
mistr: A Computational Framework for Mixture
and Composite Distributions
Lukas Sablicaa and Kurt Hornika

aInstitute for Statistics and Mathematics, WU Wirtschaftsuniversität Wien, Austria; https://www.wu.ac.at/en/statmath

This version was compiled on February 22, 2023

The main aim of this vignette is to introduce several available options for
the package mistr. In the first place, we introduce the computational and
object oriented framework for the standard univariate distributions that
uses S3 dispatch mechanism to create an object with all necessary infor-
mation. These objects represent a random variable with certain properties
and can be later used for evaluation of the cumulative distribution function
(CDF), probability density function (PDF), quantile function (QF), and ran-
dom numbers generation. Such objects can be then transformed using
offered monotonic transformations or combined into mixtures and com-
posite distributions and then transformed again. In the end, we provide
and describe functions for data modeling using two specific composite
distributions together with a numerical example, where a composite dis-
tribution is estimated to describe the log-returns of selected stocks.

distributions | composite | mixture | R | tails | Pareto | models | truncated | spliced

1. Introduction

During the history of the financial mathematics mankind has de-
veloped many useful theories how to describe financial markets.
Some of these theories assume that the market behavior can be
described using one simple distribution. For example, in case of
stock log-returns it is typically a bad practice to assume the normal
distribution, even if we see that the empirical distributions are
generally heavy tailed. But can these market movements, which
represent how we, highly advanced beings, think be described by
only one standard distribution? The same way we think differ-
ently in different moods or extreme situations, the distribution
describing our behavior in these situations can change. A simple
illustration might be the distribution of SAP log-returns. Clearly,
the tails are much heavier than in the case of normal distribution
with the same mean and standard deviation. This behavior can be
frequently found in a number of the financial assets.

library(mistr)

op <- par(mfrow = c(2, 1))

plot(density(stocks$SAP), xlim = c(-0.07, 0.07),
main = "Density of SAP log-returns (black)
and normal distribution (red)")

x <- seq(-0.07, 0.07, 0.001)
lines(x, dnorm(x, mean(stocks$SAP), sd(stocks$SAP)),

col = "red")

qqnorm(stocks$SAP)
qqline(stocks$SAP)

−0.06 −0.02 0.02 0.06

0
10

20
30

Density of SAP log−returns (black)
 and normal distribution (red)

N = 2726 Bandwidth = 0.002376
D

en
si

ty

−3 −2 −1 0 1 2 3

−
0.

15
0.

00
0.

10
Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(op)

A more interesting result can be seen from the quantile-quantile
plot. While the normal distribution fails in the tails, it excels in
the center. This suggests to use a more suitable distribution, a
distribution that can catch the fat tails presented above and yet
follows a normal distribution in the center.

A simple answer to this idea is the concept of composite distribu-
tions and mixture models, where one assumes that the distribution
is a finite mixture of component distributions. Clearly, a three-
component composite model whose PDF is defined as

f (x) =











w1
f1(x)

F1(β1)
if −∞< x < β1,

w2
f2(x)

F2(β2)−F2(β1)
if β1 ≤ x < β2,

w3
f3(x)

1−F3(β2)
if β2 ≤ x <∞,

with first and third distribution being some heavy-tailed distribution
and its negative transform, respectively, is something that might
be appropriate for the presented data.

https://cran.r-project.org/package=mistr mistr Vignette | February 22, 2023 | 1–10

https://www.wu.ac.at/en/statmath
https://cran.r-project.org/package=mistr

Moreover, composite models have gained a fair amount of at-
tention in actuarial loss modeling. What is frequently used are
mostly models composite of two distributions, where the mod-
els are based on the log-normal distribution and defined on the
positive reals. The second distribution is chosen according to the
data-set to model extreme measurements. Common choices for
these tail-modeling distributions are, for instance, the generalized
Pareto distribution or the Burr distribution. Such models have been
proposed by various authors, for more details see (Nadarajah and
Bakar, 2013), (Cooray and Ananda, 2005) and (Scollnik, 2007).
In case of financial mathematics, these generated probability distri-
butions are not enjoying such great popularity. The main reason is
the difficulty to obtain a closed form of the whole distribution, or
to even fit the parameters of such a distribution to some empirical
data.

To offer a general framework for such univariate distributions
and for mixtures in general, package mistr is specifically designed
to create such models, evaluate or even fit them. This article
introduces this package and illustrates with several examples how
these distributions can be created and used.

2. Distributions in R

R is a very powerful and popular
programming language, which peo-
ple around the world use to work
with distributions on a daily basis.
It currently contains the standard
naming convention [prefix][name],
where the [name] corresponds to
the name of the desired distribution
and [prefix] stands for the popular
p, d, q, and r. However, there are
a lot of restrictions in such a con-
cept. What would be desirable is
that one would be able to treat a
random variable as a variable and so to be able to send the variable
to a function or perform transformations.

