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mgm-package Estimating Time-Varying k-order Mixed Graphical Models
Description

Estimation of time-varying Mixed Graphical models and mixed VAR models via elastic-net regu-
larized neighborhood regression.

Author(s)

Jonas Haslbeck

Maintainer: <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOL:
10.18637/jss.v093.108

Loh, P. L., & Wainwright, M. J. (2013). Structure estimation for discrete graphical models: Gener-
alized covariance matrices and their inverses. The Annals of Statistics, 41(6), 3022-3049.

Yang, E., Baker, Y., Ravikumar, P., Allen, G., & Liu, Z. (2014). Mixed graphical models via
exponential families. In Proceedings of the Seventeenth International Conference on Artificial In-
telligence and Statistics (pp. 1042-1050).
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bwSelect

Select optimal bandwidth for time-varying MGMs and mVAR Models

Description

Selects the bandwidth parameter with lowest out of sample prediction error for MGMs and mVAR

Models.

Usage

bwSelect(data, type, level, bwSeq, bwFolds,
bwFoldsize, modeltype, pbar, ...)

Arguments
data
type

level

bwSeq

bwFolds
bwFoldsize

modeltype

pbar

Details

A n x p data matrix.
p vector indicating the type of variable for each column in data. "g" for Gaus-

nn

sian, "p" for Poisson, "c" for categorical.

p vector indicating the number of categories of each variable. For continuous
variables set to 1.

A sequence with candidate bandwidth values (0, s] with s < Inf. Note that the
bandwidth is applied relative to the unit time interval [0,1] and hence a banwidth
of > 2 corresponds roughly to equal weights for all time points and hence gives
similar estimates as the stationary model estimated via mvar ().

The number of folds (see details below).
The size of each fold (see details below).

If modeltype = "mvar"” model, the optimal bandwidth parameter for a tvmvar ()
model is selected. If modeltype = "mgm" model, the optimal bandwidth param-
eter for a tvmgm() model is selected. Additional arguments to tvmvar() or
tvmgm() can be passed via the ... argument.

If TRUE a progress bar is shown. Defaults to pbar = "TRUE".

Arguments passed to tvmgm or tvmvar.

Performs a cross-validation scheme that is specified by bwFolds and bwFoldsize. In the first fold,
the test set is defined by an equally spaced sequence between [1, n - bwFolds] of length bwFoldsize.
In the second fold, the test set is defined by an equally spaced sequence between [2, n - bwFolds
+ 1] of length bwFoldsize, etc. . Note that if bwFoldsize = n / bwFolds, this procedure is equal
to bwFolds-fold cross valildation. However, full cross validation is computationally very expensive
and a single split in test/training set by setting bwFolds =1 is sufficient in many situations. The
procedure selects the bandwidth with the lowest prediction error, averaged over variables and time
points in the test set.

bwSelect computes the absolute error (continuous) or 0/1-loss (categorical) for each time point in
the test set defined by bwFoldsize as described in the previous paragraph for every fold specified
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in bwFolds, separately for each variable. The computed errors are returned in different levels of
aggregation in the output list (see below). Note that continuous variables are scaled (centered and
divided by their standard deviation), hence the absolute error and 0/1-loss are roughly on the scale

scale.

Note that selecting the bandwidth with the EBIC is no alternative. This is because the EBIC always
selects the intercept model with the lowest bandwidth. The reason is that the unregularized intercept
closely models the noise in the data and hence the penalty sets all other parameters to zero. This
problem is solved by using out of sample prediction error in the cross validation scheme.

Value

The function returns a list with the following entries:

call

bwModels

fullErrorFolds

fullError

meanError

testsets

zeroweights

Author(s)

Contains all provided input arguments. If saveData = TRUE, it also contains the
data.

Contains the models estimated at the time points in the tests set. For details see
tvmvar or tvmgm.

List with number of entries equal to the length of bwSeq entries. Each entry
contains a list with bwFolds entries. Each of those entries contains a contains a
bwFoldsize times p matrix of out of sample prediction errors.

The same as fullErrorFolds but pooled over folds.

List with number of entries equal to the length of bwSeq entries. Each entry
contains the average prediction error over variables and time points in the test
set.

List with bwFolds entries, which contain the rows of the test sample for each
fold.

List with bwFolds entries, which contains the observation weights used to fit the
model at the bwFoldsize time points.

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Barber, R. F., & Drton, M. (2015). High-dimensional Ising model selection with Bayesian informa-
tion criteria. Electronic Journal of Statistics, 9(1), 567-607.

Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical
models. In Advances in neural information processing systems (pp. 604-612).

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/jss.v093.108
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Examples

## Not run:

## A) bwSelect for tvmgm()

# A.1) Generate noise data set

p<-5
n <- 100

data_n <- matrix(rnorm(p*n), nrow=100)

head(data_n)

n_n

type <- c("c”, "c", rep("g",

level <- c(2, 2, 1, 1, 1)
x1 <- data_n[,1]

x2 <- data_n[,2]

data_n[x1>0,1] <-
data_n[x1<0,1] <-
data_n[x2>0,2] <-
data_n[x2<0,2] <-

(S S T

head(data_n)

3

# A.2) Estimate optimal bandwidth parameter

bwobj_mgm <- bwSelect(data = data_n,

type = type,
level = level,
bwSeq = seq(@.05, 1, length=3),

bwFolds = 1,
bwFoldsize = 3,
modeltype = "mgm",

k =3,

pbar = TRUE,
overparameterize = TRUE)

print.mgm(bwobj_mgm)

## B) bwSelect for tvmVar()

# B.1) Generate noise data set

p<-5
n <- 100

data_n <- matrix(rnorm(p*n), nrow=100)

head(data_n)

type <- C(”C", "C", rep("g”, 3))

level <- c(2, 2, 1, 1, 1)
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x1 <- data_n[,1]
x2 <- data_n[,?2]
data_n[x1>0,1] <-
data_n[x1<0,1] <-
data_n[x2>0,2] <-
data_n[x2<0,2] <-

o - o =

head(data_n)
# B.2) Estimate optimal bandwidth parameter

bwobj_mvar <- bwSelect(data = data_n,
type = type,
level = level,
bwSeq = seq(@.05, 1, length=3),

bwFolds = 1,
bwFoldsize = 3,
modeltype = "mvar”,
lags = 1:3,

pbar = TRUE,

overparameterize = TRUE)

print.mgm(bwobj_mvar)

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

condition Computes mgm object conditional on a set of variables

Description
The function takes an mgm object and a set of variables fixed to given values as input and returns
the conditional mgm object.

Usage

condition(object, values)

Arguments
object An mgm object, the output of the mgm() function.
values A list, where the entry name indicates the column number of the variable that

should be fixed, and the entry value indicates the value to which the correspond-
ing variable should be fixed. See below for an example.
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Details

The new conditional object still contains the variables that were fixed, however, they are not related
to any of the random variables anymore. We kept the variables in the object to avoid confusion
with variable labels and plotting. Also note that mgm() by default scales all Gaussian variables to
mean=0, sd=1. Thus, fixed values should be selected based on the scaled version of variables.

