
Package ‘missSBM’
March 13, 2025

Type Package

Title Handling Missing Data in Stochastic Block Models

Version 1.0.5

Maintainer Julien Chiquet <julien.chiquet@inrae.fr>

Description
When a network is partially observed (here, NAs in the adjacency matrix rather than 1 or 0
due to missing information between node pairs), it is possible to account for the underlying process
that generates those NAs. 'missSBM', presented in 'Barbillon, Chi-
quet and Tabouy' (2022) <doi:10.18637/jss.v101.i12>,
adjusts the popular stochastic block model from network data sampled under various miss-
ing data conditions,
as described in 'Tabouy, Barbillon and Chiquet' (2019) <doi:10.1080/01621459.2018.1562934>.

URL https://grosssbm.github.io/missSBM/

BugReports https://github.com/grossSBM/missSBM/issues

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.4.0)

Imports Rcpp, methods, igraph, nloptr, ggplot2, future.apply, R6,
rlang, sbm, magrittr, Matrix, RSpectra

LinkingTo Rcpp, RcppArmadillo, nloptr

Collate 'utils_missSBM.R' 'R6Class-networkSampling.R'
'R6Class-networkSampling_fit.R' 'R6Class-simpleSBM_fit.R'
'R6Class-missSBM_fit.R' 'R6Class-missSBM_collection.R'
'R6Class-networkSampler.R' 'R6Class-partlyObservedNetwork.R'
'RcppExports.R' 'er_network.R' 'estimateMissSBM.R'
'frenchblog2007.R' 'kmeans.R' 'missSBM-package.R'
'observeNetwork.R' 'war.R'

Suggests aricode, blockmodels, corrplot, future, testthat (>= 2.1.0),
covr, knitr, rmarkdown, spelling

1

https://doi.org/10.18637/jss.v101.i12
https://doi.org/10.1080/01621459.2018.1562934
https://grosssbm.github.io/missSBM/
https://github.com/grossSBM/missSBM/issues

2 Contents

VignetteBuilder knitr

Language en-US

NeedsCompilation yes

Author Julien Chiquet [aut, cre] (<https://orcid.org/0000-0002-3629-3429>),
Pierre Barbillon [aut] (<https://orcid.org/0000-0002-7766-7693>),
Timothée Tabouy [aut],
Jean-Benoist Léger [ctb] (provided C++ implementaion of K-means),
François Gindraud [ctb] (provided C++ interface to NLopt),
großBM team [ctb]

Repository CRAN

Date/Publication 2025-03-13 08:30:02 UTC

Contents
blockDyadSampler . 3
blockDyadSampling_fit . 4
blockNodeSampler . 5
blockNodeSampling_fit . 6
coef.missSBM_fit . 7
covarDyadSampling_fit . 7
covarNodeSampling_fit . 8
degreeSampler . 9
degreeSampling_fit . 10
doubleStandardSampler . 11
doubleStandardSampling_fit . 12
dyadSampler . 13
dyadSampling_fit . 14
er_network . 15
estimateMissSBM . 15
fitted.missSBM_fit . 18
frenchblog2007 . 18
l1_similarity . 19
missSBM_collection . 19
missSBM_fit . 21
networkSampler . 23
networkSampling . 25
networkSamplingDyads_fit . 26
networkSamplingNodes_fit . 27
nodeSampler . 29
nodeSampling_fit . 29
observeNetwork . 30
partlyObservedNetwork . 33
plot.missSBM_fit . 34
predicted.missSBM_fit . 35
simpleDyadSampler . 36
simpleNodeSampler . 37

https://orcid.org/0000-0002-3629-3429
https://orcid.org/0000-0002-7766-7693

blockDyadSampler 3

SimpleSBM_fit . 38
SimpleSBM_fit_MNAR . 39
SimpleSBM_fit_noCov . 41
SimpleSBM_fit_withCov . 42
snowballSampler . 43
summary.missSBM_fit . 44
war . 44

Index 46

blockDyadSampler Class for defining a block dyad sampler

Description

Class for defining a block dyad sampler

Class for defining a block dyad sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::dyadSampler -> blockDyadSampler

Active bindings

df the number of parameters of this sampling

Methods

Public methods:
• blockDyadSampler$new()

• blockDyadSampler$clone()

Method new(): constructor for networkSampling

Usage:
blockDyadSampler$new(
parameters = NA,
nbNodes = NA,
directed = FALSE,
clusters = NA

)

Arguments:
parameters the vector of parameters associated to the sampling at play
nbNodes number of nodes in the network
directed logical, directed network of not
clusters a vector of class memberships

Method clone(): The objects of this class are cloneable with this method.

4 blockDyadSampling_fit

Usage:
blockDyadSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

blockDyadSampling_fit Class for fitting a block-dyad sampling

Description

Class for fitting a block-dyad sampling

Class for fitting a block-dyad sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingDyads_fit -> blockDyadSampling_fit

Active bindings

vExpec variational expectation of the sampling

log_lambda matrix, term for adjusting the imputation step which depends on the type of sampling

Methods

Public methods:
• blockDyadSampling_fit$new()

• blockDyadSampling_fit$update_parameters()

• blockDyadSampling_fit$clone()

Method new(): constructor

Usage:
blockDyadSampling_fit$new(partlyObservedNetwork, blockInit)

Arguments:

partlyObservedNetwork a object with class partlyObservedNetwork representing the observed
data with possibly missing entries

blockInit n x Q matrix of initial block indicators

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
blockDyadSampling_fit$update_parameters(nu, Z)

Arguments:

nu the matrix of (uncorrected) imputation for missing entries

blockNodeSampler 5

Z probabilities of block memberships

Method clone(): The objects of this class are cloneable with this method.
Usage:
blockDyadSampling_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

blockNodeSampler Class for defining a block node sampler

Description

Class for defining a block node sampler

Class for defining a block node sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::nodeSampler -> blockNodeSampler

Methods

Public methods:
• blockNodeSampler$new()

• blockNodeSampler$clone()

Method new(): constructor for networkSampling
Usage:
blockNodeSampler$new(
parameters = NA,
nbNodes = NA,
directed = FALSE,
clusters = NA

)

Arguments:
parameters the vector of parameters associated to the sampling at play
nbNodes number of nodes in the network
directed logical, directed network of not
clusters a vector of class memberships

Method clone(): The objects of this class are cloneable with this method.
Usage:
blockNodeSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

6 blockNodeSampling_fit

blockNodeSampling_fit Class for fitting a block-node sampling

Description

Class for fitting a block-node sampling

Class for fitting a block-node sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingNodes_fit -> blockNodeSampling_fit

Active bindings

vExpec variational expectation of the sampling
log_lambda double, term for adjusting the imputation step which depends on the type of sampling

Methods

Public methods:
• blockNodeSampling_fit$new()

• blockNodeSampling_fit$update_parameters()

• blockNodeSampling_fit$clone()

Method new(): constructor
Usage:
blockNodeSampling_fit$new(partlyObservedNetwork, blockInit)

Arguments:
partlyObservedNetwork a object with class partlyObservedNetwork representing the observed

data with possibly missing entries
blockInit n x Q matrix of initial block indicators

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
blockNodeSampling_fit$update_parameters(imputedNet, Z)

Arguments:
imputedNet an adjacency matrix where missing values have been imputed
Z indicator of blocks

Method clone(): The objects of this class are cloneable with this method.
Usage:
blockNodeSampling_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

coef.missSBM_fit 7

coef.missSBM_fit Extract model coefficients

Description

Extracts model coefficients from objects missSBM_fit returned by estimateMissSBM()

Usage

S3 method for class 'missSBM_fit'
coef(
object,
type = c("mixture", "connectivity", "covariates", "sampling"),
...