Naturally, one way to do this is by using the object oriented
system in R. To even improve this idea, one can use some favored
dispatching mechanism, like S3 or S4, to let the computer decide
how to handle the corresponding distribution correctly and which
functions to use. In particular, the prefixes p, d, q, and r can still
be just smartly evaluated as generic functions with appropriate
methods. Moreover, with such a system we can add other useful
calls and so take the distribution operations to the next level, such
as a monotonic transformation of a distribution. Additionally, once
these objects containing all necessary information about the distri-
butions are defined, they can be then reused for the purpose of the
mixture and composite distributions.

This approach has already been used in the package distr (Kohl
and Ruckdeschel, 2010). Package distr provides a conceptual treat-
ment of distributions by means of S4 classes. A mother class Distri-
bution allows to create objects and contains a slot for parameters
and also for the four methods mentioned above, p(), d(), q(),
and r(). While distr provides several classes for distributions,
like many similar packages, it does not support any tools to work
with the composite distributions. In particular, the only packages
available for composite models are the CompLognormal package
(Nadarajah and Bakar, 2013), and the package Gendist (Bakar
et al., 2016), which can only deal with two-components composite
distributions.

The proposed framework by the package mistr currently sup-
ports all distributions that are included in the stats package and, in
addition, it offers some extreme value distributions like generalized
Pareto, Pareto, Frechet, and Burr. In case that the user would like to
use a distribution that is not directly supported by the framework,
a new distribution can be implemented in a very simple way. This
procedure is more deeply documented in “Extensions” vignette.

The objects can be created very easily. The creator-functions
follow a standard naming convention from R where the name
of a distribution is suffixed with “dist” suffix and the parameters
are entered as arguments. Thus, an object representing normal
distribution with mean equal to 1 and standard deviation equal to
3 can be created as follows:

N <- normdist(mean = 1, sd = 3)
N

Distribution Parameters
Normal mean = 1, sd = 3

Once the objects are created, they can be used for evaluation of
various functions. Among the most used functions surely belong the
print() function that was already demonstrated and the functions
p(), d(), q() and r(). These can be easily evaluated as

d(N, c(1, 2, 3))

[1] 0.1329808 0.1257944 0.1064827

p(N, c(1, 2, 3))

[1] 0.5000000 0.6305587 0.7475075

q(N, c(0.1, 0.2, 0.3))

[1] -2.8446547 -1.5248637 -0.5732015

r(N, 3)

[1] 3.007186 5.185786 0.255620

Another option is to use the wrappers mistr_d(), mistr_p(),
mistr_q() and mistr_r() if the IDE catches the q() call (for
example the R-Studio for Windows users).

Next important function provided by mistr is the left-hand limit
of the cumulative distribution function. It might not look of crucial
importance to be able to evaluate F(x−) = P(X < x), but this
function plays a huge role in the transformations and composite
distributions. Of course this function differs from the standard
distribution function only if it is applied to a distribution with a
positive probability mass in the point of interest. This function can
be called using plim().

B <- binomdist(size = 12, prob = 0.3)
plim(B, c(-3, 0, 3, 12))

2 | https://cran.r-project.org/package=mistr Sablica and Hornik

https://cran.r-project.org/package=mistr

[1] 0.0000000 0.0000000 0.2528153 0.9999995

Another very important function when dealing with transfor-
mations is the pseudoinverse for the left-hand limit of the CDF,
i.e.

Q(p+) = inf {x ∈ R : p < P (X ≤ x)} .

These values can be obtained using the qlim() call, and just as
plim(), in the case of continuous distributions it simplifies to q().

qlim(B, plim(B, c(0, 3, 7, 12)))

[1] 0 3 7 12

3. Adding transformation

Once the objects that represent a single distribution are created, we
can use this representation to go beyond the scope of a simple dis-
tribution function evaluation. The knowledge of support and class
that is stored inside the object opens the doors to more complicated
operations. One such an operation that we would like to introduce
in this chapter is the ability to perform monotone transformations
of defined random variables. This adds even more generality to the
whole framework that can be later reused in the mixture and com-
posite distributions. This innovation is also motivated by the fact
that even though most of the extreme value distributions belong
to the location-scale family, without a decreasing transformation
these distributions cannot be used for modeling of the left tail.

The transformation framework currently allows for all standard
monotone transformations (+ - * / log exp ˆ) and is provided with
the knowledge of invariant and direct transformations that corre-
spond to the distributions it offers. This information is stored as a
generic function that directly dispatches on the class of distribution
family and not on the class univdist to prevent from losing any
information about the distribution. An example might be the expo-
nential distribution where a multiplication with a positive scalar
rather keeps the family and changes parameters to prevent losing
any information about the distribution. On the other hand, a posi-
tive power transformation will directly create a Weibull distribution
with appropriate parameters.