Value

The function returns an mgm object that is conditional on the provided values. The new mgm object
can again be used as input in predict(), print(), showInteraction(), etc.. Note that mgm()
by default standardizes variables to mean=0, SD=1. Therefore, also the values one conditions on
should be chosen on the scaled version of the variable to avoid extrapolating out of the dataset.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J., & Waldorp, L. J. (2019). mgm: Estimating time-varying mixed graphical models in

high-dimensional data. arXiv preprint arXiv:1510.06871.

See Also

mgm

Examples

## Not run:
# --- Create Mixture of two Gaussians ---

set.seed(1)
n <- 500
library(MASS)

# Component A

Sigma_a <- diag(2)

Sigma_al[1, 2] <- Sigma_a[2, 1] <- .5

Xa <= mvrnorm(n = n, mu = rep(@, 2), Sigma

# Component B

Sigma_b <- diag(2)

Sigma_b[1, 2] <- Sigma_b[2, 1] <- @

Xb <= mvrnorm(n = n, mu = rep(@, 2), Sigma

Sigma_a)

Sigma_b)

data <- cbind(rbind(Xa, Xb), c(rep(@, n), rep(1, n)))

colnames(data) <- c("x1", "x2", "x3")

# --- Fit MGM ---
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# with mgm

mgm_obj <- mgm(data = data,
type = c("g","g","c"),
level = c(1, 1, 2),
moderator = c(3),
lambdaSel = "EBIC")

# --- Condition on / fix values of variable 3 ---

# Fix x3=0

mgm_obj_x3.0 <- condition(object = mgm_obj,
values = list("3"=0))

mgm_obj_x3.0%$pairwise$wadj

# Fix x3=1

mgm_obj_x3.1 <- condition(object = mgm_obj,
values = list("”3"=1))

mgm_obj_x3.1$pairwise$wadj

## End(Not run)

datasets Example Datasets in the mgm Package

Description

The autism dataset (and its short version) are taken from Deserno et al. (2016).
The restingstate fMRI data are taken from Schmittmann et al. (2015).

The gene expression data across the life span of the fruit fly are taken from Gibberd & Nelson
(2017), who took a subset of the data first presented by Arbeitman et al. (2002).

The symptom data of the single individual diagnosed with major depression is described in Kos-
sakowski et al. (2017).

The PTSD data is taken from McNally et al. (2015).

The dataset mgm_data is generated by example code shown in ?mgmsampler, and mvar_data is
generated by example code shown in ?mvarsampler.

The dataset Fried2015 contains 515 cases of the 11 depression symptoms measured by the CES-D
and is taken from Fried et al. 2015.

The dataset B5MS contains the mean scores across subscales (48 items each) for the Big Five per-
sonality traits. The dataset is taken from the qgraph package (Epskamp, et al., 2012) and was first
used in Dolan et al. (2009).

The dataset dataGD contains 4 continuous variables and 3 categorical variables that are generated
from a mixed DAG. This dataset is useful to illustrate estimating group differences in MGMs using
moderation.
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All datasets are loaded automatically. All real data sets come as a list including the data and addi-
tional information (names of variables, types of variables, time stamps for time series data, etc.)

References

Deserno, M. K., Borsboom, D., Begeer, S., & Geurts, H. M. (2016). Multicausal systems ask for
multicausal approaches: A network perspective on subjective well-being in individuals with autism
spectrum disorder. Autism.

Dolan, C. V., Oort, F. J., Stoel, R. D., & Wicherts, J. M. (2009). Testing measurement invariance

in the target rotated multigroup exploratory factor model. Structural Equation Modeling, 16(2),
295-314.

Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph:
Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4),
1-18.

Schmittmann, V. D., Jahfari, S., Borsboom, D., Savi, A. O., & Waldorp, L. J. (2015). Making
large-scale networks from fMRI data. PloS one, 10(9), e0129074.

Gibberd, A. J., & Nelson, J. D. (2017). Regularized Estimation of Piecewise Constant Gaussian
Graphical Models: The Group-Fused Graphical Lasso. Journal of Computational and Graphical
Statistics, (just-accepted).

Arbeitman, M. N., Furlong, E. E., Imam, F., Johnson, E., Null, B. H., Baker, B. S., ... & White, K.
P. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science, 297(5590),
2270-2275.

Kossakowski, J., Groot, P., Haslbeck, J., Borsboom, D., & Whichers, M. (2017). Data from "Critical
Slowing Down as a Personalized Early Warning Signal for Depression”. Journal of Open Psychol-
ogy Data, 5(1).

McNally, R. J., Robinaugh, D. J., Wu, G. W., Wang, L., Deserno, M. K., & Borsboom, D. (2015).
Mental disorders as causal systems a network approach to posttraumatic stress disorder. Clinical
Psychological Science, 3(6), 836-849.

Fried, E. I, Bockting, C., Arjadi, R., Borsboom, D., Amshoff, M., Cramer, A. O., ... & Stroebe, M.
(2015). From loss to loneliness: The relationship between bereavement and depressive symptoms.
Journal of abnormal psychology, 124(2), 256.

FactorGraph Draws a factor graph of a (time-varying) MGM

Description

Wrapper function around qgraph() that draws factor graphs for (time-varying) MGMs

Usage

FactorGraph(object, labels, PairwiseAsEdge = FALSE,
Nodewise = FALSE, DoNotPlot = FALSE,
FactorLabels = TRUE, colors, shapes,
shapeSizes = c(8, 4), estpoint = NULL,
negDashed = FALSE, ...)
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Arguments
object The output object of mgm() or tvmgm().
labels A character vector of (variable) node labels.

PairwiseAsEdge If TRUE, pairwise interactions are not displayed as factors but as simple edges
between nodes. Defaults to PairwiseAsEdge = FALSE.

Nodewise If TRUE, the estimates from the individual nodewise regressions are displayed as
a directed edge towards the node on which the respective nodewise regression
was performed. This is useful to identify model misspecification (e.g. modera-
tion effects / interaction parameters with largely different values across nodewise
regressions). Defaults to Nodewise = FALSE.

DoNotPlot If DoNotPlot = TRUE no factorgraph is plotted. This way the computed factor
graph can be obtained without plotting. Defaults to DoNotPlot = FALSE.

FactorLabels If FactorLabels = TRUE the factors are labeled by their order. If FactorlLabels
= FALSE no label is shown. Defaults to FactorLabels = TRUE.

colors A character vector of colors for nodes and factors. The first color is for variable-
nodes, the second for 2-way interactions, the third for 3-way interactions, etc.
Defaults to colors = c("white"”, "tomato"”, "lightblue”, "orange").

shapes A character vector of shapes for for nodes and factors. The first shape is for
variable-nodes, the second for 2-way interactions, the third for 3-way interac-
tions, etc. Defaults to shapes = c("circle”, "square”, "triangle”, "diamond").

shapeSizes A numeric vector of length two indicating the size of shapes for nodes and fac-
tors. Defaults to shapeSizes = c(8, 4).

estpoint An integer indicating the estimation point to display if the output object of a
time-varying MGM is provided.

negDashed If negDashed = TRUE, edges with negative sign are dashed.
Arguments passed to qgraph.

Details

FactorGraph() is a wrapper around qgraph() from the qgraph package. Therefore all arguments
of ggraph() are available and can be provided as additional arguments.