)

Arguments

object an R6 object with class missSBM_fit

type type of parameter that should be extracted. Either "mixture" (default), "connec-
tivity", "covariates" or "sampling"

... additional parameters for S3 compatibility. Not used

Value

A vector or matrix of coefficients extracted from the missSBM_fit model.

covarDyadSampling_fit Class for fitting a dyad sampling with covariates

Description

Class for fitting a dyad sampling with covariates

Class for fitting a dyad sampling with covariates

Super classes

missSBM::networkSampling -> missSBM::networkSamplingDyads_fit -> covarDyadSampling_fit

Active bindings

vExpec variational expectation of the sampling

8 covarNodeSampling_fit

Methods

Public methods:
• covarDyadSampling_fit$new()

• covarDyadSampling_fit$clone()

Method new(): constructor

Usage:
covarDyadSampling_fit$new(partialNet, ...)

Arguments:

partialNet a object with class partlyObservedNetwork representing the observed data with
possibly missing entries

... used for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:
covarDyadSampling_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

covarNodeSampling_fit Class for fitting a node-centered sampling with covariate

Description

Class for fitting a node-centered sampling with covariate

Class for fitting a node-centered sampling with covariate

Super classes

missSBM::networkSampling -> missSBM::networkSamplingNodes_fit -> covarNodeSampling_fit

Active bindings

vExpec variational expectation of the sampling

Methods

Public methods:
• covarNodeSampling_fit$new()

• covarNodeSampling_fit$clone()

Method new(): constructor

Usage:

degreeSampler 9

covarNodeSampling_fit$new(partlyObservedNetwork, ...)

Arguments:
partlyObservedNetwork a object with class partlyObservedNetwork representing the observed

data with possibly missing entries
... used for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:
covarNodeSampling_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

degreeSampler Class for defining a degree sampler

Description

Class for defining a degree sampler

Class for defining a degree sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::nodeSampler -> degreeSampler

Methods

Public methods:
• degreeSampler$new()

• degreeSampler$clone()

Method new(): constructor for networkSampling

Usage:
degreeSampler$new(parameters = NA, degrees = NA, directed = FALSE)

Arguments:
parameters the vector of parameters associated to the sampling at play
degrees vector of nodes’ degrees
directed logical, directed network of not

Method clone(): The objects of this class are cloneable with this method.

Usage:
degreeSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

10 degreeSampling_fit

degreeSampling_fit Class for fitting a degree sampling

Description

Class for fitting a degree sampling

Class for fitting a degree sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingNodes_fit -> degreeSampling_fit

Active bindings

vExpec variational expectation of the sampling

Methods

Public methods:
• degreeSampling_fit$new()

• degreeSampling_fit$update_parameters()

• degreeSampling_fit$update_imputation()

• degreeSampling_fit$clone()

Method new(): constructor

Usage:
degreeSampling_fit$new(partlyObservedNetwork, blockInit, connectInit)

Arguments:
partlyObservedNetwork a object with class partlyObservedNetwork representing the observed

data with possibly missing entries
blockInit n x Q matrix of initial block indicators
connectInit Q x Q matrix of initial block probabilities of connection

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
degreeSampling_fit$update_parameters(imputedNet, ...)

Arguments:
imputedNet an adjacency matrix where missing values have been imputed
... used for compatibility

Method update_imputation(): a method to update the imputation of the missing entries.

Usage:
degreeSampling_fit$update_imputation(PI, ...)

doubleStandardSampler 11

Arguments:

PI the matrix of inter/intra class probability of connection
... use for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:
degreeSampling_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

doubleStandardSampler Class for defining a double-standard sampler

Description

Class for defining a double-standard sampler

Class for defining a double-standard sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::dyadSampler -> doubleStandardSampler

Methods

Public methods:
• doubleStandardSampler$new()

• doubleStandardSampler$clone()

Method new(): constructor for networkSampling

Usage:
doubleStandardSampler$new(parameters = NA, adjMatrix = NA, directed = FALSE)

Arguments:

parameters the vector of parameters associated to the sampling at play
adjMatrix matrix of adjacency
directed logical, directed network of not

Method clone(): The objects of this class are cloneable with this method.

Usage:
doubleStandardSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

12 doubleStandardSampling_fit

doubleStandardSampling_fit

Class for fitting a double-standard sampling

Description

Class for fitting a double-standard sampling

Class for fitting a double-standard sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingDyads_fit -> doubleStandardSampling_fit

Active bindings

vExpec variational expectation of the sampling

Methods

Public methods:
• doubleStandardSampling_fit$new()

• doubleStandardSampling_fit$update_parameters()

• doubleStandardSampling_fit$update_imputation()

• doubleStandardSampling_fit$clone()

Method new(): constructor

Usage:
doubleStandardSampling_fit$new(partlyObservedNetwork, ...)

Arguments:
partlyObservedNetwork a object with class partlyObservedNetwork representing the observed

data with possibly missing entries
... used for compatibility

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
doubleStandardSampling_fit$update_parameters(nu, ...)

Arguments:
nu an adjacency matrix with imputed values (only)
... use for compatibility

Method update_imputation(): a method to update the imputation of the missing entries.

Usage:
doubleStandardSampling_fit$update_imputation(nu)

dyadSampler 13

Arguments:
nu the matrix of (uncorrected) imputation for missing entries

Method clone(): The objects of this class are cloneable with this method.

Usage:
doubleStandardSampling_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

dyadSampler Virtual class for all dyad-centered samplers

Description

Virtual class for all dyad-centered samplers

Virtual class for all dyad-centered samplers

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> dyadSampler

Methods

Public methods:
• dyadSampler$new()

• dyadSampler$clone()

Method new(): constructor for networkSampling

Usage:
dyadSampler$new(type = NA, parameters = NA, nbNodes = NA, directed = FALSE)

Arguments:
type character for the type of sampling. must be in ("dyad", "covar-dyad", "node", "covar-

node", "block-node", "block-dyad", "double-standard", "degree")
parameters the vector of parameters associated to the sampling at play
nbNodes number of nodes in the network
directed logical, directed network of not

Method clone(): The objects of this class are cloneable with this method.

