Package ‘misha’

March 6, 2025
Type Package
Title Toolkit for Analysis of Genomic Data
Version 4.3.6

Description A toolkit for analysis of genomic data. The 'misha’ package
implements an efficient data structure for storing genomic data, and
provides a set of functions for data extraction, manipulation and
analysis. Some of the 2D genome algorithms were described in Yaffe and Tanay
(2011) <doi:10.1038/ng.947>.

License MIT + file LICENSE

URL https://tanaylab.github.io/misha/,
https://github.com/tanaylab/misha

BugReports https://github.com/tanaylab/misha/issues
Depends R (>=3.0.0)
Imports magrittr, curl, utils

Suggests dplyr, glue, knitr, readr, rmarkdown, spelling, stats,
stringr, testthat (>= 3.0.0), tibble, withr

Config/testthat/edition 3
Encoding UTF-8

Language en-US

LazyLoad yes
NeedsCompilation yes
SystemRequirements C++14
OS_type unix

RoxygenNote 7.3.2
VignetteBuilder knitr

Author Misha Hoichman [aut],
Aviezer Lifshitz [aut, cre],
Eitan Yaffe [aut],
Amos Tanay [aut],
Weizmann Institute of Science [cph]

https://doi.org/10.1038/ng.947
https://tanaylab.github.io/misha/
https://github.com/tanaylab/misha
https://github.com/tanaylab/misha/issues

2 Contents

Maintainer Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>
Repository CRAN
Date/Publication 2025-03-06 14:10:02 UTC

Contents
misha-package 4
gbins.quantiles L e 5
gbins.summary e 6
geis_decay e e e 8
GCIUSIEL.TUN L e e e e e e 9
gecompute_strands_autoCorT oo i it e e e 11
gdbereate e e 12
gdb.create_genome e e e e e e e e e 14
gdb.get_readonly_attrs 15
gdbreload e 15
gdb.set_readonly_attrs L. L e e 16
gdired . . . e 17
gdircreate e e 18
gdirewd e e 18
gdirIm e e e 19
gdiSt . . . e 20
GEXITACt e e 21
gintervals L e e e 23
gintervals.2d 24
gintervals.2d.all 25
gintervals.2d.band_intersect 26
gintervals.all L 27
gintervals.canonic L Lo e 27
gintervals.chrom_sizes 29
gintervals.diff 30
gintervals.exists e 31
gintervals.force_range L 32
gintervals.import_geneso i e e 33
gintervals.intersect L. L. e e e e 34
gintervals.is.bigset L. L e 35
gintervals.liftover 36
gintervals.load 37
gintervals.load_chain L 38
gintervals.Iso 39
gintervals.mapply 40
gintervals.neighbors L. 41
gintervals.quantiles L e 43
gintervals.rbindo 44
gintervals.rm e 45
gintervals.save L e e e e e e 46

gintervals.summary e e 47

Contents

3
gintervals.union L. e e e e e e 48
gintervals.update L. 49
giterator.cartesian_grid 50
giteratorintervals L. 52
glookup e e 54
GPArtition e e 55
gquantiles e 57
GIEVCOMD + v v v v v e i e 58
gsample e 59
GSCTEEIM . o o v v v v v e e e e e e e e e e e e e e e 60
GSEEMENL .« . v v vt e e e e e e e e e e e e e e 61
GSEQ.EXITACE L e e e e e e e e e e 62
GSELIOOL o o e e e e e e e 63
GSUMMALY . « o . o v v v e e et e e e e e e e e e e e e 64
gtrack.2d.create L e e e e e 65
gtrack.2d.importo 66
gtrack.2d.import_contacts e 67
gtrack.array.exXtract e e e e e e e e e 69
gtrack.array.get_colnames 70
gtrack.array.import L. L L e 71
gtrack.array.set_colnames e 72
grack.attr@Xport L e e e e e e e e e e 73
gtrackaattr.get L. e e e 74
gtrack.attrimport L. e e e 75
gtrack.attrSet e e e e e e e e 76
gtrack.convert L e e e 77
gtrack.create Lo L e 77
gtrack.create_dirs e 79
gtrack.create_pwm_Eenergyt i e e e e e e e e e e 79
gtrack.Create_Sparseo e 80
grack.eXisSts e e 82
gtrackamporto L e e e e e 82
gtrack.import_mappedseq e 83
gtrackdmport_set e 85
gtrackinfo 86
gtrackdiftovero 87
gtrackdookup oL 88
gtrack.lS . . . oL 89
gtrack.modify 91
gtrackarmo L e 92
gtrack.smooth 93
gtrack.var.get e e 94
gtrack.varls . . . L L L L 95
gtrackovarrm 96
rack.varSet e e e 97
gvtrack.array.slice L e 98
gvtrack.create L 99

gvtrack.info 103

4 misha-package
gvtrack.iterator L. e e e e e e e 104
gvtrack.iterator.2d L Lo 105
gvtrack.Is e 106
gVtrackirm L e 107
SWEEBL . . e e e e 108
gWIlCOX . . o L e e 109

Index 111

misha-package

Toolkit for analysis of genomic data

Description

’misha’ package is intended to help users to efficiently analyze genomic data achieved from various

experiments.

Details

For a complete list of help resources, use library(help = "misha").

The following options are available for the package. Use ’options’ function to alter the value of the

options.

NAME
gmax.data.size

gbig.intervals.size
gmax.mem.usage
gmax.processes
gmax.processes2core
gmin.scopedprocess

gbuf.size
gtrack.chunk.size
gtrack.num.chunks

DEFAULT DESCRIPTION

10000000

1000000
10000000
16

2

10000

1000
100000
0

Maximal number of data (intervals, ...) in large data sets stored

in memory. Prevents excessive memory usage by various functions
such as ’gextract’, *gscreen’, etc.

Minimal number of intervals in a big intervals set format

Maximal memory consumption of all child processes in KB before the limiting algorithi
Maximal number of processes for multitasking

Maximal number of processes per CPU core for multitasking
Minimal scope range (for 2D: surface) assigned to a

process in multitasking mode.

Size of track expression values buffer.

Chunk size in bytes of a 2D track. If ’0’ chunk size is unlimited.
Maximal number of 2D track chunks simultaneously stored in
memory.

More information about the options can be found in *User manual’ of the package.

Author(s)

Maintainer: Aviezer Lifshitz <aviezer.lifshitz@weizmann.ac.il>

Authors:

¢ Misha Hoichman <misha@hoichman.com>

gbins.quantiles 5

* Eitan Yaffe <eitan.yaffe@weizmann.ac.il>

* Amos Tanay <amos. tanay@weizmann.ac.il>
Other contributors:

* Weizmann Institute of Science [copyright holder]

See Also
Useful links:
e https://tanaylab.github.io/misha/

e https://github.com/tanaylab/misha
* Report bugs at https://github.com/tanaylab/misha/issues

gbins.quantiles Calculates quantiles of a track expression for bins

Description

Calculates quantiles of a track expression for bins.

Usage

gbins.quantiles(
expr = NULL,
percentiles = 0.5,
intervals = get("ALLGENOME", envir = .misha),
include.lowest = FALSE,
iterator = NULL,

band = NULL
)
Arguments

pairs of track expressions ("bin_expr’) that determines the bins and breaks that
define the bins. See gdist.

expr track expression for which quantiles are calculated

percentiles an array of percentiles of quantiles in [0, 1] range

intervals genomic scope for which the function is applied.

include.lowest if "TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If "NULL’ no band is used.

https://tanaylab.github.io/misha/
https://github.com/tanaylab/misha
https://github.com/tanaylab/misha/issues

6 gbins.summary

Details

This function is a binned version of ’gquantiles’. For each iterator interval the value of ’bin_expr’
is calculated and assigned to the corresponding bin determined by “breaks’. The quantiles of "expr’
are calculated then separately for each bin.

The bins can be multi-dimensional depending on the number of ’bin_expr’-’breaks’ pairs.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is "TRUE’ the the lowest value will be included in the first interval, i.e. in [Xx1,
x2].
Value

Multi-dimensional array representing quantiles for each percentile and bin.

See Also

gquantiles, gintervals.quantiles, gdist

Examples

gdb.init_examples()

gbins.quantiles("dense_track”, c(@, 0.2, 0.4, 2), "sparse_track”,
percentiles = c(0.2, 0.5),
intervals = gintervals(1),

iterator = "dense_track”
)
gbins.summary Calculates summary statistics of a track expression for bins
Description

Calculates summary statistics of a track expression for bins.

Usage

ghins.summary(
expr = NULL,
intervals = get("ALLGENOME", envir = .misha),
include.lowest = FALSE,
iterator = NULL,
band = NULL

gbins.summary 7

Arguments
pairs of track expressions ("bin_expr’) that determines the bins and breaks that
define the bins. See gdist.
expr track expression for which summary statistics is calculated
intervals genomic scope for which the function is applied

include.lowest if "TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.

band track expression band. If 'NULL’ no band is used.

Details

This function is a binned version of *gsummary’. For each iterator interval the value of "bin_expr’
is calculated and assigned to the corresponding bin determined by ’breaks’. The summary statistics
of expr’ are calculated then separately for each bin.

The bins can be multi-dimensional depending on the number of "bin_expr’-’breaks’ pairs.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is "TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2].
Value

Multi-dimensional array representing summary statistics for each bin.

See Also

gsummary, gintervals.summary, gdist

Examples

gdb.init_examples()
gbins.summary("dense_track”, c(0, 0.2, 0.4, 2), "sparse_track”,
intervals = gintervals(1), iterator = "dense_track”

)

gcis_decay

gcis_decay

Calculates distribution of contact distances

Description

Calculates distribution of contact distances.

Usage

gcis_decay(
expr = NULL,

breaks = NULL,

src = NULL,

domain = NULL,

intervals =

NULL,

include.lowest = FALSE,
iterator = NULL,

band = NULL

Arguments
expr
breaks
src
domain
intervals
include.lowest

iterator

band

Details

track expression

breaks that determine the bin
source intervals

domain intervals

genomic scope for which the function is applied

if "TRUE’, the lowest value of the range determined by breaks is included

2D track expression iterator. If "NULL’ iterator is determined implicitly based

on track expressions.

track expression band. If 'NULL’ no band is used.

A 2D iterator interval ’(chroml, startl, endl, chrom?2, start2, end2)’ is said to represent a contact
between two 1D intervals I1 and I12: ’(chrom1, startl, end1)’ and ’(chrom2, start2, end2)’.

For contacts where ’chrom1’ equals to ’chrom2’ and I1 is within source intervals the function
calculates the distribution of distances between I1 and I2. The distribution is calculated separately
for intra-domain and inter-domain contacts.

An interval is within source intervals if the unification of all source intervals fully overlaps it. ’src’
intervals are allowed to contain overlapping intervals.

Two intervals I1 and 12 are within the same domain (intra-domain contact) if among the domain
intervals exists an interval that fully overlaps both I1 and I2. Otherwise the contact is considered to

be inter-domain. ’domain’ must contain only non-overlapping intervals.

gcluster.run 9

The distance between I1 and 12 is the absolute distance between the centers of these intervals, i.e.:
’|(startl + end1 - start2 - end2) / 2.

The range of distances for which the distribution is calculated is defined by *breaks’ argument. For
example: 'breaks=c(x1, x2, x3, x4)’ represents three different intervals (bins): (x1, x2], (x2, x3],
(x3, x4].

If ’include.lowest’ is "TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2]

Value

2-dimensional vector representing the distribution of contact distances for inter and intra domains.

See Also

gdist, gtrack.2d.import_contacts

Examples

gdb.init_examples()

src <- rbind(
gintervals(1, 10, 100),
gintervals(1, 200, 300),
gintervals(1, 400, 500),
gintervals(1, 600, 700),
gintervals(1, 7000, 9100),
gintervals(1, 9000, 18000),
gintervals(1, 30000, 31000),
gintervals(2, 1130, 15000)

)

domain <- rbind(
gintervals(1, 0, 483000),
gintervals(2, 0, 300000)
)

gcis_decay("rects_track”, 50000 * (1:10), src, domain)

gcluster.run Runs R commands on a cluster

Description

Runs R commands on a cluster that supports SGE.

10 gcluster.run

Usage
gcluster.run(

opt.flags = "",
max.jobs = 400,
debug = FALSE,

R = ”R” ,
control_dir = NULL
)
Arguments
R commands
opt.flags optional flags for qsub command
max. jobs maximal number of simultaneously submitted jobs
debug if "TRUE’, additional reports are printed
R command that launches R
control_dir directory where the control files are stored. Note that this directory should be
accessible from all nodes. If 'NULL’, a temporary directory would be created
under the current misha database.
Details

This function runs R commands on a cluster by distributing them among cluster nodes. It must run
on a machine that supports Sun Grid Engine (SGE). The order in which the commands are executed
can not be guaranteed, therefore the commands must be inter-independent.

Optional flags to ’qsub’ command can be passed through ’opt.flags’ parameter. Users are strongly
recommended to use only ’-I’ flag as other flags might interfere with those that are already used
(-terse, -S, -0, -e, -V). For additional information please refer to the manual of *qsub’.

The maximal number of simultaneously submitted jobs is controlled by *max.jobs’.
Set ’debug’ argument to *'TRUE to allow additional report prints.

’gcluster.run’ launches R on the cluster nodes to execute the commands. R’ argument specifies
how R executable should be invoked.

Value

Return value (’retv’) is a list, such that ‘retv[[i]]” represents the result of the run of command number
’i’. Each result consists of 4 fields that can be accessed by ’retv[[i]]$FIELDNAME’:

FIELDNAME DESCRIPTION

exit.status Exit status of the command. Possible values: ’success’, *failure’ or ’interrupted’.
retv Return value of the command.
stdout Standard output of the command.

stderr Standard error of the command.

gcompute_strands_autocorr

Examples

gdb.init_examples()
Run only on systems with Sun Grid Engine (SGE)

if (FALSE) {
v <- 17

gcluster.run(
gsummary("dense_track + v"),

{

intervs <- gscreen("dense_track > 0.1", gintervals(1, 2))
gsummary ("sparse_track”, intervs)

}7

gsummary("rects_track")

11

gcompute_strands_autocorr

Computes auto-correlation between the strands for a file of mapped

sequences

Description

Calculates auto-correlation between plus and minus strands for the given chromosome in a file of

mapped sequences

Usage

gcompute_strand
file = NULL,
chrom = NULL,
binsize = NUL
maxread = 400
cols.order =

s_autocorr(

L,

c(9, 11, 13, 14),

min.coord = 0,

max.coord = 3

Arguments
file
chrom
binsize
maxread

cols.order

e+08

the name of the file containing mapped sequences

chromosome for which the auto-correlation is computed

calculate the auto-correlation for bins in the range of [-maxread, maxread]
maximal length of the sequence used for statistics

order of sequence, chromosome, coordinate and strand columns in file

gdb.create

min.coord minimal coordinate used for statistics
max.coord maximal coordinate used for statistics
Details

This function calculates auto-correlation between plus and minus strands for the given chromosome
in a file of mapped sequences. Each line in the file describes one read. Each column is separated by
a TAB character.

The following columns must be presented in the file: sequence, chromosome, coordinate and strand.
The position of these columns are controlled by ’cols.order’ argument accordingly. The default
value of ’cols.order’ is a vector (9,11,13,14) meaning that sequence is expected to be found at
column number 9, chromosome - at column 11, coordinate - at column 13 and strand - at column
14. The first column should be referenced by 1 and not by 0.

Coordinates that are not in [min.coord, max.coord] range are ignored.

gcompute_strands_autocorr outputs the total statistics and the auto-correlation given by bins. The
size of the bin is indicated by ’binsize’ parameter. Statistics is calculated for bins in the range of
[-maxread, maxread].

Value

Statistics for each strand and auto-correlation by given bins.

Examples

gdb.init_examples()

gcompute_strands_autocorr(paste(.misha$GROOT, "reads”, sep = "/"),
"chr1", 50,
maxread = 300
)
gdb.create Creates a new Genomic Database
Description

Creates a new Genomic Database.

Usage

gdb.create(
groot = NULL,
fasta = NULL,

genes.file = NULL,
annots.file = NULL,
annots.names = NULL

gdb.create 13

Arguments
groot path to newly created database
fasta an array of names or URLs of FASTA files. Can contain wildcards for multiple
files
genes.file name or URL of file that contains genes. If 'NULL’ no genes are imported
annots.file name of URL file that contains annotations. If "NULL’ no annotations are im-
ported

annots.names annotations names

Details

This function creates a new Genomic Database at the location specified by *groot’. FASTA files are
converted to *Seq’ format and appropriate ’chrom_sizes.txt’ file is generated (see "User Manual"
for more details).

If *genes.file’ is not "NULL’ four sets of intervals are created in the database: tss, exons, utr3 and
utr5. See gintervals.import_genes for more details about importing genes intervals.

"fasta’, *genes.file’ and ’annots.file’ can be either a file path or URL in a form of ’ftp://[address]/[file] .
’fasta’ can also contain wildcards to indicate multiple files. Files that these arguments point to can
be zipped or unzipped.

See the ’Genomes’ vignette for details on how to create a database from common genome sources.

Value

None.

See Also

gdb.init, gdb.reload, gintervals. import_genes

Examples

ftp <- "ftp://hgdownload.soe.ucsc.edu/goldenPath/mm10"
mm10@_dir <- file.path(tempdir(), "mm10")

only a single chromosome is loaded in this example

see "Genomes"” vignette how to download all of them and how
to download other genomes

gdb.create(

mm1Q_dir,

paste(ftp, "chromosomes”, paste@(
Hchrll, C(IIXH)’
".fa.gz"

), sep = "/"),

paste(ftp, "database/knownGene.txt.gz", sep = "/"),

paste(ftp, "database/kgXref.txt.gz", sep = "/"),

c(
"kgID", "mRNA", "spID", "spDisplayID"”, "geneSymbol”,
"refseq”, "protAcc”, "description”, "rfamAcc”,
"tRnaName"”

14 gdb.create_genome

)
)
gdb.init(mm10@_dir)
gintervals.1ls()
gintervals.all()

gdb.create_genome Create and Load a Genome Database

Description

This function downloads, extracts, and loads a misha genome database for the specified genome.

