_tree . 42
is_merged . 43

https://orcid.org/0000-0003-4638-1286
https://orcid.org/0000-0002-7023-2996

mixvlmc-package 3

is_reversed . 44
is_vlmc . 44
logLik.covlmc . 45
logLik.vlmc . 46
loglikelihood . 47
loglikelihood.covlmc . 50
merged_with . 52
metrics . 53
metrics.covlmc . 54
metrics.ctx_node . 56
metrics.ctx_node_covlmc . 57
metrics.vlmc . 58
model . 60
parent . 61
plot.tune_vlmc . 62
positions . 64
powerconsumption . 65
predict.covlmc . 66
predict.vlmc . 67
print.contexts . 69
prune . 69
prune.covlmc . 71
rev.ctx_node . 72
simulate.covlmc . 72
simulate.vlmc . 74
simulate.vlmc_cpp . 76
states . 78
trim . 79
trim.covlmc . 79
trim.vlmc . 80
trim.vlmc_cpp . 81
tune_covlmc . 82
tune_vlmc . 84
vlmc . 86

Index 89

mixvlmc-package mixvlmc: Variable Length Markov Chains with Covariates

Description

Estimates Variable Length Markov Chains (VLMC) models and VLMC with covariates models
from discrete sequences. Supports model selection via information criteria and simulation of new
sequences from an estimated model. See Bühlmann, P. and Wyner, A. J. (1999) doi:10.1214/aos/
1018031204 for VLMC and Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022) doi:10.1111/
jtsa.12615 for VLMC with covariates.

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615
https://doi.org/10.1111/jtsa.12615

4 as_covlmc

Package options

Mixvlmc uses the following options():

• mixvlmc.maxit: maximum number of iterations in model fitting for covlmc()

• mixvlmc.predictive: specifies the computing engine used for model fitting for covlmc().
Two values are supported:

– "glm" (default value): covlmc() uses stats::glm() with a binomial link (stats::binomial())
for a two values state space, and VGAM::vglm() with a multinomial link (VGAM::multinomial())
for a state space with three or more values;

– "multinom": covlmc() uses nnet::multinom() in all cases.

The first option "glm" is recommended as both stats::glm() and VGAM::vglm() are able to
detect and deal with degeneracy in the data set.

• mixvlmc.backend: specifies the implementation used for the context tree construction in
ctx_tree(), vlmc() and tune_vlmc(). Two values are supported:

– "R" (default value): this corresponds to the original almost pure R implementation.
– "C++": this corresponds to the experimental C++ implementation. This version is signif-

icantly faster than the R version, but is still considered experimental.

Author(s)

Maintainer: Fabrice Rossi <Fabrice.Rossi@apiacoa.org> (ORCID) [copyright holder]

Other contributors:

• Hugo Le Picard <lepicardhugo@gmail.com> (ORCID) [contributor]

• Guénolé Joubioux <guenole.joubioux@gmail.com> [contributor]

See Also

Useful links:

• https://github.com/fabrice-rossi/mixvlmc

• https://fabrice-rossi.github.io/mixvlmc/

• Report bugs at https://github.com/fabrice-rossi/mixvlmc/issues

as_covlmc Convert an object to a Variable Length Markov Chain with covariates
(coVLMC)

Description

This generic function converts an object into a covlmc.

https://orcid.org/0000-0003-4638-1286
https://orcid.org/0000-0002-7023-2996
https://github.com/fabrice-rossi/mixvlmc
https://fabrice-rossi.github.io/mixvlmc/
https://github.com/fabrice-rossi/mixvlmc/issues

as_sequence 5

Usage

as_covlmc(x, ...)

S3 method for class 'tune_covlmc'
as_covlmc(x, ...)

Arguments

x an object to convert into a covlmc.

... additional arguments for conversion functions.

Value

a covlmc

See Also

tune_covlmc()

Examples

conversion from the results of tune_covlmc
pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
dts_best_model_tune <- tune_covlmc(dts, dts_cov)
dts_best_model <- as_covlmc(dts_best_model_tune)
draw(dts_best_model)

as_sequence Extract the sequence encoded by a node

Description

This function returns the sequence represented by the node object.

Usage

as_sequence(node, reverse)

Arguments

node a ctx_node object as returned by find_sequence()

reverse specifies whether the sequence should be reported in reverse temporal order
(TRUE) or in the temporal order (FALSE). Defaults to the order associated to the
ctx_node which is determined by the parameters of the call to contexts() or
find_sequence().

6 as_vlmc

Value

the sequence represented by the node object, a vector

Examples

dts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
dts_tree <- ctx_tree(dts, max_depth = 3)
res <- find_sequence(dts_tree, "A")
as_sequence(res)

as_vlmc Convert an object to a Variable Length Markov Chain (VLMC)

Description

This generic function converts an object into a vlmc.

Usage

as_vlmc(x, ...)

S3 method for class 'ctx_tree'
as_vlmc(x, alpha, cutoff, ...)

S3 method for class 'tune_vlmc'
as_vlmc(x, ...)

Arguments

x an object to convert into a vlmc.

... additional arguments for conversion functions.

alpha cut off parameter applied during the conversion, quantile scale (if specified)

cutoff cut off parameter applied during the conversion, native scale (if specified)

Details

This function converts a context tree into a VLMC. If alpha or cutoff is specified, it is used to
reduce the complexity of the tree as in a direct call to vlmc() (prune()).

Value

a vlmc

See Also

ctx_tree()

tune_vlmc()

as_vlmc.ctx_tree_cpp 7

Examples

conversion from a context tree
dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
draw(dts_ctree)
dts_vlmc <- as_vlmc(dts_ctree)
class(dts_vlmc)
draw(dts_vlmc)
conversion from the result of tune_vlmc
dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(dts)
tune_result
dts_best_vlmc <- as_vlmc(tune_result)
draw(dts_best_vlmc)

as_vlmc.ctx_tree_cpp Convert an object to a Variable Length Markov Chain (VLMC)

Description

This generic function converts an object into a vlmc.

Usage

S3 method for class 'ctx_tree_cpp'
as_vlmc(x, alpha, cutoff, ...)

Arguments

x an object to convert into a vlmc.

alpha cut off parameter applied during the conversion, quantile scale (if specified)

cutoff cut off parameter applied during the conversion, native scale (if specified)

... additional arguments for conversion functions.

Details

This function converts a context tree into a VLMC. If alpha or cutoff is specified, it is used to
reduce the complexity of the tree as in a direct call to vlmc() (prune()).

Value

a vlmc

See Also

ctx_tree()

tune_vlmc()

8 autoplot.tune_covlmc

Examples

conversion from a context tree
dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3, backend = "C++")
draw(dts_ctree)
dts_vlmc <- as_vlmc(dts_ctree)
class(dts_vlmc)
draw(dts_vlmc)

autoplot.tune_covlmc Create a complete ggplot for the results of automatic COVLMC com-
plexity selection

Description

This function prepares a plot of the results of tune_covlmc() using ggplot2. The result can be
passed to print() to display the result.

Usage

S3 method for class 'tune_covlmc'
autoplot(object, ...)

Arguments

object a tune_covlmc object

... additional parameters (not used currently)

Details

The graphical representation proposed by this function is complete, while the one produced by
plot.tune_covlmc() is minimalistic. We use here the faceting capabilities of ggplot2 to combine
on a single graphical representation the evolution of multiple characteristics of the VLMC during
the pruning process, while plot.tune_covlmc() shows only the selection criterion or the log like-
lihood. Each facet of the resulting plot shows a quantity as a function of the cut off expressed in
quantile or native scale.

Value

a ggplot object

autoplot.tune_vlmc 9

Examples

pc <- powerconsumption[powerconsumption$week %in% 10:12,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
dts_best_model_tune <- tune_covlmc(dts, dts_cov, criterion = "AIC")
covlmc_plot <- ggplot2::autoplot(dts_best_model_tune)
print(covlmc_plot)

autoplot.tune_vlmc Create a complete ggplot for the results of automatic VLMC complex-
ity selection

Description

This function prepares a plot of the results of tune_vlmc() using ggplot2. The result can be passed
to print() to display the result.

Usage

S3 method for class 'tune_vlmc'
autoplot(object, cutoff = c("quantile", "native"), ...)

Arguments

object a tune_vlmc object

cutoff the scale used for the cut off criterion (default "quantile")

... additional parameters (not used currently)

Details

The graphical representation proposed by this function is complete, while the one produced by
plot.tune_vlmc() is minimalistic. We use here the faceting capabilities of ggplot2 to combine on
a single graphical representation the evolution of multiple characteristics of the VLMC during the
pruning process, while plot.tune_vlmc() shows only the selection criterion or the log likelihood.
Each facet of the resulting plot shows a quantity as a function of the cut off expressed in quantile or
native scale.

Value

a ggplot object

10 children

Examples

pc <- powerconsumption[powerconsumption$week %in% 10:11,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_best_model_tune <- tune_vlmc(dts, criterion = "BIC")
vlmc_plot <- ggplot2::autoplot(dts_best_model_tune)
print(vlmc_plot)
simple post customisation
print(vlmc_plot + ggplot2::geom_point())

children Find the children nodes of a node in a context tree

Description

This function returns a list (possibly empty) of ctx_node objects. Each object represents one of the
children of the node represented by the node parameter.

Usage

children(node)

S3 method for class 'ctx_node'
children(node)

S3 method for class 'ctx_node_cpp'
children(node)

Arguments

node a ctx_node object as returned by find_sequence()

Details

Each node of a context tree represents a sequence. When find_sequence() is called with success,
the returned object represents the corresponding node in the context tree. If this node has no child,
the present function returns an empty list. When the node has at least one child, the function
returns a list with one value for each element in the state space (see states()). The value is
NULL if the corresponding child is empty, while it is a ctx_node object when the child is present.
Each ctx_node object is associated to the sequence obtained by adding to the past of the sequence
represented by node an observation of the associated state (this corresponds to an extension to the
left of the sequence in temporal order).

Value

a list of ctx_node objects, see details.

contexts 11

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
ctx_00 <- find_sequence(dts_ctree, c(0, 0))
this context can only be extended in the past by 1:
children(ctx_00)
ctx_10 <- find_sequence(dts_ctree, c(1, 0))
this context can be extended by both states
children(ctx_10)
C++ backend
dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3, backend = "C++")
ctx_00 <- find_sequence(dts_ctree, c(0, 0))
this context can only be extended in the past by 1:
children(ctx_00)
ctx_10 <- find_sequence(dts_ctree, c(1, 0))
this context can be extended by both states
children(ctx_10)

contexts Contexts of a context tree

Description

This function extracts from a context tree a description of all of its contexts.

Usage

contexts(ct, sequence = FALSE, reverse = FALSE, ...)

Arguments

ct a context tree.

sequence if TRUE the function returns its results as a data.frame, if FALSE (default) as a
list of ctx_node objects. (see details)

reverse logical (defaults to FALSE). See details.

... additional arguments for the contexts function.

Details

The default behaviour consists in returning a list of all the contexts contained in the tree using
ctx_node objects (as returned by e.g. find_sequence()) (with type="list"). The properties of
the contexts can then be explored using adapted functions such as counts() and positions().
The result list is of class contexts. When sequence=TRUE, the method returns a data.frame
whose first column, named context, contains the contexts as vectors (i.e. the value returned by
as_sequence() applied to a ctx_node object). Other columns contain context specific values
which depend on the actual class of the tree and on additional parameters. In all implementations of
contexts(), setting the additional parameters to any no default value leads to a data.frame result.

12 contexts.covlmc

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or a data.frame.

State order in a context

Notice that contexts are given by default in the temporal order and not in the "reverse" order used
by many VLMC research papers: older values are on the left. For instance, the context c(1, 0)
is reported if the sequence 0, then 1 appeared in the time series used to build the context tree. Set
reverse to TRUE for the reverse convention which is somewhat easier to relate to the way the context
trees are represented by draw() (i.e. recent values at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context, and contexts.ctx_tree(),
contexts.vlmc() and contexts.covlmc() for concrete implementations of contexts().

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
dts_tree <- ctx_tree(dts, max_depth = 3, min_size = 5)
contexts(dts_tree)
contexts(dts_tree, TRUE, TRUE)

contexts.covlmc Contexts of a VLMC with covariates

Description

This function returns the different contexts present in a VLMC with covariates, possibly with some
associated data.

Usage

S3 method for class 'covlmc'
contexts(
ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
metrics = FALSE,
model = NULL,
hsize = FALSE,
merging = FALSE,
...

)

contexts.covlmc 13

Arguments

ct a fitted covlmc model.

sequence if TRUE the function returns its results as a data.frame, if FALSE (default) as a
list of ctx_node objects. (see details)

reverse logical (defaults to FALSE). See details.

frequency specifies the counts to be included in the result data.frame. The default value
of NULL does not include anything. "total" gives the number of occurrences
of each context in the original sequence. "detailed" includes in addition the
break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context in
the time series used to build the context tree should be reported in a positions
column of the result data frame. The availability of the positions depends on the
way the context tree was built. See details for the definition of a position.

local specifies how the counts reported by frequency are computed. When local
is FALSE (default value) the counts include both counts that are specific to the
context (if any) and counts from the descendants of the context in the tree. When
local is TRUE the counts include only the number of times the context appears
without being the last part of a longer context.

metrics if TRUE, adds predictive metrics for each context (see metrics() for the defi-
nition of predictive metrics).

model specifies whether to include the model associated to a each context. The default
result with model=NULL does not include any model. Setting model to "coef"
adds the coefficients of the models in a coef column, while "full" include the
models themselves (as R objects) in a model column.

hsize if TRUE, adds a hsize column to the result data frame that gives for each context
the size of the history of covariates used by the model.

merging if TRUE, adds a merged column to the result data frame. For a normal context,
the value of merged is FALSE. Contexts that share the same model have a TRUE
merged value.

... additional arguments for the contexts function.

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node_covlmc
objects (as returned by find_sequence.covlmc()). The properties of the contexts can then be
explored using adapted functions such as counts(), covariate_memory(), cutoff.ctx_node(),
metrics.ctx_node(), model(), merged_with() and positions().

When sequence=TRUE the method returns a data.frame whose first column, named context, con-
tains the contexts as vectors (i.e. the value returned by as_sequence() applied to a ctx_node
object). Other columns contain context specific values specified by the additional parameters. Set-
ting any of those parameters to a value that ask for reporting information will toggle the result type
of the function to data.frame.