Usage:
dyadSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 dyadSampling_fit

dyadSampling_fit Class for fitting a dyad sampling

Description

Class for fitting a dyad sampling

Class for fitting a dyad sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingDyads_fit -> dyadSampling_fit

Active bindings

vExpec variational expectation of the sampling

Methods

Public methods:

• dyadSampling_fit$new()

• dyadSampling_fit$clone()

Method new(): constructor

Usage:

dyadSampling_fit$new(partlyObservedNetwork, ...)

Arguments:

partlyObservedNetwork a object with class partlyObservedNetwork representing the observed
data with possibly missing entries

... used for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:

dyadSampling_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

er_network 15

er_network ER ego centered network

Description

A dataset containing the weighted PPI network centered around the ESR1 (ER) protein

Usage

er_network

Format

A sparse symmetric matrix with 741 rows and 741 columns ESR1

Source

https://string-db.org/

Examples

data("er_network")
class(er_network)

estimateMissSBM Estimation of simple SBMs with missing data

Description

Variational EM inference of Stochastic Block Models indexed by block number from a partially
observed network.

Usage

estimateMissSBM(
adjacencyMatrix,
vBlocks,
sampling,
covariates = list(),
control = list()

)

https://string-db.org/

16 estimateMissSBM

Arguments

adjacencyMatrix

The N x N adjacency matrix of the network data. If adjacencyMatrix is sym-
metric, we assume an undirected network with no loop; otherwise the network
is assumed to be directed.

vBlocks The vector of number of blocks considered in the collection.

sampling The model used to described the process that originates the missing data: MAR
designs ("dyad", "node","covar-dyad","covar-node","snowball") and MNAR de-
signs ("double-standard", "block-dyad", "block-node" , "degree") are available.
See details.

covariates An optional list with M entries (the M covariates). If the covariates are node-
centered, each entry of covariates must be a size-N vector; if the covariates
are dyad-centered, each entry of covariates must be N x N matrix.

control a list of parameters controlling advanced features. See details.

Details

Internal functions use future_lapply, so set your plan to 'multisession' or 'multicore' to use
several cores/workers. The list of parameters control tunes more advanced features, such as the
initialization, how covariates are handled in the model, and the variational EM algorithm:

• useCov logical. If covariates is not null, should they be used for the for the SBM inference
(or just for the sampling)? Default is TRUE.

• clusterInit Initial method for clustering: either a character ("spectral") or a list with length(vBlocks)
vectors, each with size ncol(adjacencyMatrix), providing a user-defined clustering. De-
fault is "spectral". similarity An R x R -> R function to compute similarities between node
covariates. Default is l1_similarity, that is, -abs(x-y). Only relevant when the covariates
are node-centered (i.e. covariates is a list of size-N vectors).

• threshold V-EM algorithm stops stop when an optimization step changes the objective function
or the parameters by less than threshold. Default is 1e-2.

• maxIter V-EM algorithm stops when the number of iteration exceeds maxIter. Default is 50.

• fixPointIter number of fix-point iterations in the V-E step. Default is 3.

• exploration character indicating the kind of exploration used among "forward", "backward",
"both" or "none". Default is "both".

• iterates integer for the number of iterations during exploration. Only relevant when exploration
is different from "none". Default is 1.

• trace logical for verbosity. Default is TRUE.

The different sampling designs are split into two families in which we find dyad-centered and node-
centered samplings. See doi:10.1080/01621459.2018.1562934 for a complete description.

• Missing at Random (MAR)

– dyad parameter = p = Prob(Dyad(i,j) is observed)
– node parameter = p = Prob(Node i is observed)
– covar-dyad": parameter = beta in R^M, such that Prob(Dyad (i,j) is observed) = logis-

tic(parameter’ covarArray (i,j, .))

https://doi.org/10.1080/01621459.2018.1562934

estimateMissSBM 17

– covar-node": parameter = nu in R^M such that Prob(Node i is observed) = logistic(parameter’
covarMatrix (i,)

– snowball": parameter = number of waves with Prob(Node i is observed in the 1st wave)

• Missing Not At Random (MNAR)

– double-standard parameter = (p0,p1) with p0 = Prob(Dyad (i,j) is observed | the dyad is
equal to 0), p1 = Prob(Dyad (i,j) is observed | the dyad is equal to 1)

– block-node parameter = c(p(1),...,p(Q)) and p(q) = Prob(Node i is observed | node i is in
cluster q)

– block-dyad parameter = c(p(1,1),...,p(Q,Q)) and p(q,l) = Prob(Edge (i,j) is observed | node
i is in cluster q and node j is in cluster l)

Value

Returns an R6 object with class missSBM_collection.

See Also

observeNetwork, missSBM_collection and missSBM_fit.

Examples

SBM parameters
N <- 100 # number of nodes
Q <- 3 # number of clusters
pi <- rep(1,Q)/Q # block proportion
theta <- list(mean = diag(.45,Q) + .05) # connectivity matrix

Sampling parameters
samplingParameters <- .75 # the sampling rate
sampling <- "dyad" # the sampling design

generate a undirected binary SBM with no covariate
sbm <- sbm::sampleSimpleSBM(N, pi, theta)

Uncomment to set parallel computing with future
future::plan("multicore", workers = 2)

Sample some dyads data + Infer SBM with missing data
collection <-

observeNetwork(sbm$networkData, sampling, samplingParameters) %>%
estimateMissSBM(vBlocks = 1:4, sampling = sampling)

plot(collection, "monitoring")
plot(collection, "icl")

collection$ICL
coef(collection$bestModel$fittedSBM, "connectivity")

myModel <- collection$bestModel
plot(myModel, "expected")
plot(myModel, "imputed")
plot(myModel, "meso")

18 frenchblog2007

coef(myModel, "sampling")
coef(myModel, "connectivity")
predict(myModel)[1:5, 1:5]

fitted.missSBM_fit Extract model fitted values from object missSBM_fit, return by
estimateMissSBM()

Description

Extract model fitted values from object missSBM_fit, return by estimateMissSBM()

Usage

S3 method for class 'missSBM_fit'
fitted(object, ...)

Arguments

object an R6 object with class missSBM_fit

... additional parameters for S3 compatibility.

Value

A matrix of estimated probabilities of connection

frenchblog2007 Political Blogosphere network prior to 2007 French presidential elec-
tion

Description

French Political Blogosphere network dataset consists of a single day snapshot of over 200 political
blogs automatically extracted the 14 October 2006 and manually classified by the "Observatoire
Présidentielle" project. Originally part of the ’mixer’ package

Usage

frenchblog2007

Format

An igraph object with 196 nodes. The vertex attribute "party" provides a possible clustering of the
nodes.

l1_similarity 19

Source

https://www.meltwater.com/en/suite/consumer-intelligence?utm_source=direct&utm_
medium=linkfluence

Examples

data(frenchblog2007)
igraph::V(frenchblog2007)$party
igraph::plot.igraph(frenchblog2007,

vertex.color = factor(igraph::V(frenchblog2007)$party),
vertex.label = NA
)

l1_similarity L1-similarity

Description

Compute l1-similarity between two vectors

Usage

l1_similarity(x, y)

Arguments

x a vector

y a vector

Value

a vector equal to -abs(x-y)

missSBM_collection An R6 class to represent a collection of SBM fits with missing data

Description

The function estimateMissSBM() fits a collection of SBM with missing data for a varying number
of block. These models with class missSBM_fit are stored in an instance of an object with class
missSBM_collection, described here.