To make time-varying factor graphs comparable across estimation points, the factor graph of each
estimation point includes all factors that are estimated nonzero at least at one estimation point.

Value

Plots the factor graph and returns a list including the arguments used to plot the factor graph using
qgraph().

Specifically, a list is returned including: graph contains a weighted adjacency matrix of a (bipar-
tide) factor graph. If p is the number of variables and E the number of interactions (factors) in the
model, this matrix has dimensions (p+E) x (p+E). The factor graph is furter specified by the fol-
lowing objects: signs is a matrix of the same dimensions as graph that indicates the sign of each
interaction, if defined (see pairwise above). edgecolor is a matrix with the same dimension as
graph that provides edge colors depending on the sign as above. order is a (p+E) vector indicating
the order of interaction. The first p entries are set to zero. qgraph contains the qgraph object created
while plotting.
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Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

See Also

mgm(), tvmgm(), qgraph()

Examples

## Not run:

# Fit MGM with pairwise & threeway interactions to Autism Dataset
fit_k3 <- mgm(data = autism_data$data,

type = autism_data$type,

level = autism_data$lev,

k =3,

overparameterize = TRUE,

lambdaSel = "EBIC",

lambdaGam = .5)

# List of estimated interactions
fit_k3$interactions$indicator

FactorGraph(object = fit_k3,
PairwiseAsEdge = FALSE,
DoNotPlot = FALSE,
labels = 1:7,
layout="circle")

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

mgm Estimating Mixed Graphical Models

Description

Function to estimate k-degree Mixed Graphical Models via nodewise regression.

Usage

mgm(data, type, level, regularize, lambdaSeq, lambdaSel,
lambdaFolds, lambdaGam, alphaSeq, alphaSel, alphaFolds,
alphaGam, k, moderators, ruleReg, weights, threshold, method,
binarySign, scale, verbatim, pbar, warnings, saveModels,
saveData, overparameterize, thresholdCat, signInfo, ...)
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Arguments

data n x p data matrix

type p vector indicating the type of variable for each column in data. "g" for Gaus-
sian, "p" for Poisson, "c" for categorical.

level p vector indicating the number of categories of each variable. For continuous
variables set to 1.

regularize Logical indicating whether regularization is applied. If regularize = FALSE,
all arguments relating to the specification are overwritten and all regulariza-
tion parameters are set to 0. This also sets threshold = "none"”. Defaults to
regularize = TRUE. Note that the multinomial parameterization used by the
glmnet package used within mgm is only guaranteed to be uniquely identified
with regularization.

lambdaSeq A sequence of lambdas that should be searched (see also lambdaSel). Defaults
to NULL, which uses the glmnet default to select a lambda candidate sequence
(recommended). See ?glmnet for details.

lambdaSel Specifies the procedure for selecting the tuning parameter controlling the Lg-

penalization. The two options are cross validation "CV" and the Extended
Bayesian Information Criterion (EBIC) "EBIC". The EBIC performs well in se-
lecting sparse graphs (see Barber and Drton, 2010 and Foygel and Drton, 2014).
Note that when also searching the alpha parameter in the elastic net penalty,
cross validation should be preferred, as the parameter vector will not necessarily
be sparse anymore. The EBIC tends to be a bit more conservative than CV (see
Haslbeck and Waldorp, 2016). CV can sometimes not be performed with cate-
gorical variables, because glmnet requires at least 2 events of each category of
each categorical variable in each training-fold. Defaults to lambdaSel = "CV".

lambdaFolds Number of folds in cross validation if 1ambdaSel = "CV".

lambdaGam Hyperparameter gamma in the EBIC if 1ambdaSel = "EBIC". Defaults to lambdaGam
= .25.
alphaSeq A sequence of alpha parameters for the elastic net penality in [0,1] that should

be searched (see also alphaSel). Defaults to alphaSeq = 1, which means that
the lasso is being used. alphaSeq = @ corresponds to an L2-penalty (Ridge re-
gression). For details see Friedman, Hastie and Tibshirani (2010).

alphaSel Specifies the procedure for selecting the alpha parameter in the elastic net penalty.
The two options are cross validation "CV" and the Extended Bayesian Informa-
tion Criterion (EBIC) "EBIC". The EBIC performs well in selecting sparse
graphs (see Barber and Drton, 2010 and Foygel and Drton, 2014). Note that
when also searching the alpha parameter in the elastic net penalty, cross valida-
tion should be preferred, as the parameter vector will not necessarily be sparse
anymore. The EBIC tends to be a bit more conservative than CV (see Haslbeck
and Waldorp, 2016). CV can sometimes not be performed with categorical vari-
ables, because glmnet requires at least 2 events of each category of each cate-
gorical variable in each training-fold. Defaults to alphaSel = "CV".

alphaFolds Number of folds in cross validation if alphaSel = "CV".

alphaGam Hyperparameter gamma in the EBIC if alphaSel = "EBIC". Defaults to alphaGam
=.25.
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moderators

ruleReg

weights
threshold

method
binarySign

scale

verbatim

pbar
warnings

saveModels

saveData

13

Order up until including which interactions are included in the model. k =2
means that all pairwise interactions are included, k = 3 means that all pairwise
and all three-way interactions are included, etc. In previous versions of mgm
the order of interactions was specified by the parameter d, the largest size or a
neighborhood. Note thatk =d + 1.

Integer vector with elements in 1: p, specifying moderation effects to be included
in the model. For instance, moderators = c(4) includes all linear moderation
effects of variable 4. This is equivalent to including all 3-way interactions that
include variable 4. Note that moderators = 1:p gives the same model as setting
k = 3 (see previous argument). Alternatively, a specific set of moderators can be
specified via a M x 3 matrix, where M is the number of moderation effects. For
example, moderators =matrix(1:3, nrow=1) adds (only) the 3-way interac-
tion 1-2-3 to the model.

Rule used to combine estimates from neighborhood regression. E.g. for pair-
wise interactions, two estimates (one from regressing A on B and one from B
on A) have to combined in one edge parameter. ruleReg = "AND" requires all
estimates to be nonzero in order to set the edge to be present. ruleReg = "OR"
requires at least one estiamte to be nonzero in order to set the edge to be present.
For higher order interactions, k estimate have to be combined with this rule.

A n vector with weights for observations.

A threshold below which edge-weights are put to zero. This is done in order
to guarantee a lower bound on the false-positive rate. threshold = "LW" refers
to the threshold in Loh and Wainwright (2013), which was used in all previous
versions of mgm. threshold = "HW" refers to the threshold in Haslbeck and
Waldorp (2016). If threshold = "none” no thresholding is applied. Defaults to
threshold = "LW".

Estimation method, currently only method = "glm".

If binarySign = TRUE, a sign for the interaction within binary nodes and be-
tween binary and continuous nodes is provided in the output. Note that in this
case the two categories of the binary variables have to be coded in {0,13}. This
is to ensure that the interpretation of the sign is unambigous: a positive sign of
a parameter means that increasing the associated predictor results in a higher
probability for category 1.