See contexts.ctx_tree() for details about the frequency parameter. When model is non NULL,
the resulting data.frame contains the models associated to each context (either the full R model or
its coefficients). Other columns are added is the corresponding parameters are set to TRUE.

14 contexts.ctx_tree

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node_covlmc) or
a data.frame.

Positions

A position of a context ctx in the time series x is an index value t such that the context ends
with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and ctx=c(0, 1) (in
standard state order), then the position of ctx in x is 3.

State order in a context

Notice that contexts are given by default in the temporal order and not in the "reverse" order used
by many VLMC research papers: older values are on the left. For instance, the context c(1, 0)
is reported if the sequence 0, then 1 appeared in the time series used to build the context tree. Set
reverse to TRUE for the reverse convention which is somewhat easier to relate to the way the context
trees are represented by draw() (i.e. recent values at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context, and contexts.ctx_tree(),
contexts.vlmc() and contexts.covlmc() for concrete implementations of contexts().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(0, median(pc$active_power), max(pc$active_power))
dts <- cut(pc$active_power, breaks = breaks)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
direct representation with ctx_node_covlmc objects
m_cov_ctxs <- contexts(m_cov)
m_cov_ctxs
sapply(m_cov_ctxs, covariate_memory)
sapply(m_cov_ctxs, is_merged)
sapply(m_cov_ctxs, model)
data.frame interface
contexts(m_cov, model = "coef")
contexts(m_cov, model = "full", hsize = TRUE)

contexts.ctx_tree Contexts of a context tree

Description

This function extracts from a context tree a description of all of its contexts.

contexts.ctx_tree 15

Usage

S3 method for class 'ctx_tree'
contexts(
ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
...

)

S3 method for class 'ctx_tree_cpp'
contexts(
ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
...

)

Arguments

ct a context tree.

sequence if TRUE the function returns its results as a data.frame, if FALSE (default) as a
list of ctx_node objects. (see details)

reverse logical (defaults to FALSE). See details.

frequency specifies the counts to be included in the result data.frame. The default value
of NULL does not include anything. "total" gives the number of occurrences
of each context in the original sequence. "detailed" includes in addition the
break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context in
the time series used to build the context tree should be reported in a positions
column of the result data frame. The availability of the positions depends on the
way the context tree was built. See details for the definition of a position.

... additional arguments for the contexts function.

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node objects (as
returned by find_sequence()). The properties of the contexts can then be explored using adapted
functions such as counts() and positions().

When sequence=TRUE the method returns a data.frame whose first column, named context, con-
tains the contexts as vectors (i.e. the value returned by as_sequence() applied to a ctx_node
object). Other columns contain context specific values specified by the additional parameters. Set-
ting any of those parameters to a value that ask for reporting information will toggle the result type
of the function to data.frame.

16 contexts.vlmc

If frequency="total", an additional column named freq gives the number of occurrences of each
context in the series used to build the tree. If frequency="detailed", one additional column is
added per state in the context space. Each column records the number of times a given context is
followed by the corresponding value in the original series.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or a data.frame.

Positions

A position of a context ctx in the time series x is an index value t such that the context ends
with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and ctx=c(0, 1) (in
standard state order), then the position of ctx in x is 3.

State order in a context

Notice that contexts are given by default in the temporal order and not in the "reverse" order used
by many VLMC research papers: older values are on the left. For instance, the context c(1, 0)
is reported if the sequence 0, then 1 appeared in the time series used to build the context tree. Set
reverse to TRUE for the reverse convention which is somewhat easier to relate to the way the context
trees are represented by draw() (i.e. recent values at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context, and contexts.ctx_tree(),
contexts.vlmc() and contexts.covlmc() for concrete implementations of contexts().

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
dts_tree <- ctx_tree(dts, max_depth = 3, min_size = 5)
direct representation with ctx_node objects
contexts(dts_tree)
data.frame format
contexts(dts_tree, sequence = TRUE)
contexts(dts_tree, frequency = "total")
contexts(dts_tree, frequency = "detailed")

contexts.vlmc Contexts of a VLMC

Description

This function extracts all the contexts from a fitted VLMC, possibly with some associated data.

contexts.vlmc 17

Usage

S3 method for class 'vlmc'
contexts(
ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
cutoff = NULL,
metrics = FALSE,
...

)

S3 method for class 'vlmc_cpp'
contexts(
ct,
sequence = FALSE,
reverse = FALSE,
frequency = NULL,
positions = FALSE,
local = FALSE,
cutoff = NULL,
metrics = FALSE,
...

)

Arguments

ct a context tree.

sequence if TRUE the function returns its results as a data.frame, if FALSE (default) as a
list of ctx_node objects. (see details)

reverse logical (defaults to FALSE). See details.

frequency specifies the counts to be included in the result data.frame. The default value
of NULL does not include anything. "total" gives the number of occurrences
of each context in the original sequence. "detailed" includes in addition the
break down of these occurrences into all the possible states.

positions logical (defaults to FALSE). Specify whether the positions of each context in
the time series used to build the context tree should be reported in a positions
column of the result data frame. The availability of the positions depends on the
way the context tree was built. See details for the definition of a position.

local specifies how the counts reported by frequency are computed. When local
is FALSE (default value) the counts include both counts that are specific to the
context (if any) and counts from the descendants of the context in the tree. When
local is TRUE the counts include only the number of times the context appears
without being the last part of a longer context.

18 contexts.vlmc

cutoff specifies whether to include the cut off value associated to each context (see
cutoff() and prune()). The default result with cutoff=NULL does not include
those values. Setting cutoff to quantile adds the cut off values in quantile
scale, while cutoff="native" adds them in the native scale. The returned val-
ues are directly based on the log likelihood ratio computed in the context tree and
are not modified to ensure pruning (as when cutoff() is called by raw=TRUE).

metrics if TRUE, adds predictive metrics for each context (see metrics() for the defi-
nition of predictive metrics).

... additional arguments for the contexts function.

Details

The default behaviour of the function is to return a list of all the contexts using ctx_node objects (as
returned by find_sequence()). The properties of the contexts can then be explored using adapted
functions such as counts(), cutoff.ctx_node(), metrics.ctx_node() and positions().

When sequence=TRUE the method returns a data.frame whose first column, named context, con-
tains the contexts as vectors (i.e. the value returned by as_sequence() applied to a ctx_node
object). Other columns contain context specific values specified by the additional parameters. Set-
ting any of those parameters to a value that ask for reporting information will toggle the result type
of the function to data.frame.

The frequency parameter is described in details in the documentation of contexts.ctx_tree().
When cutoff is non NULL, the resulting data.frame contains a cutoff column with the cut off val-
ues, either in quantile or in native scale. See cutoff.vlmc() and prune.vlmc() for the definitions
of cut off values and of the two scales.

Value

A list of class contexts containing the contexts represented in this tree (as ctx_node) or a data.frame.

Cut off values

The cut off values reported by contexts.vlmc can be different from the ones reported by cutoff.vlmc()
for three reasons:

1. cutoff.vlmc() reports only useful cut off values, i.e., cut off values that should induce a
simplification of the VLMC when used in prune(). This exclude cut off values associated to
simple contexts that are smaller than the ones of their descendants in the context tree. Those
values are reported by context.vlmc.

2. context.vlmc reports only cut off values of actual contexts, while cutoff.vlmc() reports
cut off values for all nodes of the context tree.

3. values are not modified to induce pruning, contrarily to the default behaviour of cutoff.vlmc()

Positions

A position of a context ctx in the time series x is an index value t such that the context ends
with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and ctx=c(0, 1) (in
standard state order), then the position of ctx in x is 3.

context_number 19

State order in a context

Notice that contexts are given by default in the temporal order and not in the "reverse" order used
by many VLMC research papers: older values are on the left. For instance, the context c(1, 0)
is reported if the sequence 0, then 1 appeared in the time series used to build the context tree. Set
reverse to TRUE for the reverse convention which is somewhat easier to relate to the way the context
trees are represented by draw() (i.e. recent values at the top the tree).

See Also

find_sequence() and find_sequence.covlmc() for direct access to a specific context, and contexts.ctx_tree(),
contexts.vlmc() and contexts.covlmc() for concrete implementations of contexts().

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
model <- vlmc(dts, alpha = 0.5)
direct representation with ctx_node objects
model_ctxs <- contexts(model)
model_ctxs
sapply(model_ctxs, cutoff, scale = "quantile")
sapply(model_ctxs, cutoff, scale = "native")
sapply(model_ctxs, function(x) metrics(x)$accuracy)
data.frame format
contexts(model, frequency = "total")
contexts(model, cutoff = "quantile")
contexts(model, cutoff = "native", metrics = TRUE)

context_number Number of contexts of a context tree

Description

This function returns the number of distinct contexts in a context tree.

Usage

context_number(ct)

Arguments

ct a context tree.

Value

the number of contexts of the tree.

20 counts

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
should be 8
context_number(dts_ctree)

context_number.covlmc Contexts number of a VLMC with covariates

Description

This function returns the total number of contexts of a VLMC with covariates.

Usage

S3 method for class 'covlmc'
context_number(ct)

Arguments

ct a fitted covlmc model.

Value

the number of contexts present in the VLMC with covariates.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)
should be 3
context_number(m_cov)

counts Report the distribution of values that follow occurrences of a sequence

Description

This function reports the number of occurrences of the sequence represented by node in the original
time series used to build the associated context tree (not including a possible final occurrence not fol-
lowed by any value at the end of the original time series). In addition if frequency=="detailed",
the function reports the frequencies of each of the possible value of the time series when they appear
just after the sequence.

counts 21

Usage

counts(node, frequency = c("detailed", "total"), local = FALSE)

S3 method for class 'ctx_node'
counts(node, frequency = c("detailed", "total"), local = FALSE)

S3 method for class 'ctx_node_cpp'
counts(node, frequency = c("detailed", "total"), local = FALSE)

Arguments

node a ctx_node object as returned by find_sequence()

frequency specifies the counts to be included in the result. "total" gives the number of
occurrences of the sequence in the original sequence. "detailed" includes in
addition the break down of these occurrences into all the possible states.

local specifies how the counts are computed. When local is FALSE (default value)
the counts include both counts that are specific to the context (if any) and counts
from the descendants of the context in the tree. When local is TRUE the counts
include only the number of times the context appears without being the last part
of a longer context.

Value

either an integer when frequency="total" which gives the total number of occurrences of the
sequence represented by node or a data.frame with a total column with the same value and a
column for each of the possible value of the original time series, reporting counts in each column
(see the description above).

See Also

contexts() and contexts.ctx_tree()

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
dts_tree <- ctx_tree(dts, max_depth = 3, min_size = 5)
subseq <- find_sequence(dts_tree, factor(c("A", "A"), levels = c("A", "B", "C")))
if (!is.null(subseq)) {

counts(subseq)
}

22 covariate_memory

covariate_depth Maximal covariate memory of a VLMC with covariates

Description

This function return the longest covariate memory used by a VLMC with covariates.

Usage

covariate_depth(model)

Arguments

model a covlmc object

Value

the longest covariate memory of this model

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
m_nocovariate <- vlmc(dts)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)
covariate_depth(m_cov)

covariate_memory Covariate memory length for a COVLMC context

Description

This function returns the length of the memory of a COVLMC context represented by a ctx_node_covlmc
object.

Usage

covariate_memory(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Value

the memory length, an integer

covlmc 23

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)
ctxs <- contexts(m_cov)
get all the memory lengths
sapply(ctxs, covariate_memory)

covlmc Fit a Variable Length Markov Chain with Covariates (coVLMC)

Description

This function fits a Variable Length Markov Chain with covariates (coVLMC) to a discrete time
series coupled with a time series of covariates.

Usage

covlmc(
x,
covariate,
alpha = 0.05,
min_size = 5L,
max_depth = 100L,
keep_data = TRUE,
control = covlmc_control(...),
...

)

Arguments

x a discrete time series; can be numeric, character, factor or logical.

covariate a data frame of covariates.

alpha number in (0,1) (default: 0.05) cut off value in the pruning phase (in quantile
scale).

min_size number >= 1 (default: 5). Tune the minimum number of observations for a
context in the growing phase of the context tree (see below for details).

max_depth integer >= 1 (default: 100). Longest context considered in growing phase of the
context tree.

keep_data logical (defaults to TRUE). If TRUE, the original data are stored in the resulting
object to enable post pruning (see prune.covlmc()).

control a list with control parameters, see covlmc_control().

... arguments passed to covlmc_control().

24 covlmc

Details

The model is built using the algorithm described in Zanin Zambom et al. As for the vlmc() ap-
proach, the algorithm builds first a context tree (see ctx_tree()). The min_size parameter is
used to compute the actual number of observations per context in the growing phase of the tree.
It is computed as min_size*(1+ncol(covariate)*d)*(s-1) where d is the length of the context
(a.k.a. the depth in the tree) and s is the number of states. This corresponds to ensuring min_size
observations per parameter of the logistic regression during the estimation phase.

Then logistic models are adjusted in the leaves at the tree: the goal of each logistic model is to
estimate the conditional distribution of the next state of the times series given the context (the
recent past of the time series) and delayed versions of the covariates. A pruning strategy is used to
simplified the models (mainly to reduce the time window associated to the covariates) and the tree
itself.

Parameters specified by control are used to fine tune the behaviour of the algorithm.

Value

a fitted covlmc model.

Logistic models

By default, covlmc uses two different computing engines for logistic models:

• when the time series has only two states, covlmc uses stats::glm() with a binomial link
(stats::binomial());

• when the time series has at least three states, covlmc use VGAM::vglm() with a multinomial
link (VGAM::multinomial()).

Both engines are able to detect degenerate cases and lead to more robust results that using nnet::multinom().
It is nevertheless possible to replace stats::glm() and VGAM::vglm() with nnet::multinom() by
setting the global option mixvlmc.predictive to "multinom" (the default value is "glm"). Notice
that while results should be comparable, there is no guarantee that they will be identical.

References

• Bühlmann, P. and Wyner, A. J. (1999), "Variable length Markov chains." Ann. Statist. 27 (2)
480-513 doi:10.1214/aos/1018031204

• Zanin Zambom, A., Kim, S. and Lopes Garcia, N. (2022), "Variable length Markov chain with
exogenous covariates." J. Time Ser. Anal., 43 (2) 312-328 doi:10.1111/jtsa.12615

See Also

cutoff.covlmc() and prune.covlmc() for post-pruning.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(1 / 3, 2 / 3, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 15)

https://doi.org/10.1214/aos/1018031204
https://doi.org/10.1111/jtsa.12615

covlmc_control 25

draw(m_cov)
withr::with_options(

list(mixvlmc.predictive = "multinom"),
m_cov_nnet <- covlmc(dts, dts_cov, min_size = 15)

)
draw(m_cov_nnet)

covlmc_control Control for coVLMC fitting

Description

This function creates a list with parameters used to fine tune the coVLMC fitting algorithm.