Fields are accessed via active binding and cannot be changed by the user.

This class comes with a set of R6 methods, some of them being useful for the user and exported as
S3 methods. See the documentation for show() and print()

https://www.meltwater.com/en/suite/consumer-intelligence?utm_source=direct&utm_medium=linkfluence
https://www.meltwater.com/en/suite/consumer-intelligence?utm_source=direct&utm_medium=linkfluence

20 missSBM_collection

Active bindings

models a list of models

ICL the vector of Integrated Classification Criterion (ICL) associated to the models in the collection
(the smaller, the better)

bestModel the best model according to the ICL

vBlocks a vector with the number of blocks

optimizationStatus a data.frame summarizing the optimization process for all models

Methods

Public methods:
• missSBM_collection$new()

• missSBM_collection$estimate()

• missSBM_collection$explore()

• missSBM_collection$plot()

• missSBM_collection$show()

• missSBM_collection$print()

• missSBM_collection$clone()

Method new(): constructor for networkSampling

Usage:
missSBM_collection$new(partlyObservedNet, sampling, clusterInit, control)

Arguments:
partlyObservedNet An object with class partlyObservedNetwork.
sampling The sampling design for the modelling of missing data: MAR designs ("dyad",

"node") and MNAR designs ("double-standard", "block-dyad", "block-node" ,"degree")
clusterInit Initial clustering: a list of vectors, each with size ncol(adjacencyMatrix).
control a list of parameters controlling advanced features. Only ’trace’ and ’useCov’ are

relevant here. See estimateMissSBM() for details.

Method estimate(): method to launch the estimation of the collection of models

Usage:
missSBM_collection$estimate(control)

Arguments:
control a list of parameters controlling the variational EM algorithm. See details of function

estimateMissSBM()

Method explore(): method for performing exploration of the ICL

Usage:
missSBM_collection$explore(control)

Arguments:
control a list of parameters controlling the exploration, similar to those found in the regular

function estimateMissSBM()

missSBM_fit 21

Method plot(): plot method for missSBM_collection

Usage:
missSBM_collection$plot(type = c("icl", "elbo", "monitoring"))

Arguments:

type the type specifies the field to plot, either "icl", "elbo" or "monitoring". Default is "icl"

Method show(): show method for missSBM_collection

Usage:
missSBM_collection$show()

Method print(): User friendly print method

Usage:
missSBM_collection$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
missSBM_collection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Uncomment to set parallel computing with future
future::plan("multicore", workers = 2)

Sample 75% of dyads in French political Blogosphere's network data
adjacencyMatrix <- missSBM::frenchblog2007 %>%

igraph::delete.vertices(1:100) %>%
igraph::as_adj () %>%
missSBM::observeNetwork(sampling = "dyad", parameters = 0.75)

collection <- estimateMissSBM(adjacencyMatrix, 1:5, sampling = "dyad")
class(collection)

missSBM_fit An R6 class to represent an SBM fit with missing data

Description

The function estimateMissSBM() fits a collection of SBM for varying number of block. Each fitted
SBM is an instance of an R6 object with class missSBM_fit, described here.

Fields are accessed via active binding and cannot be changed by the user.

This class comes with a set of R6 methods, some of them being useful for the user and exported as
S3 methods. See the documentation for show(), print(), fitted(), predict(), plot().

22 missSBM_fit

Active bindings

fittedSBM the fitted SBM with class SimpleSBM_fit_noCov, SimpleSBM_fit_withCov or SimpleSBM_fit_MNAR
inheriting from class sbm::SimpleSBM_fit

fittedSampling the fitted sampling, inheriting from class networkSampling and corresponding
fits

imputedNetwork The network data as a matrix with NAs values imputed with the current model

monitoring a list carrying information about the optimization process

entropyImputed the entropy of the distribution of the imputed dyads

entropy the entropy due to the distribution of the imputed dyads and of the clustering

vExpec double: variational expectation of the complete log-likelihood

penalty double, value of the penalty term in ICL

loglik double: approximation of the log-likelihood (variational lower bound) reached

ICL double: value of the integrated classification log-likelihood

Methods

Public methods:
• missSBM_fit$new()

• missSBM_fit$doVEM()

• missSBM_fit$show()

• missSBM_fit$print()

• missSBM_fit$clone()

Method new(): constructor for networkSampling

Usage:
missSBM_fit$new(partlyObservedNet, netSampling, clusterInit, useCov = TRUE)

Arguments:
partlyObservedNet An object with class partlyObservedNetwork.
netSampling The sampling design for the modelling of missing data: MAR designs ("dyad",

"node") and MNAR designs ("double-standard", "block-dyad", "block-node" ,"degree")
clusterInit Initial clustering: a vector with size ncol(adjacencyMatrix), providing a user-

defined clustering. The number of blocks is deduced from the number of levels in with
clusterInit.

useCov logical. If covariates are present in partlyObservedNet, should they be used for the
inference or of the network sampling design, or just for the SBM inference? default is
TRUE.

Method doVEM(): a method to perform inference of the current missSBM fit with variational
EM

Usage:
missSBM_fit$doVEM(
control = list(threshold = 0.01, maxIter = 100, fixPointIter = 3, trace = TRUE)

)

networkSampler 23

Arguments:
control a list of parameters controlling the variational EM algorithm. See details of function

estimateMissSBM()

Method show(): show method for missSBM_fit

Usage:
missSBM_fit$show()

Method print(): User friendly print method

Usage:
missSBM_fit$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
missSBM_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Sample 75% of dyads in French political Blogosphere's network data
adjMatrix <- missSBM::frenchblog2007 %>%

igraph::as_adj (sparse = FALSE) %>%
missSBM::observeNetwork(sampling = "dyad", parameters = 0.75)

collection <- estimateMissSBM(adjMatrix, 3:5, sampling = "dyad")
my_missSBM_fit <- collection$bestModel
class(my_missSBM_fit)
plot(my_missSBM_fit, "imputed")

networkSampler Definition of R6 Class ’networkSampling_sampler’

Description

Definition of R6 Class ’networkSampling_sampler’

Definition of R6 Class ’networkSampling_sampler’

Details

This class is use to define a sampling model for a network. Inherits from ’networkSampling’. Owns
a rSampling method which takes an adjacency matrix as an input and send back an object with class
partlyObservedNetwork.