E <- expdist(2)

E * 2

Distribution Parameters
Exponential rate = 1

Eˆ2

Distribution Parameters
Weibull shape = 0.5, scale = 0.25

If the transformation is necessary, the transformation dispatches
on the class univdist. For any untransformed distribution this
function will change the whole class and the class of distribution
family is removed as the random variable does not follow the
distribution anymore. However, the information is stored for the
case the distribution would need to untransform itself later. In
this case, the function builds an expression for the transformation

and inverse transformation, along with a print expression and an
expression for the derivative of the inverse transformation. Besides
these list members, also a member history is stored. History is a
list that stores the information about the old transformations and
becomes really handy when it comes to an inverse transformation of
the previous one, or updating a transformation. A simple example
of a transformation and update follows.

E2 <- E * -2
E3 <- E2 * 5
E3

Trafo Distribution Parameters
-10 * X Exponential rate = 2

Once it is explained how the framework gathers information
about the transformation and creates the required expressions, we
can proceed with the functions that exploit this. An example is the
transformation of the normal distribution that we created in the
last chapter.

Norm_trafo <- (N - 1)ˆ(1/3)
Norm_trafo

Trafo Distribution Parameters
X^(1/3) Normal mean = 0, sd = 3

Note that the X − 1 transformation is not displayed in the Trafo
column as it is an invariant transformation that rather changed the
parameter mean from 1 to 0.

The functions that evaluate the transformed distribution are
called in the same fashion as in non-transformed distributions.
Additionally, the new pseudo description of the support can be
returned as sudo_support().

Binom_trafo <- -3 * log(B + 4)

q(Binom_trafo, c(0.05, 0.5, 0.95))

[1] -6.907755 -6.238325 -4.828314

plim(Binom_trafo, c(-6, -5, 0))

[1] 0.5074842 0.9149750 1.0000000

sudo_support(Binom_trafo)

From To
-8.317766 -4.158883

In addition, the plot() and autoplot() functions, which are
also generic can be called. These functions are offered for any
distribution object in the mistr package and return the plot of PDF
or PMF and CDF of a given object. The function uses the introduced
d() and p() functions to evaluate the required values. While the
plot() call offers a plot constructed using the base plotting, the
autoplot() offers an alternative plot that is created using the
ggplot2 package (Wickham, 2016).

Sablica and Hornik mistr Vignette | February 22, 2023 | 3

par(mai = c(0.3, 0.3, 0.2, 0.2))
plot(Norm_trafo, xlim1 = c(-2.5, 2.5), ylab1 = "")

−2 0 1 2

0.
0

0.
4

0.
8

CDF

x

−2 0 1 2

0.
0

0.
2

0.
4

PDF

x

P
(X

 =
 x

)

library(ggplot2)
autoplot(Norm_trafo, xlim1 = c(-2.5, 2.5))

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

CDF

0.0
0.1
0.2
0.3
0.4
0.5

−2 −1 0 1 2

PDF

Another plot functions that are offered for the mistr distribution
objects are QQplot() and QQplotgg(). The functions graphically
compare the empirical quantiles of two data sets, or quantiles of two
distribution objects, or quantiles of a distribution with the empirical
quantiles of a sample. If quantiles of a continuous distribution are
compared with a sample, a confidence bound for this data is offered.
This confidence “envelope” is based on the asymptotic results of
the order statistics. For a distribution F as n tends to infinity, the
pth sample quantile is asymptotically distributed as

X([np]) ∼ AN

�

F−1 (p) ,
p(1− p)

n [f (F−1 (p))]2

�

,

where f (x) and F−1(p) are the density function and quantile func-
tion associated with F(x), respectively. More details can be found
for example on the order statistics Wikipedia page.

QQplotgg(Norm_trafo, r(Norm_trafo, 1000),
conf = 0.99, ylab = NULL, xlab = NULL)

−2.5

0.0

2.5

−2 −1 0 1 2

Q−Q plot

4. Combining objects

Mixtures. Mixture distributions defined as

F(x) =
n
∑

i=1

wi Fi (x) ,

are fully specified by the components Fi(x) (i.e., the distributions)
and by the weights wi that correspond to these components. Thus,
to create a mixture everything one needs is to specify these charac-
terizations in the mixdist() call. This can be done in two ways.
First, the user may specify the distribution names (names from
[prefix][name] functions), the list of appropriate parameters of
these distributions, and a sequence of weights. An example of such
a call follows.

mixdist(c("norm", "unif"), list(c(2, 2), c(1, 5)),
weights = c(0.5, 0.5))

Mixture distribution with:
#
Distribution Parameters Weight
1 Normal mean = 2, sd = 2 0.5
2 Uniform min = 1, max = 5 0.5

Another way is to use the objects that have already been defined.
Since the parameters are already stored inside the object, all the
function requires are the objects and the weights. This also allows
to use transformed distributions from the last chapter or more
complicated objects, which will be presented later. This means that
the transformed normal and binomial distributions together with
an exponential distribution can be reused for mixture distribution
as:

M <- mixdist(Norm_trafo, Binom_trafo, expdist(0.5),
weights = c(.4, .2, .4))

The information about the mixture can be accessed via generic
functions. The objects can be extracted using square brackets
[], the weights can be obtained using weights(), and just as
with standard distributions, the parameters are obtainable using
parameters().