Usage

covlmc_control(pseudo_obs = 1)

Arguments

pseudo_obs number of fake observations of each state to add to the observed ones.

Details

pseudo_obs is used to regularize the probability estimations when a context is only observed fol-
lowed by always the same state. Transition probabilities are computed after adding pseudo_obs
pseudo observations of each of the states (including the observed one). This corresponds to a
Bayesian posterior mean estimation with a Dirichlet prior.

Value

a list.

Examples

dts <- rep(c(0, 1), 100)
dts_cov <- data.frame(y = rep(0, length(dts)))
default_model <- covlmc(dts, dts_cov)
contexts(default_model, type = "data.frame", model = "coef")$coef
control <- covlmc_control(pseudo_obs = 10)
model <- covlmc(dts, dts_cov, control = control)
contexts(model, type = "data.frame", model = "coef")$coef

26 ctx_tree

ctx_tree Build a context tree for a discrete time series

Description

This function builds a context tree for a time series.

Usage

ctx_tree(
x,
min_size = 2L,
max_depth = 100L,
keep_position = TRUE,
backend = getOption("mixvlmc.backend", "R")

)

Arguments

x a discrete time series; can be numeric, character, factor or logical.

min_size integer >= 1 (default: 2). Minimum number of observations for a context to be
included in the tree.

max_depth integer >= 1 (default: 100). Maximum length of a context to be included in the
tree.

keep_position logical (default: TRUE). Should the context tree keep the position of the con-
texts.

backend "R" or "C++" (default: as specified by the "mixvlmc.backend" option). Specifies
the implementation used to represent the context tree and to built it. See details.

Details

The tree represents all the sequences of symbols/states of length smaller than max_depth that appear
at least min_size times in the time series and stores the frequencies of the states that follow each
context. Optionally, the positions of the contexts in the time series can be stored in the tree.

Value

a context tree (of class that inherits from ctx_tree).

Back ends

Two back ends are available to compute context trees:

• the "R" back end represents the tree in pure R data structures (nested lists) that be easily
processed further in pure R (C++ helper functions are used to speed up the construction).

cutoff 27

• the "C++" back end represents the tree with C++ classes. This back end is considered experi-
mental. The tree is built with an optimised suffix tree algorithm which speeds up the construc-
tion by at least a factor 10 in standard settings. As the tree is kept outside of R direct reach,
context trees built with the C++ back end must be restored after a saveRDS()/readRDS()
sequence. This is done automatically by recomputing completely the context tree.

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
get all contexts of length 2
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 2)
draw(dts_ctree)

cutoff Cut off values for VLMC like model

Description

This generic function returns one or more cut off values that are guaranteed to have an effect on the
model passed to the function when a simplification procedure is applied (in general a tree pruning
operation as provided by prune()).

Usage

cutoff(model, ...)

Arguments

model a model.

... additional arguments for the cutoff function implementations

Details

The exact definition of what is a cut off value depends on the model type and is documented in
concrete implementation of the function.

Value

a cut off value or a vector of cut off values.

See Also

prune()

28 cutoff.covlmc

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
draw(model)
model_cuts <- cutoff(model)
model_2 <- prune(model, model_cuts[2])
draw(model_2)

cutoff.covlmc Cut off values for pruning the context tree of a VLMC with covariates

Description

This function returns all the cut off values that should induce a pruning of the context tree of a
VLMC with covariates.

Usage

S3 method for class 'covlmc'
cutoff(model, raw = FALSE, tolerance = .Machine$double.eps^0.5, ...)

Arguments

model a fitted COVLMC model.

raw specify whether the returned values should be limit values computed in the
model or modified values that guarantee pruning (see details)

tolerance specify the minimum separation between two consecutive values of the cut off
in native mode (before any transformation). See details.

... additional arguments for the cutoff function.

Details

Notice that the list of cut off values returned by the function is not as complete as the one com-
puted for a VLMC without covariates. Indeed, pruning the COVLMC tree creates new pruning
opportunities that are not evaluated during the construction of the initial model, while all pruning
opportunities are computed during the construction of a VLMC context tree. Nevertheless, the
largest value returned by the function is guaranteed to produce the least pruned tree consistent with
the reference one.

For large COVLMC, some cut off values can be almost identical, with a difference of the order of
the machine epsilon value. The tolerance parameter is used to keep only values that are different
enough. This is done in the quantile scale, before transformations implemented when raw is FALSE.

Notice that the loglikelihood scale is not directly useful in COVLMC as the differences in model
sizes are not constant through the pruning process. As a consequence, this function does not provide
mode parameter, contrarily to cutoff.vlmc().

cutoff.ctx_node 29

Setting raw to TRUE removes the small perturbation that are subtracted from the log-likelihood ratio
values computed from the COVLMC (in quantile scale).

As automated model selection is provided by tune_covlmc(), the direct use of cutoff should be
reserved to advanced exploration of the set of trees that can be obtained from a complex one, e.g.
to implement model selection techniques that are not provided by tune_covlmc().

Value

a vector of cut off values, NULL if none can be computed

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
m_nocovariate <- vlmc(dts)
draw(m_nocovariate)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
draw(m_cov)
cutoff(m_cov)

cutoff.ctx_node Cut off value for pruning a node in the context tree of a VLMC

Description

This function returns the cut off value associated to a specific node in the context tree interpreted
as a VLMC. The node is represented by a ctx_node object as returned by find_sequence() or
contexts(). For details, see cutoff.vlmc().

Usage

S3 method for class 'ctx_node'
cutoff(model, scale = c("quantile", "native"), raw = FALSE, ...)

Arguments

model a ctx_node object as returned by find_sequence()

scale specify whether the results should be "native" log likelihood ratio values or ex-
pressed in a "quantile" scale of a chi-squared distribution (defaults to "quantile").

raw specify whether the returned values should be limit values computed in the
model or modified values that guarantee pruning (see details in cutoff.vlmc())

... additional arguments for the cutoff function.

Value

a cut off value

30 cutoff.vlmc

See Also

cutoff()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
model_ctxs <- contexts(model)
cutoff(model_ctxs[[1]])
cutoff(model_ctxs[[2]], scale = "native", raw = TRUE)

cutoff.vlmc Cut off values for pruning the context tree of a VLMC

Description

This function returns a collection of cut off values that are guaranteed to induce all valid pruned
trees of the context tree of a VLMC. Pruning is implemented by the prune() function.

Usage

S3 method for class 'vlmc'
cutoff(
model,
scale = c("quantile", "native"),
raw = FALSE,
tolerance = .Machine$double.eps^0.5,
...

)

S3 method for class 'vlmc_cpp'
cutoff(
model,
scale = c("quantile", "native"),
raw = FALSE,
tolerance = .Machine$double.eps^0.5,
...

)

Arguments

model a fitted VLMC model.

scale specify whether the results should be "native" log likelihood ratio values or ex-
pressed in a "quantile" scale of a chi-squared distribution (defaults to "quantile").

raw specify whether the returned values should be limit values computed in the
model or modified values that guarantee pruning (see details)

depth 31

tolerance specify the minimum separation between two consecutive values of the cut off
in native mode (before any transformation). See details.

... additional arguments for the cutoff function.

Details

By default, the function returns values that can be used directly to induce pruning in the context tree.
This is done by computing the log likelihood ratios used by the context algorithm on the reference
VLMC and by keeping the relevant ones. From them the function selects intermediate values that
are guaranteed to generate via pruning all the VLMC models that could be generated by using larger
values of the cutoff parameter that was used to build the reference model (or smaller values of the
alpha parameter in "quantile" scale).

Setting the raw parameter to TRUE removes this operation on the values and asks the function to
return the relevant log likelihood ratios.

For large VLMC, some log likelihood ratios can be almost identical, with a difference of the order of
the machine epsilon value. The tolerance parameter is used to keep only values that are different
enough. This is done in the native scale, before transformations implemented when raw is FALSE.

As automated model selection is provided by tune_vlmc(), the direct use of cutoff should be
reserved to advanced exploration of the set of trees that can be obtained from a complex one, e.g.
to implement model selection techniques that are not provided by tune_vlmc().

Value

a vector of cut off values.

See Also

prune() and tune_vlmc()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
draw(model)
model_cuts <- cutoff(model)
model_2 <- prune(model, model_cuts[2])
draw(model_2)

depth Depth of a context tree

Description

This function returns the depth of a context tree, i.e. the length of the longest context represented in
the tree.

32 draw

Usage

depth(ct)

Arguments

ct a context tree.

Value

the depth of the tree.

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
should be 3
depth(dts_ctree)

draw Text based representation of a context tree

Description

This function ’draws’ a context tree as a text.

Usage

draw(ct, control = draw_control(), ...)

Arguments

ct a context tree.

control a list of low level control parameters of the text representation. See details and
draw_control().

... additional arguments for draw.

Details

The function uses basic "ascii art" to represent the context tree. Characters used to represent the
structure of the tree, e.g. branches, can be modified using draw_control().

In addition to the structure of the context tree, draw can represent information attached to the node
(contexts and partial contexts). This is controlled by additional parameters depending on the type
of the context tree.

Value

the context tree (invisibly).

draw.covlmc 33

Examples

dts <- sample(c(0, 1), 100, replace = TRUE)
ctree <- ctx_tree(dts, min_size = 10, max_depth = 2)
draw(ctree)
dts_c <- sample(c("A", "B", "CD"), 100, replace = TRUE)
ctree_c <- ctx_tree(dts_c, min_size = 10, max_depth = 2)
draw(ctree_c, draw_control(root = "x"))

draw.covlmc Text based representation of a covlmc model

Description

This function ’draws’ a context tree as a text.

Usage

S3 method for class 'covlmc'
draw(
ct,
control = draw_control(),
model = c("coef", "full"),
p_value = TRUE,
digits = 4,
with_state = FALSE,
...

)

Arguments

ct a fitted covlmc model.

control a list of low level control parameters of the text representation. See details and
draw_control().

model this parameter controls the display of logistic models associated to nodes. The
default model="coef" represents the coefficients of the logistic models associ-
ated to each context. model="full" includes the name of the variables in the
representation (see details). Setting model=NULL removes the model represen-
tations. Additional parameters can be used to tweak model representations (see
details).

p_value specifies whether the p-values of the likelihood ratio tests conducted during the
covlmc construction must be included in the representation.

digits numerical parameters and p-values are represented using the base::signif func-
tion, using the number of significant digits specified with this parameter.

with_state specifies whether to display the state associated to each dimension of the logistic
model (see details).

... additional arguments for draw.

34 draw.covlmc

Details

The function uses basic "ascii art" to represent the context tree. Characters used to represent the
structure of the tree, e.g. branches, can be modified using draw_control().

In addition to the structure of the context tree, draw can represent information attached to the node
(contexts and partial contexts). This is controlled by additional parameters depending on the type
of the context tree.

Value

the context tree (invisibly).

Tweaking model representation

Model representations are affected by the following additional parameter:

• time_sep: character(s) used to split the coefficients list by blocks associated to time delays
in the covariate inclusion into the logistic model. The first block contains the intercept(s), the
second block the covariate values a time t-1, the third block at time t-2, etc.

Variable representation

When model="full", the representation includes the names of the variables used by the logistic
models. Names are the one generated by the underlying logistic model, e.g. stats::glm(). Nu-
merical variable names are used as is, while factors have levels appended. The intercept is denoted
(I) to save space. The time delays are represented by an underscore followed by the time delay. For
instance if the model uses the numerical covariate y with two delays, it will appear as to variables
y_1 and y_2.

State representation

When model is not NULL, the coefficients of the logistic models are presented, organized in rows
associated to states. One state is used as the reference state and the logistic model aims at pre-
dicting the ratio of probability between another state and the reference one (in log scale). When
with_state is TRUE, the display includes for each row of coefficients the target state. This is useful
when using e.g. VGAM::vglm as unused levels of the target variable will be automatically dropped
from the model, leading to a reduce number of rows. The reference state is either shown on the first
row if model is "full" or after the state on each row if model is "coef".

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
draw(m_cov, digits = 3)
draw(m_cov, model = NULL)
draw(m_cov, p_value = FALSE)
draw(m_cov, p_value = FALSE, time_sep = " | ")
draw(m_cov, model = "full", time_sep = " | ")

draw.ctx_tree_cpp 35

draw.ctx_tree_cpp Text based representation of a context tree

Description

This function ’draws’ a context tree as a text.

Usage

S3 method for class 'ctx_tree_cpp'
draw(ct, control = draw_control(), frequency = NULL, ...)

S3 method for class 'ctx_tree'
draw(ct, control = draw_control(), frequency = NULL, ...)

Arguments

ct a context tree.

control a list of low level control parameters of the text representation. See details and
draw_control().

frequency this parameter controls the display of node level information in the tree. The
default NULL value does not include anything. Setting frequency to "total"
includes the frequency of the (partial) context of the node, while "detailed" in-
cludes the frequency of the states that follow the context (as in contexts.ctx_tree()).

... additional arguments for draw.

Details

The function uses basic "ascii art" to represent the context tree. Characters used to represent the
structure of the tree, e.g. branches, can be modified using draw_control().

In addition to the structure of the context tree, draw can represent information attached to the node
(contexts and partial contexts). This is controlled by additional parameters depending on the type
of the context tree.

Value

the context tree (invisibly).

Examples

dts_c <- sample(c("A", "B", "CD"), 100, replace = TRUE)
ctree_c <- ctx_tree(dts_c, min_size = 10, max_depth = 2)
draw(ctree_c, frequency = "total")
draw(ctree_c, frequency = "detailed")

36 draw.vlmc

draw.vlmc Text based representation of a vlmc

Description

This function ’draws’ a context tree as a text.

Usage

S3 method for class 'vlmc'
draw(ct, control = draw_control(), prob = TRUE, ...)

S3 method for class 'vlmc_cpp'
draw(ct, control = draw_control(), prob = TRUE, ...)