Usage

gdb.create_genome(genome, path = getwd(), tmpdir = tempdir())

Arguments
genome A character string specifying the genome to download. Supported genomes are
"mm9", "mm10", "mm39", "hgl9", and "hg38".
path A character string specifying the directory where the genome will be extracted.
Defaults to genome name (e.g. "mm10") in the current working directory.
tmpdir A character string specifying the directory for storing temporary files. This is
used for storing the downloaded genome file.
Details

The function checks if the specified genome is available. If tmpdir, it constructs the download URL,
downloads the genome file, extracts it to the specified directory, and loads the genome database
using gsetroot. The function also calls gdb. reload to reload the genome database.

Value

None.

Examples

mm10_dir <- tempdir()
gdb.create_genome("mm10@", path = mmie_dir)
list.files(file.path(mmi1@_dir, "mm1@"))
gsetroot(file.path(mmi@_dir, "mm10"))
gintervals.1s()

gdb.get_readonly_attrs 15

gdb.get_readonly_attrs
Returns a list of read-only track attributes

Description

Returns a list of read-only track attributes.

Usage

gdb.get_readonly_attrs()

Details

This function returns a list of read-only track attributes. These attributes are not allowed to be
modified or deleted.

If no attributes are marked as read-only a "NULL’ is returned.

Value

A list of read-only track attributes.

See Also

gdb.set_readonly_attrs, gtrack.attr.get, gtrack.attr.set

gdb.reload Reloads database from the disk

Description

Reloads database from disk: list of tracks, intervals, etc.

Usage
gdb.reload(rescan = TRUE)

Arguments

rescan indicates whether the file structure should be rescanned

Details

Reloads Genomic Database from disk: list of tracks, intervals, etc. Use this function if you manually
add tracks or if for any reason the database becomes corrupted. If 'rescan’ is "TRUE’, the list of
tracks and intervals is achieved by rescanning directory structure under the current current working
directory. Otherwise *gdb.reload’ attempts to use the cached list that resides in ’GROOT/.db.cache’
file.

16 gdb.set_readonly_attrs

Value

No return value, called for side effects.

See Also

gdb.init, gdb.create, gdir.cd,

gdb.set_readonly_attrs
Sets read-only track attributes

Description

Sets read-only track attributes.

Usage

gdb.set_readonly_attrs(attrs)

Arguments

attrs a vector of read-only attributes names or "NULL’

Details

This function sets the list of read-only track attributes. The specified attributes may or may not
already exist in the tracks.

If "attrs’ is "'NULL’ the list of read-only attributes is emptied.

Value

None.

See Also

gdb.get_readonly_attrs, gtrack.attr.get, gtrack.attr.set

gdir.cd 17

gdir.cd Changes current working directory in Genomic Database

Description

Changes current working directory in Genomic Database.

Usage

gdir.cd(dir = NULL)

Arguments

dir directory path

Details

This function changes the current working directory in Genomic Database (not to be confused with
shell’s current working directory). The list of database objects - tracks, intervals, track variables -
is rescanned recursively under ’dir’. Object names are updated with the respect to the new current
working directory. Example: a track named ’subdir.dense’ will be referred as ’dense’ once current
working directory is set to ‘subdir’. All virtual tracks are removed.

Value

None.

See Also

gdb.init, gdir.cwd, gdir.create, gdir.rm

Examples

gdb.init_examples()
gdir.cd("subdir")
gtrack.1s()
gdir.cd("..")
gtrack.1ls()

18 gdir.cwd

gdir.create Creates a new directory in Genomic Database

Description

Creates a new directory in Genomic Database.

Usage

gdir.create(dir = NULL, showWarnings = TRUE, mode = "@777")

Arguments
dir directory path
showWarnings see ’dir.create’
mode see ’dir.create’
Details

This function creates a new directory in Genomic Database. Creates only the last element in the
specified path.

Value

None.

Note

A new directory cannot be created within an existing track directory.

See Also

dir.create, gdb.init, gdir.cwd, gdir.rm

gdir.cwd Returns the current working directory in Genomic Database

Description

Returns the absolute path of the current working directory in Genomic Database.

Usage
gdir.cwd()

gdir.rm 19

Details

This function returns the absolute path of the current working directory in Genomic Database (not
to be confused with shell’s current working directory).

Value

A character string of the path.

See Also

gdb.init, gdir.cd, gdir.create, gdir.rm

gdir.rm Deletes a directory from Genomic Database

Description

Deletes a directory from Genomic Database.

Usage

gdir.rm(dir = NULL, recursive = FALSE, force = FALSE)

Arguments

dir directory path

recursive if "TRUE’, the directory is deleted recursively

force if "TRUE’, suppresses user confirmation of tracks/intervals removal
Details

This function deletes a directory from Genomic Database. If 'recursive’ is "TRUE’, the directory is
deleted with all the files/directories it contains. If the directory contains tracks or intervals, the user
is prompted to confirm the deletion. Set *force’ to "TRUE’ to suppress the prompt.

Value

None.

See Also

gdb.init, gdir.create, gdir.cd, gdir.cwd

20 gdist

gdist Calculates distribution of track expressions

Description

Calculates distribution of track expressions’ values over the given set of bins.

Usage

gdist(
intervals = NULL,
include.lowest = FALSE,
iterator = NULL,

band = NULL
)
Arguments
pairs of “expr’, "breaks’ where “expr’ is a track expression and the breaks deter-
mine the bin
intervals genomic scope for which the function is applied

include.lowest if "TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.
band track expression band. If "NULL’ no band is used.
Details

This function calculates the distribution of values of the numeric track expressions over the given
set of bins.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is "TRUE’ the the lowest value will be included in the first interval, i.e. in [x1,
x2]

*gdist’ can work with any number of dimensions. If more than one ’expr’-’breaks’ pair is passed,
the result is a multidimensional vector, and an individual value can be accessed by [il,i2,...,iN]
notation, where ’i1’ is the first track and "iN’ is the last track expression.

Value

N-dimensional vector where N is the number of "expr’-’breaks’ pairs.

See Also

gextract

gextract

Examples

gdb.init_examples()

calculate the distribution of dense_track for bins:
(0, 0.2]1, (0.2, 0.5] and (0.5, 1]
gdist("dense_track”, c(@, 0.2, 0.5, 1))

calculate two-dimensional distribution:

dense_track vs. sparse_track

gdist("dense_track”, seq(@, 1, by = 0.1), "sparse_track”,
seq(@, 2, by = 0.2),
iterator = 100

21

gextract Returns evaluated track expression

Description

Returns the result of track expressions evaluation for each of the iterator intervals.

Usage

gextract(
intervals = NULL,
colnames = NULL,
iterator = NULL,

band = NULL,
file = NULL,
intervals.set.out = NULL
)
Arguments
track expression
intervals genomic scope for which the function is applied
colnames sets the columns names in the returned value. If 'NULL’ names are set to track
expression.
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.
band track expression band. If "NULL’ no band is used.
file file name where the function result is optionally outputted in tab-delimited for-

mat
intervals.set.out

intervals set name where the function result is optionally outputted

22 gextract

Details

This function returns the result of track expressions evaluation for each of the iterator intervals. The
returned value is a set of intervals with an additional column for each of the track expressions. This
value can be used as an input for any other function that accepts intervals. If the intervals inside
’intervals’ argument overlap gextract returns the overlapped coordinate more than once.

The order inside the result might not be the same as the order of intervals. An additional column
“intervallD’ is added to the return value. Use this column to refer to the index of the original interval
from the supplied ’intervals’.

If ’file’ parameter is not "'NULL’ the result is outputted to a tab-delimited text file (without ’inter-
vallD’ column) rather than returned to the user. This can be especially useful when the result is too
big to fit into the physical memory. The resulted file can be used as an input for ’gtrack.import’ or
*gtrack.array.import’ functions.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Similarly to file’ parameter
’intervals.set.out’ can be useful to overcome the limits of the physical memory.

’colnames’ parameter controls the names of the columns that contain the evaluated expressions. By
default the column names match the track expressions.

Value

If ’file’ and ’intervals.set.out’ are 'NULL’ a set of intervals with an additional column for each of
the track expressions and ’columnID’ column.

See Also

gtrack.array.extract, gsample, gtrack. import, gtrack.array.import, glookup, gpartition
gdist

Examples

gdb.init_examples()

get values of 'dense_track' for [0, 400), chrom 1
gextract("dense_track”, gintervals(1l, 0, 400))

get values of 'rects_track' (a 2D track) for a 2D interval
gextract(

"rects_track”,

gintervals.2d("chr1”, @, 4000, "chr2", 2000, 5000)

gintervals 23

gintervals Creates a set of 1D intervals

Description

Creates a set of 1D intervals.

Usage

gintervals(chroms = NULL, starts = @, ends = -1, strands = NULL)

Arguments
chroms chromosomes - an array of strings with or without "chr" prefixes or an array of
integers (like: °1° for "chrl")
starts an array of start coordinates
ends an array of end coordinates. If ’-1’ chromosome size is assumed.
strands "NULL’ or an array consisting of ’-1°, ’0” or °1” values
Details

This function returns a set of one-dimensional intervals. The returned value can be used in all
functions that accept ’intervals’ argument.

One-dimensional intervals is a data frame whose first three columns are *chrom’, ’start” and ’end’.
Each row of the data frame represents a genomic interval of the specified chromosome in the range
of [start, end). Additional columns can be presented in 1D intervals object yet these columns must
be added after the three obligatory ones.

If ’strands’ argument is not "NULL’ an additional column "strand" is added to the intervals. The
possible values of a strand can be ’ 1’ (plus strand), -1’ (minus strand) or 0’ (unknown).

Value

A data frame representing the intervals.

See Also

gintervals. 2d, gintervals. force_range

Examples

gdb.init_examples()

the following 3 calls produce identical results
gintervals(1)

gintervals("1")

gintervals("chrX")

24 gintervals.2d

gintervals(1, 1000)
gintervals(c("chr2”, "chrX"), 10, c(3000, 5000))

gintervals.2d Creates a set of 2D intervals

Description

Creates a set of 2D intervals.

Usage

gintervals. 2d(
chroms1 = NULL,

startsl = 0,
ends1 = -1,
chroms2 = NULL,
starts2 = 0,
ends2 = -1
)
Arguments
chroms1 chromosomes|1 - an array of strings with or without "chr" prefixes or an array of
integers (like: *1” for "chrl")
startsi an array of start]l coordinates
ends1 an array of endl coordinates. If -1’ chromosome size is assumed.
chroms?2 chromosomes?2 - an array of strings with or without "chr" prefixes or an array of
integers (like: *1° for "chrl"). If 'NULL’, ’chroms2’ is assumed to be equal to
"chroms1’.
starts2 an array of start2 coordinates
ends2 an array of end2 coordinates. If ’-1’ chromosome size is assumed.
Details

This function returns a set of two-dimensional intervals. The returned value can be used in all
functions that accept ’intervals’ argument.

Two-dimensional intervals is a data frame whose first six columns are chrom1’, ’startl’, ’end1’,
’chrom?2’, ’start2’ and ’end2’. Each row of the data frame represents two genomic intervals from
two chromosomes in the range of [start, end). Additional columns can be presented in 2D intervals
object yet these columns must be added after the six obligatory ones.

Value

A data frame representing the intervals.

gintervals.2d.all 25

See Also

gintervals, gintervals.force_range

Examples

gdb.init_examples()

the following 3 calls produce identical results
gintervals.2d(1)

gintervals.2d("1")

gintervals.2d("chrX")

gintervals.2d(1, 1000, 2000, "chrX", 400, 800)
gintervals.2d(c("chr2”, "chrX"), 10, c(3000, 5000), 1)

gintervals.2d.all Returns 2D intervals that cover the whole genome

Description

Returns 2D intervals that cover the whole genome.

Usage

gintervals.2d.all()

Details

This function returns a set of two-dimensional intervals that cover the whole genome as it is defined
by ’chrom_sizes.txt’ file.

Value

A data frame representing the intervals.

See Also

gintervals.2d

26 gintervals.2d.band_intersect

gintervals.2d.band_intersect
Intersects two-dimensional intervals with a band

Description

Intersects two-dimensional intervals with a band.

Usage

gintervals.2d.band_intersect(
intervals = NULL,

band = NULL,
intervals.set.out = NULL
)
Arguments
intervals two-dimensional intervals
band track expression band. If 'NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function intersects each two-dimensional interval from ’intervals’ with ’band’. If the intersec-
tion is not empty, the interval is shrunk to the minimal rectangle that contains the band and added
to the return value.

If ’intervals.set.out’ is not '"NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the intervals.

See Also

gintervals.2d, gintervals.intersect

Examples

gdb.init_examples()
gintervals.2d.band_intersect(gintervals.2d(1), c(10000, 20000))

gintervals.all 27

gintervals.all Returns 1D intervals that cover the whole genome

Description

Returns 1D intervals that cover the whole genome.

Usage

gintervals.all()

Details

This function returns a set of one-dimensional intervals that cover the whole genome as it is defined
by ’chrom_sizes.txt’ file.

Value

A data frame representing the intervals.

See Also

gintervals

gintervals.canonic Converts intervals to canonic form

Description

Converts intervals to canonic form.

Usage

gintervals.canonic(intervals = NULL, unify_touching_intervals = TRUE)

Arguments

intervals intervals to be converted
unify_touching_intervals
if "TRUE’, touching one-dimensional intervals are unified

28 gintervals.canonic

Details

This function converts ’intervals’ into a "canonic" form: properly sorted with no overlaps. The
result can be used later in the functions that require the intervals to be in canonic form. Use
“unify_touching_intervals’ to control whether the intervals that touch each other (i.e. the end coor-
dinate of one equals to the start coordinate of the other) are unified. ’unify_touching_intervals’ is
ignored if two-dimensional intervals are used.

Since ’gintervals.canonic’ unifies overlapping or touching intervals, the number of the returned
intervals might be less than the number of the original intervals. To allow the user to find the
origin of the new interval "'mapping’ attribute is attached to the result. It maps between the original
intervals and the resulted intervals. Use ’attr(retv_of_gintervals.canonic, "mapping")’ to retrieve
the map.

Value

A data frame representing the canonic intervals and an attribute “mapping’ that maps the original
intervals to the resulted ones.

See Also

gintervals, gintervals.2d

Examples

gdb.init_examples()
Create intervals manually by using 'data.frame'.
Note that we add an additional column 'data'.
Return value:
chrom start end data
1 chr1l 11000 12000 10
2 chri 100 200 20
3 chrl 10000 13000 30
4 chrl 10500 10600 40
intervs <- data.frame(
chrom = "chr1”,
start = c(11000, 100, 10000, 10500),
end = c(12000, 200, 13000, 10600),
data = c(10, 20, 30, 40)
)

Convert the intervals into the canonic form.

The function discards any columns besides chrom, start and end.
Return value:

chrom start end

1 chril 100 200

2 chrl 10000 13000

res <- gintervals.canonic(intervs)

By inspecting mapping attribute we can see how the new
intervals were created: "2 1 2 2" means that the first

gintervals.chrom_sizes 29

interval in the result was created from the second interval in

the original set (we look for the indices in mapping where "1"

appears). Likewise the second interval in the result was

created from 3 intervals in the original set. Their indices are
1, 3 and 4 (once again we look for the indices in mapping where
"2" appears).

Return value:

212 2

attr(res, "mapping”)

Finally (and that is the most useful part of 'mapping'’

attribute): we add a new column 'data' to our result which is
the mean value of the original data column. The trick is done
using 'tapply' on par with 'mapping' attribute. For example,

20.00000 equals is a result of 'mean(intervs[2,]$data’ while

26.66667 is a result of 'mean(intervs[c(1,3,4),]1%data)"’.

'res' after the following call:

chrom start end data

1 chri 100 200 20.00000

2 chrl 10000 13000 26.66667

res$data <- tapply(intervs$data, attr(res, "mapping”), mean)

gintervals.chrom_sizes
Returns number of intervals per chromosome

Description

Returns number of intervals per chromosome (or chromosome pair).

Usage

gintervals.chrom_sizes(intervals = NULL)

Arguments

intervals intervals set

Details
This function returns number of intervals per chromosome (for 1D intervals) or chromosome pair
(for 2D intervals).

Value

Data frame representing number of intervals per chromosome (for 1D intervals) or chromosome
pair (for 2D intervals).

30 gintervals.diff

See Also

gintervals.load, gintervals.save, gintervals.exists, gintervals.1ls, gintervals, gintervals.2d

Examples

gdb.init_examples()
gintervals.chrom_sizes("annotations")

gintervals.diff Calculates difference of two intervals sets

Description

Returns difference of two sets of intervals.

Usage

gintervals.diff(intervalsl = NULL, intervals2 = NULL, intervals.set.out = NULL)

Arguments

intervalsl, intervals2
set of one-dimensional intervals
intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function returns a genomic space that is covered by ’intervals1’ but not covered by ’intervals2’.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the intervals.

See Also

gintervals, gintervals.intersect, gintervals.union

gintervals.exists 31

Examples

gdb.init_examples()

intervsl <- gscreen("dense_track > 0.15")
intervs2 <- gscreen("dense_track < 0.2")

'res3' equals to 'res4’
res3 <- gintervals.diff(intervsl, intervs2)
res4 <- gscreen("dense_track >= 0.2")

gintervals.exists Tests for a named intervals set existence

Description

Tests for a named intervals set existence.