If scale = TRUE, all Gaussian nodes (specified by "g" in type) are centered and
divided by their standard deviation. Scaling is recommended, because other-
wise the penalization of a parameter depends on the variance of the associated
predictor. Defaults to scale = TRUE.

If verbatim=TRUE, no warnings and no progress bar is shown. Defaults to
verbatim= FALSE.

If pbar = TRUE, a progress bar is shown. Defaults to pbar = TRUE.
If warnings = TRUE, no warnigns are returned. Defaults to warnings = FALSE.

If saveModels = FALSE, only information about the weighted adjacency matrix,
and if k > 2 about the factor graph is provided in the output list. If saveModels
= TRUE, all fitted parameters are additionally returned.

If saveData = TRUE, the data is saved in the output list. Defaults to saveData =
FALSE.
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overparameterize

thresholdCat

signInfo

Details

If overparameterize = TRUE, mgm() uses over-parameterized design-matrices
for each neighborhood regression; this means that an interaction between two
categorical variables with m and s categories is parameterized by m*s parame-
ters. If overparameterize = FALSE the standard parameterization (in glmnet)
with m*(s-1) parameters is used, where the first category of the predicting vari-
able serves as reference category. If all variables are continuous both param-
eterizations are the same. Note that the default is set to overparameterize =
FALSE, to be consistent with the previous mgm versions. However when the goal
is to seperate pairwise interactions from 3-way (or higher) interactions, then the
overparameterized version is advantageous. See the examples below for an il-
lustration. Note that we can estimate the model despite the colinear columns in
the design matrix because we use penalized regression.

If thresholdCat = FALSE, the thresholds of categorical variables are set to zero.
Defaults to thresholdCat = TRUE for which the thresholds are esimated.

If signInfo = TRUE, a message is shown in the console, indicating that the sign
of estimates is stored separately. Defaults to signInfo = TRUE.

Additional arguments.

mgm() estimates an exponential mixed graphical model as introduced in Yang and colleagies (2014).
Note that MGMs are not normalizable for all parameter values. See Chen, Witten & Shojaie (2015)
for an overview of when pairwise MGMs are normalizable. To our best knowledge, for MGMs with
interactions of order > 2 that include non-categorical variables, the conditions for normalizablity are

unknown.

Value

The function returns a list with the following entries:

call

pairwise

Contains all provided input arguments. If saveData = TRUE, it also contains the
data

Contains a list with all information about estimated pairwise interactions. wadj
contains the p x p weighted adjacency matrix, if p is the number of variables
in the network. signs has the same dimensions as wadj and contains the signs
for the entries of wadj: 1 indicates a positive sign, -1 a negative sign and 0
an undefined sign. A sign is undefined if an edge is a function of more than
one parameter. This is the case for interactions involving a categorical variable
with more than 2 categories. edgecolor also has the same dimensions as wadj
contains a color for each edge, depending on signs. It is provided for more con-
venient plotting. If only pairwise interactions are modeled (d = 1), wadj contains
all conditional independence relations. The matrices edgecolor_cb contain a
color blind friendly color scheme. edge_1ty contains a matrix with 1s for posi-
tive/undefined signs and 2s for negative signes, which can be used as input to the
1ty argument in qgraph() in order to plot edges with negative sign as dashed
lines.
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interactions A list with three entries that relate each interaction in the model to all its param-
eters. This is different to the output provided in factorgraph, where one value
is assigned to each interaction. indicator contains a list with k-1 entries, one
for each order of modeled interaction, which contain the estimated (nonzero)
interactions. weightsAgg contains a list with k-1 entries, which in turn contain
R lists, where R is the number of interactions (and rows in the corresponding
list entry inindicator) that were estimated (nonzero) in the given entry. Each
of these entries contains the mean of the absolute values of all parameters in-
volved in this interaction. weights has the same structure as weightsAgg, but
does contain all parameters involved in the interaction instead of the mean of
their absolute values. signs has the same structure as weightsAgg/weights
and provides the sign of the interaction, if defined.

intercepts A list with p entries, which contain the intercept/thresholds for each node in
the network. In case a given node is categorical with m categories, there are m
thresholds for this variable.

nodemodels A list with p glmnet () models, from which all above output is computed. Also
contains the coefficients models for the selected lambda and the applied tau
threshold tau.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References
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Examples

## Not run:
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## We fit a pairwise and 3-order MGM to the mixed Autism dataset (?autism_data)
# 1) Fit Pairwise MGM

# Call mgm()
fit_k2 <- mgm(data = autism_data$data,
type = autism_data$type,
level = autism_data$lev,
k = 2) # ad most pairwise interacitons

# Weighted adjacency matrix
fit_k2$pairwise$wadj

# Visualize using qgraph()

library(qgraph)

ggraph(fit_k2$pairwise$wadj,
edge.color = fit_k2$pairwise$edgecolor,
layout = "spring”,
labels = autism_data$colnames)

# 2) Fit MGM with pairwise & three-way interactions
fit_k3 <- mgm(data = autism_data$data,
type = autism_data$type,
level = autism_data$lev,
k = 3) # include all interactions up to including order 3

# List of estimated interactions
fit_k3$interactions$indicator

# 3) Plot Factor Graph

FactorGraph(object = fit_k3,
PairwiseAsEdge = FALSE,
labels = autism_data$colnames)

# 4) Predict values
pred_obj <- predict(fit_k3, autism_data$data)

head(pred_obj$predicted) # first six rows of predicted values
pred_obj$errors # Nodewise errors

## Here we illustrate why we need to overparameterize the design matrix to
## recover higher order interactions including categorical variables

# 1) Define Graph (one 3-way interaction between 3 binary variables)

# a) General Graph Info
type = c("c”, "c", "c")
level = c(2, 2, 2)

# b) Define Interaction
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factors <- list()

factors[[1]] <- NULL # no pairwise interactions

factors[[2]] <- matrix(c(1,2,3), ncol=3, byrow = T) # one 3-way interaction
interactions <- list()

interactions[[1]] <- NULL

interactions[[2]] <- vector("list”, length = 1)

# threeway interaction noil

interactions[[2]1[[1]] <- array(@, dim = c(level[1], level[2], level[31]))
theta <- .7

interactions[[2]1[[1]1][1, 1, 1] <- theta #weight theta for conf (1,1,1), weight @ for all others
# c) Define Thresholds

thresholds <- list()

thresholds[[1]] <- c(0, 0)

thresholds[[2]] <- c(0, @)

thresholds[[3]] <- c(0, @)

# 2) Sample from Graph

iter <- 1
set.seed(iter)
N <- 2000

d_iter <- mgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,

type = type,
level = level,
N =N,

nlter = 50,
pbar = TRUE)

# 3.1) Estimate order 3 MGM using standard parameterization
d_est_stand <- mgm(data = d_iter$data,

type = type,
level = level,
k =3,

lambdaSel = "CV",

ruleReg = "AND",

pbar = TRUE,
overparameterize = FALSE,
signInfo = FALSE)

# We look at the nodewise regression for node 1 (same for all)

coefs_stand <- d_est_stand$nodemodels[[1]]$model

coefs_stand

# We see that nonzero-zero pattern of parameter vector does not allow us to infer whether
# interactions are present or not