Interesting functions are the functions q() and qlim(). While
finding the CDF and PDF of the mixture model is straightforward,
an explicit general expression for quantile function of the mixture
model is not available. However, it can be found numerically as a
solution of a unit-root problem:

n
∑

i=1

wi Fi (Q(p))− p = 0.

What is more, one can show that the quantile of a mixture distribu-
tion Q(p) can always be found within the range of its components
quantiles, and hence

min
i∈{1,...n}

Q i(p)≤Q(p)≤ max
i∈{1,...n}

Q i(p),

where Q i(·) is the quantile function of the i-th component. This
specifies the needed interval for the root finder that will then itera-
tively find the solution. Additionally, further problems are solved
to return the correct values. To show how this algorithm works we
can perform a simple test. To make things harder, we will create
a fully discrete mixture for which a decreasing transformation is
performed.

4 | https://cran.r-project.org/package=mistr Sablica and Hornik

https://en.wikipedia.org/wiki/Order_statistic
https://cran.r-project.org/package=mistr

Fig. 1. autoplot output of M_trans

DM <- mixdist(3 * binomdist(12, 0.4),
-2*poisdist(2) + 12, weights=c(0.5, 0.5))

y <- c(0.05, 0.4, p(-DM, c(-5, -10, -15)), 0.95)
x <- q(-DM, y)
autoplot(-DM, which = "cdf", only_mix = TRUE,

xlim1 = c(-37, 0)) +
annotate("point", x, y, col = "white")

0.00

0.25

0.50

0.75

1.00

−30 −20 −10 0

CDF

Finally, since the inverse transform sampling is not efficient for
mixture distributions, it can be replaced by first sampling according
to the weights wi and then, conditionally on that, by drawing from
the selected component. This is implemented in the corresponding
method of the r() function. This approach allows to draw from a
mixture much faster than the inverse quantile transform method,
and can also be reused later for composite distributions.

system.time(r(M, 1e6))

user system elapsed
0.249 0.028 0.277

Except the quantile function and other main functions for eval-
uation, one can call other generic functions that are designed for
the class mixdist. As an example we suggest the sudo_support().

sudo_support(M)

From To
-Inf Inf

Since the mixture models are in fact distributions, one can per-
form transformations of mixture random variables as well. It is
easy to show that a transformation of a mixture random variable
is the same as if we applied the same transformation to all its
components. In addition, since the support of the components is a
subset of the mixture’s support, if the framework allows to trans-
form the mixture, then it does the components as well. Now, using
the mixture we created, we can perform a decreasing non-linear
transformation. An example of r() and autoplot() functions
follows.

M_trans <- -2 * (M)ˆ(1/3)
r(M_trans, 4)

[1] -3.237980 -2.421224 -2.122994 -2.257669

autoplot(M_trans)

Composite distributions. Let B1, B2, . . . , Bn be Borel sets giving a
disjoint partition of the support, and F1, F2, . . . , Fn be the probability
distributions over Rd with Fi(Bi) > 0 for all i = 1,2, . . . , n. In
addition, assume that w1, w2, . . . , wn are positive weights that sum
up to one. Then the composite distribution over the partition (Bi)
of (Fi) with weights (wi) can be written as

F(A) =
n
∑

i=1

wi
Fi (A∩ Bi)

Fi (Bi)
=

n
∑

i=1

wi Fi (A|Bi) .

Note that as with mixture models it is not necessary for the two
arbitrary distributions to be identical. Obviously, the composite
models are a specific case of the mixture models, where the corre-
sponding probability distribution functions are truncated to some
disjoint support.

The interval representation of the truncation allows to use a
sequence of breakpoints

−∞= β0 < β1 ≤ β2 ≤ · · · ≤ βn−1 < βn =∞

to fully characterize the partitions Bi . Note that if Fi is continuous,
to ensure that the interval has positive probability we must set
βi−1 < βi .

Sablica and Hornik mistr Vignette | February 22, 2023 | 5

This allows to define λ1 = 0 and for all i = 2, . . . , n,

λi =
§

Fi(βi−1) if βi−1 /∈ Bi ,
Fi(βi−1−) otherwise,

and ρn = 1, and for all i = 1,2, . . . , n− 1,

ρi =
§

Fi(βi) if βi ∈ Bi ,
Fi(βi−) otherwise.

Then for any x ∈ Bi

Fi ((−∞, x]∩ Bi) =
§

Fi (x)− Fi (βi−1) if βi−1 /∈ Bi ,
Fi (x)− Fi (βi−1−) if βi−1 ∈ Bi .

This means that for every x ∈ Bi we can write the distribution as
Fi ((−∞, x]∩ Bi) = Fi (x)−λi .

The straightforward implication of the above equations is that
supx∈Bi

Fi (x) = ρi . Thus, this implies that

Fi (Bi) = ρi −λi ,

which can be calculated using the p() and plim() functions.
Hence, if we define pi =

∑

j: j≤i wi the composite distribution satis-
fies

F(x) = pi−1 +wi
Fi(x)−λi

Fi(Bi)
= pi−1 +wi

Fi(x)−λi

ρi −λi
, ∀x ∈ Bi .