Usage

gintervals.exists(intervals.set = NULL)

Arguments

intervals.set name of an intervals set

Details

This function returns "TRUE’ if a named intervals set exists in Genomic Database.

Value

*TRUE’ if a named intervals set exists. Otherwise 'FALSE’.

See Also

gintervals.ls, gintervals.load, gintervals.rm,gintervals.save, gintervals, gintervals. 2d

Examples

gdb.init_examples()
gintervals.exists(”annotations”)

32 gintervals.force_range

gintervals.force_range
Limits intervals to chromosomal range

Description

Limits intervals to chromosomal range.

Usage

gintervals.force_range(intervals = NULL, intervals.set.out = NULL)

Arguments

intervals intervals
intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function enforces the intervals to be within the chromosomal range [0, chrom length) by al-
tering the intervals’ boundaries. Intervals that lay entirely outside of the chromosomal range are
eliminated. The new intervals are returned.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the intervals.

See Also

gintervals, gintervals. 2d, gintervals.canonic

Examples

gdb.init_examples()
intervs <- data.frame(
chrom = "chr1”,
start = c(11000, -100, 10000, 10500),
end = c(12000, 200, 13000000, 10600)
)

gintervals.force_range(intervs)

gintervals.import_genes 33

gintervals.import_genes
Imports genes and annotations from files

Description

Imports genes and annotations from files.

Usage

gintervals.import_genes(
genes.file = NULL,
annots.file = NULL,
annots.names = NULL

)
Arguments
genes.file name or URL of file that contains genes
annots.file name of URL file that contains annotations. If "NULL’ no annotations are im-

ported

annots.names annotations names

Details

This function reads a definition of genes from ’genes.file’ and returns four sets of intervals: TSS,
exons, 3utr and Sutr. In addition to the regular intervals columns ’strand’ column is added. It
contains ’1° values for ’+ strands and -1’ values for ’-* strands.

If annotation file *annots.file’ is given then annotations are attached too to the intervals. The names
of the annotations as they would appear in the return value must be specified in ’annots.names’
argument.

Both ’genes.file’ and ’annots.file’ can be either a file path or URL in a form of *ftp://[address]/[file]’.
Files that these arguments point to can be zipped or unzipped.

Examples of "genes.file’ and "annots.file’ can be found here:
ftp://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/knownGene.txt.gz ftp://hgdownload. soe.ucsc.ec

If a few intervals overlap (for example: two TSS regions) they are all unified to an interval that
covers the whole overlapping region. ’strand’ value is set to 0’ if two or more of the overlapping
intervals have different strands. The annotations of the overlapping intervals are concatenated to a
single character string separated by semicolons. Identical values of overlapping intervals’ annota-
tion are eliminated.

Value

A list of four intervals sets named ’tss’, ’exons’, “utr3’ and ’utr5’. ’strand’ column and annotations
are attached to the intevals.

34 gintervals.intersect

See Also

gintervals, gdb.create

gintervals.intersect Calculates an intersection of two sets of intervals

Description

Calculates an intersection of two sets of intervals.

Usage

gintervals.intersect(
intervals1l = NULL,
intervals2 = NULL,
intervals.set.out = NULL

Arguments

intervals1, intervals2
set of intervals

intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function returns intervals that represent a genomic space which is achieved by intersection of
’intervals1’ and ’intervals2’.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the intersection of intervals.

See Also

gintervals.2d.band_intersect, gintervals.diff, gintervals.union, gintervals, gintervals.2d

gintervals.is.bigset 35

Examples

gdb.init_examples()

intervsl <- gscreen("dense_track > 0.15")
intervs2 <- gscreen("dense_track < 0.2")

'intervs3' and 'intervs4' are identical
intervs3 <- gintervals.intersect(intervsl, intervs2)
intervs4 <- gscreen("dense_track > 0.15 & dense_track < 0.2")

gintervals.is.bigset Tests for big intervals set

Description

Tests for big intervals set.

Usage

gintervals.is.bigset(intervals.set = NULL)

Arguments

intervals.set name of an intervals set

Details

This function tests whether “intervals.set’ is a big intervals set. Intervals set is big if it is stored in
big intervals set format and given the current limits it cannot be fully loaded into memory.

Memory limit is controlled by *gmax.data.size’ option (see: ’getOption("gmax.data.size")’).

Value

"TRUE’ if intervals set is big, otherwise "FALSE’.

See Also

gintervals.load, gintervals.save, gintervals.exists, gintervals.ls

Examples

gdb.init_examples()
gintervals.is.bigset("annotations")

36 gintervals.liftover

gintervals.liftover Converts intervals from another assembly

Description

Converts intervals from another assembly to the current one.

Usage

gintervals.liftover(intervals = NULL, chain = NULL)

Arguments

intervals intervals from another assembly

chain name of chain file or data frame as returned by ’gintervals.load_chain’
Details

This function converts ’intervals’ from another assembly to the current one. Chain file instructs how
the conversion of coordinates should be done. It can be either a name of a chain file or a data frame
in the same format as returned by ’gintervals.load_chain’ function.

The converted intervals are returned. An additional column named ’intervallD’ is added to the
resulted data frame. For each interval in the resulted intervals it indicates the index of the original
interval.

Value

A data frame representing the converted intervals.

See Also

gintervals.load_chain, gtrack.liftover, gintervals

Examples

gdb.init_examples()
chainfile <- paste(.misha$GROOT, "data/test.chain”, sep = "/")
intervs <- data.frame(
chrom = "chr25", start = c(@, 7000),
end = c(6000, 20000)
)

gintervals.liftover(intervs, chainfile)

gintervals.load 37

gintervals.load Loads a named intervals set

Description

Loads a named intervals set.

Usage

gintervals.load(
intervals.set = NULL,
chrom = NULL,
chroml = NULL,
chrom2 = NULL

Arguments

intervals.set name of an intervals set

chrom chromosome for 1D intervals set

chromil first chromosome for 2D intervals set

chrom?2 second chromosome for 2D intervals set
Details

This function loads and returns intervals stored in a named intervals set.

If intervals set contains 1D intervals and ’chrom’ is not "NULL’ only the intervals of the given
chromosome are returned.

Likewise if intervals set contains 2D intervals and ’chrom1’, ’chrom2’ are not 'NULL’ only the
intervals of the given pair of chromosomes are returned.

For big intervals sets *’chrom’ parameter (1D case) / *’chrom1’, ’chrom?2’ parameters (2D case) must
be specified. In other words: big intervals sets can be loaded only by chromosome or chromosome
pair.

Value

A data frame representing the intervals.

See Also

gintervals.save, gintervals.is.bigset, gintervals.exists, gintervals.ls, gintervals,
gintervals. 2d

38 gintervals.load_chain

Examples

gdb.init_examples()
gintervals.load("annotations")

gintervals.load_chain Loads assembly conversion table from a chain file

Description

Loads assembly conversion table from a chain file.

Usage

gintervals.load_chain(file = NULL)

Arguments

file name of chain file

Details

This function reads a file in ’chain’ format and returns assembly conversion table that can be used
in ’gtrack.liftover’ and ’gintervals.liftover’.

Note: chain file might map a few different source intervals into a single target one. These ambiguous
mappings are not presented in the data frame returned by ’gintervals.load_chain’.

Value

A data frame representing assembly conversion table.

See Also

gintervals.liftover, gtrack.liftover

Examples

gdb.init_examples()
chainfile <- paste(.misha$GROOT, "data/test.chain”, sep = "/")
gintervals.load_chain(chainfile)

gintervals.Is

39

gintervals.ls Returns a list of named intervals sets

Description

Returns a list of named intervals sets in Genomic Database.
Usage

gintervals.1ls(
pattern = ""

’

ignore.case = FALSE,
perl = FALSE,

fixed = FALSE,
useBytes = FALSE

Arguments

pattern, ignore.case, perl, fixed, useBytes
see ’grep’

Details

This function returns a list of named intervals sets that match the pattern (see ’grep’). If called
without any arguments all named intervals sets are returned.

Value
An array that contains the names of intervals sets.

See Also

grep, gintervals.exists, gintervals.load, gintervals.save, gintervals.rm, gintervals,
gintervals.2d

Examples

gdb.init_examples()
gintervals.1s()

gintervals.ls(pattern = "annotx")

40 gintervals.mapply
gintervals.mapply Applies a function to values of track expressions
Description
Applies a function to values of track expressions for each interval.
Usage
gintervals.mapply(
FUN = NULL,
intervals = NULL,
enable.gapply.intervals = FALSE,
iterator = NULL,
band = NULL,
intervals.set.out = NULL
)
Arguments
FUN function to apply, found via ‘match.fun’
track expressions whose values are used as arguments for "FUN’
intervals intervals for which track expressions are calculated
enable.gapply.intervals
if "TRUE’, then a variable ’GAPPLY.INTERVALS’ is available
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.
band track expression band. If 'NULL’ no band is used.
intervals.set.out
intervals set name where the function result is optionally outputted
Details

This function evaluates track expressions for each interval from ’intervals’. The resulted vectors are

passed then as arguments to "FUN’.

If the intervals are one-dimensional and have an additional column named ’strand’ whose value is

’-1°, the values of the track expression are placed to the vector in reverse order.

The current interval index (1-based) is stored in ’GAPPLY.INTERVID’ variable that is available
during the execution of ’gintervals.mapply’. There is no guarantee about the order in which the in-
tervals are processed. Do not rely on any specific order and use ’GITERATOR.INTERVID’ variable

to detect the current interval id.

If ’enable.gapply.intervals’ is "TRUE’, an additional variable ‘GAPPLY.INTERVALS’ is defined
during the execution of ’gintervals.mapply’. This variable stores the current iterator intervals prior

gintervals.neighbors 41

to track expression evaluation. Please note that setting ’enable.gapply.intervals’ to "TRUE’ might
severely affect the run-time of the function.

Note: all the changes made in R environment by 'FUN’ will be void if multitasking mode is
switched on. One should also refrain from performing any other operations in "FUN’ that might be
not "thread-safe" such as updating files, etc. Please switch off multitasking ("options(gmultitasking
= FALSE)’) if you wish to perform such operations.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is "NULL’ a data frame representing intervals with an additional column that
contains the return values of "TFUN’.

See Also

mapply

Examples

gdb.init_examples()
gintervals.mapply(
max, "dense_track”,
gintervals(c(1, 2), 0, 10000)
)
gintervals.mapply(
function(x, y) {
max(x + y)
}, "dense_track”,
"sparse_track”, gintervals(c(1, 2), 0, 10000),
iterator = "sparse_track”

gintervals.neighbors Finds neighbors between two sets of intervals

Description

Finds neighbors between two sets of intervals.

Usage

gintervals.neighbors(
intervals1l = NULL,
intervals2 = NULL,
maxneighbors = 1,

42

gintervals.neighbors

mindist -1e+09,
maxdist = 1e+0Q9,
mindistl = -1e+09,
maxdistl = 1e+0@9,
mindist2 = -1e+0@9,
maxdist2 = 1e+0@9,
na.if.notfound = FALSE,
intervals.set.out = NULL

Arguments

intervalsl1, intervals2
intervals

maxneighbors maximal number of neighbors
mindist, maxdist
distance range for 1D intervals
mindist1, maxdist1, mindist2, maxdist?2
distance range for 2D intervals
na.if.notfound if "TRUE’ return 'NA’ interval if no matching neighbors were found, otherwise

omit the interval in the answer
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function finds for each interval in ’intervals1’ the closest 'maxneighbors’ intervals from ’inter-
vals2’.

For 1D intervals the distance must fall in the range of [’'mindist’, 'maxdist’]. If *intervals2’ contains
a ’strand’ column the distance can be positive or negative depending on the ’strand’ value and the
position of interval2 relatively to intervall. If ’strand’ column is missing the distance is always
positive.

For 2D intervals two distances are calculated and returned for each axis. The distances must fall in
the range of [’mindistl’, 'maxdist1’] for axis 1 and [’'mindist2’, *'maxdist2’] for axis 2. For selecting
the closest 'maxneighbors’ intervals Manhattan distance is used (i.e. dist1+dist2).

The names of the returned columns are made unique using make.unique(colnames(df), sep =
""), assuming ’df” is the result.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’” is 'NULL’ a data frame containing the pairs of intervals from ’intervalsl’, in-
tervals from ’intervals2’ and an additional column named ’dist’ (’dist1’ and ’dist2’ for 2D intervals)
representing the distance between the corresponding intervals. The intervals from intervals2 would
be changed to ’chroml’, ’startl’, and ’endl’ and for 2D intervals chromll, startll, endl1 and
chrom22, start22, end22. If ’na.if.notfound’ is "TRUE’, the data frame contains all the intervals

gintervals.quantiles 43

from ’intervals1’ including those for which no matching neighbor was found. For the latter inter-
vals an "NA’ neighboring interval is stated. If 'na.if.notfound’ is "FALSE’, the data frame contains
only intervals from ’intervals1’ for which matching neighbor(s) was found.

See Also

gintervals,

Examples

gdb.init_examples()

intervsl <- giterator.intervals("dense_track”,
gintervals(1, 0, 4000),
iterator = 233

)

intervs2 <- giterator.intervals(
"sparse_track”,
gintervals(1, 0, 2000)

)

gintervals.neighbors(intervsl, intervs2, 10,
mindist = -300,
maxdist = 500

)

intervs2$strand <- c(1, 1, -1, 1)

gintervals.neighbors(intervsl1, intervs2, 10,
mindist = -300,
maxdist = 500

gintervals.quantiles Calculates quantiles of a track expression for intervals

Description

Calculates quantiles of a track expression for intervals.

Usage

gintervals.quantiles(
expr = NULL,
percentiles = 0.5,
intervals = NULL,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

44 gintervals.rbind

Arguments
expr track expression for which quantiles are calculated
percentiles an array of percentiles of quantiles in [0, 1] range
intervals set of intervals
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.
band track expression band. If "NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted
Details

This function calculates quantiles of expr’ for each interval in ’intervals’.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value
If ’intervals.set.out’ is 'NULL’ a set of intervals with additional columns representing quantiles for
each percentile.

See Also

gquantiles, ghins.quantiles

Examples

gdb.init_examples()

intervs <- gintervals(c(1, 2), 0, 5000)

gintervals.quantiles("dense_track”,
percentiles = c(0.5, 0.3, 0.9), intervs

gintervals.rbind Combines several sets of intervals

Description

Combines several sets of intervals into one set.

Usage

gintervals.rbind(..., intervals.set.out = NULL)

gintervals.rm 45

Arguments

e intervals sets to combine
intervals.set.out
intervals set name where the function result is optionally outputted

intervals intervals set

Details

This function combines several intervals sets into one set. It works in a similar manner as 'rbind’
yet it is faster. Also it supports intervals sets that are stored in files including the big intervals sets.

If ’intervals.set.out’ is not "'NULL’ the result is saved as an intervals set. If the format of the output
intervals is set to be "big" (determined implicitly based on the result size and options), the order of
the resulted intervals is altered as they are sorted by chromosome (or chromosomes pair - for 2D).

Value

If ’intervals.set.out’ is 'NULL’ a data frame combining intervals sets.

See Also

gintervals, gintervals. 2d, gintervals.canonic
Examples

gdb.init_examples()

intervsl <- gextract("sparse_track”, gintervals(c(1, 2), 1000, 4000))
intervs2 <- gextract("sparse_track”, gintervals(c(2, "X"), 2000, 5000))
gintervals.save("testintervs"”, intervs2)

gintervals.rbind(intervsl, "testintervs")

gintervals.rm("testintervs”, force = TRUE)

gintervals.rm Deletes a named intervals set

Description

Deletes a named intervals set.

Usage

gintervals.rm(intervals.set = NULL, force = FALSE)

46 gintervals.save

Arguments

intervals.set name of an intervals set

force if "TRUE’, suppresses user confirmation of a named intervals set removal

Details

This function deletes a named intervals set from the Genomic Database. By default *gintervals.rm’
requires the user to interactively confirm the deletion. Set *force’ to "TRUE’ to suppress the user
prompt.

Value

None.

See Also

gintervals.save, gintervals.exists, gintervals.ls, gintervals, gintervals.2d

Examples

gdb.init_examples()

intervs <- gintervals(c(1, 2))
gintervals.save("testintervs"”, intervs)
gintervals.1s()
gintervals.rm("testintervs”, force = TRUE)
gintervals.1s()

gintervals.save Creates a named intervals set

Description

Saves intervals to a named intervals set.

Usage

gintervals.save(intervals.set.out = NULL, intervals = NULL)

Arguments

intervals.set.out
name of the new intervals set

intervals intervals to save

gintervals.summary 47

Details

This function saves ’intervals’ as a named intervals set.

Value

None.

See Also

gintervals.rm, gintervals.load, gintervals.exists, gintervals.1s, gintervals, gintervals. 2d

Examples

gdb.init_examples()

intervs <- gintervals(c(1, 2))
gintervals.save("testintervs"”, intervs)
gintervals.1s()
gintervals.rm("testintervs”, force = TRUE)

gintervals.summary Calculates summary statistics of track expression for intervals

Description

Calculates summary statistics of track expression for intervals.

Usage

gintervals. summary(
expr = NULL,
intervals = NULL,
iterator = NULL,

band = NULL,
intervals.set.out = NULL
)
Arguments
expr track expression
intervals set of intervals
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted

48 gintervals.union

Details

This function returns summary statistics of a track expression for each interval ’intervals’: total
number of bins, total number of bins whose value is NaN, min, max, sum, mean and standard
deviation of the values.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.
Value

If ’intervals.set.out’ is 'NULL’ a set of intervals with additional columns representing summary
statistics for each percentile and interval.