Super class

missSBM::networkSampling -> networkSampler

24 networkSampler

Active bindings

samplingMatrix a matrix of logical indicating observed entries

Methods

Public methods:

• networkSampler$new()

• networkSampler$rSamplingMatrix()

• networkSampler$clone()

Method new(): constructor for networkSampling

Usage:

networkSampler$new(type = NA, parameters = NA, nbNodes = NA, directed = FALSE)

Arguments:

type character for the type of sampling. must be in ("dyad", "covar-dyad", "node", "covar-
node", "block-node", "block-dyad", "double-standard", "degree")

parameters the vector of parameters associated to the sampling at play

nbNodes number of nodes in the network

directed logical, directed network of not

Method rSamplingMatrix(): a method for drawing a sampling matrix according to the current
sampling design

Usage:

networkSampler$rSamplingMatrix()

Method clone(): The objects of this class are cloneable with this method.

Usage:

networkSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

partlyObservedNetwork

networkSampling 25

networkSampling Definition of R6 Class ’networkSampling’

Description

Definition of R6 Class ’networkSampling’

Definition of R6 Class ’networkSampling’

Details

this virtual class is the mother of all subtypes of networkSampling (either sampler or fit) It is used
to define a sampling model for a network. It has a rSampling method which takes an adjacency
matrix as an input and send back an object with class partlyObservedNetwork.

Active bindings

type a character for the type of sampling

parameters the vector of parameters associated with the sampling at play

df the number of entries in the vector of parameters

Methods

Public methods:
• networkSampling$new()

• networkSampling$show()

• networkSampling$print()

• networkSampling$clone()

Method new(): constructor for networkSampling

Usage:
networkSampling$new(type = NA, parameters = NA)

Arguments:

type character for the type of sampling. must be in ("dyad", "covar-dyad", "node", "covar-
node", "block-node", "block-dyad", "double-standard", "degree")

parameters the vector of parameters associated to the sampling at play

Method show(): show method

Usage:
networkSampling$show(
type = paste0(private$name, "-model for network sampling\n")

)

Arguments:

type character used to specify the type of sampling

26 networkSamplingDyads_fit

Method print(): User friendly print method

Usage:
networkSampling$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
networkSampling$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

networkSamplingDyads_fit

Virtual class used to define a family of networkSamplingDyads_fit

Description

Virtual class used to define a family of networkSamplingDyads_fit

Virtual class used to define a family of networkSamplingDyads_fit

Super class

missSBM::networkSampling -> networkSamplingDyads_fit

Active bindings

penalty double, value of the penalty term in ICL

log_lambda double, term for adjusting the imputation step which depends on the type of sampling

Methods

Public methods:
• networkSamplingDyads_fit$new()

• networkSamplingDyads_fit$show()

• networkSamplingDyads_fit$update_parameters()

• networkSamplingDyads_fit$update_imputation()

• networkSamplingDyads_fit$clone()

Method new(): constructor for networkSampling_fit

Usage:
networkSamplingDyads_fit$new(partlyObservedNetwork, name)

Arguments:

partlyObservedNetwork a object with class partlyObservedNetwork representing the observed
data with possibly missing entries

networkSamplingNodes_fit 27

name a character for the name of sampling to fit on the partlyObservedNetwork

Method show(): show method

Usage:
networkSamplingDyads_fit$show()

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
networkSamplingDyads_fit$update_parameters(...)

Arguments:

... use for compatibility

Method update_imputation(): a method to update the imputation of the missing entries.

Usage:
networkSamplingDyads_fit$update_imputation(nu)

Arguments:

nu the matrix of (uncorrected) imputation for missing entries

Method clone(): The objects of this class are cloneable with this method.

Usage:
networkSamplingDyads_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

networkSamplingNodes_fit

Virtual class used to define a family of networkSamplingNodes_fit

Description

Virtual class used to define a family of networkSamplingNodes_fit

Virtual class used to define a family of networkSamplingNodes_fit

Super class

missSBM::networkSampling -> networkSamplingNodes_fit

Active bindings

penalty double, value of the penalty term in ICL

log_lambda double, term for adjusting the imputation step which depends on the type of sampling

28 networkSamplingNodes_fit

Methods

Public methods:

• networkSamplingNodes_fit$new()

• networkSamplingNodes_fit$show()

• networkSamplingNodes_fit$update_parameters()

• networkSamplingNodes_fit$update_imputation()

• networkSamplingNodes_fit$clone()

Method new(): constructor

Usage:
networkSamplingNodes_fit$new(partlyObservedNetwork, name)

Arguments:

partlyObservedNetwork a object with class partlyObservedNetwork representing the observed
data with possibly missing entries

name a character for the name of sampling to fit on the partlyObservedNetwork

Method show(): show method

Usage:
networkSamplingNodes_fit$show()

Method update_parameters(): a method to update the estimation of the parameters. By
default, nothing to do (corresponds to MAR sampling)

Usage:
networkSamplingNodes_fit$update_parameters(...)

Arguments:

... use for compatibility

Method update_imputation(): a method to update the imputation of the missing entries.

Usage:
networkSamplingNodes_fit$update_imputation(nu)

Arguments:

nu the matrix of (uncorrected) imputation for missing entries

Method clone(): The objects of this class are cloneable with this method.

Usage:
networkSamplingNodes_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

nodeSampler 29

nodeSampler Virtual class for all node-centered samplers

Description

Virtual class for all node-centered samplers

Virtual class for all node-centered samplers

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> nodeSampler

Methods

Public methods:

• nodeSampler$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
nodeSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

nodeSampling_fit Class for fitting a node sampling

Description

Class for fitting a node sampling

Class for fitting a node sampling

Super classes

missSBM::networkSampling -> missSBM::networkSamplingNodes_fit -> nodeSampling_fit

Active bindings

vExpec variational expectation of the sampling

30 observeNetwork

Methods

Public methods:

• nodeSampling_fit$new()

• nodeSampling_fit$clone()

Method new(): constructor

Usage:

nodeSampling_fit$new(partlyObservedNetwork, ...)

Arguments:

partlyObservedNetwork a object with class partlyObservedNetwork representing the observed
data with possibly missing entries

... used for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:

nodeSampling_fit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

observeNetwork Observe a network partially according to a given sampling design

Description

This function draws observations in an adjacency matrix according to a given network sampling
design.

Usage

observeNetwork(
adjacencyMatrix,
sampling,
parameters,
clusters = NULL,
covariates = list(),
similarity = l1_similarity,
intercept = 0

)

observeNetwork 31

Arguments

adjacencyMatrix

The N x N adjacency matrix of the network to sample.

sampling The sampling design used to observe the adjacency matrix, see details.

parameters The sampling parameters (adapted to each sampling, see details).

clusters An optional clustering membership vector of the nodes. Only necessary for
block samplings.

covariates An optional list with M entries (the M covariates). If the covariates are node-
centered, each entry of covariates. must be a size-N vector; if the covariates
are dyad-centered, each entry of covariates must be N x N matrix.

similarity An optional function to compute similarities between node covariates. Default
is l1_similarity, that is, -abs(x-y). Only relevant when the covariates are
node-centered.

intercept An optional intercept term to be added in case of the presence of covariates.
Default is 0.