Arguments

ct a fitted vlmc.

control a list of low level control parameters of the text representation. See details and
draw_control().

prob this parameter controls the display of node level information in the tree. The
default prob=TRUE represents the conditional distribution of the states given the
(partial) context associated to the node. Setting prob=FALSE replaces the con-
ditional distribution by the frequency of the states that follow the context as in
draw.ctx_tree(). Setting prob=NULL removes all additional information.

... additional arguments for draw.

Details

The function uses basic "ascii art" to represent the context tree. Characters used to represent the
structure of the tree, e.g. branches, can be modified using draw_control().

In addition to the structure of the context tree, draw can represent information attached to the node
(contexts and partial contexts). This is controlled by additional parameters depending on the type
of the context tree.

Value

the context tree (invisibly).

Examples

dts <- sample(c("A", "B", "C"), 500, replace = TRUE)
model <- vlmc(dts, alpha = 0.05)
draw(model)
draw(model, prob = FALSE)
draw(model, prob = NULL)

draw_control 37

draw_control Control parameters for draw

Description

This function returns a list used to fine tune the draw() function behaviour.

Usage

draw_control(
root = "*",
first_node = "+",
next_node = "'",
vbranch = "|",
hbranch = "--",
open_ct = "(",
close_ct = ")"

)

Arguments

root character used for the root node.

first_node characters used for the first child of a node.

next_node characters used for other children of a node.

vbranch characters used to represent a branch in a vertical way.

hbranch characters used to represent a branch in a horizontal was.

open_ct characters used to start each node specific text representation.

close_ct characters used to end each node specific text representation.

Value

a list

Examples

draw_control(open_ct = "[", close_ct = "]")

38 find_sequence

find_sequence Find the node of a sequence in a context tree

Description

This function checks whether the sequence ctx is represented in the context tree ct. If this is the
case, it returns a description of matching node, an object of class ctx_node. If the sequence is not
represented in the tree, the function return NULL.

Usage

find_sequence(ct, ctx, reverse = FALSE, ...)

S3 method for class 'ctx_tree'
find_sequence(ct, ctx, reverse = FALSE, ...)

S3 method for class 'ctx_tree_cpp'
find_sequence(ct, ctx, reverse = FALSE, ...)

Arguments

ct a context tree.

ctx a sequence to search in the context tree

reverse specifies whether the sequence ctx is given the temporal order (FALSE, default
value) or in the reverse temporal order (TRUE). See the dedicated section.

... additional parameters for the find_sequence function

Details

The function looks for sequences in general. The is_context() function can be used on the result-
ing object to test if the sequence is in addition a proper context.

Value

an object of class ctx_node if the sequence ctx is represented in the context tree, NULL when this
is not the case.

State order in a sequence

sequence are given by default in the temporal order and not in the "reverse" order used by many
VLMC research papers: older values are on the left. For instance, the context c(1, 0) is reported
if the sequence 0, then 1 appeared in the time series used to build the context tree. In the present
function, reverse refers both to the order used for the ctx parameter and for the default order used
by the resulting ctx_node object.

find_sequence.covlmc 39

Examples

dts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
dts_tree <- ctx_tree(dts, max_depth = 3)
find_sequence(dts_tree, "A")
returns NULL as "A" "C" does not appear in dts
find_sequence(dts_tree, c("A", "C"))

find_sequence.covlmc Find the node of a sequence in a COVLMC context tree

Description

This function checks whether the sequence ctx is represented in the context tree of the COVLMC
model ct. If this is the case, it returns a description of matching node, an object of class ctx_node_covlmc.
If the sequence is not represented in the tree, the function return NULL.

Usage

S3 method for class 'covlmc'
find_sequence(ct, ctx, reverse = FALSE, ...)

Arguments

ct a context tree.

ctx a sequence to search in the context tree

reverse specifies whether the sequence ctx is given the temporal order (FALSE, default
value) or in the reverse temporal order (TRUE). See the dedicated section.

... additional parameters for the find_sequence function

Details

The function looks for sequences in general. The is_context() function can be used on the result-
ing object to test if the sequence is in addition a proper context.

Value

an object of class ctx_node_covlmc if the sequence ctx is represented in the context tree, NULL
when this is not the case

State order in a sequence

sequence are given by default in the temporal order and not in the "reverse" order used by many
VLMC research papers: older values are on the left. For instance, the context c(1, 0) is reported
if the sequence 0, then 1 appeared in the time series used to build the context tree. In the present
function, reverse refers both to the order used for the ctx parameter and for the default order used
by the resulting ctx_node object.

40 globalearthquake

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)

not in the tree
vals <- states(m_cov)
find_sequence(m_cov, c(vals[2], vals[2]))
in the tree but not a context
node <- find_sequence(m_cov, c(vals[1]))
node
is_context(node)
in the tree and a context
node <- find_sequence(m_cov, c(vals[1], vals[1]))
node
is_context(node)
model(node)

globalearthquake Significant Earthquake Dataset

Description

A data set containing Earthquake that have occured during the period of 1900-2022 with GPS
coordinates and magnitudes.

Usage

globalearthquake

Format

A data frame with 98785 rows and 12 variables:

date_time Date and time in POSIXct format
latitude latitude of the earthquake, from -90° to 90°
longitude longitude of the earthquake, from -180° to 180°
mag the magnitude of the earthquake, indicating its strenth
Date date when the seisme occured
nbweeks number of weeks since 1900/01/01
year year
month month of the year
month_day day of the month
week week number
week_day day of the week from 1 = Sunday to 7 = Saturday
year_day day of the year from 1 to 366

is_context 41

Details

This is a compiled version of the full data set available on U.S. Geological Survey Earthquake
Events (USGS) which is in the public domain.

The data set contains only the earthquake between 1900 and 2022 with a magnitude higher than 5.

Source

Earthquake Catalog, U.S. Geological Survey, Department of the Interior. https://www.usgs.gov/
programs/earthquake-hazards

is_context Report the nature of a node in a context tree

Description

This function returns TRUE if the node is a proper context, FALSE in the other case.

Usage

is_context(node)

Arguments

node a ctx_node object as returned by find_sequence()

Value

TRUE if the node node is a proper context, FALSE when this is not the case

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
draw(dts_ctree)
0, 0 is a context but 1, 0 is not
is_context(find_sequence(dts_ctree, c(0, 0)))
is_context(find_sequence(dts_ctree, c(1, 0)))

https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/information-policies-and-instructions/copyrights-and-credits
https://www.usgs.gov/programs/earthquake-hazards
https://www.usgs.gov/programs/earthquake-hazards

42 is_ctx_tree

is_covlmc Test if the object is a covlmc model

Description

This function returns TRUE for VLMC models with covariates and FALSE for other objects.

Usage

is_covlmc(x)

Arguments

x an R object.

Value

TRUE for VLMC models with covariates.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
should be true
is_ctx_tree(m_cov)
should be true
is_covlmc(m_cov)
should be false
is_vlmc(m_cov)

is_ctx_tree Test if the object is a context tree

Description

This function returns TRUE for context trees and FALSE for other objects.

Usage

is_ctx_tree(x)

Arguments

x an R object.

is_merged 43

Value

TRUE for context trees.

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 2)
is_ctx_tree(dts_ctree)
is_ctx_tree(dts)

is_merged Merging status of a COVLMC context

Description

The function returns TRUE if the context represented by this node is merged with at least another
one and FALSE if this is not the case.

Usage

is_merged(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Details

When a COVLMC is built on a time series with at least three distinct states, some contexts can be
merged: they use the same logistic model, leading to a more parsimonious model. Those contexts
are reported individually by functions such as contexts.covlmc(). The present function can be
used to detect such merging, while merged_with() can be used to recover the other contexts.

Value

TRUE or FALSE, depending on the nature of the context

See Also

merged_with()

Examples

pc <- powerconsumption[powerconsumption$week == 15,]
dts <- cut(pc$active_power, breaks = c(0, 1, 2, 3, 8))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5, alpha = 0.1)
ctxs <- contexts(m_cov)
no merging
sapply(ctxs, is_merged)

44 is_vlmc

is_reversed Report the ordering convention of the node

Description

This function returns TRUE if the node is using a reverse temporal ordering and FALSE in the other
case.

Usage

is_reversed(node)

Arguments

node a ctx_node object as returned by find_sequence()

Value

TRUE if the node node use a reverse temporal ordering, FALSE when this is not the case

See Also

rev.ctx_node()

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
is_reversed(find_sequence(dts_ctree, c(0, 0)))
is_reversed(find_sequence(dts_ctree, c(1, 0), reverse = TRUE))

is_vlmc Test if the object is a vlmc model

Description

This function returns TRUE for VLMC models and FALSE for other objects.

Usage

is_vlmc(x)

Arguments

x an R object.

logLik.covlmc 45

Value

TRUE for VLMC models.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
should be true
is_ctx_tree(model)
should be true
is_vlmc(model)
should be false
is_covlmc(model)

logLik.covlmc Log-Likelihood of a VLMC with covariates

Description

This function evaluates the log-likelihood of a VLMC with covariates fitted on a discrete time series.

Usage

S3 method for class 'covlmc'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

Arguments

object the covlmc representation.

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
Defaults to "truncated". See loglikelihood() for details.

... additional parameters for logLik.

Value

an object of class logLik. This is a number, the log-likelihood of the (CO)VLMC with the following
attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation

• nobs: the number of observations included in this likelihood calculation

• initial: the value of the initial parameter used to compute this likelihood

See Also

loglikelihood()

46 logLik.vlmc

Examples

Likelihood for a fitted VLMC with covariates.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
ll <- logLik(m_cov)
attributes(ll)

logLik.vlmc Log-Likelihood of a VLMC

Description

This function evaluates the log-likelihood of a VLMC fitted on a discrete time series.

Usage

S3 method for class 'vlmc'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

S3 method for class 'vlmc_cpp'
logLik(object, initial = c("truncated", "specific", "extended"), ...)

Arguments

object the vlmc representation.

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
Defaults to "truncated". See loglikelihood() for details.

... additional parameters for logLik.

Value

an object of class logLik. This is a number, the log-likelihood of the (CO)VLMC with the following
attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation

• nobs: the number of observations included in this likelihood calculation

• initial: the value of the initial parameter used to compute this likelihood

loglikelihood 47

See Also

loglikelihood()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
m_nocovariate <- vlmc(dts)
ll <- logLik(m_nocovariate)
ll
attributes(ll)

loglikelihood Log-Likelihood of a VLMC

Description

This function evaluates the log-likelihood of a VLMC fitted on a discrete time series. When the
optional argument newdata is provided, the function evaluates instead the log-likelihood for this
(new) discrete time series.

Usage

loglikelihood(
vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

S3 method for class 'vlmc'
loglikelihood(
vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

S3 method for class 'vlmc_cpp'
loglikelihood(

48 loglikelihood

vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
...

)

Arguments

vlmc the vlmc representation.

newdata an optional discrete time series.

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
Defaults to "truncated". See below for details.

ignore specifies the number of initial values for which the loglikelihood will not be
computed. The minimal number depends on the likelihood function as detailed
below.

... additional parameters for loglikelihood.

Details

The definition of the likelihood function depends on the value of the initial parameters, see the
section below as well as the dedicated vignette: vignette("likelihood", package = "mixvlmc").

For VLMC objects, the method loglikelihood.vlmc will be used. For VLMC with covariables,
loglikelihood.covlmc will instead be called. For more informations on loglikelihood meth-
ods, use methods(loglikelihood) and their associated documentation.

Value

an object of class logLikMixVLMC and logLik. This is a number, the log-likelihood of the (CO)VLMC
with the following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation

• nobs: the number of observations included in this likelihood calculation

• initial: the value of the initial parameter used to compute this likelihood

likelihood calculation

In a (CO)VLMC of depth()=k, we need k past values in order to compute the context of a given
observation. As a consequence, in a time series x, the contexts of x[1] to x[k] are unknown.
Depending on the value of initial different likelihood functions are used to tackle this difficulty:

• initial=="truncated": the likelihood is computed using only x[(k+1):length(x)]

• initial=="specific": the likelihood is computed on the full time series using a specific
context for the initial values, x[1] to x[k]. Each of the specific context is unique, leading to a
perfect likelihood of 1 (0 in log scale). Thus the numerical value of the likelihood is identical
as the one obtained with initial=="truncated" but it is computed on length(x) with a
model with more parameters than in this previous case.

loglikelihood 49

• initial=="extended" (default): the likelihood is computed on the full time series using an
extended context matching for the initial values, x[1] to x[k]. This can be seen as a compro-
mised between the two other possibilities: the relaxed context matching needs in general to
turn internal nodes of the context tree into actual context, increasing the number of parame-
ters, but not as much as with "specific". However, the likelihood of say x[1] with an empty
context is generally not 1 and thus the full likelihood is smaller than the one computed with
"specific".

In all cases, the ignore first values of the time series are not included in the computed likelihood,
but still used to compute contexts. If ignore is not specified, it is set to the minimal possible value,
that is k for the truncated likelihood and 0 for the other ones. If it is specified, it must be larger or
equal to k for truncated.

See the dedicated vignette for a more mathematically oriented discussion: vignette("likelihood",
package = "mixvlmc").

See Also

stats::logLik()

Examples

Likelihood for a fitted VLMC.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
m_nocovariate <- vlmc(dts)
ll <- loglikelihood(m_nocovariate)
ll
attr(ll, "nobs")
attr(ll, "df")

Likelihood for a new time series with previously fitted VLMC.
pc_new <- powerconsumption[powerconsumption$week == 11,]
dts_new <- cut(pc_new$active_power, breaks = breaks, labels = labels)
ll_new <- loglikelihood(m_nocovariate, newdata = dts_new)
ll_new
attributes(ll_new)
ll_new_specific <- loglikelihood(m_nocovariate, initial = "specific", newdata = dts_new)
ll_new_specific
attributes(ll_new_specific)
ll_new_extended <- loglikelihood(m_nocovariate, initial = "extended", newdata = dts_new)
ll_new_extended
attributes(ll_new_extended)

50 loglikelihood.covlmc

loglikelihood.covlmc Log-Likelihood of a VLMC with covariates

Description

This function evaluates the log-likelihood of a VLMC with covariates fitted on a discrete time series.
When the optional arguments newdata is provided, the function evaluates instead the log-likelihood
for this (new) discrete time series on the new covariates which must be provided through the newcov
parameter.

Usage

S3 method for class 'covlmc'
loglikelihood(
vlmc,
newdata,
initial = c("truncated", "specific", "extended"),
ignore,
newcov,
...

)

Arguments

vlmc the covlmc representation.

newdata an optional discrete time series.