See Also

gsummary, ghins.summary

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2), 0, 5000)
gintervals.summary("dense_track”, intervs)

gintervals.union Calculates a union of two sets of intervals

Description

Calculates a union of two sets of intervals.

Usage

gintervals.union(
intervalsl = NULL,
intervals2 = NULL,
intervals.set.out = NULL

Arguments

intervals1, intervals2
set of one-dimensional intervals
intervals.set.out
intervals set name where the function result is optionally outputted

gintervals.update 49

Details

This function returns intervals that represent a genomic space covered by either ’intervalsl’ or
’intervals2’.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the union of intervals.

See Also

gintervals.intersect, gintervals.diff, gintervals, gintervals.2d

Examples

gdb.init_examples()

intervsl <- gscreen("dense_track > 0.15 & dense_track < 0.18")
intervs2 <- gscreen("dense_track >= 0.18 & dense_track < 0.2")

'intervs3' and 'intervs4' are identical
intervs3 <- gintervals.union(intervs1, intervs2)
intervs4 <- gscreen("dense_track > 0.15 & dense_track < 0.2")

gintervals.update Updates a named intervals set

Description

Updates a named intervals set.

Usage

gintervals.update(
intervals.set = NULL,
intervals = "",
chrom = NULL,
chroml = NULL,

chrom2 = NULL

50

Arguments

intervals.set
intervals
chrom

chroml

chrom2

Details

giterator.cartesian_grid

name of an intervals set

intervals or 'NULL’

chromosome for 1D intervals set
first chromosome for 2D intervals set

second chromosome for 2D intervals set

This function replaces all intervals of given chromosome (or chromosome pair) within ’intervals.set’
with ’intervals’. Chromosome is specified by ’chrom’ for 1D intervals set or ’chrom1’, ’chrom?2’
for 2D intervals set.

If *intervals’ is "NULL’ all intervals of given chromosome are removed from ’intervals.set’.

Value

None.

See Also

gintervals.save, gintervals.load, gintervals.exists, gintervals.ls

Examples

gdb.init_examples()

intervs <- gscreen(
"sparse_track > 0.2",
gintervals(c(1, 2), 0, 10000)

)

gintervals.save("testintervs”, intervs)

gintervals.load("testintervs")

gintervals.update("testintervs"”, intervs[intervs$chrom == "chr2", 1[1:5, 1, chrom = 2)
gintervals.load("testintervs")

gintervals.update("testintervs”, NULL, chrom = 2)

gintervals.load("testintervs")

gintervals.rm("testintervs”, force = TRUE)

giterator.cartesian_grid

Creates a cartesian-grid iterator

Description

Creates a cartesian grid two-dimensional iterator that can be used by any function that accepts an

iterator argument.

giterator.cartesian_grid 51

Usage

giterator.cartesian_grid(
intervalsl = NULL,
expansionl = NULL,
intervals2 = NULL,
expansion2 = NULL,
min.band.idx = NULL,
max.band.idx = NULL

)
Arguments
intervalsi one-dimensional intervals
expansioni an array of integers that define expansion around intervals1 centers
intervals?2 one-dimensional intervals. If 'NULL’ then ’intervals2’ is considered to be equal
to ’intervals1’
expansion2 an array of integers that define expansion around intervals2 centers. If 'NULL’

then ’expansion2’ is considered to be equal to "expansionl’

min.band. idx, max.band. idx
integers that limit iterator intervals to band

Details

This function creates and returns a cartesian grid two-dimensional iterator that can be used by any
function that accepts an iterator argument.

Assume ’centersl’ and ’centers2’ to be the central points of each interval from ’intervalsl’ and
’intervals2’, and C1’, C2’ to be two points from ’centers1’, ’centers2’ accordingly. Assume also
that the values in expansionl’ and ’expansion2’ are unique and sorted.

’giterator.cartesian_grid’ creates a set of all possible unique and non-overlapping two-dimensional
intervals of form: ’(chroml, startl, end1, chrom?2, start2, end2)’. Each ’(chroml, startl, endl)’ is
created by taking a point ’C1’ - ’(chroml, coordl)’ and converting it to ’startl’ and ’endl’ such
that ’start] == coord1+E1[i]’, ’end] == coord1+E1[i+1]’, where ’E1[i]’ is one of the sorted ’ex-
pansionl’ values. Overlaps between rectangles or expansion beyond the limits of chromosome are
avoided.

’min.band.idx’ and 'max.band.idx’ parameters control whether a pair of ’C1’ and *C2’ is skipped or
not. If both of these parameters are not 'NULL’ AND if both ’C1” and *C2’ share the same chromo-
some AND the delta of indices of ’C1* and *’C2’ ("C1 index - C2 index’) lays within ’[min.band.idx,
max.band.idx]” range - only then the pair will be used to create the intervals. Otherwise *C1-C2’
pair is filtered out. Note: if *'min.band.idx’ and *'max.band.idx’ are not 'NULL’, i.e. band indices
filtering is applied, then ’intervals2’ parameter must be set to 'NULL'.

Value

A list containing the definition of cartesian iterator.

52 giterator.intervals

See Also

giterator.intervals

Examples

gdb.init_examples()

intervsl <- gintervals(
c(1, 1, 2), c(1e0, 300, 200),
c(300, 500, 300)

)

intervs2 <- gintervals(
c(1, 2, 2), c(400, 1000, 3000),
c(800, 2000, 4000)

)

itr <- giterator.cartesian_grid(
intervsl, c(-20, 100), intervs2,
c(-40, -10, 50)

)

giterator.intervals(iterator = itr)

itr <- giterator.cartesian_grid(intervsl, c(-20, 50, 100))
giterator.intervals(iterator = itr)

itr <- giterator.cartesian_grid(intervsl, c(-20, 50, 100),
min.band.idx = -1,
max.band.idx = @

)

giterator.intervals(iterator = itr)

giterator.intervals Returns iterator intervals

Description

Returns iterator intervals given track expression, scope, iterator and band.

Usage

giterator.intervals(
expr = NULL,
intervals = .misha$ALLGENOME,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

giterator.intervals 53

Arguments
expr track expression
intervals genomic scope
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "'NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function returns a set of intervals used by the iterator intervals for the given track expression,
genomic scope, iterator and band. Some functions accept an iterator without accepting a track
expression (like *gtrack.create_pwm_energy’). These functions generate the values for each iterator
interval by themselves. Use set "expr’ to "'NULL’ to simulate the work of these functions.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing iterator intervals.

See Also

giterator.cartesian_grid

Examples

gdb.init_examples()

iterator is set implicitly to bin size of 'dense' track
giterator.intervals("dense_track”, gintervals(1l, @, 200))

iterator = 30
giterator.intervals("dense_track”, gintervals(1, 0, 200), 30)

iterator is an intervals set named 'annotations'
giterator.intervals("dense_track”, .misha$ALLGENOME, "annotations")

iterator is set implicitly to intervals of 'array_track' track
giterator.intervals("array_track”, gintervals(1, @, 200))

iterator is a rectangle 100000 by 50000
giterator.intervals(
"rects_track”,
gintervals.2d(chroms1 = 1, chroms2 = "chrX"),
c (100000, 50000)

54

glookup

glookup

Returns values from a lookup table based on track expression

Description

Evaluates track expression and translates the values into bin indices that are used in turn to retrieve
and return values from a lookup table.

Usage
glookup(
lookup_table

D

intervals =

= NULL,

NULL,

include.lowest = FALSE,
force.binning = TRUE,
iterator = NULL,

band = NULL,

intervals.set.out = NULL

Arguments

lookup_table

intervals
include.lowest

force.binning

iterator

band

a multi-dimensional array containing the values that are returned by the function

pairs of “expr’, ’breaks’ where ’expr’ is a track expression and the breaks deter-
mine the bin

genomic scope for which the function is applied
if "TRUE’, the lowest value of the range determined by breaks is included

if "TRUE’, the values smaller than the minimal break will be translated to index
1, and the values that exceed the maximal break will be translated to index N-
1 where N is the number of breaks. If 'FALSE’ the out-of-range values will
produce NaN values.

track expression iterator. If 'NULL’ iterator is determined implicitly based on
track expressions.

track expression band. If 'NULL’ no band is used.

intervals.set.out

Details

intervals set name where the function result is optionally outputted

This function evaluates the track expression for all iterator intervals and translates this value into
an index based on the breaks. This index is then used to address the lookup table and return the
according value. More than one ’expr’-’breaks’ pair can be used. In that case 'lookup_table’ is
addressed in a multidimensional manner, i.e. "lookup_table[il, i2, ...]".

gpartition 55

The range of bins is determined by ’breaks’ argument. For example: ’breaks = c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is "TRUE’ then the lowest value is included in the first interval, i.e. in [x1, x2].

’force.binning’ parameter controls what should be done when the value of expr’ exceeds the range
determined by ’breaks’. If *force.binning’ is "TRUE’ then values smaller than the minimal break
will be translated to index 1, and the values exceeding the maximal break will be translated to index
’M-1" where "M’ is the number of breaks. If ’force.binning’ is 'FALSE’ the out-of-range values
will produce *NaN’ values.

Regardless of *force.binning’ value if the value of "expr’ is 'NaN’ then result is "NaN’ too.

The order inside the result might not be the same as the order of intervals. Use ’intervallD’ column
to refer to the index of the original interval from the supplied ’intervals’.

If ’intervals.set.out’ is not "NULL’ the result (without ’columnID’ column) is saved as an intervals
set. Use this parameter if the result size exceeds the limits of the physical memory.
Value

If ’intervals.set.out’ is "NULL’ a set of intervals with additional 'value’ and ’columnID’ columns.

See Also

gtrack.lookup, gextract, gpartition, gdist
Examples

gdb.init_examples()

one-dimensional lookup table
breaks1 <- seq(0.1, 0.2, length.out = 6)
glookup(1:5, "dense_track”, breaks1, gintervals(l, 0, 200))

two-dimensional lookup table

t <- array(1:15, dim = c(5, 3))

breaks2 <- seq(@.31, 0.37, length.out = 4)

glookup(
t, "dense_track”, breaksl, "2 * dense_track”, breaks2,
gintervals(1, @, 200)

gpartition Fartitions the values of track expression

Description

Converts the values of track expression to intervals that match corresponding bin.

56 gpartition

Usage

gpartition(
expr = NULL,
breaks = NULL,
intervals = NULL,
include.lowest = FALSE,
iterator = NULL,

band = NULL,
intervals.set.out = NULL
)
Arguments
expr track expression
breaks breaks that determine the bin
intervals genomic scope for which the function is applied

include.lowest if "TRUE’, the lowest value of the range determined by breaks is included

iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.

band track expression band. If "NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function converts first the values of track expression into 1-based bin’s index according ’breaks’
argument. It returns then the intervals with the corresponding bin’s index.

The range of bins is determined by ’breaks’ argument. For example: ’breaks=c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

If ’include.lowest’ is "TRUE’ the the lowest value will be included in the first interval, i.e. in [Xx1,
x2].

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value
If ’intervals.set.out’ is 'NULL’ a set of intervals with an additional column that indicates the corre-
sponding bin index.

See Also

gscreen, gextract, glookup, gdist

gquantiles 57

Examples

gdb.init_examples()
breaks <- seq(@, 0.2, by = 0.05)
gpartition("dense_track”, breaks, gintervals(1, @, 5000))

gquantiles Calculates quantiles of a track expression

Description

Calculates the quantiles of a track expression for the given percentiles.

Usage

gquantiles(
expr = NULL,
percentiles = 0.5,
intervals = get("ALLGENOME", envir = .misha),
iterator = NULL,

band = NULL
)
Arguments
expr track expression
percentiles an array of percentiles of quantiles in [0, 1] range
intervals genomic scope for which the function is applied
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "'NULL’ no band is used.
Details

This function calculates the quantiles for the given percentiles.

If data size exceeds the limit (see: ’getOption(gmax.data.size)’), the data is randomly sampled to
fit the limit. A warning message is generated. The seed of the pseudo-random generator can be
controlled through ’grnd.seed’ option.

Note: this function is capable to run in multitasking mode. Sampling may vary according to the
extent of multitasking. Since multitasking depends on the number of available CPU cores, running
the function on two different machines might give different results. Please switch off multitasking if
you want to achieve identical results on any machine. For more information regarding multitasking
please refer "User Manual".

58 grevcomp

Value

An array that represent quantiles.

See Also

gbins.quantiles, gintervals.quantiles, gdist

Examples

gdb.init_examples()
gquantiles("dense_track”, c(@0.1, 0.6, 0.8), gintervals(c(1, 2)))

grevcomp Get reverse complement of DNA sequence

Description

Takes a DNA sequence string and returns its reverse complement.

Usage
grevcomp(seq)
Arguments
seq A character vector containing DNA sequences (using A,C,G,T). Ignores other
characters and NA values.
Value

A character vector of the same length as the input, containing the reverse complement sequences

Examples

grevcomp("ACTG") # Returns "CAGT”
grevcomp(c("ACTG", "GGCC")) # Returns c("CAGT", "GGCC")
grevcomp(c("ACTG", NA, "GGCC")) # Returns c("CAGT"”, NA, "GGCC")

gsample 59

gsample Returns samples from the values of track expression

Description

Returns a sample of the specified size from the values of track expression.

Usage

gsample(expr = NULL, n = NULL, intervals = NULL, iterator = NULL, band = NULL)

Arguments
expr track expression
n a number of items to choose
intervals genomic scope for which the function is applied
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "'NULL’ no band is used.
Details

This function returns a sample of the specified size from the values of track expression. If ’n’ is
less than the total number of values, the data is randomly sampled. The seed of the pseudo-random
generator can be controlled through ’grnd.seed’ option.

If °’n’ is higher than the total number of values, all values are returned (yet reshuffled).

Value

An array that represent quantiles.

See Also

gextract
Examples

gdb.init_examples()
gsample("sparse_track”, 10)

60 gscreen

gscreen Finds intervals that match track expression

Description

Finds all intervals where track expression is "TRUE’.

Usage

gscreen(
expr = NULL,
intervals = NULL,
iterator = NULL,
band = NULL,
intervals.set.out = NULL

)
Arguments
expr logical track expression
intervals genomic scope for which the function is applied
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "NULL’ no band is used.

intervals.set.out
intervals set name where the function result is optionally outputted

Details

This function finds all intervals where track expression’s value is "TRUE’.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

Value

If ’intervals.set.out’ is 'NULL’ a set of intervals that match track expression.

See Also

gsegment, gextract

gsegment 61

Examples

gdb.init_examples()
gscreen("dense_track > 0.2 & sparse_track < 0.4",

iterator = "dense_track”
)
gsegment Divides track expression into segments
Description

Divides the values of track expression into segments by using Wilcoxon test.

Usage

gsegment (
expr = NULL,
minsegment = NULL,
maxpval = 0.05,
onetailed = TRUE,
intervals = NULL,
iterator = NULL,
intervals.set.out = NULL

)
Arguments
expr track expression
minsegment minimal segment size
maxpval maximal P-value that separates two adjacent segments
onetailed if "TRUE’, Wilcoxon test is performed one tailed, otherwise two tailed
intervals genomic scope for which the function is applied
iterator track expression iterator of "fixed bin" type. If 'NULL’ iterator is determined

implicitly based on track expression.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function divides the values of track expression into segments, where each segment size is at
least of “minsegment’ size and the P-value of comparing the segment with the first "'minsegment’
values from the next segment is at most 'maxpval’. Comparison is done using Wilcoxon (also
known as Mann-Whitney) test.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

62 gseq.extract

Value

If ’intervals.set.out’ is "'NULL’ a set of intervals where each interval represents a segment.

See Also

gscreen, gwilcox

Examples

gdb.init_examples()
gsegment("dense_track”, 5000, 0.0001)

gseq.extract Returns DNA sequences

Description

Returns DNA sequences for given intervals

Usage

gseq.extract(intervals = NULL)

Arguments

intervals intervals for which DNA sequence is returned

Details

This function returns an array of sequence strings for each interval from ’intervals’. If intervals
contain an additional ’strand’ column and its value is ’-1°, the reverse-complementary sequence is
returned.

Value

An array of character strings representing DNA sequence.

See Also

gextract

Examples

gdb.init_examples()
intervs <- gintervals(c(1, 2), 10000, 10020)
gseq.extract(intervs)

gsetroot 63

gsetroot Initializes connection with Genomic Database

Description

Initializes connection with Genomic Database: loads the list of tracks, intervals, etc.

Usage
gsetroot(groot = NULL, dir = NULL, rescan = FALSE)

gdb.init(groot = NULL, dir = NULL, rescan = FALSE)

gdb.init_examples()

Arguments
groot the root directory of the Genomic Database
dir the current working directory inside the Genomic Database
rescan indicates whether the file structure should be rescanned
Details

’gdb.init’ initializes the connection with the Genomic Database. It is typically called first prior
to any other function. When the package is attached it internally calls to ’gdb.init.examples’
which opens the connection with the database located at "PKGDIR/trackdb/test’ directory, where
’PKGDIR’ is the directory where the package is installed.

The current working directory inside the Genomic Database is set to ’dir’. If ’dir’ is "NULL’, the
current working directory is set to ’GROOT/tracks’.

If 'rescan’ is "TRUE’, the list of tracks and intervals is achieved by rescanning directory structure
under the current current working directory. Otherwise *gdb.init’ attempts to use the cached list that
resides in ’groot/.db.cache’ file.

Upon completion the connection is established with the database. If auto-completion mode is
switched on (see ’gset_input_method’) the list of tracks and intervals sets is loaded and added
as variables to the global environment allowing auto-completion of object names with <TAB>
key. Also a few variables are defined at an environment called .misha, and can be accessed us-
ing .misha$variable, e.g. .misha$ALLGENOME. These variables should not be modified by user.