# 3.2) Estimate order 3 MGM using overparameterization
d_est_over <- mgm(data = d_iter$data,

type = type,

level = level,
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k =3,

lambdaSel = "CV",
ruleReg = "AND",

pbar = TRUE,
overparameterize = TRUE,
signInfo = FALSE)

# We look at the nodewise regression for node 1 (same for all)
coefs_over <- d_est_over$nodemodels[[1]]$model
coefs_over # recovers exactly the 3-way interaction

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

mgmsampler

Sample from k-order Mixed Graphical Model

Description

Generates samples from a k-order Mixed Graphical Model

Usage

mgmsampler (factors, interactions, thresholds, sds, type,
level, N, nlIter = 250, pbar = TRUE,
divWarning = 10”3, returnChains = FALSE)

Arguments

factors

interactions

This object indicates which interactions are present in the model. It is a list in
which the first entry corresponds to 2-way interactions, the second entry corre-
sponds to 3-way interactions, etc. and the kth entry to the k+1-way interaction.
Each entry contains a matrix with dimensions order x number of interaction of
given order. Each row in the matrix indicates an interaction, e.g. (1, 3, 7, 9) in
the matrix in list entry three indicates a 4-way interaction between the variables
1,3,7 and 9.

This object specifies the parameters associated to the interactions specified in
factors. Corresponding to the structure in factors, this object is a list, where
the kth entry corresponds to k+1-way interactions. Each list entry contains an-
other list, with entries equal to the number of rows in the corresponding matrix
in factors. Each of these list entries (for a fixed k) contains a k-dimensional
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thresholds

sds

type

level

N
nlter
pbar

divWarning

returnChains

Details
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array that specifies the parameters of the given k-order interaction. For instance,
if we have a 3-way interaction (1, 2, 3) and all variables are binary, we have
a 2 x 2 x 2 array specifiying the parameters for each of the 23 = 8 possible
configurations. If all variables are continuous, we have a 1 x 1 x 1 array, so the
interaction is specified by a single parameter. See the examples below for an
illustration.

A list with p entries corresponding to p variables in the model. Each entry
contains a vector indicating the threshold for each category (for categorical vari-
ables) or a numeric value indicating the threshold/intercept (for continuous vari-
ables).

A numeric vector with p entries, specifying the variances of Gaussian variables.
If variables 6 and 13 are Gaussians, then the corresponding entries of sds have
to contain the corresponding variances. Other entries are ignored.

n.n

p character vector indicating the type of variable for each column in data. "g

nn

for Gaussian, "p" for Poisson, "c" of each variable.

p integer vector indicating the number of categories of each variable. For con-
tinuous variables set to 1.

Number of samples that should be drawn from the distribution.
Number of iterations in the Gibbs sampler until a sample is drawn.
If pbar = TRUE a progress bar is shown. Defaults to pbar = TRUE.

mgmsampler () returns a warning message if the absolute value of a continuous
variable the chain of the gibbs sampler is larger than divWarning. To our best
knowledge there is no theory yet defining a parameter space that ensures a proper
probability density and hence a converging chain. Defaults to divWarning =
10*3.

If returnChains = TRUE, the sampler provides the entire chain of the Gibbs
sampler, for each sampled case. Can be used to check convergence of the Gibbs
sampler. Defaults to returnChains = FALSE.

We use a Gibbs sampler to sample from the join distribution introduced by Yang and colleageus
(2014). Note that the contraints on the parameter space necessary to ensure that the joint distribu-
tion is normalizable are to our best knowledge unknown. Yang and colleagues (2014) give these
constraints for a number of simple pairwise models. In practice, an "improper joint density" will
lead to a sampling process that approaches infinity, and hence mgmsampler () will return Inf /-Inf

values.

Value

A list containing:

call
data

Contains all provided input arguments.

The N x p data matrix of sampled values
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Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References
Haslbeck, J., & Waldorp, L. J. (2018). mgm: Estimating time-varying Mixed Graphical Models in
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Yang, E., Baker, Y., Ravikumar, P., Allen, G. L., & Liu, Z. (2014, April). Mixed Graphical Models
via Exponential Families. In AISTATS (Vol. 2012, pp. 1042-1050).

Examples
## Not run:
# - Example 1: p = 10 dimensional Gaussian ---------
# - 1) Specify Model -----

# a) General Graph Info

p <- 10 # number of variables

type = rep("g", p) # type of variables

level = rep(1, 10) # number of categories for each variable (1 = convention for continuous)

# b) Define interactions
factors <- list()
factors[[1]] <- matrix(c(1,2,
1,3,
4,5,
7,8), ncol=2, byrow = T) # 4 pairwise interactions
interactions <- list()
interactions[[1]] <- vector("list”, length = 4)

# all pairwise interactions have value .5
for(i in 1:4) interactions[[1]][[i]] <- array(.5, dim=c(1, 1))

# c) Define Thresholds
thresholds <- vector("list"”, length = p)
thresholds <- lapply(thresholds, function(x) @ ) # all means are zero

# d) Define Variances
sds <- rep(1, p) # All variances equal to 1

data <- mgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,
sds = sds,
type = type,
level = level,
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N = 500,
nlter = 100,
pbar = TRUE)

set.seed(1)
mgm_obj <- mgm(data = data$data,

type = type,

level = level,

k =2,

lambdaSel = "EBIC",

lambdaGam = 0.25)

mgm_obj$interactions$indicator # worked!

# a) General Graph Info
type = C(”C”’ "C”, Ilcll)
level = c(2, 2, 2)

# b) Define Interaction

factors <- list()

factors[[1]] <- NULL # no pairwise interactions

factors[[2]] <- matrix(c(1,2,3), ncol=3, byrow = T) # one 3-way interaction

interactions <- list()

interactions[[1]] <- NULL

interactions[[2]] <- vector("list”, length = 1)

# threeway interaction nol

interactions[[2]][[1]] <- array(@, dim = c(level[1], level[2], level[3]))
theta <- 2

interactions[[2]11[[11]1[1, 1, 1] <- theta # fill in nonzero entries

# thus: high probability for the case that x1 = x2 = x3 =1

# c) Define Thresholds

thresholds <- list()
thresholds[[1]1] <- rep(@, level[1])
thresholds[[2]] <- rep(@, level[2])
thresholds[[3]] <- rep(@, level[3])

set.seed(1)
dlist <- mgmsampler(factors = factors,
interactions = interactions,
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thresholds = thresholds,
type = type,
level = level,
N = 500,
nlter = 100,
pbar = TRUE)
# -—-—- 3) Check: Contingency Table -----
dat <- dlist$data
table(dat[,1], dat[,2], dat[,3]) # this is what we expected
#-—-—- 4) Recover model from sampled cases -----
mgm_obj <- mgm(data = dlist$data,
type = type,
level = level,
k =3,
lambdaSel = "EBIC",
lambdaGam = 0.25,
overparameterize = TRUE)
mgm_obj$interactions$indicator # recovered, plus small spurious pairwise 1-2
# o————————- Example 3: p = 5 Mixed Graphical Model with two 3-way interaction ---------