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
Defaults to "truncated". See below for details.

ignore specifies the number of initial values for which the loglikelihood will not be
computed. The minimal number depends on the likelihood function as detailed
below.

newcov an optional data frame with the new values for the covariates.

... additional parameters for loglikelihood.

Details

The definition of the likelihood function depends on the value of the initial parameters, see the
section below as well as the dedicated vignette: vignette("likelihood", package = "mixvlmc").

Value

an object of class logLikMixVLMC and logLik. This is a number, the log-likelihood of the (CO)VLMC
with the following attributes:

• df: the number of parameters used by the VLMC for this likelihood calculation

loglikelihood.covlmc 51

• nobs: the number of observations included in this likelihood calculation

• initial: the value of the initial parameter used to compute this likelihood

likelihood calculation

In a (CO)VLMC of depth()=k, we need k past values in order to compute the context of a given
observation. As a consequence, in a time series x, the contexts of x[1] to x[k] are unknown.
Depending on the value of initial different likelihood functions are used to tackle this difficulty:

• initial=="truncated": the likelihood is computed using only x[(k+1):length(x)]

• initial=="specific": the likelihood is computed on the full time series using a specific
context for the initial values, x[1] to x[k]. Each of the specific context is unique, leading to a
perfect likelihood of 1 (0 in log scale). Thus the numerical value of the likelihood is identical
as the one obtained with initial=="truncated" but it is computed on length(x) with a
model with more parameters than in this previous case.

• initial=="extended" (default): the likelihood is computed on the full time series using an
extended context matching for the initial values, x[1] to x[k]. This can be seen as a compro-
mised between the two other possibilities: the relaxed context matching needs in general to
turn internal nodes of the context tree into actual context, increasing the number of parame-
ters, but not as much as with "specific". However, the likelihood of say x[1] with an empty
context is generally not 1 and thus the full likelihood is smaller than the one computed with
"specific".

In all cases, the ignore first values of the time series are not included in the computed likelihood,
but still used to compute contexts. If ignore is not specified, it is set to the minimal possible value,
that is k for the truncated likelihood and 0 for the other ones. If it is specified, it must be larger or
equal to k for truncated.

See the dedicated vignette for a more mathematically oriented discussion: vignette("likelihood",
package = "mixvlmc").

See Also

stats::logLik()

Examples

Likelihood for a fitted VLMC with covariates.
pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
ll <- loglikelihood(m_cov)
ll
attr(ll, "nobs")

52 merged_with

Likelihood for new time series and covariates with previously
fitted VLMC with covariates
pc_new <- powerconsumption[powerconsumption$week == 11,]
dts_new <- cut(pc_new$active_power, breaks = breaks, labels = labels)
dts_cov_new <- data.frame(day_night = (pc_new$hour >= 7 & pc_new$hour <= 17))
ll_new <- loglikelihood(m_cov, newdata = dts_new, newcov = dts_cov_new)
ll_new
attributes(ll_new)

merged_with Merged contexts in a COVLMC

Description

The function returns NULL when the context represented by the node parameter is not merged with
another context (see is_merged()). In the other case, it returns a list of contexts with which this
one is merged.

Usage

merged_with(node)

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

Details

If the context is merged, the function returns a list with one value for each element in the state
space (see states()). The value is NULL if the corresponding context is not merged with the node
context, while it is a ctx_node_covlmc object in the other case. A context merged with node
differs from the context represented by node only in its last value (in temporal order) which is used
as its name in the list. For instance, if the context ABC is merged only with CBC (when represented
in temporal ordering), then the resulting list is of the form list("A" = NULL, "B" = NULL, "C"=
ctx_node_covlmc(CBX)).

Value

NULL or a list of contexts merged with node represented by ctx_node_covlmc objects

See Also

is_merged()

metrics 53

Examples

pc_week_15_16 <- powerconsumption[powerconsumption$week %in% c(15, 16),]
elec <- pc_week_15_16$active_power
elec_dts <- cut(elec, breaks = c(0, 0.4, 2, 8), labels = c("low", "typical", "high"))
elec_cov <- data.frame(day = (pc_week_15_16$hour >= 7 & pc_week_15_16$hour <= 18))
elec_tune <- tune_covlmc(elec_dts, elec_cov, min_size = 5)
elec_model <- prune(as_covlmc(elec_tune), alpha = 3.961e-10)
ctxs <- contexts(elec_model)
for (ctx in ctxs) {

if (is_merged(ctx)) {
print(ctx)
cat("\nis merged with\n\n")
print(merged_with(ctx))

}
}

metrics Predictive quality metrics for context based models

Description

This function computes and returns predictive quality metrics for context based models such as
VLMC and VLMC with covariates.

Usage

metrics(model, ...)

Arguments

model The context based model on which to compute predictive metrics.

... Additional parameters for predictive metrics computation.

Details

A context based model computes transition probabilities for its contexts. Using a maximum tran-
sition probability decision rule, this can be used to predict the new state that is the more likely to
follow the current one, given the context (see predict.vlmc()). The quality of these predictions is
evaluated using standard metrics including:

• accuracy

• the full confusion matrix

• the area under the roc curve (AUC), considering the context based model as a (conditional)
probability estimator. We use Hand and Till (2001) multiclass AUC in case of a state space
with more than 2 states

54 metrics.covlmc

Value

The returned value is guaranteed to have at least three components

• accuracy: the accuracy of the predictions

• conf_mat: the confusion matrix of the predictions, with predicted values in rows and true
values in columns

• auc: the AUC of the predictive model

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI:
doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
model <- vlmc(dts)
metrics(model)

metrics.covlmc Predictive quality metrics for VLMC with covariates

Description

This function computes and returns predictive quality metrics for context based models such as
VLMC and VLMC with covariates.

Usage

S3 method for class 'covlmc'
metrics(model, ...)

S3 method for class 'metrics.covlmc'
print(x, ...)

https://doi.org/10.1023/A%3A1010920819831

metrics.covlmc 55

Arguments

model The context based model on which to compute predictive metrics.

... Additional parameters for predictive metrics computation.

x A metrics.covlmc object, results of a call to metrics.covlmc()

Details

A context based model computes transition probabilities for its contexts. Using a maximum tran-
sition probability decision rule, this can be used to predict the new state that is the more likely to
follow the current one, given the context (see predict.vlmc()). The quality of these predictions is
evaluated using standard metrics including:

• accuracy

• the full confusion matrix

• the area under the roc curve (AUC), considering the context based model as a (conditional)
probability estimator. We use Hand and Till (2001) multiclass AUC in case of a state space
with more than 2 states

Value

An object of class metrics.covlmc with the following components:

• accuracy: the accuracy of the predictions

• conf_mat: the confusion matrix of the predictions, with predicted values in rows and true
values in columns

• auc: the AUC of the predictive model

The object has a print method that recalls basic information about the model together with the values
of the components above.

Methods (by generic)

• print(metrics.covlmc): Prints the predictive metrics of the VLMC model with covariates.

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a COVLMC with a non zero order. In order to predict something meaningful for those val-
ues, we rely on the notion of extended context defined in the documents mentioned above. This fol-
lows the same logic as using loglikelihood.covlmc() with the parameter initial="extended".
All covlmc functions that need to manipulate initial values with no proper context use the same ap-
proach.

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI:
doi:10.1023/A:1010920819831.

https://doi.org/10.1023/A%3A1010920819831

56 metrics.ctx_node

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
metrics(m_cov)

metrics.ctx_node Predictive quality metrics for a node of a context tree

Description

This function computes and returns predictive quality metrics for a node (ctx_node) extracted from
a context tree.

Usage

S3 method for class 'ctx_node'
metrics(model, ...)

Arguments

model T ctx_node object as returned by find_sequence().
... Additional parameters for predictive metrics computation.

Details

Compared to metrics.vlmc(), this function focuses on a single context and assesses the quality of
its predictions, disregarding observations that have other contexts. Apart from this limited scope,
the function operates as metrics.vlmc().

Value

The returned value is guaranteed to have at least three components

• accuracy: the accuracy of the predictions
• conf_mat: the confusion matrix of the predictions, with predicted values in rows and true

values in columns
• auc: the AUC of the predictive model

metrics.ctx_node_covlmc 57

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI:
doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts)
model_ctxs <- contexts(model)
metrics(model_ctxs[[4]])

metrics.ctx_node_covlmc

Predictive quality metrics for a node of a COVLMC context tree

Description

This function computes and returns predictive quality metrics for a node (ctx_node_covlmc) ex-
tracted from a covlmc

Usage

S3 method for class 'ctx_node_covlmc'
metrics(model, ...)

Arguments

model A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

... Additional parameters for predictive metrics computation.

Details

Compared to metrics.covlmc(), this function focuses on a single context and assesses the quality
of its predictions, disregarding observations that have other contexts. Apart from this limited scope,
the function operates as metrics.covlmc().

https://doi.org/10.1023/A%3A1010920819831

58 metrics.vlmc

Value

an object of class metrics.covlmc with the following components:

• accuracy: the accuracy of the predictions

• conf_mat: the confusion matrix of the predictions, with predicted values in rows and true
values in columns

• auc: the AUC of the predictive model

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI:
doi:10.1023/A:1010920819831.

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
m_ctxs <- contexts(m_cov)
get the predictive metrics for each context
lapply(m_ctxs, metrics)

metrics.vlmc Predictive quality metrics for VLMC

Description

This function computes and returns predictive quality metrics for context based models such as
VLMC and VLMC with covariates.

Usage

S3 method for class 'vlmc'
metrics(model, ...)

S3 method for class 'metrics.vlmc'
print(x, ...)

https://doi.org/10.1023/A%3A1010920819831

metrics.vlmc 59

Arguments

model The context based model on which to compute predictive metrics.

... Additional parameters for predictive metrics computation.

x A metrics.vlmc object, results of a call to metrics.vlmc()

Details

A context based model computes transition probabilities for its contexts. Using a maximum tran-
sition probability decision rule, this can be used to predict the new state that is the more likely to
follow the current one, given the context (see predict.vlmc()). The quality of these predictions is
evaluated using standard metrics including:

• accuracy

• the full confusion matrix

• the area under the roc curve (AUC), considering the context based model as a (conditional)
probability estimator. We use Hand and Till (2001) multiclass AUC in case of a state space
with more than 2 states

Value

An object of class metrics.vlmc with the following components:

• accuracy: the accuracy of the predictions

• conf_mat: the confusion matrix of the predictions, with predicted values in rows and true
values in columns

• auc: the AUC of the predictive model

The object has a print method that recalls basic information about the model together with the values
of the components above.

Methods (by generic)

• print(metrics.vlmc): Prints the predictive metrics of the VLMC model.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a VLMC with a non zero order. In order to predict something meaningful for those values,
we rely on the notion of extended context defined in the documents mentioned above. This follows
the same logic as using loglikelihood.vlmc() with the parameter initial="extended". All
vlmc functions that need to manipulate initial values with no proper context use the same approach.

References

David J. Hand and Robert J. Till (2001). "A Simple Generalisation of the Area Under the ROC
Curve for Multiple Class Classification Problems." Machine Learning 45(2), p. 171–186. DOI:
doi:10.1023/A:1010920819831.

https://doi.org/10.1023/A%3A1010920819831

60 model

See Also

metrics.vlmc(), metrics.ctx_node(), contexts.vlmc(), predict.vlmc().

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
breaks <- c(

0,
median(powerconsumption$active_power, na.rm = TRUE),
max(powerconsumption$active_power, na.rm = TRUE)

)
labels <- c(0, 1)
dts <- cut(pc$active_power, breaks = breaks, labels = labels)
model <- vlmc(dts)
metrics(model)

model Logistic model of a COVLMC context

Description

This function returns a representation of the logistic model associated to a COVLMC context from
its node in the associated context tree.

Usage

model(node, type = c("coef", "full"))

Arguments

node A ctx_node_covlmc object as returned by find_sequence() or contexts.covlmc()

type specifies the model information to return, either the coefficients only (type="coef"
default case) or the full model object (type="full")

Details

Full model extraction is only possible if the COVLMC model what not fully trimmed (see trim.covlmc()).
Notice that find_sequence.covlmc() can produce node that are not context: in this case this func-
tion return NULL.

Value

if node is a context, the coefficients of the logistic model (as a vector or a matrix depending on the
size of the state space) or a logistic model as a R object. If node is not a context, NULL.

parent 61

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10)
vals <- states(m_cov)
node <- find_sequence(m_cov, c(vals[1], vals[1]))
node
model(node)
model(node, type = "full")

parent Find the parent of a node in a context tree

Description

This function returns the parent node of the node represented by the node parameter. The result is
NULL if node is the root node of its context tree (representing the empty sequence).

Usage

parent(node)

S3 method for class 'ctx_node'
parent(node)

S3 method for class 'ctx_node_cpp'
parent(node)

Arguments

node a ctx_node object as returned by find_sequence()

Details

Each node of a context tree represents a sequence. When find_sequence() is called with suc-
cess, the returned object represents the corresponding node in the context tree. Unless the original
sequence is empty, this node has a parent node which is returned as a ctx_node object by the
present function. Another interpretation is that the function returns the node object associated to
the sequence obtained by removing the oldest value from the original sequence.

Value

a ctx_node object if node does correspond to the empty sequence or NULL when this is not the case

62 plot.tune_vlmc

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3)
ctx_00 <- find_sequence(dts_ctree, c(0, 0))
the parent sequence/node corresponds to the 0 context
parent(ctx_00)
identical(parent(ctx_00), find_sequence(dts_ctree, c(0)))
C++ backend
dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 3, backend = "C++")
ctx_00 <- find_sequence(dts_ctree, c(0, 0))
the parent sequence/node corresponds to the 0 context
parent(ctx_00)
identical(parent(ctx_00), find_sequence(dts_ctree, c(0)))

plot.tune_vlmc Plot the results of automatic (CO)VLMC complexity selection

Description

This function plots the results of tune_vlmc() or tune_covlmc().

Usage

S3 method for class 'tune_vlmc'
plot(
x,
value = c("criterion", "likelihood"),
cutoff = c("quantile", "native"),
...

)

S3 method for class 'tune_covlmc'
plot(
x,
value = c("criterion", "likelihood"),
cutoff = c("quantile", "native"),
...