Therefore, to fully specify a composite distribution, in addition
to the mixture specifications, one needs to set the values that
correspond to the breakpoints, which split R into disjoint partitions.
Moreover, if at least one distribution is not absolutely continuous,
it might be desired to specify to which adjacent interval should the
breakpoint be included.

Just as mixture distributions, composite models can be created
in two ways. Either one can directly use the objects or let the
function create these objects by specifying the sequence of names
and a list of parameters. In the following example we will directly
proceed with the first mentioned method where we define some ob-
jects inside the compdist() call to create a composite distribution.
Besides these objects one needs to set the sequences of weights and
breakpoints. Additionally, one may determine for each breakpoint
to which partition should the breakpoint be included. This can be
set by the argument break.spec with values ‘R’ or ‘L’, where ‘R’ and
‘L’ stand for right (i.e., include breakpoint to the interval on the
right of the breakpoint) and left (i.e., include to the interval on the
left), respectively. If this argument is not stated, the algorithm will
by default set all intervals to be left-closed, i.e., right-open. This
can be nicely seen from the following example where a linearly
transformed Pareto distribution and a geometric distribution are
combined with a normal distribution into a composite model.

C <- compdist(-paretodist(1, 1), normdist(0, 2),
geomdist(0.3) + 2,
weights = c(0.15, 0.7, 0.15),
breakpoints = c(-3, 3),
break.spec = c("L", "R"))

C

Composite distribution with:
#
Trafo Distribution Parameters Weight
1 -X Pareto scale = 1, shape = 1 0.15
2 none Normal mean = 0, sd = 2 0.70
3 X + 2 Geometric prob = 0.3 0.15
Truncation

1 (-Inf,-3]
2 (-3,3)
3 [3,Inf)

The argument break.spec is set to (“L”, “R”), and thus the break-
point -3 belongs to the first partition while the second breakpoint
is affiliated to the partition on the right. This can be observed
from the print of the distribution, more precisely from the Trunca-
tion column, where the parentheses are printed according to this
argument.

The package also permits to use the same breakpoint twice. This
possibility allows to define a partition on a singleton, and hence to
create a mass of probability. If this feature is used, the break.spec
needs to be specified with “R” and “L”, for the first and the second
identical breakpoint, respectively, or not set at all. If the break.spec
is not used, the source code will change the break.spec such that
this single point with probability mass is a closed set. This feature
can become particularly useful when the user wants to create a
distribution that is, for example, absolutely continuous on both the
negative and positive reals and has positive mass at zero.

C2 <- compdist(-expdist(2), poisdist(),
expdist(2),
weights = c(0.25, 0.5, 0.25),
breakpoints = c(0, 0))

C2

Composite distribution with:
#
Trafo Distribution Parameters Weight Truncation
1 -X Exponential rate = 2 0.25 (-Inf,0)
2 none Poisson lambda = 1 0.50 [0,0]
3 none Exponential rate = 2 0.25 (0,Inf)

Note that the distribution assigned to this singleton has to be a
discrete distribution with support on that point, otherwise the
interval will have zero probability.

As for any distribution, the framework also offers many generic
functions that can be used to obtain additional information or
evaluate the distribution. One can extract the parameters, weights,
or the support in the same manner as with mixture distributions.
In addition, calling breakpoints() extracts the splicing points.
Finally, the functions plot() and autoplot() are offered where
by default the components are visible. As with mixtures, this can
be turned off using only_mix = TRUE argument.

par(mai = c(0.3, 0.3, 0.2, 0.2))
plot(C, xlim1 = c(-15, 15), ylab1 = "")

−15 −5 5 15

0.
0

0.
4

0.
8

CDF

x

15%85%
−15 −5 5 15

0.
00

0.
10

PDF

x

P
(X

 =
 x

)

15%85%

6 | https://cran.r-project.org/package=mistr Sablica and Hornik

https://cran.r-project.org/package=mistr

Fig. 2. autoplot output of C_trans

autoplot(C2, text_ylim = 0.01)

0.00

0.25

0.50

0.75

1.00

−1 0 1

CDF

25%−75%0.0

0.1

0.2

0.3

0.4

0.5

−1 0 1

PDF

Analogously to the mixture distributions, the framework offers
to transform also composite random variables. Thus, using the
composite distribution we defined, we propose an example of a
linear transformation.

C_trans <- -0.5 * (C + 7)

Even with such a distribution, the user still can evaluate any
desired presented function. To support this, we again propose an
example where the function q() and r() are used, and the func-
tions p() and d() are represented graphically using the function
autoplot().

q(C_trans, c(0.075, 0.5, 0.7, 0.9))

[1] -5.500000 -3.500000 -2.833235 -1.250000

r(C_trans, 4)

[1] -3.789844 -3.453845 -3.987836 -6.000000

autoplot(C_trans, xlim1 = c(-10,5))

Combining mixture and composite distributions. A significant ad-
vantage of object oriented programming is that the dispatching
mechanism automatically knows how to treat a given object. This
allows to combine mixture and composite models into more com-
plicated mixtures and composite distributions. Therefore, we can
take the transformed mixture and the transformed composite dis-
tributions we created to compose a composite distribution with
these distributions as components. What is more, we can perform
a transformation of such a distribution.