# a) General Graph Info
type = c("g", "c”, "c", "g")
level = c(1, 3, 5, 1)
# b) Define Interaction
factors <- list()
factors[[1]] <- NULL # no pairwise interactions
factors[[2]] <- matrix(c(1,2,3,
2,3,4), ncol=3, byrow = T) # no pairwise interactions
interactions <- list()
interactions[[1]] <- NULL
interactions[[2]] <- vector("list”, length = 2)
# 3-way interaction nol
interactions[[2]1[[1]] <- array(@, dim = c(level[1], level[2], levell[3]))
interactions[[2]1[[111[,,1:3] <- rep(.8, 3) # fill in nonzero entries
# 3-way interaction no2
interactions[[2]1[[2]] <- array(@, dim = c(level[2], level[3], levell[4]))
interactions[[2]1[[2]1[1,1,] <- .3
interactions[[2]1[[2]][2,2,] <- .3
interactions[[2]1[[2]][3,3,] <- .3
# c) Define Thresholds
thresholds <- list()
thresholds[[1]] <- @
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thresholds[[2]] <- rep(@, level[2])
thresholds[[3]] <- rep(@, level[3])
thresholds[[4]] <- @

# d) Define Variances

sds <- rep(.1, length(type))

set.seed(1)

data <- mgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,

sds = sds,
type = type,
level = level,
N = 500,
nlter = 100,
pbar = TRUE)
# -—-—- 3) Check: Conditional Means -----

# We condition on the categorical variables and check whether
# the conditional means match what we expect from the model:

dat <- data$data

# Check interaction 1

mean(dat[dat[,2] == 1 & dat[,3] == 1, 1]1) # (compare with interactions[[2]11[[1]1])
mean(dat[dat[,2] == 1 & dat[,3] == 5, 1])

# first mean higher, ok!

# Check interaction 2

mean(dat[dat[,2] == 1 & dat[,3] == 1, 4]) # (compare with interactions[[2]1[[2]1])
mean(dat[dat[,2] == 1 & dat[,3] == 2, 41)

# first mean higher, ok!

## End(Not run)

mvar Estimating mixed Vector Autoregressive Model (mVAR)

Description

Estimates mixed Vector Autoregressive Model (mVAR) via elastic-net regularized Generalized Lin-
ear Models
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Usage

mvar(data, type, level, regularize, lambdaSeq, lambdaSel,
lambdaFolds, lambdaGam, alphaSeq, alphaSel, alphaFolds,
alphaGam, lags, consec, beepvar, dayvar, weights, threshold,
method, binarySign,scale, verbatim, pbar, warnings, saveModels,

saveData, overparameterize, thresholdCat, signInfo, ...)
Arguments
data n x p data matrix.
type p vector indicating the type of variable for each column in data. "g" for Gaus-

sian, "p" for Poisson, "c" for categorical.

level p vector indicating the number of categories of each variable. For continuous
variables set to 1.

regularize Logical indicating whether regularization is applied. If regularize = FALSE,
all arguments relating to the specification are overwritten and all regulariza-
tion parameters are set to @. This also sets threshold = "none"”. Defaults to
regularize = TRUE. Note that the multinomial parameterization used by the
glmnet package used within mgm is only guaranteed to be uniquely identified
with regularization.

lambdaSeq A sequence of lambdas that should be searched (see also lambdaSel). Defaults
to NULL, which uses the glmnet default to select a lambda candidate sequence
(recommended). See ?glmnet for details.

lambdaSel Specifies the procedure for selecting the tuning parameter controlling the Lg-
penalization. The two options are cross validation "CV" and the Extended
Bayesian Information Criterion (EBIC) "EBIC". The EBIC performs well in se-
lecting sparse graphs (see Barber and Drton, 2010 and Foygel and Drton, 2014).
Note that when also searching the alpha parameter in the elastic net penalty,
cross validation should be preferred, as the parameter vector will not necessarily
be sparse anymore. The EBIC tends to be a bit more conservative than CV (see
Haslbeck and Waldorp, 2016). CV can sometimes not be performed with cate-
gorical variables, because glmnet requires at least 2 events of each category of
each categorical variable in each training-fold. Defaults to lambdaSel = "CV".

lambdaFolds Number of folds in cross validation if 1ambdaSel = "CV".

lambdaGam Hyperparameter gamma in the EBIC if 1ambdaSel = "EBIC". Defaults to lambdaGam
= .25.
alphaSeq A sequence of alpha parameters for the elastic net penality in [0,1] that should

be searched (see also alphaSel). Defaults to alphaSeq = 1, which means that
the lasso is being used. alphaSeq = @ corresponds to an L2-penalty (Ridge re-
gression). For details see Friedman, Hastie and Tibshirani (2010).

alphaSel Specifies the procedure for selecting the alpha parameter in the elastic net penalty.
The two options are cross validation "CV" and the Extended Bayesian Informa-
tion Criterion (EBIC) "EBIC". The EBIC performs well in selecting sparse
graphs (see Barber and Drton, 2010 and Foygel and Drton, 2014). Note that
when also searching the alpha parameter in the elastic net penalty, cross valida-
tion should be preferred, as the parameter vector will not necessarily be sparse
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alphaFolds
alphaGam

lags

consec

beepvar

dayvar

weights

threshold

method
binarySign
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anymore. The EBIC tends to be a bit more conservative than CV (see Haslbeck
and Waldorp, 2016). CV can sometimes not be performed with categorical vari-
ables, because glmnet requires at least 2 events of each category of each cate-
gorical variable in each training-fold. Defaults to alphaSel = "CV".

Number of folds in cross validation if alphaSel = "CV"

Hyperparameter gamma in the EBIC if alphaSel = "EBIC". Defaults to alphaGam
= .25.

Vector of positive integers indicating the lags included in the mVAR model (e.g.
1:3 or ¢(1,3,5))

An integer vector of length n, indicating the consecutiveness of measurement
points of the rows in data. This means that rows for which the necessary (de-
fined by the specified VAR model) measurements at previous time points are not
available are excluded from the analysis. For instance, for a VAR model with
lag 1 a consec vector of consec = c¢(1,2,3,5) would mean that the fourth row
is excluded from the analysis, since no measurement 5-1=4 is available (next to
the first row, for which also no previous measurement can be available). This
is useful in many applications in which measurements are missing randomly
or due to the design of the data collection (for example, respondents only re-
spond during the hours they are awake). The "trimmed" dataset is returned in
call$data_lagged if saveData = TRUE. Defaults to consec = NULL, which as-
sumes that all measurements are consecutive, i.e. consec = 1:n. In this case
only the first max(lags) lags are excluded to obtain the VAR design matrix.

Together with the argument dayvar, this argument is an alternative to the consec
argument (see above) to specify the consecutiveness of measurements. This is
tailored to experience sampling method (ESM) studies, where the consectutive-
ness is defined by the number of notification on a given day (beepvar) and the
given day (dayvar).

See beepvar.

A vector with n - max(lags) entries, indicating the weight for each observation.
The mVAR design matrix has with n - max(lags) rows, because the first row
must be predictable by the highest lag. The weights have to be on the scale [0, n
- max(lags) ].

A threshold below which edge-weights are put to zero. This is done in order
to guarantee a lower bound on the false-positive rate. threshold = "LW" refers
to the threshold in Loh and Wainwright (2013), which was used in all previous
versions of mgm. threshold = "HW" refers to the threshold in Haslbeck and
Waldorp (2016). If threshold = "none"” no thresholding is applied. Defaults to
threshold = "LW".