)

Arguments

x a tune_vlmc object

value the criterion to plot (default "criterion").

cutoff the scale used for the cut off criterion (default "quantile")

... additional parameters passed to base::plot()

plot.tune_vlmc 63

Details

The standard plot consists in showing the evolution of the criterion used to select the model (AIC()
or BIC()) as a function of the cut off criterion expressed in the quantile scale (the quantile is used
by default to offer a common default behaviour between vlmc() and covlmc()). Parameters can be
used to display instead the loglikelihood() of the model (by setting value="likelihood") and
to use the native scale for the cut off when available (by setting cutoff="native").

Value

the tune_vlmc object invisibly

Customisation

The function sets several default before calling base::plot(), namely:

• type: "l" by default to use a line representation;

• xlab: "Cut off (quantile scale)" by default, adapted to the actual scale;

• ylab: the name of the criterion or "Log likelihood".

These parameters can be overridden by specifying other values when calling the function. All
parameters specified in addition to x, value and cutoff are passed to base::plot().

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(dts)
default plot
plot(tune_result)
likelihood
plot(tune_result, value = "likelihood")
parameters overriding
plot(tune_result,

value = "likelihood",
xlab = "Cut off", type = "b"

)
pc <- powerconsumption[powerconsumption$week %in% 10:12,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
dts_best_model_tune <- tune_covlmc(dts, dts_cov, criterion = "AIC")
plot(dts_best_model_tune)
plot(dts_best_model_tune, value = "likelihood")

64 positions

positions Report the positions of a sequence associated to a node

Description

This function returns the positions of the sequence represented by node in the time series used to
build the context tree in which the sequence is represented. This is only possible is those positions
were saved during the construction of the context tree. In positions were not saved, a call to this
function produces an error.

Usage

positions(node)

S3 method for class 'ctx_node'
positions(node)

S3 method for class 'ctx_node_cpp'
positions(node)

Arguments

node a ctx_node object as returned by find_sequence()

Details

A position of a sequence ctx in the time series x is an index value t such that the sequence ends
with x[t]. Thus x[t+1] is after the context. For instance if x=c(0, 0, 1, 1) and ctx=c(0, 1) (in
standard state order), then the position of ctx in x is 3.

Value

positions of the sequence represented by node is the original time series as a integer vector

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
dts_tree <- ctx_tree(dts, max_depth = 3, min_size = 5)
subseq <- find_sequence(dts_tree, factor(c("B", "A"), levels = c("A", "B", "C")))
if (!is.null(subseq)) {

positions(subseq)
}

powerconsumption 65

powerconsumption Individual household electric power consumption

Description

A data set containing measurements of the electric power consumption of one household with a
time resolution of 10 minutes for the full year of 2008.

Usage

powerconsumption

Format

A data frame with 52704 rows and 15 variables:

month month of 2008

month_day day of the month

hour hour (0 to 23)

minute starting minute of the 10 minutes period of this row

active_power global average active power on the 10 minute period (in kilowatt)

reactive_power global average reactive power on the 10 minute period (in kilowatt)

voltage Average voltage on the 10 minute period (in volt)

intensity global average current intensity on the 10 minute period (in ampere)

sub_metering_1 energy sub-metering No. 1 (in watt-hour of active energy averaged over the 10
minute period). It corresponds to the kitchen, containing mainly a dishwasher, an oven and a
microwave (hot plates are not electric but gas powered)

sub_metering_2 energy sub-metering No. 2 (in watt-hour of active energy averaged over the 10
minute period). It corresponds to the laundry room, containing a washing-machine, a tumble-
drier, a refrigerator and a light.

sub_metering_3 energy sub-metering No. 3 (in watt-hour of active energy averaged over the 10
minute period). It corresponds to an electric water-heater and an air-conditioner.

week week number

week_day day of the week from 1 = Sunday to 7 = Saturday

year_day day of the year from 1 to 366 (2008 is a leap year)

date_time Date and time in POSIXct format

66 predict.covlmc

Details

This is a simplified version of the full data available on the UCI Machine Learning Repository under
a Creative Commons Attribution 4.0 International (CC BY 4.0) license, and provided by Georges
Hebrail and Alice Berard.

The original data have been averaged over a 10 minute time period (discarding missing data in each
period). The data set contains only the measurements from year 2008.

Notice that the different variables are expressed in the adapted units. In particular, the sub-meters
are measuring active energy (in watt-hour) while the global active power is expressed in kilowatt.

Source

Individual household electric power consumption, 2012, G. Hebrail and A. Berard, UC Irvine Ma-
chine Learning repository. doi:10.24432/C58K54

predict.covlmc Next state prediction in a discrete time series for a VLMC with covari-
ates

Description

This function computes one step ahead predictions for a discrete time series based on a VLMC with
covariates.

Usage

S3 method for class 'covlmc'
predict(
object,
newdata,
newcov,
type = c("raw", "probs"),
final_pred = TRUE,
...

)

Arguments

object a fitted covlmc object.
newdata a time series adapted to the covlmc object.
newcov a data frame with the new values for the covariates.
type character indicating the type of prediction required. The default "raw" returns

actual predictions in the form of a new time series. The alternative "probs"
returns a matrix of prediction probabilities (see details).

final_pred if TRUE (default value), the predictions include a final prediction step, made by
computing the context of the full time series. When FALSE this final prediction
is not included.

... additional arguments.

https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.24432/C58K54

predict.vlmc 67

Details

Given a time series X, at time step t, a context is computed using observations from X[1] to X[t-1]
(see the dedicated section). The prediction is then the most probable state for X[t] given this logistic
model of the context and the corresponding values of the covariates. The time series of predictions
is returned by the function when type="raw" (default case).

When type="probs", the function returns of the probabilities of each state for X[t] as estimated
by the logistic models. Those probabilities are returned as a matrix of probabilities with column
names given by the state names.

Value

A vector of predictions if type="raw" or a matrix of state probabilities if type="probs".

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a COVLMC with a non zero order. In order to predict something meaningful for those val-
ues, we rely on the notion of extended context defined in the documents mentioned above. This fol-
lows the same logic as using loglikelihood.covlmc() with the parameter initial="extended".
All covlmc functions that need to manipulate initial values with no proper context use the same ap-
proach.

Examples

pc <- powerconsumption[powerconsumption$week == 10,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.2, 0.7, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5, alpha = 0.5)
dts_probs <- predict(m_cov, dts[1:144], dts_cov[1:144, , drop = FALSE], type = "probs")
dts_preds <- predict(m_cov, dts[1:144], dts_cov[1:144, , drop = FALSE],

type = "raw", final_pred = FALSE
)

predict.vlmc Next state prediction in a discrete time series for a VLMC

Description

This function computes one step ahead predictions for a discrete time series based on a VLMC.

Usage

S3 method for class 'vlmc'
predict(object, newdata, type = c("raw", "probs"), final_pred = TRUE, ...)

S3 method for class 'vlmc_cpp'
predict(object, newdata, type = c("raw", "probs"), final_pred = TRUE, ...)

68 predict.vlmc

Arguments

object a fitted vlmc object.

newdata a time series adapted to the vlmc object.

type character indicating the type of prediction required. The default "raw" returns
actual predictions in the form of a new time series. The alternative "probs"
returns a matrix of prediction probabilities (see details).

final_pred if TRUE (default value), the predictions include a final prediction step, made by
computing the context of the full time series. When FALSE this final prediction
is not included.

... additional arguments.

Details

Given a time series X, at time step t, a context is computed using observations from X[1] to X[t-1]
(see the dedicated section). The prediction is then the most probable state for X[t] given this
contexts. Ties are broken according to the natural order in the state space, favouring "small" values.
The time series of predictions is returned by the function when type="raw" (default case).

When type="probs", each X[t] is associated to the conditional probabilities of the next state given
the context. Those probabilities are returned as a matrix of probabilities with column names given
by the state names.

Value

A vector of predictions if type="raw" or a matrix of state probabilities if type="probs".

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a VLMC with a non zero order. In order to predict something meaningful for those values,
we rely on the notion of extended context defined in the documents mentioned above. This follows
the same logic as using loglikelihood.vlmc() with the parameter initial="extended". All
vlmc functions that need to manipulate initial values with no proper context use the same approach.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts, min_size = 5)
predict(model, dts[1:5])
predict(model, dts[1:5], "probs")
C++ backend
pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts, min_size = 5, backend = "C++")
predict(model, dts[1:5])
predict(model, dts[1:5], "probs")

print.contexts 69

print.contexts Print a context list

Description

This function prints a list of contexts i.e. a contexts object listing ctx_node objects.

Usage

S3 method for class 'contexts'
print(x, reverse = TRUE, ...)

Arguments

x the contexts object to print

reverse specifies whether the contexts should be reported in temporal order (FALSE, de-
fault value) or in reverse temporal order (TRUE). If the parameter is not specified,
the contexts are displayed in order specified by the call to contexts() used to
build the context list.

... additional arguments for the print function.

Value

the x object, invisibly

See Also

contexts()

Examples

dts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
dts_tree <- ctx_tree(dts, max_depth = 3)
print(contexts(dts_tree))

prune Prune a Variable Length Markov Chain (VLMC)

Description

This function prunes a VLMC.

70 prune

Usage

prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

S3 method for class 'vlmc'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

S3 method for class 'vlmc_cpp'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

Arguments

vlmc a fitted VLMC model.

alpha number in (0,1] (default: 0.05) cut off value in quantile scale for pruning.

cutoff positive number: cut off value in native (log likelihood ratio) scale for pruning.
Defaults to the value obtained from alpha. Takes precedence over alpha if
specified.

... additional arguments for the prune function.

Details

In general, pruning a VLMC is more efficient than constructing two VLMC (the base one and
pruned one). Up to numerical instabilities, building a VLMC with a a cut off and then pruning it
with a b cut off (with a>b) should produce the same VLMC than building directly the VLMC with
a b cut off. Interesting cut off values can be extracted from a VLMC using the cutoff() function.

As automated model selection is provided by tune_vlmc(), the direct use of cutoff should be
reserved to advanced exploration of the set of trees that can be obtained from a complex one, e.g.
to implement model selection techniques that are not provided by tune_vlmc().

Value

a pruned VLMC

See Also

cutoff() and tune_vlmc()

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
base_model <- vlmc(dts, alpha = 0.1)
model_cuts <- cutoff(base_model)
pruned_model <- prune(base_model, model_cuts[3])
draw(pruned_model)
direct_simple <- vlmc(dts, alpha = model_cuts[3])
draw(direct_simple)
pruned_model and direct_simple should be identical
all.equal(pruned_model, direct_simple)

prune.covlmc 71

prune.covlmc Prune a Variable Length Markov Chain with covariates

Description

This function prunes a vlmc with covariates. This model must have been estimated with keep_data=TRUE
to enable the pruning.

Usage

S3 method for class 'covlmc'
prune(vlmc, alpha = 0.05, cutoff = NULL, ...)

Arguments

vlmc a fitted VLMC model with covariates.

alpha number in (0,1) (default: 0.05) cutoff value in quantile scale for pruning.

cutoff not supported by the vlmc with covariates.

... additional arguments for the prune function.

Details

Post pruning a VLMC with covariates is not as straightforward as the same procedure applied to
vlmc() (see cutoff.vlmc() and prune.vlmc()). For efficiency reasons, covlmc() estimates only
the logistic models that are considered useful for a given set construction parameters. With a more
aggressive pruning threshold, some contexts become leaves of the context tree and new logistic
models must be estimated. Thus the pruning opportunities given by cutoff.covlmc() are only a
subset of interesting cut offs for a given covlmc.

Nevertheless, covlmc share with vlmc() the principle that post pruning a covlmc should give the
same model as buidling directly the covlmc, provided that the post pruning alpha is smaller than the
alpha used to build the initial model.

Value

a pruned covlmc.

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5, keep_data = TRUE)
draw(m_cov)
m_cov_cuts <- cutoff(m_cov)
p_cov <- prune(m_cov, m_cov_cuts[1])
draw(p_cov)

72 simulate.covlmc

rev.ctx_node Reverse Sequence

Description

This function reverses the order in which the sequence represented by the ctx_node parameter will
be reported in other functions, mainly as_sequence().

Usage

S3 method for class 'ctx_node'
rev(x)

Arguments

x a ctx_node object as returned by find_sequence()

Value

a ctx_node using the opposite ordering convention as the parameter of the function

See Also

is_reversed()

Examples

dts <- c("A", "B", "C", "A", "A", "B", "B", "C", "C", "A")
dts_tree <- ctx_tree(dts, max_depth = 3)
res <- find_sequence(dts_tree, c("A", "B"))
print(res)
r_res <- rev(res)
print(r_res)
as_sequence(r_res)

simulate.covlmc Simulate a discrete time series for a covlmc

Description

This function simulates a time series from the distribution estimated by the given covlmc object.

Usage

S3 method for class 'covlmc'
simulate(object, nsim = 1, seed = NULL, covariate, init = NULL, ...)

simulate.covlmc 73

Arguments

object a fitted covlmc object.

nsim length of the simulated time series (defaults to 1).

seed an optional random seed (see the dedicated section).

covariate values of the covariates.

init an optional initial sequence for the time series.

... additional arguments.

Details

A VLMC with covariates model needs covariates to compute its transition probabilities. The co-
variates must be submitted as a data frame using the covariate argument. In addition, the time
series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the covlmc with a seed
attribute (see the Random seed section). The results has also the dts class to hide the seed attribute
when using print or similar function.

Extended contexts

As explained in details in loglikelihood.covlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a COVLMC with a non zero order. In order to simulate something meaningful for those val-
ues, we rely on the notion of extended context defined in the documents mentioned above. This fol-
lows the same logic as using loglikelihood.covlmc() with the parameter initial="extended".
All covlmc functions that need to manipulate initial values with no proper context use the same ap-
proach.

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function does
not change the random generator state and returns the value of .Random.seed as a seed attribute
in the return value. This can be used to reproduce exactly the simulation results by setting .Ran-
dom.seed to this value. Notice that if the random seed has not be initialised by R so far, the function
issues a call to runif(1) to perform this initialisation (as is done in stats::simulate()).

It seed is an integer, it is used in a call to set.seed() before the simulation takes place. The
integer is saved as a seed attribute in the return value. The integer seed is completed by an attribute
kind which contains the value as.list([RNGkind()]) exactly as with stats::simulate(). The
random generator state is reset to its original value at the end of the call.