C3 <- compdist(M_trans - 3,
C_trans, weights = c(0.5, 0.5),
breakpoints = -4.5)

C3_trans <- -2 * C3 + 2

Thus, the object C3_trans is a transformed composite distri-
bution that contains a transformed mixture and a transformed
composite distribution, from which both additionally contain many
transformed and untransformed distributions. Even in such com-
plex models, the user may evaluate the most complicated functions
as plim() and qlim(). The functions d() and p() can be again
best represented graphically, where both distributions can easily
be recognized from previous chapters.

plim(C3_trans, c(6, 10, 12))

[1] 0.09667553 0.42195189 0.62458021

qlim(C3_trans, c(0.3, 0.5, 0.7))

[1] 8.785363 11.000000 12.327907

autoplot(C3_trans, xlim1 = c(0,20), text_ylim = 0.01,
grey = TRUE)

Sablica and Hornik mistr Vignette | February 22, 2023 | 7

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

CDF

50%0.0

0.1

0.2

0 5 10 15 20

PDF

Although the print for such a hierarchical distribution does not
contain a lot of information, an alternative function can be used.
We recommend to use the function summary(), which is designed
mainly for the more complicated distributions. The printed result
of this call contains all the necessary information, and much more
as well. Additionally, since the result of summary() on the C3_trans
object is two pages long, the demonstration is left to the reader.

To finish this chapter and to show that the user may go even
further, we would like to present an example where we will combine
the last object with another distribution from this chapter into a
mixture distribution. The distribution is directly plotted using the
autoplot() call.

autoplot(mixdist(C3_trans, C2 + 5,
weights = c(0.7, 0.3)),

xlim1 = c(0, 15))

5. Data modeling

While the previous chapters were aimed at showing the “muscles”
(i.e., generality) of the framework, in this last section we will focus
on examples using real data. In particular, we will present a simple
fitting for two specific composite distributions.

As motivated in the introduction, the models in financial math-
ematics suggest a distribution that can capture the wide variety
of behavior in tails while still following the normal distribution
in the center. This offers to use a three components composite
distribution. The first and third component will be used to model
the extreme cases, i.e., the tails, and the second component will
try to catch the center of the empirical distribution.

The first model offered by mistr is the Pareto-Normal-Pareto
(PNP) model. This means that a −X transformation of a Pareto
random variable will be used for the left tail, normal distribution
for the center and again Pareto for the right tail. From this it follows
that the PDF of the model can be written as:

f (x) =











w1
f−P (x)

F−P (β1)
if −∞< x < β1,

w2
fN (x)

FN (β2)−FN (β1)
if β1 ≤ x < β2,

w3
fP (x)

1−FP (β2)
if β2 ≤ x <∞,

where fP(x) = f−P(−x) and FP(x) = 1− (K/x)α are the density
and distribution function of a Pareto distribution with F−P(x) =
1− FP(−x). fN (x) and FN (x) are the PDF and CDF of the normal
distribution, respectively.

If we follow the properties of the Pareto distribution, the condi-
tional probability distribution of a Pareto-distributed random vari-
able, given that the event is greater than or equal to γ > K , is again
a Pareto distribution with parameters γ and α. This means that the
conditional distribution fP(x |K ,α)/(1− FP(β2|K ,α)) = fP(x |β2,α)
if β2 > K . On the other hand, if β2 < K the distribution cannot be

continuous as the support of the Pareto distribution starts at K. The
same can be shown for the transformed distribution. Since we are
interested only in the continuous case we can rewrite the PDF as

f (x) =







w1 f−P(x | − β1,α1) if −∞< x < β1,
w2

fN (x |µ,σ)
FN (β2 |µ,σ)−FN (β1 |µ,σ) if β1 ≤ x < β2,
w3 fP(x |β2,α2) if β2 ≤ x <∞,

where
β1 < 0< β2,
α1,α2 > 0.

The condition β1 < 0< β2 follows from the fact that the scale
parameter has to be positive. Thus, such a model can be fully used
only with demeaned data sample or with data with a mean close
to zero. This is of course not a problem for stock returns, which
are the aim of this vignette. What is more, one can show that the
density is continuous if it holds for the shape parameters that

α1 = −β1
w2 fN (β1|µ,σ)

w1 (FN (β2|µ,σ)− FN (β1|µ,σ))
,

α2 = β2
w2 fN (β2|µ,σ)

w3 (FN (β2|µ,σ)− FN (β1|µ,σ))
.