GROOT Root directory of Genomic Database

GWD Current working directory inside Genomic Database
GTRACKS List of all available tracks

GINTERVS List of all available intervals

GVTRACKS List of all available virtual tracks

ALLGENOME List of all chromosomes and their sizes

GITERATOR.INTERVALS A set of iterator intervals for which the track expression is evaluated

64 gsummary

Value

None.

See Also

gdb.reload, gdb.create, gdir.cd, gtrack.1s, gintervals.1ls, gvtrack.ls

gsummary Calculates summary statistics of track expression

Description

Calculates summary statistics of track expression.

Usage
gsummary (expr = NULL, intervals = NULL, iterator = NULL, band = NULL)

Arguments
expr track expression
intervals genomic scope for which the function is applied
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If 'NULL’ no band is used.
Details

This function returns summary statistics of a track expression: total number of bins, total number
of bins whose value is NaN, min, max, sum, mean and standard deviation of the values.

Value

An array that represents summary statistics.

See Also

gintervals.summary, ghins.summary

Examples

gdb.init_examples()
gsummary ("rects_track")

gtrack.2d.create 65

gtrack.2d.create Creates a ’Rectangles’ track from intervals and values

Description

Creates a 'Rectangles’ track from intervals and values.

Usage

gtrack.2d.create(
track = NULL,
description = NULL,
intervals = NULL,
values = NULL

)
Arguments

track track name

description a character string description

intervals a set of two-dimensional intervals

values an array of numeric values - one for each interval
Details

This function creates a new ’Rectangles’ (two-dimensional) track with values at given intervals.
’description’ is added as a track attribute.

Value

None.

See Also

gtrack.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack. info,
gdir.create, gtrack.attr.get

Examples

gdb.init_examples()
intervsl <- gintervals.2d(
1, (1:4) * 200, (1:4) * 200 + 100,
1, (1:4) % 300, (1:4) * 300 + 200
)
intervs2 <- gintervals.2d(
"X", (7:10) * 100, (7:10) * 100 + 50,
2, (1:4) % 200, (1:4) * 200 + 130

66 gtrack.2d.import

)

intervs <- rbind(intervs1, intervs2)
gtrack.2d.create(
"test_rects”, "Test 2d track”, intervs,
runif(dim(intervs)[1]1, 1, 100)
)
gextract("test_rects”, .misha$ALLGENOME)
gtrack.rm("test_rects”, force = TRUE)

gtrack.2d. import Creates a 2D track from tab-delimited file

Description

Creates a 2D track from tab-delimited file(s).

Usage

gtrack.2d.import(track = NULL, description = NULL, file = NULL)

Arguments
track track name
description a character string description
file vector of file paths

Details

This function creates a 2D track track from one or more tab-delimited files. Each file must start with
a header describing the columns. The first 6 columns must have the following names: ’chroml1’,
’start]’, ’end1’, chrom?2’, ’start2’, ’end2’. The last column is designated for the value and it may
have an arbitrary name. The header is followed by a list of intervals and a value for each interval.
Overlapping intervals are forbidden.

One can learn about the format of the tab-delimited file by running ’gextract’ function on a 2D track
with a ’file’ parameter set to the name of the file.

If all the imported intervals represent a point (i.e. end == start + 1) a ’Points’ track is created
otherwise it is a "Rectangles’ track.

"description’ is added as a track attribute.

Note: temporary files are created in the directory of the track during the run of the function. A
few of them need to be kept simultaneously open. If the number of chromosomes and / or intervals
is particularly high, a few thousands files might be needed to be opened simultaneously. Some
operating systems limit the number of open files per user, in which case the function might fail with
"Too many open files" or similar error. The workaround could be:

1. Increase the limit of simultaneously opened files (the way varies depending on your operating
system). 2. Increase the value of gmax.data.size’ option. Higher values of ’gmax.data.size’ option
will increased memory usage of the function but create fewer temporary files.

gtrack.2d.import_contacts 67

Value

None.

See Also

gtrack.rm, gtrack.info, gdir.create

gtrack.2d.import_contacts
Creates a track from a file of inter-genomic contacts

Description

Creates a track from a file of inter-genomic contacts.

Usage

gtrack.2d. import_contacts(
track = NULL,
description = NULL,
contacts = NULL,

fends = NULL,
allow.duplicates = TRUE
)
Arguments
track track name
description a character string description
contacts vector of contacts files
fends name of fragment ends file

allow.duplicates
if "TRUE’ duplicated contacts are allowed

Details

This function creates a "Points’ (two-dimensional) track from contacts files. If *allow.duplicates’ is
"TRUE’ duplicated contacts are allowed and summed up, otherwise an error is reported.

Contacts (coordl, coord2) within the same chromosome are automatically doubled to include also
’(coord2, coordl)’ unless "coord]’ equals to *coord?2’.

Contacts may come in one or more files.

If *fends’ is "'NULL’ contacts file is expected to be in "intervals-value" tab-separated format. The
file starts with a header defining the column names. The first 6 columns must have the following
names: "chroml’, ’startl’, ’end1’, ’chrom?2’, ’start2’, ’end2’. The last column is designated for the
value and it may have an arbitrary name. The header is followed by a list of intervals and a value for

68 gtrack.2d.import_contacts

each interval. An interval of form (chroml, startl, endl, chrom?2, start2, end2) is added as a point
(X, Y) to the resulted track where X = (startl + end1) /2 and Y = (start2 + end2) / 2.

One can see an example of "intervals-value" format by running ’gextract’ function on a 2D track
with a ’file’ parameter set to the name of the file.

If fends’ is not "NULL’ contacts file is expected to be in "fends-value" tab-separated format. It
should start with a header containing at least 3 column names ’fend1’, fend2’ and ’count’ in arbi-
trary order followed by lines each defining a contact between two fragment ends.

COLUMN VALUE DESCRIPTION

fend1 Integer ID of the first fragment end
fend2 Integer ID of the second fragment end
count Numeric Value associated with the contact

A fragment ends file is also in tab-separated format. It should start with a header containing at least
3 column names ’fend’, *chr’ and *coord’ in arbitrary order followed by lines each defining a single
fragment end.

COLUMN VALUE DESCRIPTION

fend Unique integer ID of the fragment end

chr Chromosome name Can be specified with or without "chr" prefix, like: "X" or "chrX"
coord Integer Coordinate

’description’ is added as a track attribute.

Note: temporary files are created in the directory of the track during the run of the function. A
few of them need to be kept simultaneously open. If the number of chromosomes and / or contacts
is particularly high, a few thousands files might be needed to be opened simultaneously. Some
operating systems limit the number of open files per user, in which case the function might fail with
"Too many open files" or similar error. The workaround could be:

1. Increase the limit of simultaneously opened files (the way varies depending on your operating
system). 2. Increase the value of ’gmax.data.size’ option. Higher values of ’gmax.data.size’ option
will increased memory usage of the function but create fewer temporary files.

Value

None.

See Also

gtrack.2d.import, gtrack.rm, gtrack.info, gdir.create

gtrack.array.extract 69

gtrack.array.extract Returns values from 'Array’ track

Description

Returns values from ’Array’ track.

Usage
gtrack.array.extract(
track = NULL,
slice = NULL,
intervals = NULL,
file = NULL,
intervals.set.out = NULL
)
Arguments
track track name
slice a vector of column names or column indices or "NULL’
intervals genomic scope for which the function is applied
file file name where the function result is to be saved. If 'NULL’ result is returned

to the user.
intervals.set.out

intervals set name where the function result is optionally outputted

Details

This function returns the column values of an ’Array’ track in the genomic scope specified by
’intervals’. ’slice’ parameter determines which columns should appear in the result. The columns
can be indicated by their names or their indices. If ’slice’ is 'NULL’ the values of all track columns
are returned.

The order inside the result might not be the same as the order of intervals. An additional column
’intervallD’ is added to the return value. Use this column to refer to the index of the original interval
from the supplied ’intervals’.

If *file’ parameter is not "NULL’ the result is saved to a tab-delimited text file (without *intervallD’
column) rather than returned to the user. This can be especially useful when the result is too big
to fit into the physical memory. The resulted file can be used as an input for ’gtrack.array.import’
function.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Similarly to ’file’ parameter
’intervals.set.out’ can be useful to overcome the limits of the physical memory.
Value

If *file’ and ’intervals.set.out’ are 'NULL’ a set of intervals with additional columns for ’Array’
track column values and ’columnID’.

70 gtrack.array.get_colnames

See Also

gextract, gtrack.array.get_colnames, gtrack.array.import

Examples

gdb.init_examples()
gtrack.array.extract(
"array_track”, c("col3", "col5"),
gintervals(1, 0, 2000)

gtrack.array.get_colnames
Returns column names of array track

Description

Returns column names of array track.

Usage

gtrack.array.get_colnames(track = NULL)

Arguments

track track name

Details

This function returns the column names of an array track.

Value

A character vector with column names.

See Also

gtrack.array.set_colnames, gtrack.array.extract, gvtrack.array.slice, gtrack.info

Examples

gtrack.array.get_colnames("array_track")

gtrack.array.import 71

gtrack.array.import Creates an array track from array tracks or files

Description

Creates an array track from array tracks or files.

Usage
gtrack.array.import(track = NULL, description = NULL, ...)
Arguments
track name of the newly created track
description a character string description
array track or name of a tab-delimited file
Details

This function creates a new "Array’ track from one or more "sources". Each source can be either
another ’Array’ track or a tab-delimited file that contains one-dimensional intervals and column
values that should be added to the newly created track. One can learn about the exact format of the
file by running ’gtrack.array.extract’ or *gextract’ functions with a ’file’ parameter and inspecting
the output file.

There might be more than one source used to create the new track. In that case the new track will
contain the columns from all the sources. The equally named columns are merged. Intervals that
appear in one source but not in the other are added and the values for the missing columns are set
to NaN. Intervals with all NaN values are not added. Partial overlaps between two intervals from
different sources are forbidden.

’description’ is added as a track attribute.

Value

None.

See Also

gextract, gtrack.array.extract, gtrack.array.set_colnames, gtrack.rm, gtrack.info,
gdir.create

Examples

f1 <~ tempfile()
gextract("sparse_track”, gintervals(l, 5000, 20000), file = f1)
2 <- tempfile()
gtrack.array.extract("array_track”, c("col2"”, "col3", "col4"),

72 gtrack.array.set_colnames

gintervals(1, 0, 20000),

file = f2

)

3 <- tempfile()

gtrack.array.extract("array_track”, c("col1”, "col3"),
gintervals(1, 0, 20000),
file = f3

)

gtrack.array.import("test_trackl”, "Test array track 1", f1, f2)
gtrack.array.extract("test_track1”, NULL, .misha$ALLGENOME)

gtrack.array. import(
"test_track2", "Test array track 2",
"test_track1”, f3

)
gtrack.array.extract("test_track2"”, NULL, .misha$ALLGENOME)

gtrack.rm("test_trackl"”, TRUE)
gtrack.rm("test_track2"”, TRUE)
unlink(c(f1, f2, f3))

gtrack.array.set_colnames
Sets column names of array track

Description

Sets column names of array track.

Usage

gtrack.array.set_colnames(track = NULL, names = NULL)

Arguments

track track name

names vector of column names
Details

This sets the column names of an array track.

Value

None.

gtrack.attr.export 73

See Also

gtrack.array.get_colnames, gtrack.array.extract, gvtrack.array.slice, gtrack.info

Examples

old.names <- gtrack.array.get_colnames("array_track")
new.names <- paste("modified”, old.names, sep = "_"
gtrack.array.set_colnames("array_track”, new.names)
gtrack.array.get_colnames("array_track")
gtrack.array.set_colnames("array_track”, old.names)
gtrack.array.get_colnames("array_track")

gtrack.attr.export Returns track attributes values

Description

Returns track attributes values.

Usage

gtrack.attr.export(tracks = NULL, attrs = NULL)

Arguments
tracks a vector of track names or "NULL’
attrs a vector of attribute names or 'NULL’
Details

This function returns a data frame that contains track attributes values. Column names of the data
frame consist of the attribute names, row names contain the track names.

The list of required tracks is specified by ’tracks’ argument. If ’tracks’ is "NULL’ the attribute
values of all existing tracks are returned.

Likewise the list of required attributes is controlled by ’attrs’ argument. If ’attrs’ is "'NULL’ all
attribute values of the specified tracks are returned. The columns are also sorted then by "popularity”
of an attribute, i.e. the number of tracks containing this attribute. This sorting is not applied if ’attrs’
is not 'NULL’.

Empty character string in a table cell marks a non-existing attribute.

Value

A data frame containing track attributes values.

74

See Also

gtrack.attr.import, gtrack.attr.get, gtrack.attr.set

Examples

gdb.init_examples()

gtrack.attr.export()

gtrack.attr.export(tracks = c("sparse_track”, "dense_track"))
gtrack.attr.export(attrs = "created.by")

gtrack.attr.get

gtrack.attr.get Returns value of a track attribute

Description

Returns value of a track attribute.

Usage
gtrack.attr.get(track = NULL, attr = NULL)

Arguments

track track name

attr attribute name

Details

This function returns the value of a track attribute. If the attribute does not exist an empty sting is

returned.

Value

Track attribute value.

See Also

gtrack.attr.import, gtrack.attr.set

Examples

gdb.init_examples()

gtrack.attr.set("sparse_track”, "test_attr”, "value")
gtrack.attr.get("sparse_track”, "test_attr"”)
gtrack.attr.set("sparse_track”, "test_attr”, "")

gtrack.attr.import 75

gtrack.attr.import Imports track attributes values

Description

Imports track attributes values.

Usage

gtrack.attr.import(table = NULL, remove.others = FALSE)

Arguments

table a data frame containing attribute values

remove.others specifies what to do with the attributes that are not in the table

Details

This function makes imports attribute values contained in a data frame ’table’. The format of a
table is similar to the one returned by ’gtrack.attr.export’. The values of the table must be character
strings. Column names of the table should specify the attribute names, while row names should
contain the track names.

The specified attributes of the specified tracks are modified. If an attribute value is an empty string
this attribute is removed from the track.

If ‘remove.others’ is "TRUE’ all non-readonly attributes that do not appear in the table are removed,
otherwise they are preserved unchanged.

Error is reported on an attempt to modify a value of a read-only attribute.

Value

None.

See Also

gtrack.attr.import, gtrack.attr.set, gtrack.attr.get, gdb.get_readonly_attrs

Examples

gdb.init_examples()

t <- gtrack.attr.export()

t$newattr <- as.character(1:dim(t)[1])
gtrack.attr.import(t)
gtrack.attr.export(attrs = "newattr")

roll-back the changes
t$newattr <- ""

76 gtrack.attr.set

gtrack.attr.import(t)

gtrack.attr.set Assigns value to a track attribute

Description

Assigns value to a track attribute.

Usage

gtrack.attr.set(track = NULL, attr = NULL, value = NULL)

Arguments
track track name
attr attribute name
value value

Details

This function creates a track attribute and assigns ’value’ to it. If the attribute already exists its value
is overwritten.

If *value’ is an empty string the attribute is removed.

Error is reported on an attempt to modify a value of a read-only attribute.

Value

None.

See Also

gtrack.attr.get, gtrack.attr.import, gtrack.var.set, gdb.get_readonly_attrs

Examples

gdb.init_examples()

gtrack.attr.set("sparse_track”, "test_attr”, "value")
gtrack.attr.get("sparse_track”, "test_attr”)
gtrack.attr.set("sparse_track”, "test_attr”, "")

gtrack.convert 77

gtrack.convert Converts a track to the most current format

Description

Converts a track (if needed) to the most current format.

Usage

gtrack.convert(src.track = NULL, tgt.track = NULL)

Arguments

src.track source track name

tgt.track target track name. If "NULL’ the source track is overwritten.
Details

This function converts a track to the most current format. It should be used if a track created by an
old version of the library cannot be read anymore by the newer version. The old track is given by
’src.track’. After conversion a new track ’tgt.track’ is created. If ’tgt.track’ is "NULL’ the source
track is overwritten.

Value

None

See Also

gtrack.create, gtrack. 2d.create, gtrack.create_sparse

gtrack.create Creates a track from a track expression

Description

Creates a track from a track expression.

Usage

gtrack.create(
track = NULL,
description = NULL,
expr = NULL,
iterator = NULL,
band = NULL

78 gtrack.create

Arguments
track track name
description a character string description
expr track expression
iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expression.
band track expression band. If "NULL’ no band is used.
Details

This function creates a new track named track. The values of the track are determined by evaluation
of ’expr’ - a numeric track expression. The type of the new track is determined by the type of
the iterator. "Fixed bin’, ’Sparse’ or 'Rectangles’ track can be created accordingly. ’description’ is
added as a track attribute.

Value

None.

See Also

gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create

Examples

gdb.init_examples()

Creates a new track that is a sum of values from 'dense' and
2 * non-nan values of 'sparse' track. The new track type is
Dense with a bin size that equals to '70'.
gtrack.create("mixed_track”, "Test track”,
"dense_track +
replace(sparse_track, is.nan(sparse_track), @) x 2",
iterator = 70
)
gtrack.info("mixed_track")
gtrack.rm("mixed_track”, force = TRUE)

gtrack.create_dirs 79

gtrack.create_dirs Create directories needed for track creation

Description

This function creates the directories needed for track creation. For example, if the track name is
’proj.sample.my_track’, this function creates the directories "proj’ and ’sample’. Use this function
with caution - a long track name may create a deep directory structure.