Details

Internal functions use future_lapply, so set your plan to 'multisession' or 'multicore' to use
several cores/workers. The list of parameters control tunes more advanced features, such as the
initialization, how covariates are handled in the model, and the variational EM algorithm:

• useCov logical. If covariates is not null, should they be used for the for the SBM inference
(or just for the sampling)? Default is TRUE.

• clusterInit Initial method for clustering: either a character ("spectral") or a list with length(vBlocks)
vectors, each with size ncol(adjacencyMatrix), providing a user-defined clustering. De-
fault is "spectral". similarity An R x R -> R function to compute similarities between node
covariates. Default is l1_similarity, that is, -abs(x-y). Only relevant when the covariates
are node-centered (i.e. covariates is a list of size-N vectors).

• threshold V-EM algorithm stops stop when an optimization step changes the objective function
or the parameters by less than threshold. Default is 1e-2.

• maxIter V-EM algorithm stops when the number of iteration exceeds maxIter. Default is 50.

• fixPointIter number of fix-point iterations in the V-E step. Default is 3.

• exploration character indicating the kind of exploration used among "forward", "backward",
"both" or "none". Default is "both".

• iterates integer for the number of iterations during exploration. Only relevant when exploration
is different from "none". Default is 1.

• trace logical for verbosity. Default is TRUE.

The different sampling designs are split into two families in which we find dyad-centered and node-
centered samplings. See doi:10.1080/01621459.2018.1562934 for a complete description.

• Missing at Random (MAR)

– dyad parameter = p = Prob(Dyad(i,j) is observed)
– node parameter = p = Prob(Node i is observed)

https://doi.org/10.1080/01621459.2018.1562934

32 observeNetwork

– covar-dyad": parameter = beta in R^M, such that Prob(Dyad (i,j) is observed) = logis-
tic(parameter’ covarArray (i,j, .))

– covar-node": parameter = nu in R^M such that Prob(Node i is observed) = logistic(parameter’
covarMatrix (i,)

– snowball": parameter = number of waves with Prob(Node i is observed in the 1st wave)

• Missing Not At Random (MNAR)

– double-standard parameter = (p0,p1) with p0 = Prob(Dyad (i,j) is observed | the dyad is
equal to 0), p1 = Prob(Dyad (i,j) is observed | the dyad is equal to 1)

– block-node parameter = c(p(1),...,p(Q)) and p(q) = Prob(Node i is observed | node i is in
cluster q)

– block-dyad parameter = c(p(1,1),...,p(Q,Q)) and p(q,l) = Prob(Edge (i,j) is observed | node
i is in cluster q and node j is in cluster l)

Value

an adjacency matrix with the same dimension as the input, yet with additional NAs.

Examples

SBM parameters
N <- 300 # number of nodes
Q <- 3 # number of clusters
pi <- rep(1,Q)/Q # block proportion
theta <- list(mean = diag(.45,Q) + .05) # connectivity matrix

simulate an unidrected binary SBM without covariate
sbm <- sbm::sampleSimpleSBM(N, pi, theta)

Sample network data

some sampling design and their associated parameters
sampling_parameters <- list(

"dyad" = .3,
"node" = .3,
"double-standard" = c(0.4, 0.8),
"block-node" = c(.3, .8, .5),
"block-dyad" = theta$mean,
"degree" = c(.01, .01),
"snowball" = c(2,.1)

)

observed_networks <- list()

for (sampling in names(sampling_parameters)) {
observed_networks[[sampling]] <-

missSBM::observeNetwork(
adjacencyMatrix = sbm$networkData,
sampling = sampling,
parameters = sampling_parameters[[sampling]],
cluster = sbm$memberships

partlyObservedNetwork 33

)
}

partlyObservedNetwork An R6 Class used for internal representation of a partially observed
network

Description

An R6 Class used for internal representation of a partially observed network

An R6 Class used for internal representation of a partially observed network

Details

This class is not exported to the user

Active bindings

samplingRate The percentage of observed dyads

nbNodes The number of nodes

nbDyads The number of dyads

is_directed logical indicating if the network is directed or not

networkData The adjacency matrix of the network

covarArray the array of covariates

covarMatrix the matrix of covariates

samplingMatrix matrix of observed and non-observed edges

samplingMatrixBar matrix of observed and non-observed edges

observedNodes a vector of observed and non-observed nodes (observed means at least one non
NA value)

Methods

Public methods:
• partlyObservedNetwork$new()

• partlyObservedNetwork$clustering()

• partlyObservedNetwork$imputation()

• partlyObservedNetwork$clone()

Method new(): constructor

Usage:
partlyObservedNetwork$new(
adjacencyMatrix,
covariates = list(),
similarity = l1_similarity

)

34 plot.missSBM_fit

Arguments:
adjacencyMatrix The adjacency matrix of the network
covariates A list with M entries (the M covariates), each of whom being either a size-N vector

or N x N matrix.
similarity An R x R -> R function to compute similarities between node covariates. Default

is l1_similarity, that is, -abs(x-y).

Method clustering(): method to cluster network data with missing value
Usage:
partlyObservedNetwork$clustering(
vBlocks,
imputation = ifelse(is.null(private$phi), "median", "average")

)

Arguments:
vBlocks The vector of number of blocks considered in the collection.
imputation character indicating the type of imputation among "median", "average"

Method imputation(): basic imputation from existing clustering
Usage:
partlyObservedNetwork$imputation(type = c("median", "average", "zero"))

Arguments:
type a character, the type of imputation. Either "median" or "average"

Method clone(): The objects of this class are cloneable with this method.
Usage:
partlyObservedNetwork$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

plot.missSBM_fit Visualization for an object missSBM_fit

Description

Plot function for the various fields of a missSBM_fit: the fitted SBM (network or connectivity),
and a plot monitoring the optimization.

Usage

S3 method for class 'missSBM_fit'
plot(
x,
type = c("imputed", "expected", "meso", "monitoring"),
dimLabels = list(row = "node", col = "node"),
...

)

predicted.missSBM_fit 35

Arguments

x an object with class missSBM_fit

type the type specifies the field to plot, either "imputed", "expected", "meso", or
"monitoring"

dimLabels : a list of two characters specifying the labels of the nodes. Default to list(row=
'node',col = 'node'))

... additional parameters for S3 compatibility. Not used

Value

a ggplot object

predicted.missSBM_fit Prediction of a missSBM_fit (i.e. network with imputed missing
dyads)

Description

Prediction of a missSBM_fit (i.e. network with imputed missing dyads)

Usage

S3 method for class 'missSBM_fit'
predict(object, ...)

Arguments

object an R6 object with class missSBM_fit

... additional parameters for S3 compatibility.