Estimation method, currently only method = "glm".

If binarySign = TRUE, a sign for the interaction within binary nodes and be-
tween binary and continuous nodes is provided in the output. Note that in this
case the two categories of the binary variables have to be coded in {0, 13}. This
is to ensure that the interpretation of the sign is unambigous: a positive sign of
a parameter means that increasing the associated predictor results in a higher
probability for category 1.
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scale

verbatim

pbar
warnings

saveModels

saveData

mvar

If scale = TRUE, all Gaussian nodes (specified by "g" in the type argument)
are centered and divided by their standard deviation. Scaling is recommended,
because otherwise the penalization of a parameter depends on the variance of
the associated predictor.

If verbatim = TRUE, no warnings and no progress bar is shown. Defaults to
verbatim = FALSE.

If pbar = TRUE, a progress bar is shown. Defaults to pbar = TRUE.
If warnings = TRUE, no warnigns are returned. Defaults to warnings = FALSE.

If saveModels = FALSE, only information about the weighted adjacency matrix,
and if d > 1 about the factor graph is provided in the output list. If saveModels
= TRUE, all fitted parameters are additionally returned.

If saveData = TRUE, the data is saved in the output list. Defaults to saveData =
FALSE.

overparameterize

thresholdCat

signInfo

Details

If overparameterize = TRUE, mgm() uses over-parameterized design-matrices
for each neighborhood regression; this means that a cross-lagged effect be-
tween two categorical variables with m and s categories is parameterized by
m*s parameters. If overparameterize = FALSE the standard parameterization
(in glmnet) with m*(s-1) parameters is used, where the first category of the
predicting variable serves as reference category. If all variables are continuous
both parameterizations are the same. The default is set to overparameterize =
FALSE.

If thresholdCat = FALSE, the thresholds of categorical variables are set to zero.
Defaults to thresholdCat = TRUE for which the thresholds are esimated.

If signInfo = TRUE, a message is shown in the console, indicating that the sign
of estimates is stored separately. Defaults to signInfo = TRUE.

Additional arguments.

See Haslbeck and Waldorp (2018) for details about how the mixed VAR model is estimated.

Value

The function returns a list with the following entries:

call

wadj

Contains all provided input arguments. If saveData = TRUE, it also contains the
data.

A p X p x n_lags array, in which rows are predicted by columns, i.e. entry
wadj[1, 2, 4] corresponds to the parameter(s) of variable 2 at time point t pre-
dicting variable 1 at time point t - z, where z is the fourth specified lag in lags
and n_lags is the number of specified lags in 1ags. For interactions that involve
more than two parameters (e.g. always for categorical variables with more than
2 categories), we take the arithmetic mean of the absolute value of all parame-
ters. The full set of estimated parameters is saved in rawlags (see below).
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signs A p x p x n_lags array, specifying the signs corresponding to the entries of
wadj (if defined), where n_lags is the number of specified lags in lags. 1/-1
indicate positive and negative relationships, respectively. 0 indicates that no sign
is defined, which is the case for interactions that involve a categorical variable
where an interaction can have more than one parameter. If binarySign = TRUE,
a sign is calculated for interactions between binary variables and binary and
continuous variables, where the interaction is still defined by one parameter and
hence a sign can be specified. NA indicates that the corresponding parameter in
wadj is zero.

edgecolor A p x p x n_lags array of colors indicating the sign of each parameter. This array
contains the same information is signs and is included for convenient plotting.

rawlags List with entries equal to the number of specified lags in 1lags. Each entry is a
nested list, with each p entries: the first level indicates the predicted variable, the
second level the predictor variable. In case of categorical variables, interactions
have more than one parameter.

intercepts A list with p entries, which contain the intercept/thresholds for each node. In
case a given node is categorical with m categories, there are m thresholds for
this variable.

nodemodels A list with p glmnet () models, from which all above output is computed. Also
contains the coefficients models for the selected lambda and the applied tau
threshold tau.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>
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Examples

## Not run:

## We generate data from a mixed VAR model and then recover the model using mvar()

# 1) Define mVAR model

p <- 6 # Six variables

type <- c("c", "c", "c", "c", "g", "g") # 4 categorical, 2 gaussians

level <-c(2, 2, 4, 4, 1, 1) # 2 categoricals with m=2, 2 categoricals with m=4, two continuous

max_level <- max(level)

lags <- c(1, 3, 9) # include lagged effects of order 1, 3, 9
n_lags <- length(lags)

# Specify thresholds

thresholds <- list()

thresholds[[1]] <- rep(@, levell[1])
thresholds[[2]] <- rep(@, levell[2])
thresholds[[3]] <- rep(@, level[3])
thresholds[[4]] <- rep(@, levell[4])
thresholds[[5]1] <- rep(@, level[5])
thresholds[[6]1] <- rep(@, levell[6])

# Specify standard deviations for the Gaussians
sds <- rep(NULL, p)
sds[5:6] <- 1

# Create coefficient array
coefarray <- array(@, dim=c(p, p, max_level, max_level, n_lags))

# a.1) interaction between continuous 5<-6, lag=3
coefarray[5, 6, 1, 1, 2] <- .4

# a.2) interaction between 1<-3, lag=1

ml <- matrix(@, nrow=level[2], ncol=level[4])
mi[1,1:2] <- 1

mi[2,3:4] <- 1

coefarray[1, 3, 1:levell[2], 1:level[4], 1] <- mil

# a.3) interaction between 1<-5, lag=9

coefarray[1, 5, 1:level[1], 1:level[5], 3] <- c(@, 1)

# 2) Sample
set.seed(1)
dlist <- mvarsampler(coefarray = coefarray,
lags = lags,
thresholds = thresholds,
sds = sds,
type = type,
level = level,
N = 200,
pbar = TRUE)



mvarsampler 29

# 3) Recover

set.seed(1)

mvar_obj <- mvar(data = dlist$data,
type = type,
level = level,
lambdaSel = "CV",
lags = c(1, 3, 9),
signInfo = FALSE,
overparameterize = F)

# Did we recover the true parameters?

mvar_obj$wadj[5, 6, 2] # cross-lagged effect of 6 on 2 over lag lags[2]
mvar_obj$wadj[1, 3, 1] # cross-lagged effect of 3 on 1 over lag lags[1]
mvar_obj$wadj[1, 5, 3] # cross-lagged effect of 1 on 5 over lag lags[3]

# How to get the exact parameter estimates?
# Example: the full parameters for the crossed-lagged interaction of 2 on 1 over lag lags[1]

mvar_obj$rawlags[[111[[1]11[[2]]

# 4) Predict / Compute nodewise Error
pred_mvar <- predict.mgm(mvar_obj, dlist$data)

head(pred_mvar$predicted) # first 6 rows of predicted values
pred_mvar$errors # Nodewise errors

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

mvarsampler Sampling from a mixed VAR model

Description

Function to sample from a mixed VAR (mVAR) model

Usage

mvarsampler(coefarray, lags, thresholds,
sds, type, level, N, pbar)