Usage

gtrack.create_dirs(track, mode = "@777")

Arguments

track name of the track

mode see ’dir.create’

Value

None.
Examples
gdb.init_examples()

This creates the directories 'proj' and 'sample'
gtrack.create_dirs("proj.sample.my_track")

gtrack.create_pwm_energy
Creates a new track from PSSM energy function

Description

Creates a new track from PSSM energy function.

Usage

gtrack.create_pwm_energy(
track = NULL,
description = NULL,
pssmset = NULL,
pssmid = NULL,
prior = NULL,
iterator = NULL

80

Arguments

track
description

pssmset

pssmid
prior

iterator

Details

gtrack.create_sparse

track name
a character string description

name of PSSM set: "pssmset.key’ and ’pssmset.data’ must be presented in ’GROOT/pssms’
directory

PSSM id
prior

track expression iterator for the newly created track

This function creates a new track with values of a PSSM energy function. PSSM parameters (nu-
cleotide probability per position and pluralization) are determined by "pssmset’ key and data files
(’pssmset.key’ and ’pssmset.data’). These two files must be located in ’GROOT/pssms’ directory.
The type of the created track is determined by the type of the iterator. ’description’ is added as a

track attribute.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify,
gtrack.rm, gtrack.info, gdir.create

Examples

gdb.init_examples()

gtrack.create_pwm_energy("pwm_energy_track”, "Test track”, "pssm”,
3, 0.01,
iterator 100

)

gextract("pwm_energy_track”, gintervals(1, 0, 1000))

gtrack.create_sparse Creates a 'Sparse’ track from intervals and values

Description

Creates a ’Sparse’ track from intervals and values.

gtrack.create_sparse 81

Usage

gtrack.create_sparse(
track = NULL,
description = NULL,
intervals = NULL,
values = NULL

)
Arguments

track track name

description a character string description

intervals a set of one-dimensional intervals

values an array of numeric values - one for each interval
Details

This function creates a new ’Sparse’ track with values at given intervals. ’description’ is added as a
track attribute.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.smooth, gtrack.modify, gtrack.rm, gtrack. info,
gdir.create

Examples

gdb.init_examples()
intervs <- gintervals.load("annotations”)
gtrack.create_sparse(
"test_sparse”, "Test track”, intervs,
1:dim(intervs)[1]
)
gextract("test_sparse”, .misha$ALLGENOME)
gtrack.rm("test_sparse”, force = TRUE)

82 gtrack.import

gtrack.exists Tests for a track existence

Description

Tests for a track existence.

Usage

gtrack.exists(track = NULL)

Arguments

track track name

Details

This function returns "TRUE’ if a track exists in Genomic Database.

Value

*TRUE’ if a track exists. Otherwise ’FALSE’.

See Also

gtrack.ls, gtrack.info, gtrack.create, gtrack.rm

Examples

gdb.init_examples()
gtrack.exists("dense_track")

gtrack.import Creates a track from WIG / BigWig / BedGraph / tab-delimited file

Description

Creates a track from WIG / BigWig / BedGraph / tab-delimited file

gtrack.import_mappedseq 83

Usage
gtrack. import(
track = NULL,
description = NULL,
file = NULL,
binsize = NULL,
defval = NaN
)
Arguments
track track name
description a character string description
file file path
binsize bin size of the newly created ’Dense’ track or ’0’ for a ’Sparse’ track
defval default track value
Details

This function creates a track from WIG / BigWig / BedGraph / tab-delimited file. One can learn
about the format of the tab-delimited file by running ’gextract’ function on a 1D track with a ’file’

parameter set to the name of the file. Zipped files are supported (file name must have .gz’ or *.zip’
suffix).

If *binsize’ is 0 the resulted track is created in ’Sparse’ format. Otherwise the 'Dense’ format is
chosen with a bin size equal to ’binsize’. The values that were not defined in input file file are
substituted by ’defval’ value.

“description’ is added as a track attribute.

Value

None.

See Also

gtrack.import_set, gtrack.rm, gtrack.info, gdir.create, gextract

gtrack. import_mappedseq
Creates a track from a file of mapped sequences

Description

Creates a track from a file of mapped sequences.

84 gtrack.import_mappedseq

Usage

gtrack. import_mappedseq(
track = NULL,
description = NULL,
file = NULL,
pileup = 0,
binsize = -1,
cols.order = c(9, 11, 13, 14),
remove.dups = TRUE

)
Arguments

track track name

description a character string description

file name of mapped sequences file

pileup interval expansion

binsize bin size of a dense track

cols.order order of sequence, chromosome, coordinate and strand columns in mapped se-

quences file or NULL if SAM file is used

remove.dups if "TRUE’ the duplicated coordinates are counted only once.

Details

This function creates a track from a file of mapped sequences. The file can be in SAM format or in
a general TAB delimited text format where each line describes a single read.

For a SAM file ’cols.order’ must be set to 'NULL’.

For a general TAB delimited text format the following columns must be presented in the file: se-
quence, chromosome, coordinate and strand. The position of these columns should be specified in
“cols.order’ argument. The default value of ’cols.order’ is an array of (9, 11, 13, 14) meaning that
sequence is expected to be found at column number 9, chromosome - at column 11, coordinate -
at column 13 and strand - at column 14. The column indices are 1-based, i.e. the first column is
referenced by 1. Chromosome needs a prefix 'chr’ e.g. *chrl’. Valid strand values are ’+’ or "’F’ for
forward strand and ’-’ or R’ for the reverse strand.

Each read at given coordinate can be "expanded" to cover an interval rather than a single point. The
length of the interval is controlled by ’pileup’ argument. The direction of expansion depends on
the strand value. If ’pileup’ is ’0’, no expansion is performed and the read is converted to a single
point. The track is created in sparse format. If ’pileup’ is greater than zero, the output track is in
dense format. ’binsize’ controls the bin size of the dense track.

If ‘remove.dups’ is "TRUE’ the duplicated coordinates are counted only once.
"description’ is added as a track attribute.

*gtrack.import_mappedseq’ returns the statistics of the conversion process.

Value

A list of conversion process statistics.

gtrack.import_set 85

See Also

gtrack.rm, gtrack.info, gdir.create

gtrack.import_set Creates one or more tracks from multiple WIG / BigWig / BedGraph /
tab-delimited files on disk or FTP

Description

Creates one or more tracks from WIG / BigWig / BedGraph / tab-delimited files on disk or FTP.

Usage

gtrack. import_set(
description = NULL,
path = NULL,
binsize = NULL,
track.prefix = NULL,

defval = NaN
)
Arguments
description a character string description
path file path or URL (may contain wildcards)
binsize bin size of the newly created Dense’ track or ’0’ for a *Sparse’ track

track.prefix prefix for a track name

defval default track value

Details

This function is similar to ’gtrack.import’ however unlike the latter it can create multiple tracks.
Additionally the files can be fetched from an FTP server.

The files are expected to be in WIG / BigWig / BedGraph / tab-delimited formats. One can learn
about the format of the tab-delimited file by running ’gextract’ function with a ’file’ parameter set
to the name of the file. Zipped files are supported (file name must have ’.gz’ or ’.zip’ suffix).

Files are specified by ’path’ argument. "path’ can be also a URL of an FTP server in the form of
*ftp://[address]/[files]’. If *path’ is a URL, the files are first downloaded from FTP server to a tempo-
rary directory and then imported to tracks. The temporary directory is created at’GROOT/downloads’.

Regardless whether ’path’ is file path or to a URL, it can contain wildcards. Hence multiple files
can be imported (and downloaded) at once.

If *binsize’ is O the resulted tracks are created in ’Sparse’ format. Otherwise the ’Dense’ format
is chosen with a bin size equal to "binsize’. The values that were not defined in input file file are
substituted by ’defval’ value.

86

gtrack.info

The name of a each created track is of ’[track.prefix][filename]” form, where ’filename’ is the name
of the WIG file. For example, if "track.prefix’ equals to "wigs."" and an input file name is "'mydata’,
a track named ’wigs.mydata’ is created. If "track.prefix’ is 'NULL’ no prefix is appended to the
name of the created track.

Existing tracks are not overwritten and no new directories are automatically created.
’description’ is added to the created tracks as an attribute.

*gtrack.import_set’ does not stop if an error occurs while importing a file. It rather continues im-
porting the rest of the files.

“gtrack.import_set’ returns the names of the files that were successfully imported and those that
failed.

Value

Names of files that were successfully imported and those that failed.

See Also

gtrack.import, gwget, gtrack.rm, gtrack.info, gdir.create, gextract

gtrack.info Returns information about a track

Description

Returns information about a track.

Usage

gtrack.info(track = NULL)

Arguments

track track name

Details

Returns information about the track (type, dimensions, size in bytes, etc.). The fields in the returned
value vary depending on the type of the track.

Value

A list that contains track properties

See Also

gtrack.exists, gtrack.ls

gtrack liftover 87

Examples

gdb.init_examples()
gtrack.info("dense_track")
gtrack.info("rects_track")

gtrack.liftover Imports a track from another assembly

Description

Imports a track from another assembly.

Usage

gtrack.liftover(
track = NULL,
description = NULL,
src.track.dir = NULL,

chain = NULL
)
Arguments
track name of a created track
description a character string description

src.track.dir path to the directory of the source track

chain name of chain file or data frame as returned by ’gintervals.load_chain’

Details

This function imports a track located in ’src.track.dir’ of another assembly to the current database.
Chain file instructs how the conversion of coordinates should be done. It can be either a name of a
chain file or a data frame in the same format as returned by ’gintervals.load_chain’ function. The
name of the newly created track is specified by ’track’ argument and ’description’ is added as a
track attribute.

Value

None.

See Also

gintervals.load_chain, gintervals.liftover

88 gtrack.lookup

gtrack.lookup Creates a new track from a lookup table based on track expression

Description

Evaluates track expression and translates the values into bin indices that are used in turn to retrieve
values from a lookup table and create a track.

Usage

gtrack. lookup(
track = NULL,
description = NULL,
lookup_table = NULL,
include.lowest = FALSE,
force.binning = TRUE,
iterator = NULL,

band = NULL
)
Arguments
track track name
description a character string description

lookup_table amulti-dimensional array containing the values that are returned by the function
pairs of track expressions and breaks
include.lowest if "TRUE’, the lowest value of the range determined by breaks is included

force.binning if "TRUE’, the values smaller than the minimal break will be translated to index
1, and the values that exceed the maximal break will be translated to index N-
1 where N is the number of breaks. If 'FALSE’ the out-of-range values will
produce NaN values.

iterator track expression iterator. If "NULL’ iterator is determined implicitly based on
track expressions.
band track expression band. If "'NULL’ no band is used.
Details

This function evaluates the track expression for all iterator intervals and translates this value into an
index based on the breaks. This index is then used to address the lookup table and create with its
values a new track. More than one ’expr’-’breaks’ pair can be used. In that case ’lookup_table’ is
addressed in a multidimensional manner, i.e. ’lookup_table[il, i2, ...] .

The range of bins is determined by ’breaks’ argument. For example: ’breaks = c(x1, x2, x3, x4)’
represents three different intervals (bins): (x1, x2], (x2, x3], (x3, x4].

gtrack.ls 89

If ’include.lowest’ is "TRUE’ the the lowest value is included in the first interval, i.e. in [x1, x2].

*force.binning’ parameter controls what should be done when the value of expr’ exceeds the range
determined by ’breaks’. If ’force.binning’ is "TRUE’ then values smaller than the minimal break
will be translated to index 1, and the values exceeding the maximal break will be translated to index
’M-1" where "M’ is the number of breaks. If *force.binning’ is "FALSE’ the out-of-range values
will produce "NaN’ values.

Regardless of *force.binning’ value if the value of expr’ is "NaN’ then the value in the track would
be ’NaN’ too.

“description’ is added as a track attribute.

Value

None.

See Also

glookup, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth, gtrack.modify, gtrack.rm,
gtrack.info, gdir.create

Examples

gdb.init_examples()

one-dimensional example

breaks1 <- seq(@.1, 0.2, length.out = 6)

gtrack. lookup(
"lookup_track"”, "Test track”, 1:5, "dense_track”,
breaks1

)
gtrack.rm("lookup_track”, force = TRUE)

two-dimensional example

t <- array(1:15, dim = c(5, 3))

breaks2 <- seq(@.31, 0.37, length.out = 4)

gtrack. lookup(
"lookup_track”, "Test track”, t, "dense_track”,
breaks1, "2 % dense_track”, breaks2

)
gtrack.rm("”lookup_track"”, force = TRUE)

gtrack.ls Returns a list of track names

Description

Returns a list of track names in Genomic Database.

90 gtrack.ls

Usage
gtrack.1ls(

ignore.case = FALSE,
perl = FALSE,

fixed = FALSE,
useBytes = FALSE

Arguments

these arguments are of either form ’pattern’ or ’attribute = pattern’

ignore.case, perl, fixed, useBytes
see 'grep’
Details

This function returns a list of tracks whose name or track attribute value match a pattern (see ’grep’).
If called without any arguments all tracks are returned.

If pattern is specified without a track attribute (i.e. in the form of ’pattern’) then filtering is applied
to the track names. If pattern is supplied with a track attribute (i.e. in the form of ’name = pattern’)
then track attribute is matched against the pattern.

Multiple patterns are applied one after another. The resulted list of tracks should match all the
patterns.

Value

An array that contains the names of tracks that match the supplied patterns.

See Also

grep, gtrack.exists, gtrack.create, gtrack.rm
Examples

gdb.init_examples()

get all track names
gtrack.1s()

get track names that match the pattern "denx"
gtrack.ls("denx")

get track names whose "created.by” attribute match the pattern
"create_sparse”

gtrack.ls(created.by = "create_sparse")

get track names whose names match the pattern "denx" and whose

gtrack.modify 91

"created.by"” attribute match the pattern "track”
gtrack.1ls("denx", created.by = "track")

gtrack.modify Modifies track contents

Description

Modifies ’Dense’ track contents.

Usage

gtrack.modify(track = NULL, expr = NULL, intervals = NULL)

Arguments

track track name

expr track expression

intervals genomic scope for which track is modified
Details

This function modifies the contents of a "Dense’ track by the values of expr’. ’intervals’ argument
controls which portion of the track is modified. The iterator policy is set internally to the bin size
of the track.

Value

None.

See Also

gtrack.create, gtrack.rm

Examples

gdb.init_examples()

intervs <- gintervals(1, 300, 800)
gextract("dense_track”, intervs)
gtrack.modify("dense_track”, "dense_track * 2", intervs)
gextract("dense_track”, intervs)
gtrack.modify("dense_track”, "dense_track / 2", intervs)

92 gtrack.rm

gtrack.rm Deletes a track

Description

Deletes a track.

Usage

gtrack.rm(track = NULL, force = FALSE)

Arguments

track track name

force if "TRUE’, suppresses user confirmation of a named track removal
Details

This function deletes a track from the Genomic Database. By default ’gtrack.rm’ requires the user
to interactively confirm the deletion. Set *force’ to "TRUE’ to suppress the user prompt.

Value

None.

See Also

gtrack.exists, gtrack.1ls, gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.smooth

Examples

gdb.init_examples()

gtrack.create("new_track”, "Test track”, "2 x dense_track”)
gtrack.exists("new_track")

gtrack.rm("new_track”, force = TRUE)
gtrack.exists("new_track")

gtrack.smooth 93

gtrack.smooth Creates a new track from smoothed values of track expression

Description

Creates a new track from smoothed values of track expression.

Usage

gtrack.smooth(
track = NULL,
description = NULL,
expr = NULL,
winsize = NULL,
weight_thr = 0,
smooth_nans = FALSE,
alg = "LINEAR_RAMP",
iterator = NULL

)
Arguments
track track name
description a character string description
expr track expression
winsize size of smoothing window
weight_thr smoothing weight threshold
smooth_nans if "TFALSE’ track value is always set to "NaN’ if central window value is "NaN’,
otherwise it is calculated from the rest of non "NaN’ values
alg smoothing algorithm - "MEAN" or "LINEAR_RAMP"
iterator track expression iterator of *Fixed bin’ type
Details

This function creates a new ’Dense’ track named ’track’. The values of the track are results of
smoothing the values of ’expr’.

Each track value at coordinate *C’ is determined by smoothing non "NaN’ values of "expr’ over the
window around ’C’. The window size is controlled by ’winsize’ and is given in coordinate units
(not in number of bins), defining the total regions to be considered when smoothing (on both sides
of the central point). Two different algorithms can be used for smoothing:

"MEAN" - an arithmetic average.

"LINEAR_RAMP" - a weighted arithmetic average, where the weights linearly decrease as the
distance from the center of the window increases.

94 gtrack.var.get

weight_thr’ determines the function behavior when some of the values in the window are missing
or 'NaN’ (missing values may occur at the edges of each chromosome when the window covers
an area beyond chromosome boundaries). *weight_thr’ sets the weight sum threshold below which
smoothing algorithm returns "NaN’ rather than a smoothing value based on non "NaN’ values in the
window.

’smooth_nans’ controls what would be the smoothed value if the central value in the window
is '"NaN’. If ’smooth_nans’ is "FALSE’ then the smoothed value is set to 'NaN’ regardless of
weight_thr’ parameter. Otherwise it is calculated normally.

"description’ is added as a track attribute.

Iterator policy must be of "fixed bin" type.

Value

None.

See Also

gtrack.create, gtrack.2d.create, gtrack.create_sparse, gtrack.modify, gtrack.rm, gtrack.info,
gdir.create

Examples

gdb.init_examples()

gtrack.smooth(”smoothed_track”, "Test track”, "dense_track”, 500)
gextract(”"dense_track”, "smoothed_track”, gintervals(l, @, 1000))
gtrack.rm("smoothed_track"”, force = TRUE)

gtrack.var.get Returns value of a track variable

Description

Returns value of a track variable.