Value

an adjacency matrix between pairs of nodes. Missing dyads are imputed with their expected values,
i.e. by there estimated probabilities of connection under the missing SBM.

36 simpleDyadSampler

simpleDyadSampler Class for defining a simple dyad sampler

Description

Class for defining a simple dyad sampler

Class for defining a simple dyad sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::dyadSampler -> simpleDyadSampler

Methods

Public methods:

• simpleDyadSampler$new()

• simpleDyadSampler$clone()

Method new(): constructor for networkSampling

Usage:
simpleDyadSampler$new(
parameters = NA,
nbNodes = NA,
directed = FALSE,
covarArray = NULL,
intercept = 0

)

Arguments:

parameters the vector of parameters associated to the sampling at play
nbNodes number of nodes in the network
directed logical, directed network of not
covarArray an array of covariates used
intercept double, intercept term used to compute the probability of sampling in the presence

of covariates. Default 0.

Method clone(): The objects of this class are cloneable with this method.

Usage:
simpleDyadSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

simpleNodeSampler 37

simpleNodeSampler Class for defining a simple node sampler

Description

Class for defining a simple node sampler

Class for defining a simple node sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::nodeSampler -> simpleNodeSampler

Methods

Public methods:

• simpleNodeSampler$new()

• simpleNodeSampler$clone()

Method new(): constructor for networkSampling

Usage:
simpleNodeSampler$new(
parameters = NA,
nbNodes = NA,
directed = FALSE,
covarMatrix = NULL,
intercept = 0

)

Arguments:

parameters the vector of parameters associated to the sampling at play
nbNodes number of nodes in the network
directed logical, directed network of not
covarMatrix a matrix of covariates used
intercept double, intercept term used to compute the probability of sampling in the presence

of covariates. Default 0.

Method clone(): The objects of this class are cloneable with this method.

Usage:
simpleNodeSampler$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

38 SimpleSBM_fit

SimpleSBM_fit This internal class is designed to adjust a binary Stochastic Block
Model in the context of missSBM.

Description

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

Details

It is not designed not be call by the user

Super classes

sbm::SBM -> sbm::SimpleSBM -> SimpleSBM_fit

Active bindings

type the type of SBM (distribution of edges values, network type, presence of covariates)

penalty double, value of the penalty term in ICL

entropy double, value of the entropy due to the clustering distribution

loglik double: approximation of the log-likelihood (variational lower bound) reached

ICL double: value of the integrated classification log-likelihood

Methods

Public methods:
• SimpleSBM_fit$new()

• SimpleSBM_fit$doVEM()

• SimpleSBM_fit$reorder()

• SimpleSBM_fit$clone()

Method new(): constructor for simpleSBM_fit for missSBM purpose

Usage:
SimpleSBM_fit$new(networkData, clusterInit, covarList = list())

Arguments:

networkData a structure to store network under missing data condition: either a matrix possi-
bly with NA, or a missSBM:::partlyObservedNetwork

clusterInit Initial clustering: a vector with size ncol(adjacencyMatrix), providing a user-
defined clustering with nbBlocks levels.

covarList An optional list with M entries (the M covariates).

Method doVEM(): method to perform estimation via variational EM

SimpleSBM_fit_MNAR 39

Usage:
SimpleSBM_fit$doVEM(
threshold = 0.01,
maxIter = 100,
fixPointIter = 3,
trace = FALSE

)

Arguments:
threshold stop when an optimization step changes the objective function by less than thresh-

old. Default is 1e-4.
maxIter V-EM algorithm stops when the number of iteration exceeds maxIter. Default is 10
fixPointIter number of fix-point iterations in the Variational E step. Default is 5.
trace logical for verbosity. Default is FALSE.

Method reorder(): permute group labels by order of decreasing probability

Usage:
SimpleSBM_fit$reorder()

Method clone(): The objects of this class are cloneable with this method.

Usage:
SimpleSBM_fit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

SimpleSBM_fit_MNAR This internal class is designed to adjust a binary Stochastic Block
Model in the context of missSBM.

Description

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

Details

It is not designed not be call by the user

Super classes

sbm::SBM -> sbm::SimpleSBM -> missSBM::SimpleSBM_fit -> missSBM::SimpleSBM_fit_noCov
-> SimpleSBM_MNAR_noCov

Active bindings

imputation the matrix of imputed values

vExpec double: variational approximation of the expectation complete log-likelihood

40 SimpleSBM_fit_MNAR

Methods

Public methods:

• SimpleSBM_fit_MNAR$new()

• SimpleSBM_fit_MNAR$update_parameters()

• SimpleSBM_fit_MNAR$update_blocks()

• SimpleSBM_fit_MNAR$clone()

Method new(): constructor for simpleSBM_fit for missSBM purpose

Usage:

SimpleSBM_fit_MNAR$new(networkData, clusterInit)

Arguments:

networkData a structure to store network under missing data condition: either a matrix possi-
bly with NA, or a missSBM:::partlyObservedNetwork

clusterInit Initial clustering: a vector with size ncol(adjacencyMatrix), providing a user-
defined clustering with nbBlocks levels.

Method update_parameters(): update parameters estimation (M-step)

Usage:

SimpleSBM_fit_MNAR$update_parameters(nu = NULL)

Arguments:

nu currently imputed values

Method update_blocks(): update variational estimation of blocks (VE-step)

Usage:

SimpleSBM_fit_MNAR$update_blocks(log_lambda = 0)

Arguments:

log_lambda additional term sampling dependent used to de-bias estimation of tau

Method clone(): The objects of this class are cloneable with this method.

Usage:

SimpleSBM_fit_MNAR$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SimpleSBM_fit_noCov 41

SimpleSBM_fit_noCov This internal class is designed to adjust a binary Stochastic Block
Model in the context of missSBM.

Description

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

Details

It is not designed not be call by the user

Super classes

sbm::SBM -> sbm::SimpleSBM -> missSBM::SimpleSBM_fit -> SimpleSBM_fit_noCov

Active bindings

imputation the matrix of imputed values

vExpec double: variational approximation of the expectation complete log-likelihood

vExpec_corrected double: variational approximation of the expectation complete log-likelihood
with correction to be comparable with MNAR criteria

Methods

Public methods:
• SimpleSBM_fit_noCov$update_parameters()

• SimpleSBM_fit_noCov$update_blocks()

• SimpleSBM_fit_noCov$clone()

Method update_parameters(): update parameters estimation (M-step)

Usage:
SimpleSBM_fit_noCov$update_parameters(...)

Arguments:

... additional arguments, only required for MNAR cases

Method update_blocks(): update variational estimation of blocks (VE-step)

Usage:
SimpleSBM_fit_noCov$update_blocks(...)

Arguments:

... additional arguments, only required for MNAR cases

Method clone(): The objects of this class are cloneable with this method.