Due to the fact that a composite distribution can be represented as
a mixture of truncated distributions that are truncated to a disjoint
support, the weight of each component can be estimated as the pro-
portion of points that correspond to each of the truncated regions.
Obviously, this condition ensures that the empirical and estimated
CDF match on each of the breakpoints. Thus, conditionally on the
fact that the breakpoints are known, the weights can be computed
as

w1 =

∑n
i=1 1{xi<β1}

n
, w2 =

∑n
i=1 1{β1≤xi<β2}

n
, w3 =

∑n
i=1 1{β2≤xi}

n
,

where 1{·} is the indicator function, and x i is the i-th data value.
These conditions decrease the number of parameters from 11 to 4,
and imply the density function of a form:

f (x |β1,β2,µ,σ).

This model if offered by the call PNP_fit(). The function
PNP_fit() takes the data and a named vector of starting values
with names break1, break2, mean, and sd and returns a list of class
comp_fit. Other arguments are passed to the optimizer. To demon-
strate this, we will take the same data we used in the introduction
to fit a PNP model with the default starting values.

PNP_model <- PNP_fit(stocks$SAP)

PNP_model

Fitted composite Pareto-Normal-Pareto distribution:
#
Breakpoints: -0.019304 0.020518
Weights: 0.092443 0.82135 0.086207
#
Parameters:
scale1 shape1 mean sd scale2
0.019304 1.773598 0.000961 0.012950 0.020518
shape2
2.198590
#
Log-likelihood: 7400.117, Average log-likelihood: 2.7146

8 | https://cran.r-project.org/package=mistr Sablica and Hornik

https://cran.r-project.org/package=mistr

Fig. 3. autoplot output of the mixture model containing two composite models

If the fitted object is printed, the function will print all the param-
eters together with the log-likelihood that was achieved by the opti-
mization. In addition, the average log-likelihood is printed, which
is just the log-likelihood divided by the size of the data-set. The user
can extract parameters using the call parameters(), weights using
the call weights(), and breakpoints using breakpoints(). The
distribution() function can be used to extract the distribution
with fitted parameters that can be used for evaluation.

Finally, the plot() and autoplot() functions are offered. The
functions plot the Q-Q plot of the fitted distribution and data, and
the CDF and PDF plot of the fitted distribution, which overlap
with the empirical CDF and PDF of the data-set. Again, the which
argument can extract the proposed plots separately (i.e., which =
“pdf”). Other arguments are passed to the the plot calls.

plot(PNP_model, ylab1 = "", ylab2 = "")

−0.6 −0.4 −0.2 0.0 0.2

−
1.

5
−

0.
5

0.
5

Q−Q plot

−0.06 −0.02 0.02

0.
0

0.
4

0.
8

CDF

x

9.24% 91.38%
−0.06 −0.02 0.02

0
5

15
25

PDF

x

9.24% 91.38%

The plots indicate an overall nice fit where all quantiles are in the
confidence bound.

The second offered model is a similar distribution to the pre-
vious one, except we will replace the Pareto distributions by the

generalized Pareto distributions (GPD)

FGPD(x) =

(

1−
�

1+ ξ x−θ
γ

�−1/ξ
if ξ 6= 0,

1− exp
�

− x−θ
γ

�

if ξ= 0.

This means that the PDF of this model can be written as:

f (x) =











w1
f−GPD(x)

F−GPD(β1)
if −∞< x < β1,

w2
fN (x)

FN (β2)−FN (β1)
if β1 ≤ x < β2,

w3
fGPD(x)

1−FGPD(β2)
if β2 ≤ x <∞.

The same way as in the PNP model, the scale parameters can
be eliminated by the continuity conditions, weights by the above
mentioned condition and in addition, under current settings and the
continuity conditions, the value of the conditional GPD distribution
depends on the location parameter only through the conditions
−β1 ≥ θ1 and β2 ≥ θ2. This suggests to choose without any loss in
the model −β1 = θ1 and β2 = θ2. Such a PDF is fully characterized
by

f (x |β1,β2,µ,σ,ξ1,ξ2),

where the only restriction on the parameters is −∞< β1 < β2 <
∞.

These conditions decrease the number of parameters from 13 to
6. What is more, the function GNG_fit() contains the argument
break_fix, which fixes the breakpoints from the vector of starting
values, and so decreases the number of parameters to 4 if TRUE is
assigned. In this case, the breakpoints are fixed and weights are
computed before the optimization. The function GNG_fit() takes
the data, the named vector of starting values with names break1,
break2, mean, sd, shape1 and shape2, the break_fix argument
and the argument midd, which is by default set to be equal to the
mean of the data. The midd values are used to split R into two
sub-intervals and then the first breakpoint is optimized on the left
of the midd value and the second breakpoint on the right.

The call returns a list of class comp_fit. The results can be then
extracted, printed or visualized in the same way as the results of
PNP_fit().