See Also

stats::simulate() for details and examples on the random number generator setting

74 simulate.vlmc

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 5)
new week with day light from 6:00 to 18:00
new_cov <- data.frame(day_night = rep(c(rep(FALSE, 59), rep(TRUE, 121), rep(FALSE, 60)), times = 7))
new_dts <- simulate(m_cov, nrow(new_cov), seed = 0, covariate = new_cov)
new_dts_2 <- simulate(m_cov, nrow(new_cov), seed = 0, covariate = new_cov, init = dts[1:10])

simulate.vlmc Simulate a discrete time series for a vlmc

Description

This function simulates a time series from the distribution estimated by the given vlmc object.

Usage

S3 method for class 'vlmc'
simulate(object, nsim = 1L, seed = NULL, init = NULL, burnin = 0L, ...)

Arguments

object a fitted vlmc object.

nsim length of the simulated time series (defaults to 1).

seed an optional random seed (see the dedicated section).

init an optional initial sequence for the time series.

burnin number of initial observations to discard or "auto" (see the dedicated section).

... additional arguments.

Details

The time series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the vlmc with a seed
attribute (see the Random seed section). The results has also the dts class to hide the seed attribute
when using print or similar function.

simulate.vlmc 75

Burn in (Warm up) period

When using a VLMC for simulation purposes, we are generally interested in the stationary distribu-
tion of the corresponding Markov chain. To reduce the dependence of the samples from the initial
values and get closer to this stationary distribution (if it exists), it is recommended to discard the first
samples which are produced in a so-called "burn in" (or "warm up") period. The burnin parameter
can be used to implement this approach. The VLMC is used to produce a sample of size burnin +
nsim but the first burnin values are discarded. Notice that this burn in values can be partially given
by the init parameter if it is specified.

If burnin is set to "auto", the burnin period is set to 64 * context_number(object), following
the heuristic proposed in Mächler and Bühlmann (2004).

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function does
not change the random generator state and returns the value of .Random.seed as a seed attribute
in the return value. This can be used to reproduce exactly the simulation results by setting .Ran-
dom.seed to this value. Notice that if the random seed has not be initialised by R so far, the function
issues a call to runif(1) to perform this initialisation (as is done in stats::simulate()).

It seed is an integer, it is used in a call to set.seed() before the simulation takes place. The
integer is saved as a seed attribute in the return value. The integer seed is completed by an attribute
kind which contains the value as.list([RNGkind()]) exactly as with stats::simulate(). The
random generator state is reset to its original value at the end of the call.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a VLMC with a non zero order. In order to simulate something meaningful for those values
when init is not provided, we rely on the notion of extended context defined in the documents
mentioned above. This follows the same logic as using loglikelihood.vlmc() with the parame-
ter initial="extended". All vlmc functions that need to manipulate initial values with no proper
context use the same approach.

References

Mächler, M. and Bühlmann, P. (2004) "Variable Length Markov Chains: Methodology, Computing,
and Software" Journal of Computational and Graphical Statistics, 13 (2), 435-455, doi:10.1198/
1061860043524

See Also

stats::simulate() for details and examples on the random number generator setting

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts, min_size = 5)
new_dts <- simulate(model, 500, seed = 0)

https://doi.org/10.1198/1061860043524
https://doi.org/10.1198/1061860043524

76 simulate.vlmc_cpp

new_dts_2 <- simulate(model, 500, seed = 0, init = dts[1:5])
new_dts_3 <- simulate(model, 500, seed = 0, burnin = 500)

simulate.vlmc_cpp Simulate a discrete time series for a vlmc

Description

This function simulates a time series from the distribution estimated by the given vlmc object.

Usage

S3 method for class 'vlmc_cpp'
simulate(
object,
nsim = 1,
seed = NULL,
init = NULL,
burnin = 0L,
sample = c("fast", "slow", "R"),
...

)

Arguments

object a fitted vlmc object.

nsim length of the simulated time series (defaults to 1).

seed an optional random seed (see the dedicated section).

init an optional initial sequence for the time series.

burnin number of initial observations to discard or "auto" (see the dedicated section).

sample specifies which implementation of base::sample() to use. See the dedicated
section.

... additional arguments.

Details

The time series can be initiated by a fixed sequence specified via the init parameter.

Value

a simulated discrete time series of the same type as the one used to build the vlmc with a seed
attribute (see the Random seed section). The results has also the dts class to hide the seed attribute
when using print or similar function.

simulate.vlmc_cpp 77

sampling method

The R backend for vlmc() uses base::sample() to generate samples for each context. Inter-
nally, this function sorts the probabilities of each state in decreasing probability order (among other
things), which is not needed in our case. The C++ backend can be used with three different imple-
mentations:

• sample="fast" uses a dedicated C++ implementation adapted to the data structures used
internally. In general, the simulated time series obtained with this implementation will be
different from the one generated with the R backend, even using the same seed.

• sample="slow" uses another C++ implementation that mimics base::sample() in order to
maximize the chance to provide identical simulation results regardless of the backend (when
using the same random seed). This process is not perfect as we use the std::lib sort algorithm
which is not guaranteed to give identical results as the ones of R internal ’revsort’.

• sample="R" uses direct calls to base::sample(). Results are guaranteed to be identical
between the two backends, but at the price of higher running time.

Burn in (Warm up) period

When using a VLMC for simulation purposes, we are generally interested in the stationary distribu-
tion of the corresponding Markov chain. To reduce the dependence of the samples from the initial
values and get closer to this stationary distribution (if it exists), it is recommended to discard the first
samples which are produced in a so-called "burn in" (or "warm up") period. The burnin parameter
can be used to implement this approach. The VLMC is used to produce a sample of size burnin +
nsim but the first burnin values are discarded. Notice that this burn in values can be partially given
by the init parameter if it is specified.

If burnin is set to "auto", the burnin period is set to 64 * context_number(object), following
the heuristic proposed in Mächler and Bühlmann (2004).

Random seed

This function reproduce the behaviour of stats::simulate(). If seed is NULL the function does
not change the random generator state and returns the value of .Random.seed as a seed attribute
in the return value. This can be used to reproduce exactly the simulation results by setting .Ran-
dom.seed to this value. Notice that if the random seed has not be initialised by R so far, the function
issues a call to runif(1) to perform this initialisation (as is done in stats::simulate()).

It seed is an integer, it is used in a call to set.seed() before the simulation takes place. The
integer is saved as a seed attribute in the return value. The integer seed is completed by an attribute
kind which contains the value as.list([RNGkind()]) exactly as with stats::simulate(). The
random generator state is reset to its original value at the end of the call.

Extended contexts

As explained in details in loglikelihood.vlmc() documentation and in the dedicated vignette("likelihood",
package = "mixvlmc"), the first initial values of a time series do not in general have a proper con-
text for a VLMC with a non zero order. In order to simulate something meaningful for those values
when init is not provided, we rely on the notion of extended context defined in the documents

78 states

mentioned above. This follows the same logic as using loglikelihood.vlmc() with the parame-
ter initial="extended". All vlmc functions that need to manipulate initial values with no proper
context use the same approach.

References

Mächler, M. and Bühlmann, P. (2004) "Variable Length Markov Chains: Methodology, Computing,
and Software" Journal of Computational and Graphical Statistics, 13 (2), 435-455, doi:10.1198/
1061860043524

See Also

stats::simulate() for details and examples on the random number generator setting

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1))))
model <- vlmc(dts, min_size = 5)
new_dts <- simulate(model, 500, seed = 0)
new_dts_2 <- simulate(model, 500, seed = 0, init = dts[1:5])
new_dts_3 <- simulate(model, 500, seed = 0, burnin = 500)

states State space of a context tree

Description

This function returns the state space of a context tree.

Usage

states(ct)

Arguments

ct a context tree.

Value

the state space of the context tree.

Examples

dts <- c(0, 1, 1, 1, 0, 0, 1, 0, 1, 0)
dts_ctree <- ctx_tree(dts, min_size = 1, max_depth = 2)
should be c(0, 1)
states(dts_ctree)

https://doi.org/10.1198/1061860043524
https://doi.org/10.1198/1061860043524

trim 79

trim Trim a context tree

Description

This function returns a trimmed context tree from which match positions have been removed.

Usage

trim(ct, ...)

Arguments

ct a context tree.

... additional arguments for the trim function.

Value

a trimmed context tree.

Examples

context tree trimming
dts <- sample(as.factor(c("A", "B", "C")), 1000, replace = TRUE)
dts_tree <- ctx_tree(dts, max_depth = 10, min_size = 5, keep_position = TRUE)
print(object.size(dts_tree))
dts_tree <- trim(dts_tree)
print(object.size(dts_tree))

trim.covlmc Trim a COVLMC

Description

This function returns a trimmed COVLMC from which cached data have been removed.

Usage

S3 method for class 'covlmc'
trim(ct, keep_model = FALSE, ...)

Arguments

ct a context tree.

keep_model specifies whether to keep the internal models (or not)

... additional arguments for the trim function.

80 trim.vlmc

Details

Called with keep_model set to FALSE (default case), the trimming is maximal and reduces fur-
ther usability of the model. In particular loglikelihood.covlmc() cannot be used for new data,
contexts.covlmc() do not support model extraction, and simulate.covlmc(), metrics.covlmc()
and prune.covlmc() cannot be used at all.

Called with keep_model set to TRUE, the trimming process is less complete. In particular internal
models are simplified using butcher::butcher() and some additional minor reductions. This
saves less memory but enables the use of loglikelihood.covlmc() for new data as well as the
use of simulate.covlmc().

Value

a trimmed context tree.

See Also

tune_covlmc()

Examples

pc <- powerconsumption[powerconsumption$week %in% 5:7,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
m_cov <- covlmc(dts, dts_cov, min_size = 10, keep_data = TRUE)
print(object.size(m_cov), units = "Mb")
t_m_cov_model <- trim(m_cov, keep_model = TRUE)
print(object.size(t_m_cov_model), units = "Mb")
t_m_cov <- trim(m_cov)
print(object.size(t_m_cov), units = "Mb")

trim.vlmc This function returns a trimmed VLMC from which match positions
have been removed.

Description

This function returns a trimmed context tree from which match positions have been removed.

Usage

S3 method for class 'vlmc'
trim(ct, ...)

Arguments

ct a VLMC.

... additional arguments for the trim function.

trim.vlmc_cpp 81

Value

a trimmed VLMC

Examples

VLMC trimming is generally useless unless match positions were kept
pc <- powerconsumption[powerconsumption$week %in% 5:6,]
dts <- cut(pc$active_power, breaks = 4)
model <- vlmc(dts, keep_match = TRUE)
print(object.size(model))
model <- trim(model)
memory use should be reduced
print(object.size(model))
nm_model <- vlmc(dts)
print(object.size(nm_model))
nm_model <- trim(nm_model)
no effect when match positions are not kept
print(object.size(nm_model))

trim.vlmc_cpp This function returns a trimmed VLMC from which match positions
have been removed.

Description

This function returns a trimmed context tree from which match positions have been removed.

Usage

S3 method for class 'vlmc_cpp'
trim(ct, ...)

Arguments

ct a VLMC.

... additional arguments for the trim function.

Details

Trimming in the C++ backend is done directly in the Rcpp managed memory and cannot be detected
at R level using e.g. utils::object.size().

Value

a trimmed VLMC

82 tune_covlmc

Examples

VLMC trimming is generally useless unless match positions were kept
pc <- powerconsumption[powerconsumption$week %in% 5:6,]
dts <- cut(pc$active_power, breaks = 4)
model <- vlmc(dts, backend = "C++", keep_match = TRUE)
model <- trim(model)

tune_covlmc Fit an optimal Variable Length Markov Chain with Covariates
(coVLMC)

Description

This function fits a Variable Length Markov Chain with Covariates (coVLMC) to a discrete time
series coupled with a time series of covariates by optimizing an information criterion (BIC or AIC).

Usage

tune_covlmc(
x,
covariate,
criterion = c("BIC", "AIC"),
initial = c("truncated", "specific", "extended"),
alpha_init = NULL,
min_size = 5,
max_depth = 100,
verbose = 0,
save = c("best", "initial", "all"),
trimming = c("full", "partial", "none"),
best_trimming = c("none", "partial", "full")

)

Arguments

x a discrete time series; can be numeric, character, factor and logical.

covariate a data frame of covariates.

criterion criterion used to select the best model. Either "BIC" (default) or "AIC" (see
details).

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
See loglikelihood() for details.

alpha_init if non NULL used as the initial cut off parameter (in quantile scale) to build the
initial VLMC

min_size integer >= 1 (default: 5). Tune the minimum number of observations for a
context in the growing phase of the context tree (see covlmc() for details).

tune_covlmc 83

max_depth integer >= 1 (default: 100). Longest context considered in growing phase of the
initial context tree (see details).

verbose integer >= 0 (default: 0). Verbosity level of the pruning process.

save specify which BIC models are saved during the pruning process. The default
value "best" asks the function to keep only the best model according to the
criterion. When save="initial" the function keeps in addition the initial
(complex) model which is then pruned during the selection process. When
save="all", the function returns all the models considered during the selec-
tion process. See details for memory occupation.

trimming specify the type of trimming used when saving the intermediate models, see
details.

best_trimming specify the type of trimming used when saving the best model and the initial one
(see details).

Details

This function automates the process of fitting a large coVLMC to a discrete time series with
covlmc() and of pruning the tree (with cutoff() and prune()) to get an optimal with respect to an
information criterion. To avoid missing long term dependencies, the function uses the max_depth
parameter as an initial guess but then relies on an automatic increase of the value to make sure
the initial context tree is only limited by the min_size parameter. The initial value of the alpha
parameter of covlmc() is also set to a conservative value (0.5) to avoid prior simplification of the
context tree. This can be overridden by setting the alpha_init parameter to a more adapted value.

Once the initial coVLMC is obtained, the cutoff() and prune() functions are used to build all
the coVLMC models that could be generated using smaller values of the alpha parameter. The best
model is selected from this collection, including the initial complex tree, as the one that minimizes
the chosen information criterion.

Value

a list with the following components:

• best_model: the optimal COVLMC

• criterion: the criterion used to select the optimal VLMC

• initial: the likelihood function used to select the optimal VLMC

• results: a data frame with details about the pruning process

• saved_models: a list of intermediate COVLMCs if save="initial" or save="all". It con-
tains an initial component with the large coVLMC obtained first and an all component
with a list of all the other coVLMC obtained by pruning the initial one.

Memory occupation

covlmc objects tend to be large and saving all the models during the search for the optimal model
can lead to an unreasonable use of memory. To avoid this problem, models are kept in trimmed
form only using trim.covlmc() with keep_model=FALSE. Both the initial model and the best
one are saved untrimmed. This default behaviour corresponds to trimming="full". Setting

84 tune_vlmc

trimming="partial" asks the function to use keep_model=TRUE in trim.covlmc() for interme-
diate models. Finally, trimming="none" turns off trimming, which is discouraged expected for
small data sets.