42 SimpleSBM_fit_withCov

Usage:
SimpleSBM_fit_noCov$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

SimpleSBM_fit_withCov This internal class is designed to adjust a binary Stochastic Block
Model in the context of missSBM.

Description

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

This internal class is designed to adjust a binary Stochastic Block Model in the context of missSBM.

Details

It is not designed not be call by the user

Super classes

sbm::SBM -> sbm::SimpleSBM -> missSBM::SimpleSBM_fit -> SimpleSBM_fit_withCov

Active bindings

imputation the matrix of imputed values

vExpec double: variational approximation of the expectation complete log-likelihood

vExpec_corrected double: variational approximation of the expectation complete log-likelihood
with correction to be comparable with MNAR criteria

Methods

Public methods:
• SimpleSBM_fit_withCov$update_parameters()

• SimpleSBM_fit_withCov$update_blocks()

• SimpleSBM_fit_withCov$clone()

Method update_parameters(): update parameters estimation (M-step)

Usage:
SimpleSBM_fit_withCov$update_parameters(...)

Arguments:

... use for compatibility
control a list to tune nlopt for optimization, see documentation of nloptr

Method update_blocks(): update variational estimation of blocks (VE-step)

snowballSampler 43

Usage:
SimpleSBM_fit_withCov$update_blocks(...)

Arguments:
... use for compatibility

Method clone(): The objects of this class are cloneable with this method.

Usage:
SimpleSBM_fit_withCov$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

snowballSampler Class for defining a snowball sampler

Description

Class for defining a snowball sampler

Class for defining a snowball sampler

Super classes

missSBM::networkSampling -> missSBM::networkSampler -> missSBM::nodeSampler -> snowballSampler

Methods

Public methods:
• snowballSampler$new()

• snowballSampler$clone()

Method new(): constructor for networkSampling

Usage:
snowballSampler$new(parameters = NA, adjacencyMatrix = NA, directed = FALSE)

Arguments:
parameters the vector of parameters associated to the sampling at play
adjacencyMatrix the adjacency matrix of the network
directed logical, directed network of not

Method clone(): The objects of this class are cloneable with this method.

Usage:
snowballSampler$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

44 war

summary.missSBM_fit Summary method for a missSBM_fit

Description

Summary method for a missSBM_fit

Usage

S3 method for class 'missSBM_fit'
summary(object, ...)

Arguments

object an R6 object with class missSBM_fit

... additional parameters for S3 compatibility.

Value

a basic printing output

war War data set

Description

This dataset contains two networks where the nodes are countries and an edge in network "belliger-
ent" means that the two countries have been at least once at war between years 1816 to 2007 while
an edge in network "alliance" means that the two countries have had a formal alliance between years
1816 to 2012. The network belligerent have less nodes since countries which have not been at
war are not considered.

Usage

war

Format

A list with 2 two igraph objects, alliance and belligerent. Each graph have three attributes:
’name’ (the country name), ’power’ (a score related to military power: the higher, the better) and
’trade’ (a score related to the trade effort between pairs of countries).

Source

networks were extracted from https://correlatesofwar.org/

https://correlatesofwar.org/

war 45

References

Sarkees, Meredith Reid and Frank Wayman (2010). Resort to War: 1816 - 2007. Washington DC:
CQ Press.

Gibler, Douglas M. 2009. International military alliances, 1648-2008. CQ Press

Examples

data(war)
class(war$belligerent)
igraph::gorder(war$alliance)
igraph::gorder(war$belligerent)
igraph::edges(war$alliance)
igraph::get.graph.attribute(war$alliance)

Index

∗ datasets
er_network, 15
frenchblog2007, 18
war, 44

blockDyadSampler, 3
blockDyadSampling_fit, 4
blockNodeSampler, 5
blockNodeSampling_fit, 6

coef.missSBM_fit, 7
covarDyadSampling_fit, 7
covarNodeSampling_fit, 8

degreeSampler, 9
degreeSampling_fit, 10
doubleStandardSampler, 11
doubleStandardSampling_fit, 12
dyadSampler, 13
dyadSampling_fit, 14

er_network, 15
estimateMissSBM, 15
estimateMissSBM(), 7, 18–21, 23

fitted(), 21
fitted.missSBM_fit, 18
frenchblog2007, 18

l1_similarity, 19, 31

missSBM::dyadSampler, 3, 11, 36
missSBM::networkSampler, 3, 5, 9, 11, 13,

29, 36, 37, 43
missSBM::networkSampling, 3–14, 23, 26,

27, 29, 36, 37, 43
missSBM::networkSamplingDyads_fit, 4, 7,

12, 14
missSBM::networkSamplingNodes_fit, 6, 8,

10, 29
missSBM::nodeSampler, 5, 9, 37, 43

missSBM::SimpleSBM_fit, 39, 41, 42
missSBM::SimpleSBM_fit_noCov, 39
missSBM_collection, 17, 19, 19
missSBM_fit, 7, 17–19, 21, 21, 34, 35, 44

networkSampler, 23
networkSampling, 22, 25
networkSamplingDyads_fit, 26
networkSamplingNodes_fit, 27
nodeSampler, 29
nodeSampling_fit, 29

observeNetwork, 17, 30

partlyObservedNetwork, 20, 22, 24, 33
plot(), 21
plot.missSBM_fit, 34
predict(), 21
predict.missSBM_fit

(predicted.missSBM_fit), 35
predicted.missSBM_fit, 35
print(), 19, 21

sbm::SBM, 38, 39, 41, 42
sbm::SimpleSBM, 38, 39, 41, 42
sbm::SimpleSBM_fit, 22
show(), 19, 21
simpleDyadSampler, 36
simpleNodeSampler, 37
SimpleSBM_fit, 38
SimpleSBM_fit_MNAR, 22, 39
SimpleSBM_fit_noCov, 22, 41
SimpleSBM_fit_withCov, 22, 42
snowballSampler, 43
summary.missSBM_fit, 44

war, 44

46

	blockDyadSampler
	blockDyadSampling_fit
	blockNodeSampler
	blockNodeSampling_fit
	coef.missSBM_fit
	covarDyadSampling_fit
	covarNodeSampling_fit
	degreeSampler
	degreeSampling_fit
	doubleStandardSampler
	doubleStandardSampling_fit
	dyadSampler
	dyadSampling_fit
	er_network
	estimateMissSBM
	fitted.missSBM_fit
	frenchblog2007
	l1_similarity
	missSBM_collection
	missSBM_fit
	networkSampler
	networkSampling
	networkSamplingDyads_fit
	networkSamplingNodes_fit
	nodeSampler
	nodeSampling_fit
	observeNetwork
	partlyObservedNetwork
	plot.missSBM_fit
	predicted.missSBM_fit
	simpleDyadSampler
	simpleNodeSampler
	SimpleSBM_fit
	SimpleSBM_fit_MNAR
	SimpleSBM_fit_noCov
	SimpleSBM_fit_withCov
	snowballSampler
	summary.missSBM_fit
	war
	Index