GNG_model <- GNG_fit(stocks$SAP)

Sablica and Hornik mistr Vignette | February 22, 2023 | 9

Fig. 4. autoplot output of GNG_fit

GNG_model

Fitted composite GPD-Normal-GPD distribution:
#
Breakpoints: -0.019414 0.019353
Weights: 0.091343 0.812546 0.096112
#
Parameters:
loc1 scale1 shape1 mean sd
0.019414 0.013439 0.150141 0.000907 0.011696
loc2 scale2 shape2
0.019353 0.010842 0.096832
#
Log-likelihood: 7423.245, Average log-likelihood: 2.7231

autoplot(GNG_model)

The log-likelihood has increased to 7423.2 with the average
of 2.723 per data-point. In this model, the generalized Pareto
distribution explains the first 9.1% from the left tail and the last
9.6% from the right tail. In addition, since GPD generalizes the
Pareto distribution, the higher likelihood is a reasonable result.
Additionally, the QQ-plot suggests an almost perfect fit.

The result of these estimations is a proper continuous parametric
set-up that describes the distribution of the data. What is more, the
distribution has been fitted as a whole with respect to the continuity
conditions. This means that the tails take into account the whole
distribution, which allows to calculate the risk measures with an
even higher precision as when only the tails are modeled.

Risk measures. Package mistr provides a function risk() which
can be used for rapid calculations of point estimates of prescribed
quantiles, expected shortfalls and expectiles. As an input param-
eter this function needs the output of the function PNP_fit() or
GNG_fit() and a vector of desired levels. As an example we illus-
trate these functions on our fitted object.

risk(GNG_model, c(0.02, 0.05, 0.07, 0.1, 0.2, 0.3))

level VaR ES Exp
1 0.02 0.042341368 0.06220519 0.032240507
2 0.05 0.027889909 0.04520065 0.021949976
3 0.07 0.023062791 0.03952074 0.018526202
4 0.10 0.018245509 0.03380624 0.015091608
5 0.20 0.010642738 0.02386181 0.008851640
6 0.30 0.006167236 0.01867190 0.005168659

These results can be also visualized if arguments plot or ggplot are
set to TRUE.References

Bakar S, Nadarajah S, Kamarul Adzhar Z, Mohamed I (2016). “Gendist: An R
Package for Generated Probability Distribution Models.” P L o S One, 11(6).
ISSN 1932-6203. doi:10.1371/journal.pone.0156537.

Bolker B, Team RDC (2017). bbmle: Tools for General Maximum Likelihood
Estimation. R package version 1.0.20, URL https://CRAN.R-project.org/
package=bbmle.

Cooray K, Ananda MM (2005). “Modeling actuarial data with a composite
lognormal-Pareto model.” Scandinavian Actuarial Journal, 2005(5), 321–
334. doi:10.1080/03461230510009763. https://www.tandfonline.com/
doi/pdf/10.1080/03461230510009763, URL https://www.tandfonline.com/doi/
abs/10.1080/03461230510009763.

Kohl M, Ruckdeschel P (2010). “R Package distrMod: S4 Classes and Methods
for Probability Models.” Journal of Statistical Software, Articles, 35(10), 1–27.
ISSN 1548-7660. doi:10.18637/jss.v035.i10.

Nadarajah S, Bakar S (2014). “New composite models for the Danish fire in-
surance data.” Scandinavian Actuarial Journal, 2014(2), 180–187. doi:
10.1080/03461238.2012.695748. https://doi.org/10.1080/03461238.
2012.695748, URL https://doi.org/10.1080/03461238.2012.695748.

Nadarajah S, Bakar SAA (2013). “CompLognormal: An R Package for Composite
Lognormal Distributions.” The R Journal, 5(2), 97–103. URL https://journal.
r-project.org/archive/2013/RJ-2013-030/index.html.

Ryan JA, Ulrich JM (2018). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-13, URL https://CRAN.R-project.org/package=
quantmod.

Scollnik DPM (2007). “On composite lognormal-Pareto models.” Scandinavian
Actuarial Journal, 2007(1), 20–33. doi:10.1080/03461230601110447.
https://doi.org/10.1080/03461230601110447, URL https://doi.org/10.1080/
03461230601110447.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York. ISBN 978-3-319-24277-4. URL http://ggplot2.org.

10 | https://cran.r-project.org/package=mistr Sablica and Hornik

http://dx.doi.org/10.1371/journal.pone.0156537
https://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=bbmle
http://dx.doi.org/10.1080/03461230510009763
https://www.tandfonline.com/doi/pdf/10.1080/03461230510009763
https://www.tandfonline.com/doi/pdf/10.1080/03461230510009763
https://www.tandfonline.com/doi/abs/10.1080/03461230510009763
https://www.tandfonline.com/doi/abs/10.1080/03461230510009763
http://dx.doi.org/10.18637/jss.v035.i10
http://dx.doi.org/10.1080/03461238.2012.695748
http://dx.doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://journal.r-project.org/archive/2013/RJ-2013-030/index.html
https://journal.r-project.org/archive/2013/RJ-2013-030/index.html
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
http://dx.doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
http://ggplot2.org
https://cran.r-project.org/package=mistr

	Introduction
	Distributions in R
	Adding transformation
	Combining objects
	Mixtures
	Composite distributions
	Combining mixture and composite distributions

	Data modeling
	Risk measures