Usage
gtrack.var.get(track = NULL, var = NULL)

Arguments

track track name

var track variable name
Details

This function returns the value of a track variable. If the variable does not exist an error is reported.

gtrack.var.ls

Value

Track variable value.

See Also

gtrack.var.set, gtrack.var.ls, gtrack.var.rm

Examples

gdb.init_examples()

95

gtrack.var.set("sparse_track”, "test_var"”, 1:10)
gtrack.var.get("sparse_track”, "test_var")
gtrack.var.rm("”sparse_track”, "test_var")
gtrack.var.ls Returns a list of track variables for a track
Description

Returns a list of track variables for a track.

Usage

gtrack.var.1s(
track = NULL,
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

)
Arguments
track track name
pattern, ignore.case, perl, fixed, useBytes
see 'grep’
Details

This function returns a list of track variables of a track that match the pattern (see ’grep’). If called
without any arguments all track variables of a track are returned.

Value

An array that contains the names of track variables.

96

See Also

grep, gtrack.var.get, gtrack.var.set, gtrack.var.rm

Examples

gdb.init_examples()

gtrack.var.rm

gtrack.var.ls("sparse_track")
gtrack.var.set("sparse_track”, "test_var1”, 1:10)
gtrack.var.set("sparse_track"”, "test_var2", "v")
gtrack.var.ls("sparse_track")
gtrack.var.ls("sparse_track”, pattern = "2")
gtrack.var.rm("sparse_track”, "test_var1")
gtrack.var.rm("sparse_track”, "test_var2")
gtrack.var.rm Deletes a track variable
Description

Deletes a track variable.

Usage

gtrack.var.rm(track = NULL, var = NULL)

Arguments

track

var

Details

track name

track variable name

This function deletes a track variable.

Value

None.

See Also

gtrack.var.get, gtrack.var.set, gtrack.var.ls

gtrack.var.set 97

Examples

gdb.init_examples()

gtrack.var.set("sparse_track”, "test_varl”, 1:10)
gtrack.var.set("sparse_track"”, "test_var2", "v")
gtrack.var.ls("sparse_track"”)
gtrack.var.rm("sparse_track”, "test_var1")
gtrack.var.rm("sparse_track”, "test_var2")

gtrack.var.ls("sparse_track"”)

gtrack.var.set Assigns value to a track variable

Description

Assigns value to a track variable.

Usage

gtrack.var.set(track = NULL, var = NULL, value = NULL)

Arguments
track track name
var track variable name
value value

Details

This function creates a track variable and assigns ’value’ to it. If the track variable already exists its
value is overwritten.

Value

None.

See Also

gtrack.var.get, gtrack.var.ls, gtrack.var.rm

Examples

gdb.init_examples()
gtrack.var.set("sparse_track”, "test_var”, 1:10)
gtrack.var.get("sparse_track”, "test_var")
gtrack.var.rm("sparse_track”, "test_var")

98 gvtrack.array.slice

gvtrack.array.slice Defines rules for a single value calculation of a virtual ’Array’ track

Description

Defines how a single value within an interval is achieved for a virtual track based on *Array’ track.

Usage

gvtrack.array.slice(vtrack = NULL, slice = NULL, func = "avg", params = NULL)

Arguments
vtrack virtual track name
slice a vector of column names or column indices or "NULL’
func, params see below

Details

A track (regular or virtual) used in a track expression is expected to return one value for each track
interval. ’Array’ tracks store multiple values per interval (one for each ’column’) and hence if used
in a track expression one must define the way of how a single value should be deduced from several
ones.

By default if an ’Array’ track is used in a track expressions, its interval value would be the average
of all column values that are not NaN. ’gvtrack.array.slice’ allows to select specific columns and to
specify the function applied to their values.

’slice’ parameter allows to choose the columns. Columns can be indicated by their names or their
indices. If ’slice’ is "NULL’ the non-NaN values of all track columns are used.

’func’ parameter determines the function applied to the columns’ values. Use the following table
for a reference of all valid functions and parameters combinations:

func = "avg", params = NULL
Average of columns’ values.

Sfunc = "max", params = NULL
Maximum of columns’ values.

Sfunc = "min", params = NULL
Minimum of columns’ values.

func = "stdev", params = NULL
Unbiased standard deviation of columns’ values.

Junc = "sum", params = NULL
Sum of columns’ values.

Jfunc = "quantile", params = [Percentile in the range of [0, 1]]
Quantile of columns’ values.

gvtrack.create 99

Value

None.

See Also

gvtrack.create, gtrack.array.get_colnames, gtrack.array.extract

Examples

gdb.init_examples()

gvtrack.create("vtrack1l”, "array_track")
gvtrack.array.slice("vtrack1”, c("col2", "col4"), "max")
gextract("vtrackl"”, gintervals(l, 0, 1000))

gvtrack.create Creates a new virtual track

Description

Creates a new virtual track.

Usage

gvtrack.create(vtrack = NULL, src = NULL, func = NULL, params = NULL, ...)
Arguments

vtrack virtual track name

src source (track/intervals). NULL for PWM functions

func function name (see above)

params function parameters (see above)

additional PWM parameters

Details

This function creates a new virtual track named ’vtrack’ with the given source, function and param-
eters. ’src’ can be either a track or intervals (1D or 2D). Use the following table for a reference of
all valid source, function and parameters combinations:

src = [Track], func = "avg", params = NULL
Average track value in iterator interval.

src = [Track], func = "max", params = NULL
Maximal track value in iterator interval.

src = [Track], func = "min", params = NULL
Minimal track value in iterator interval.

100 gvtrack.create

src = ['Dense’ / 'Sparse’ / 'Array’ track], func = "nearest", params = NULL
Mean track value in iterator interval. If there are no track values covered by an iterator interator
(can occur only in ’Sparse’ track), the nearest track value is returned.

src = ['Dense’ / 'Sparse’ / 'Array’ track], func = "stddev", params = NULL
Unbiased standard deviation of track values in iterator interval.

src = ['Dense’ / 'Sparse’ / 'Array’ track], func = "sum", params = NULL
Sum of track values in iterator interval.

src = [’Dense’ / 'Sparse’ / ’Array’ track], func = "quantile", params = [Percentile in the range of
[0, 1]]

Quantile of track values in iterator interval.

src = [’'Dense’ track], func = "global.percentile”, params = NULL
Percentile of an average track value in iterator interval relatively to all values of the track.

src = ['Dense’ track], func = "global.percentile.max", params = NULL
Percentile of a maximal track value in iterator interval relatively to all values of the track.

src = ['Dense’ track], func = "global.percentile.min", params = NULL
Percentile of a minimal track value in iterator interval relatively to all values of the track.

src = [2D track], func = "area", params = NULL
Area covered by iterator interval.

src = [2D track], func = "weighted.sum", params = NULL
Weighted sum of values where each weight equals to the intersection area between the iterator
interval and the rectangle containing the value.

src = [1D intervals], func = "distance", params = [Minimal distance from center (default: 0)]
Given the center C’ of the current iterator interval returns *"DC * X/2’, where ’DC’ is the normalized
distance to the center of the interval that contains *C’, and X’ is the value of the parameter. If no
interval contains ’C’ the resulted value is D + XXX/2’ where "D’ is the distance between 'C’ and
the edge of the closest interval. Distance can be positive or negative depending on the position of
the coordinate relative to the interval and the strand (-1 or 1) of the interval. Distance is always
positive if “strand’ is *0’ or if ’strand’ column is missing. Distance is 'NA’ if no intervals exist for
the current chromosome.

src = [1D intervals], func = "distance.center"”, params = NULL

Given the center ’C’ of the current iterator interval returns 'NaN’ if *C’ is outside of the intervals,
otherwise returns the distance between 'C’ and the center of the closest interval. Distance can be
positive or negative depending on the position of the coordinate relative to the interval and the strand
(-1 or 1) of the interval. Distance is always positive if strand’ is *0’ or if ’strand’ column is missing.

src = [1D intervals], func = "coverage", params = NULL

For each iterator interval, calculates the fraction of its length that is covered by the source intervals.
Returns a value between 0 and 1. For example, if an iterator interval is [100,200] and the source
intervals cover positions 120-140 and 160-170, the coverage would be 0.3 ((20 + 10) / 100 = 0.3).
Overlapping source intervals are first unified.

func = "pwm", params = list(pssm = matrix, bidirect = TRUE, prior = 0.01, extend = TRUE)
Calculates total log-likelihood score of DNA sequence against PSSM. Uses log-sum-exp over all
positions. For bidirect=TRUE, scans both strands. Prior adds pseudocounts, extend=TRUE allows
scoring at boundaries.

gvtrack.create 101

func = "pwm.max", params = list(pssm = matrix, bidirect = TRUE, prior = 0.01, extend = TRUE)
Returns maximum log-likelihood score of best PSSM match. bidirect=TRUE checks both strands.
Prior adds pseudocounts, extend=TRUE allows boundary scoring.

func = "pwm.max.pos"”, params = list(pssm = matrix, bidirect = TRUE, prior = 0.01, extend =
TRUE)

Returns 1-based position of best PSSM match. If bidirect=TRUE, the position would be positive if
the best hit was at the forward strand, and negative if it was at the reverse strand. When strand is -1
the position is still according to the forward strand, but the hit is at the end of the match. Prior adds
pseudocounts, extend=TRUE allows boundary scoring.

For all PWM functions:

» pssm: Position-specific scoring matrix (A,C,G,T frequencies)

* bidirect: If TRUE, scans both strands; if FALSE, forward only

e prior: Pseudocount for frequencies (default: 0.01)

 extend: If TRUE, computes boundary scores

e strand: If 1, scans forward strand; if -1, scans reverse strand. For strand == 1, the energy
(and position of the best match) would be at the beginning of the match, for strand == -1, the
energy (and position of the best match) would be at the end of the match.

PWM parameters are accepted as list or individual parameters (see examples).

func = "kmer.count", params = list(kmer = "ACGT", extend = TRUE, strand = 0)

Counts occurrences of the specified kmer in each interval. The extend=TRUE parameter (default)
allows counting kmers that span interval boundaries. The strand parameter can be 1 (forward
strand), -1 (reverse strand), or O (both strands).

func = "kmer.frac", params = list(kmer = "ACGT", extend = TRUE, strand = 0)

Calculates the fraction of possible positions in each interval that contain the specified kmer. The
extend=TRUE parameter (default) allows counting kmers that span interval boundaries. The strand
parameter can be 1 (forward strand), -1 (reverse strand), or O (both strands).

For kmer functions:

* kmer: The DNA sequence to count (case-insensitive)
 extend: If TRUE, counts kmers that span interval boundaries

e strand: If 1, counts kmers on forward strand; if -1, counts kmers on reverse strand. If 0, counts
kmers on both strands. Default is O.

Kmer parameters are accepted as list or individual parameters (see examples). Note that for palin-
dromic kmers, setting strand to 1 or -1 is recommended to avoid double counting.

Modify iterator behavior with ’gvtrack.iterator’ or ’gvtrack.iterator.2d’.

Value

None.

See Also

gvtrack.info, gvtrack.iterator, gvtrack.iterator.2d, gvtrack.array.slice, gvtrack.ls,
gvtrack.rm

102 gvtrack.create

Examples

gdb.init_examples()

gvtrack.create("vtrack1”, "dense_track”, "max")
gvtrack.create("vtrack2"”, "dense_track”, "quantile", 0.5)
gextract("dense_track”, "vtrackl”, "vtrack2",

gintervals(1, 0, 10000),
iterator = 1000

)
gvtrack.create("vtrack3”, "dense_track”, "global.percentile")
gvtrack.create("vtrack4”, "annotations”, "distance")
gdist(
"vtrack3", seq(@, 1, 1 = 10), "vtrack4”,
seq(-500, 500, 200)
)
gvtrack.create("cov”, "annotations”, "coverage")

gextract(”"cov”, gintervals(1l, 0, 1000), iterator = 100)

pssm <- matrix(
c(
, # Example PSSM

(SR I I GRS G
O A a4
(SRS NG G I O G
B
[SERC NI GRS G
NNNNa -
(SIS NG GO R S G
o a4 4o

’

)’
ncol = 4, byrow = TRUE
)
colnames(pssm) <- c("A", "C", "G", "T")
gvtrack.create(
"motif_score”, NULL, "pwm",
list(pssm = pssm, bidirect = TRUE, prior = 0.01)
)
gvtrack.create("max_motif_score”, NULL, "pwm.max",
pssm = pssm, bidirect = TRUE, prior = 0.01
)
gvtrack.create("max_motif_pos”, NULL, "pwm.max.pos”,
pssm = pssm

)
gextract(
c(
"dense_track”, "motif_score”, "max_motif_score”,
"max_motif_pos”
),

gintervals(1, 0, 10000),
iterator = 500

gvtrack.info 103

Kmer counting examples

gvtrack.create("cg_count”, NULL, "kmer.count”, kmer = "CG", strand = 1)
gvtrack.create("cg_frac”, NULL, "kmer.frac”, kmer = "CG", strand = 1)
gextract(c("cg_count”, "cg_frac"), gintervals(l, 0, 10000), iterator = 1000)

gvtrack.create("at_pos”, NULL, "kmer.count”, kmer = "AT", strand = 1)
gvtrack.create("at_neg”, NULL, "kmer.count”, kmer = "AT", strand = -1)
gvtrack.create("at_both”, NULL, "kmer.count”, kmer = "AT", strand = 0)
gextract(c("at_pos”, "at_neg", "at_both"), gintervals(1l, @, 10000), iterator = 1000)

GC content

gvtrack.create("g_frac”, NULL, "kmer.frac”, kmer = "G")

gvtrack.create("c_frac”, NULL, "kmer.frac"”, kmer = "C")

gextract("g_frac + c_frac”, gintervals(1, 0, 10000),
iterator = 1000,

colnames = "gc_content”
)
gvtrack.info Returns the definition of a virtual track
Description

Returns the definition of a virtual track.

Usage

gvtrack.info(vtrack = NULL)

Arguments

vtrack virtual track name

Details

This function returns the internal representation of a virtual track.

Value

Internal representation of a virtual track.

See Also

gvtrack.create

104 gvtrack.iterator

Examples

gdb.init_examples()
gvtrack.create("vtrack1”, "dense_track”, "max")
gvtrack.info("vtrackl")

gvtrack.iterator Defines modification rules for a one-dimensional iterator in a virtual
track

Description

Defines modification rules for a one-dimensional iterator in a virtual track.

Usage
gvtrack.iterator(vtrack = NULL, dim = NULL, sshift = @, eshift = 0)

Arguments
vtrack virtual track name
dim use "NULL’ or ’0’ for 1D iterators. *1’ converts 2D iterator to (chroml, startl,
endl), 2’ converts 2D iterator to (chrom?2, start2, end2)
sshift shift of ’start’ coordinate
eshift shift of ’end’ coordinate
Details

This function defines modification rules for one-dimensional iterator intervals in a virtual track.

’dim’ converts a 2D iterator interval (chrom1, startl, end1, chrom?2, start2, end2) to a 1D interval. If
’dim’ is ’1’ the interval is converted to (chrom1, startl, endl). If ’dim’ is ’2’ the interval is converted
to (chrom?2, start2, end2). If 1D iterator is used ’dim’ must be set to 'NULL’ or ’0’ (meaning: no

conversion is made).

Iterator interval’s ’start’ coordinate is modified by adding ’sshift’. Similarly ’end’ coordinate is
altered by adding ’eshift’.

Value

None.

See Also

gvtrack.create, gvtrack.iterator.2d

gvtrack.iterator.2d 105

Examples

gdb.init_examples()

gvtrack.create("vtrack1”, "dense_track")
gvtrack.iterator(”"vtrackl”, sshift = 200, eshift = 200)
gextract("dense_track”, "vtrackl”, gintervals(1, 0, 500))

gvtrack.create("vtrack2"”, "dense_track")

gvtrack.iterator("vtrack2", dim = 1)

gextract(”"vtrack2"”, gintervals.2d(1, @, 1000, 1, 0, -1),
iterator = "rects_track”

)

gvtrack.iterator.2d Defines modification rules for a two-dimensional iterator in a virtual
track

Description

Defines modification rules for a two-dimensional iterator in a virtual track.

Usage

gvtrack.iterator.2d(
vtrack = NULL,

sshiftl = 0,
eshiftl = 0o,
sshift2 = 0,
eshift2 = 0
)
Arguments
vtrack virtual track name
sshift1 shift of ’startl’ coordinate
eshiftl shift of ’end1’ coordinate
sshift2 shift of ’start2’ coordinate
eshift2 shift of ’end2’ coordinate
Details

This function defines modification rules for one-dimensional iterator intervals in a virtual track.

Iterator interval’s ’startl’ coordinate is modified by adding ’sshiftl’. Similarly end1’, ’start2’,
’end2’ coordinates are altered by adding *eshift1’, ’sshift2’ and ’eshift2’ accordingly.

106

Value

None.

See Also

gvtrack.create, gvtrack.iterator

Examples

gdb.init_examples()

gvtrack.ls

gvtrack.create("vtrack1l”, "rects_track")
gvtrack.iterator.2d("vtrack1”, sshiftl = 1000, eshiftl = 2000)
gextract(
"rects_track”, "vtrackl”,
gintervals.2d(1, @, 5000, 2, @, 5000)
)
gvtrack.ls Returns a list of virtual track names
Description

Returns a list of virtual track names.

Usage

gvtrack.1s(
pattern = "",
ignore.case = FALSE,
perl = FALSE,
fixed = FALSE,
useBytes = FALSE

Arguments

pattern, ignore.case, perl, fixed, useBytes
see 'grep’

Details

This function returns a list of virtual tracks that exist in current R environment that match the pattern

(see "grep’). If called without any arguments all virtual tracks are returned.