In parallel processing contexts (e.g. using foreach::%dopar%), the memory occupation of the results
can become very large as models tend to keep environments attached to the formulas. In this
situation, it is highly recommended to trim all saved models, including the best one and the initial
one. This can be done via the best_trimming parameter whose possible values are identical to the
ones of trimming.

See Also

covlmc(), cutoff() and prune()

Examples

pc <- powerconsumption[powerconsumption$week %in% 6:7,]
dts <- cut(pc$active_power, breaks = c(0, quantile(pc$active_power, probs = c(0.5, 1))))
dts_cov <- data.frame(day_night = (pc$hour >= 7 & pc$hour <= 17))
dts_best_model_tune <- tune_covlmc(dts, dts_cov)
draw(as_covlmc(dts_best_model_tune))

tune_vlmc Fit an optimal Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series by optimizing
an information criterion (BIC or AIC).

Usage

tune_vlmc(
x,
criterion = c("BIC", "AIC"),
initial = c("truncated", "specific", "extended"),
alpha_init = NULL,
cutoff_init = NULL,
min_size = 2L,
max_depth = 100L,
backend = getOption("mixvlmc.backend", "R"),
verbose = 0,
save = c("best", "initial", "all")

)

tune_vlmc 85

Arguments

x a discrete time series; can be numeric, character, factor and logical.

criterion criterion used to select the best model. Either "BIC" (default) or "AIC" (see
details).

initial specifies the likelihood function, more precisely the way the first few observa-
tions for which contexts cannot be calculated are integrated in the likelihood.
Default to "truncated". See loglikelihood() for details.

alpha_init if non NULL used as the initial cut off parameter (in quantile scale) to build the
initial VLMC

cutoff_init if non NULL used as the initial cut off parameter to build the initial VLMC. Takes
precedence over alpha_init if specified.

min_size integer >= 1 (default: 2). Minimum number of observations for a context in the
growing phase of the initial context tree.

max_depth integer >= 1 (default: 100). Longest context considered in growing phase of the
initial context tree (see details).

backend backend "R" or "C++" (default: as specified by the "mixvlmc.backend" option).
Specifies the implementation used to represent the context tree and to built it.
See vlmc() for details.

verbose integer >= 0 (default: 0). Verbosity level of the pruning process.

save specify which BIC models are saved during the pruning process. The default
value "best" asks the function to keep only the best model according to the
criterion. When save="initial" the function keeps in addition the initial
(complex) model which is then pruned during the selection process. When
save="all", the function returns all the models considered during the selec-
tion process.

Details

This function automates the process of fitting a large VLMC to a discrete time series with vlmc()
and of pruning the tree (with cutoff() and prune()) to get an optimal with respect to an informa-
tion criterion. To avoid missing long term dependencies, the function uses the max_depth parameter
as an initial guess but then relies on an automatic increase of the value to make sure the initial con-
text tree is only limited by the min_size parameter. The initial value of the cutoff parameter of
vlmc() is also set to conservative values (depending on the criterion) to avoid prior simplification
of the context tree. This default value can be overridden using the cutoff_init or alpha_init
parameter.

Once the initial VLMC is obtained, the cutoff() and prune() functions are used to build all the
VLMC models that could be generated using larger values of the initial cut off parameter. The best
model is selected from this collection, including the initial complex tree, as the one that minimizes
the chosen information criterion.

Value

a list with the following components:

• best_model: the optimal VLMC

86 vlmc

• criterion: the criterion used to select the optimal VLMC

• initial: the likelihood function used to select the optimal VLMC

• results: a data frame with details about the pruning process

• saved_models: a list of intermediate VLMCs if save="initial" or save="all". It contains
an initial component with the large VLMC obtained first and an all component with a list
of all the other VLMC obtained by pruning the initial one.

See Also

vlmc(), cutoff() and prune()

Examples

dts <- sample(as.factor(c("A", "B", "C")), 100, replace = TRUE)
tune_result <- tune_vlmc(dts)
draw(tune_result$best_model)

vlmc Fit a Variable Length Markov Chain (VLMC)

Description

This function fits a Variable Length Markov Chain (VLMC) to a discrete time series.

Usage

vlmc(
x,
alpha = 0.05,
cutoff = NULL,
min_size = 2L,
max_depth = 100L,
prune = TRUE,
keep_match = FALSE,
backend = getOption("mixvlmc.backend", "R")

)

Arguments

x a discrete time series; can be numeric, character, factor or logical.

alpha number in (0,1] (default: 0.05) cut off value in quantile scale in the pruning
phase.

cutoff non negative number: cut off value in native (likelihood ratio) scale in the prun-
ing phase. Defaults to the value obtained from alpha. Takes precedence over
alpha is specified.

vlmc 87

min_size integer >= 1 (default: 2). Minimum number of observations for a context in the
growing phase of the context tree.

max_depth integer >= 1 (default: 100). Longest context considered in growing phase of the
context tree.

prune logical: specify whether the context tree should be pruned (default behaviour).

keep_match logical: specify whether to keep the context matches (default to FALSE)

backend "R" or "C++" (default: as specified by the "mixvlmc.backend" option). Specifies
the implementation used to represent the context tree and to built it. See details.

Details

The VLMC is built using Bühlmann and Wyner’s algorithm which consists in fitting a context tree
(see ctx_tree()) to a time series and then pruning it in such as way that the conditional distribution
of the next state of the time series given the context is significantly different from the distribution
given a truncated version of the context.

The construction of the context tree is controlled by min_size and max_depth, exactly as in
ctx_tree(). Significativity is measured using a likelihood ratio test (threshold can be specified
in terms of the ratio itself with cutoff) or in quantile scale with alpha.

Pruning can be postponed by setting prune=FALSE. Using a combination of cutoff() and prune(),
the complexity of the VLMC can then be adjusted. Any VLMC model can be pruned after construc-
tion, prune=FALSE is a convenience parameter to avoid setting alpha=1 (which essentially prevents
any pruning). Automated model selection is provided by tune_vlmc().

Value

a fitted vlmc model.

Back ends

Two back ends are available to compute context trees:

• the "R" back end represents the tree in pure R data structures (nested lists) that be easily
processed further in pure R (C++ helper functions are used to speed up the construction).

• the "C++" back end represents the tree with C++ classes. This back end is considered experi-
mental. The tree is built with an optimised suffix tree algorithm which speeds up the construc-
tion by at least a factor 10 in standard settings. As the tree is kept outside of R direct reach,
context trees built with the C++ back end must be restored after a saveRDS()/readRDS()
sequence. This is done automatically by recomputing completely the context tree.

References

Bühlmann, P. and Wyner, A. J. (1999), "Variable length Markov chains. Ann. Statist." 27 (2)
480-513 doi:10.1214/aos/1018031204

See Also

cutoff(), prune() and tune_vlmc()

https://doi.org/10.1214/aos/1018031204

88 vlmc

Examples

pc <- powerconsumption[powerconsumption$week == 5,]
dts <- cut(pc$active_power,

breaks = c(0, quantile(pc$active_power, probs = c(0.25, 0.5, 0.75, 1)))
)
model <- vlmc(dts)
draw(model)
depth(model)
reduce the detph of the model
shallow_model <- vlmc(dts, max_depth = 3)
draw(shallow_model, prob = FALSE)
improve probability estimates
robust_model <- vlmc(dts, min_size = 25)
draw(robust_model, prob = FALSE) ## show the frequencies
draw(robust_model)

Index

∗ datasets
globalearthquake, 40
powerconsumption, 65

.Random.seed, 73, 75, 77

AIC(), 63
as_covlmc, 4
as_sequence, 5
as_sequence(), 72
as_vlmc, 6
as_vlmc.ctx_tree_cpp, 7
autoplot.tune_covlmc, 8
autoplot.tune_vlmc, 9

base::plot(), 62, 63
base::sample(), 76, 77
base::signif, 33
BIC(), 63
butcher::butcher(), 80

children, 10
context_number, 19
context_number.covlmc, 20
contexts, 11
contexts(), 5, 21, 29, 69
contexts.covlmc, 12
contexts.covlmc(), 12, 14, 16, 19, 22, 43,

52, 57, 60, 80
contexts.ctx_tree, 14
contexts.ctx_tree(), 12–14, 16, 18, 19, 21,

35
contexts.ctx_tree_cpp

(contexts.ctx_tree), 14
contexts.vlmc, 16
contexts.vlmc(), 12, 14, 16, 19, 54, 56–58,

60
contexts.vlmc_cpp (contexts.vlmc), 16
counts, 20
counts(), 11, 13, 15, 18
covariate_depth, 22

covariate_memory, 22
covariate_memory(), 13
covlmc, 23
covlmc(), 4, 63, 71, 82–84
covlmc_control, 25
covlmc_control(), 23
ctx_tree, 26
ctx_tree(), 4, 6, 7, 24, 87
cutoff, 27
cutoff(), 18, 30, 70, 83–87
cutoff.covlmc, 28
cutoff.covlmc(), 24, 71
cutoff.ctx_node, 29
cutoff.ctx_node(), 13, 18
cutoff.vlmc, 30
cutoff.vlmc(), 18, 28, 29, 71
cutoff.vlmc_cpp (cutoff.vlmc), 30

depth, 31
depth(), 48, 51
draw, 32
draw(), 12, 14, 16, 19, 37
draw.covlmc, 33
draw.ctx_tree (draw.ctx_tree_cpp), 35
draw.ctx_tree(), 36
draw.ctx_tree_cpp, 35
draw.vlmc, 36
draw.vlmc_cpp (draw.vlmc), 36
draw_control, 37
draw_control(), 32–36

find_sequence, 38
find_sequence(), 5, 10–12, 14–16, 18, 19,

21, 22, 29, 41, 43, 44, 52, 56, 57, 60,
61, 64, 72

find_sequence.covlmc, 39
find_sequence.covlmc(), 12–14, 16, 19, 60
foreach::%dopar%, 84

globalearthquake, 40

89

90 INDEX

is_context, 41
is_context(), 38, 39
is_covlmc, 42
is_ctx_tree, 42
is_merged, 43
is_merged(), 52
is_reversed, 44
is_reversed(), 72
is_vlmc, 44

logLik.covlmc, 45
logLik.vlmc, 46
logLik.vlmc_cpp (logLik.vlmc), 46
loglikelihood, 47
loglikelihood(), 45–47, 63, 82, 85
loglikelihood.covlmc, 50
loglikelihood.covlmc(), 55, 67, 73, 80
loglikelihood.vlmc(), 59, 68, 75, 77, 78

merged_with, 52
merged_with(), 13, 43
metrics, 53
metrics(), 13, 18
metrics.covlmc, 54
metrics.covlmc(), 55, 57, 80
metrics.ctx_node, 56
metrics.ctx_node(), 13, 18, 54, 56–58, 60
metrics.ctx_node_covlmc, 57
metrics.vlmc, 58
metrics.vlmc(), 54, 56–60
mixvlmc (mixvlmc-package), 3
mixvlmc-package, 3
model, 60
model(), 13

nnet::multinom(), 4, 24

options(), 4

parent, 61
plot.tune_covlmc (plot.tune_vlmc), 62
plot.tune_covlmc(), 8
plot.tune_vlmc, 62
plot.tune_vlmc(), 9
positions, 64
positions(), 11, 13, 15, 18
powerconsumption, 65
predict.covlmc, 66
predict.vlmc, 67

predict.vlmc(), 53–60
predict.vlmc_cpp (predict.vlmc), 67
print(), 8, 9
print.contexts, 69
print.metrics.covlmc (metrics.covlmc),

54
print.metrics.vlmc (metrics.vlmc), 58
prune, 69
prune(), 6, 7, 18, 27, 30, 31, 83–87
prune.covlmc, 71
prune.covlmc(), 23, 24, 80
prune.vlmc(), 18, 71

rev.ctx_node, 72
rev.ctx_node(), 44

set.seed(), 73, 75, 77
simulate.covlmc, 72
simulate.covlmc(), 80
simulate.vlmc, 74
simulate.vlmc_cpp, 76
states, 78
states(), 10, 52
stats::binomial(), 4, 24
stats::glm(), 4, 24, 34
stats::logLik(), 49, 51
stats::simulate(), 73, 75, 77, 78

trim, 79
trim.covlmc, 79
trim.covlmc(), 60, 83, 84
trim.vlmc, 80
trim.vlmc_cpp, 81
tune_covlmc, 82
tune_covlmc(), 5, 8, 29, 62, 80
tune_vlmc, 84
tune_vlmc(), 4, 6, 7, 9, 31, 62, 70, 87

utils::object.size(), 81

VGAM::multinomial(), 4, 24
VGAM::vglm(), 4, 24
vlmc, 86
vlmc(), 4, 6, 7, 24, 63, 71, 77, 85, 86

	mixvlmc-package
	as_covlmc
	as_sequence
	as_vlmc
	as_vlmc.ctx_tree_cpp
	autoplot.tune_covlmc
	autoplot.tune_vlmc
	children
	contexts
	contexts.covlmc
	contexts.ctx_tree
	contexts.vlmc
	context_number
	context_number.covlmc
	counts
	covariate_depth
	covariate_memory
	covlmc
	covlmc_control
	ctx_tree
	cutoff
	cutoff.covlmc
	cutoff.ctx_node
	cutoff.vlmc
	depth
	draw
	draw.covlmc
	draw.ctx_tree_cpp
	draw.vlmc
	draw_control
	find_sequence
	find_sequence.covlmc
	globalearthquake
	is_context
	is_covlmc
	is_ctx_tree
	is_merged
	is_reversed
	is_vlmc
	logLik.covlmc
	logLik.vlmc
	loglikelihood
	loglikelihood.covlmc
	merged_with
	metrics
	metrics.covlmc
	metrics.ctx_node
	metrics.ctx_node_covlmc
	metrics.vlmc
	model
	parent
	plot.tune_vlmc
	positions
	powerconsumption
	predict.covlmc
	predict.vlmc
	print.contexts
	prune
	prune.covlmc
	rev.ctx_node
	simulate.covlmc
	simulate.vlmc
	simulate.vlmc_cpp
	states
	trim
	trim.covlmc
	trim.vlmc
	trim.vlmc_cpp
	tune_covlmc
	tune_vlmc
	vlmc
	Index