Value

An array that contains the names of virtual tracks.

gvtrack.rm 107

See Also

grep, gvtrack.create, gvtrack.rm

Examples

gdb.init_examples()

gvtrack.create("vtrack1”, "dense_track”, "max")
gvtrack.create("vtrack2”, "dense_track”, "quantile”, 0.5)
gvtrack.1ls()

gvtrack.ls(pattern = "%2")

gvtrack.rm Deletes a virtual track

Description

Deletes a virtual track.

Usage

gvtrack.rm(vtrack = NULL)

Arguments

vtrack virtual track name

Details

This function deletes a virtual track from current R environment.

Value

None.

See Also

gvtrack.create, gvtrack.1ls

Examples

gdb.init_examples()

gvtrack.create("vtrack1”, "dense_track”, "max")
gvtrack.create("vtrack2"”, "dense_track”, "quantile", 0.5)
gvtrack.1ls()

gvtrack.rm("vtrackl1")

gvtrack.1ls()

108 gwget

gwget Downloads files from FTP server

Description

Downloads multiple files from FTP server

Usage

gwget(url = NULL, path = NULL)

Arguments

url URL of FTP server

path directory path where the downloaded files are stored
Details

This function downloads files from FTP server given by ’url’. The address in ’url’ can contain
wildcards to download more than one file at once. Files are downloaded to a directory given by
’path’ argument. If *path’ is 'NULL, file are downloaded into ’GROOT/downloads’.

Value

An array of file names that have been downloaded.

See Also

gtrack.import_set

Examples
gdb.init_examples()

outdir <- tempdir()
gwget ("ftp://hgdownload. soe.ucsc.edu/goldenPath/hg19/chromosomes/md5sum. txt"”, path = outdir)

gwilcox

109

gwilcox

Calculates Wilcoxon test on sliding windows over track expression

Description

Calculates Wilcoxon test on sliding windows over the values of track expression.

Usage

gwilcox(

expr = NULL,

winsizel = NULL,
winsize2 = NULL,

maxpval =
onetailed

what2find =

intervals
iterator =

0.

05,
TRUE,
1,

NULL,

NULL,

intervals.set.out = NULL

Arguments

expr
winsizel
winsize?
maxpval
onetailed
what2find

intervals

iterator

track expression

number of values in the first sliding window

number of values in the second sliding window

maximal P-value

if "TRUE’, Wilcoxon test is performed one tailed, otherwise two tailed

if ’-1’, lows are searched. If ’1°, peaks are searched. If ’0’, both peaks and lows
are searched

genomic scope for which the function is applied

track expression iterator of "fixed bin" type. If 'NULL’ iterator is determined
implicitly based on track expression.

intervals.set.out

Details

intervals set name where the function result is optionally outputted

This function runs a Wilcoxon test (also known as a Mann-Whitney test) over the values of track
expression in the two sliding windows having an identical center. The sizes of the windows are
specified by *winsizel’ and *winsize2’. ’gwilcox’ returns intervals where the smaller window tested
against a larger window gives a P-value below *'maxpval’. The test can be one or two tailed.

what2find’ argument controls what should be searched: peaks, lows or both.

If ’intervals.set.out’ is not "NULL’ the result is saved as an intervals set. Use this parameter if the
result size exceeds the limits of the physical memory.

110 gwilcox

Value

If ’intervals.set.out’ is 'NULL’ a data frame representing the intervals with an additional *pval’
column where P-value is below *maxpval’.

See Also

gscreen, gsegment

Examples

gdb.init_examples()
gwilcox("dense_track”, 100000, 1000,
maxpval = 0.01,
what2find = 1

Index

x* ~ALLGENOME
gintervals.2d.all, 25
gintervals.all, 27

* ~DNA
gseq.extract, 62

* ~Mann-Whitney
gsegment, 61
gwilcox, 109

* ~annotate
gintervals.neighbors, 41

* ~apply
gintervals.mapply, 40

* ~array
gtrack.array.extract, 69
gtrack.array.get_colnames, 70
gtrack.array.import, 71
gtrack.array.set_colnames, 72
gvtrack.array.slice, 98

x ~attribute
gdb.get_readonly_attrs, 15
gdb.set_readonly_attrs, 16
gtrack.attr.export, 73
gtrack.attr.get, 74
gtrack.attr.import, 75
gtrack.attr.set, 76

* ~attr
gdb.get_readonly_attrs, 15
gdb.set_readonly_attrs, 16
gtrack.attr.export, 73
gtrack.attr.get, 74
gtrack.attr.import, 75
gtrack.attr.set, 76

* ~auto-correlation
gcompute_strands_autocorr, 11

* ~autocorrelation
gcompute_strands_autocorr, 11

* ~band

gintervals.2d.band_intersect, 26

* ~bedgraph

111

gtrack.import, 82
gtrack.import_set, 85
* ~bigwig
gtrack.import, 82
gtrack.import_set, 85
* ~canonic
gintervals.canonic, 27
* ~cartesian
giterator.cartesian_grid, 50
* ~cd
gdir.cd, 17
* ~chain
gintervals.liftover, 36
gintervals.load_chain, 38
gtrack.liftover, 87
* ~chromosomes
gintervals.2d.all, 25
gintervals.all, 27
* ~chromosome
gintervals.2d.all, 25
gintervals.all, 27
* ~cluster
gcluster.run, 9
* ~columns
gtrack.array.get_colnames, 70
gtrack.array.set_colnames, 72
* ~contacts
gcis_decay, 8
gtrack.2d.import_contacts, 67
* ~convert
gtrack.convert, 77
* ~correlation
gcompute_strands_autocorr, 11
* ~Ccreate
gdb.create, 12
gdir.create, 18
gtrack.2d.create, 65
gtrack.array.import, 71
gtrack.create, 77

112 INDEX

gtrack.create_sparse, 80 gdir.rm, 19
* ~cwd x ~fragment
gdir.cwd, 18 gtrack.2d.import_contacts, 67
* ~database * ~ftp
gdb.create, 12 gwget, 108
gdir.cd, 17 * ~gcompute_strands_autocorr
gdir.create, 18 gcompute_strands_autocorr, 11
gdir.cwd, 18 * ~genes
gdir.rm, 19 gdb.create, 12
gsetroot, 63 gintervals.import_genes, 33
x ~data * ~genome
gdir.cd, 17 gintervals.2d.all, 25
gdir.create, 18 gintervals.all, 27
gdir.cwd, 18 * ~import
gdir.rm, 19 gintervals.import_genes, 33
gsetroot, 63 gtrack.array.import, 71
x ~db * ~info
gdb.reload, 15 gtrack.info, 86
gdir.cd, 17 * ~intersect
gdir.create, 18 gintervals.2d.band_intersect, 26
gdir.cwd, 18 gintervals.intersect, 34
gdir.rm, 19 * ~intervals
gsetroot, 63 gintervals, 23
* ~diff gintervals. 2d, 24
gintervals.diff, 30 gintervals.canonic, 27
* ~directory gintervals.chrom_sizes, 29
gdir.cd, 17 gintervals.exists, 31
gdir.create, 18 gintervals.force_range, 32
gdir.cwd, 18 gintervals.import_genes, 33
gdir.rm, 19 gintervals.is.bigset, 35
* ~dir gintervals.liftover, 36
gdir.cd, 17 gintervals.load, 37
gdir.create, 18 gintervals.load_chain, 38
gdir.cwd, 18 gintervals.ls, 39
gdir.rm, 19 gintervals.neighbors, 41
* ~distribution gintervals.rm, 45
gdist, 20 gintervals.save, 46
* ~energy gintervals.update, 49
gtrack.create_pwm_energy, 79 giterator.intervals, 52
* ~extract gscreen, 60
gextract, 21 gtrack.ls, 89
glookup, 54 * ~interval
gseq.extract, 62 gscreen, 60

gtrack.array.extract, 69
x ~folder

gdir.cd, 17

gdir.create, 18

gdir.cwd, 18

* ~iterator

giterator.cartesian_grid, 50
giterator.intervals, 52

x ~liftover
gintervals.

liftover, 36

INDEX

gintervals.load_chain, 38
gtrack.liftover, 87

* ~lookup
glookup, 54
gtrack.lookup, 88
* ~Is

gintervals.ls, 39
gtrack.ls, 89
gtrack.var.ls, 95
gvtrack.ls, 106
* ~mapped
gtrack. import_mappedseq, 83
* ~mapply
gintervals.mapply, 40
* ~modify
gtrack.modify, 91
* ~nearest
gintervals.neighbors, 41
* ~neighbors
gintervals.neighbors, 41
* ~neighbor
gintervals.neighbors, 41
* ~partition
gpartition, 55
* ~percentiles
gbins.quantiles, 5
gintervals.quantiles, 43
gquantiles, 57
* ~property
gtrack.info, 86
* ~pssm
gtrack.create_pwm_energy, 79
* ~pwd
gdir.cwd, 18
* ~pwm
gtrack.create_pwm_energy, 79
* ~quantiles
gbins.quantiles, 5
gintervals.quantiles, 43
gquantiles, 57
* ~rbind
gintervals.rbind, 44
* ~rm
gdir.rm, 19
* ~sample
gsample, 59
* ~screen
gscreen, 60

* ~segment
gsegment, 61
* ~sequence
gseq.extract, 62
gtrack.import_mappedseq, 83
* ~smooth
gtrack.smooth, 93
* ~sparse
gtrack.create_sparse, 80
* ~statistics
gintervals.summary, 47
gsummary, 64
* ~summary
gbins.summary, 6
gintervals.summary, 47
gsummary, 64
* ~track
gtrack.2d.create, 65
gtrack.2d. import, 66

gtrack.2d.import_contacts, 67

gtrack.array.import, 71
gtrack.convert, 77
gtrack.create, 77

gtrack.create_pwm_energy, 79

gtrack.create_sparse, 80
gtrack.exists, 82
gtrack.import, 82
gtrack. import_mappedseq, 83
gtrack.import_set, 85
gtrack.info, 86
gtrack.liftover, 87
gtrack. lookup, 88
gtrack.modify, 91
gtrack.rm, 92
gtrack.smooth, 93

* ~union
gintervals.union, 48

* ~variable
gtrack.var.get, 94
gtrack.var.ls, 95
gtrack.var.rm, 96
gtrack.var.set, 97

* ~virtual
gvtrack.array.slice, 98
gvtrack.create, 99
gvtrack.info, 103
gvtrack.iterator, 104
gvtrack.iterator.2d, 105

113

114

gvtrack.ls, 106
gvtrack.rm, 107
* ~Wig
gtrack.import, 82
gtrack.import_set, 85
x ~wilcoxon
gsegment, 61
gwilcox, 109
+ package
misha-package, 4

dir.create, 18

gbins.quantiles, 5, 44, 58
gbins.summary, 6, 48, 64
gcis_decay, 8
gcluster.run, 9
gcompute_strands_autocorr, 11
gdb.create, 12, 16, 34, 64
gdb.create_genome, 14
gdb.get_readonly_attrs, 15, 16,75, 76
gdb.init, 13, 16-19
gdb.init (gsetroot), 63
gdb.init_examples (gsetroot), 63
gdb.reload, 13, 15, 64
gdb.set_readonly_attrs, 15, 16
gdir.cd, 16, 17, 19, 64
gdir.create, 17,18, 19, 65,67, 68,71, 78,
80, 81, 83, 85, 86, 89, 94
gdir.cwd, 17, 18,18, 19
gdir.rm, 17-19, 19
gdist, 5-7, 9, 20, 22, 55, 56, 58
gextract, 20, 21, 55, 56, 59, 60, 62, 70, 71,
83, 86
gintervals, 23, 25, 27, 28, 30-32, 34, 36, 37,
39,43,45-47,49
gintervals.2d, 23, 24, 25, 26, 28, 30-32, 34,
37,39,45-47,49
gintervals.2d.all, 25
gintervals.2d.band_intersect, 26, 34
gintervals.all, 27
gintervals.canonic, 27, 32,45
gintervals.chrom_sizes, 29
gintervals.diff, 30, 34, 49
gintervals.exists, 30, 31, 35, 37, 39, 46,
47,50
gintervals.force_range, 23, 25, 32
gintervals.import_genes, 13, 33
gintervals.intersect, 26, 30, 34, 49

INDEX

gintervals.is.bigset, 35, 37
gintervals.liftover, 36, 38, 87
gintervals.load, 30, 31, 35, 37, 39, 47, 50
gintervals.load_chain, 36, 38, 87
gintervals.1s, 30, 31, 35, 37, 39, 46, 47, 50,
64
gintervals.mapply, 40
gintervals.neighbors, 41
gintervals.quantiles, 6, 43, 58
gintervals.rbind, 44
gintervals.rm, 31, 39,45, 47
gintervals.save, 30, 31, 35, 37, 39, 46, 46,
50
gintervals.summary, 7, 47, 64
gintervals.union, 30, 34, 48
gintervals.update, 49
giterator.cartesian_grid, 50, 53
giterator.intervals, 52,52
glookup, 22, 54, 56, 89
gpartition, 22, 55, 55
gquantiles, 6, 44, 57
grep, 39, 90, 96, 107
grevcomp, 58
gsample, 22, 59
gscreen, 56, 60, 62, 110
gsegment, 60, 61, 110
gseq.extract, 62
gsetroot, 63
gsummary, 7, 48, 64
gtrack.2d.create, 65, 77, 78, 80, 81, 89, 92,
94
gtrack.2d.import, 66, 68
gtrack.2d.import_contacts, 9, 67
gtrack.array.extract, 22,69, 70, 71, 73, 99
gtrack.array.get_colnames, 70, 70, 73, 99
gtrack.array.import, 22, 70, 71
gtrack.array.set_colnames, 70, 71,72
gtrack.attr.export, 73
gtrack.attr.get, 15, 16, 65, 74,74, 75, 76
gtrack.attr.import, 74, 75,75, 76
gtrack.attr.set, 15, 16, 74, 75,76
gtrack.convert, 77
gtrack.create, 65, 77, 77, 80-82, 90-92, 94
gtrack.create_dirs, 79
gtrack.create_pwm_energy, 79
gtrack.create_sparse, 65, 77, 78, 80, 80,
89, 92,94
gtrack.exists, 82, 86, 90, 92

INDEX 115

gtrack.import, 22, 82, 86
gtrack. import_mappedseq, 83
gtrack.import_set, 83, 85, 108
gtrack.info, 65, 67, 68, 70, 71, 73, 78,
80-83, 85, 86, 86, 89, 94
gtrack.liftover, 36, 38, 87
gtrack.lookup, 55, 88
gtrack.ls, 64, 82, 86, 89, 92
gtrack.modify, 65, 78, 80, 81, 89, 91, 94
gtrack.rm, 65, 67, 68, 71, 78, 80-83, 85, 86,
89-91,92, 94
gtrack.smooth, 65, 78, 80, 81, 89, 92, 93
gtrack.var.get, 94, 96, 97
gtrack.var.ls, 95, 95, 96, 97
gtrack.var.rm, 95, 96, 96, 97
gtrack.var.set, 76, 95, 96, 97
gvtrack.array.slice, 70, 73,98, 101
gvtrack.create, 99,99, 103, 104, 106, 107
gvtrack.info, 101, 103
gvtrack.iterator, 101, 104, 106
gvtrack.iterator.2d, 101, 104, 105
gvtrack.ls, 64, 101, 106, 107
gvtrack.rm, 101, 107, 107
gwget, 86, 108
gwilcox, 62, 109

mapply, 41
misha (misha-package), 4
misha-package, 4

	misha-package
	gbins.quantiles
	gbins.summary
	gcis_decay
	gcluster.run
	gcompute_strands_autocorr
	gdb.create
	gdb.create_genome
	gdb.get_readonly_attrs
	gdb.reload
	gdb.set_readonly_attrs
	gdir.cd
	gdir.create
	gdir.cwd
	gdir.rm
	gdist
	gextract
	gintervals
	gintervals.2d
	gintervals.2d.all
	gintervals.2d.band_intersect
	gintervals.all
	gintervals.canonic
	gintervals.chrom_sizes
	gintervals.diff
	gintervals.exists
	gintervals.force_range
	gintervals.import_genes
	gintervals.intersect
	gintervals.is.bigset
	gintervals.liftover
	gintervals.load
	gintervals.load_chain
	gintervals.ls
	gintervals.mapply
	gintervals.neighbors
	gintervals.quantiles
	gintervals.rbind
	gintervals.rm
	gintervals.save
	gintervals.summary
	gintervals.union
	gintervals.update
	giterator.cartesian_grid
	giterator.intervals
	glookup
	gpartition
	gquantiles
	grevcomp
	gsample
	gscreen
	gsegment
	gseq.extract
	gsetroot
	gsummary
	gtrack.2d.create
	gtrack.2d.import
	gtrack.2d.import_contacts
	gtrack.array.extract
	gtrack.array.get_colnames
	gtrack.array.import
	gtrack.array.set_colnames
	gtrack.attr.export
	gtrack.attr.get
	gtrack.attr.import
	gtrack.attr.set
	gtrack.convert
	gtrack.create
	gtrack.create_dirs
	gtrack.create_pwm_energy
	gtrack.create_sparse
	gtrack.exists
	gtrack.import
	gtrack.import_mappedseq
	gtrack.import_set
	gtrack.info
	gtrack.liftover
	gtrack.lookup
	gtrack.ls
	gtrack.modify
	gtrack.rm
	gtrack.smooth
	gtrack.var.get
	gtrack.var.ls
	gtrack.var.rm
	gtrack.var.set
	gvtrack.array.slice
	gvtrack.create
	gvtrack.info
	gvtrack.iterator
	gvtrack.iterator.2d
	gvtrack.ls
	gvtrack.rm
	gwget
	gwilcox
	Index