Arguments

coefarray A p x p x max(level) x max(level) x n_lags array, where p are the number of
variables, level is the input argument level and n_lags is the number of speci-
fied lags in lags, so n_lags = length(n_lags). The first four dimensions specify
the parameters involved in the cross-lagged effects of the lag specified in the 5th
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dimension. L.e. coefarray[5, 6, 1, 1, 3] indicates the cross-lagged effect of vari-
able 6 on variable 5 (if both are continuous), for the third lag specified in lags.
If variable 1 and 3 are categorical with m = 2 and = 4 categories, respectively,
then coefarray[1, 3, 1:2, 1:4, 1] indicates the m*s=8 parameters specifying this
interaction for the first lag specified in lags. See the examples below for an
illustration.

lags A vector indicating the lags in the mVAR model. E.g. lags = c(1, 4, 9) spec-
ifies lags of order 1, 3, 9. The number of specified lags has to match the 5th
dimension in coefarray.

thresholds A list with p entries, each consisting of a vector indicating a threshold for each
category of the given variable. For continuous variable, the vector has length 1.

sds A vector of length p indicating the standard deviations of the included Gaussian
nodes. If non-Gaussian variables are included in the mVAR model, the corre-
sponding entries are ignored.

"on

type p vector indicating the type of variable for each column in data. "g" for Gaus-

nn

sian, "p" for Poisson, "c" for categorical.

level p vector indicating the number of categories of each variable. For continuous
variables set to 1.

N The number of samples to be drawn from the specified mVAR model.
pbar If pbar = TRUE, a progress bar is shown.
Details

We sample from the mVAR model by separately sampling from its corresponding p conditional
distributions.

Value

A list with two entries:

call The function call
data The sampled n x p data matrix
Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/jss.v093.108
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Examples

## Not run:

## Generate data from mixed VAR model using mvarsampler() and recover model using mvar()
# 1) Define mVAR model

p <- 6 # Six variables
type <- c("c", "c", "c", "c", "g", "g") # 4 categorical, 2 gaussians
level <-c(2, 2, 4, 4, 1, 1) # 2 categoricals with m=2, 2 categoricals with m=4, two continuous

max_level <- max(level)

lags <- c(1, 3, 9) # include lagged effects of order 1, 3, 9
n_lags <- length(lags)

# Specify thresholds

thresholds <- list()

thresholds[[1]1] <- rep(@, level[1])
thresholds[[2]] <- rep(@, level[2])
thresholds[[3]] <- rep(@, level[3])
thresholds[[4]1] <- rep(@, levell[4])
thresholds[[5]] <- rep(@, level[5])
thresholds[[6]] <- rep(@, level[6])

# Specify standard deviations for the Gaussians
sds <- rep(NULL, p)
sds[5:6] <- 1

# Create coefficient array
coefarray <- array(@, dim=c(p, p, max_level, max_level, n_lags))

# a.1) interaction between continuous 5<-6, lag=3
coefarray[5, 6, 1, 1, 2] <- .4

# a.2) interaction between 1<-3, lag=1

ml <- matrix(@, nrow=level[2], ncol=level[4])
mi[1,1:2] <- 1

mi[2,3:4] <- 1

coefarray[1, 3, 1:levell[2], 1:level[4], 1] <- mil

# a.3) interaction between 1<-5, lag=9

coefarray[1, 5, 1:level[1], 1:level[5], 3] <- c(0, 1)

# 2) Sample
set.seed(1)
dlist <- mvarsampler(coefarray = coefarray,

lags = lags,

thresholds = thresholds,
sds = sds,

type = type,

level = level,
N = 200,
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# 3) Recover
set.seed(1)

mvar_obj <- mvar(data =

# Did we recover
mvar_obj$wadj[5,
mvar_obj$wadj[1,
mvar_obj$wadj[1,

plotRes

pbar = TRUE)

dlist$data,
type = type,

level = level,
lambdaSel = "CV",
lags = c(1, 3, 9),
signInfo = FALSE,
overparameterize = F)

the true parameters?

6, 2] # cross-lagged effect of 6 on 5 over lag lags[2]
3, 11 # cross-lagged effect of 3 on 1 over lag lags[1]
5, 3] # cross-lagged effect of 1 on 5 over lag lags[3]

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

plotRes

Plot summary of resampled sampling distributions

Description

Plots a summary of sampling distributions resampled with the resample() function

quantiles = c(.05, .95), labels = NULL,

decreasing = TRUE, cut = NULL, cex.label = 0.75,

lwd.qgtl = 2, cex.mean =

axis.ticks.mod = NULL, layout.width.labels =
layout.gap.pw.mod = .15, table =

Usage
plotRes(object,
axis.ticks =
Arguments
object
quantiles
labels

0.55, cex.bg = 2.7,

c(-0.5, -0.25, 0, 0.25, 0.5, 0.75, 1),
.2,
FALSE)

An output object from the resample() function.

A numerical vector of length two, specifying the desired lower/upper quantiles.
Defaults to quantiles = c(.05, .95).

A character vector of length p, containing the label of each variable, where p is
the number of variables.
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decreasing

cut

cex.label
lwd.qtl

cex.mean

cex.bg

axis.ticks

axis.ticks.mod
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If TRUE (default), the edges are ordered by the arithmetic mean of the sampling
distribution in decreasing order. If FALSE they are ordered in increasing order.

A sequence of integers, specifying which edges are represented. For instance, if
decreasing = TRUE and cut = 1:10, summaries for the 10 edges with the largest
parameter estimate are displayed. The cut argument can also be used to present
the boostrapped Cls in several figures.

Text size of the labels.
Line width of line indicating the upper/lower quantiles.

Text size of the number indicating the proportion of the estimates whose abso-
lute value is larger than zero.

Size of the white background of the number indicating the proportion of the
estimates whose absolute value is larger than zero.

A numeric vector indicating the axis ticks and labels for the x-axis.

A numeric vector indicating the axis ticks and labels for the x-axis for moder-
ation effects. If axis.ticks.mod=NULL, the values from axis.ticks for pair-
wise interactions are used.

layout.width.labels

A positive numeric value which specifies the width of the left-hand-side legend
relative to the width of the data panel (or data panels, in case of a moderator
model), which have width = 1. Defaults to layout.width.labels = 0. 2.

layout.gap.pw.mod

table

Details

A positive numeric value which specifies the width of the gap between the stabil-
ity of pairwise effects and moderation effects. Defaults to 1ayout.gap.pw.mod
=0.15.

If table = TRUE, the output is presented as a table instead of a figure. Defaults
to table = FALSE.

Currently only supports summaries for resampled mgm() objects, and moderated MGMs with a

single moderator.

Value

Plots a figure that shows summaries of the resampled sampling distribution for (a set of) all edge
parameters. These include the mean, a specified upper and lower quantile and the proportion of
parameter estimates whose absolute value is larger than zero.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

See Also

resample(), mgm(), mvar (), tvmgm(), tvmar()
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Examples

## Not run:

# Fit initial model

fit_aut <- mgm(data = as.matrix(autism_data$data),
type = autism_data$type,
level = autism_data$lev,
k =2)

# Fit bootstrapped models
res_aut <- resample(object = fit_aut,
data = as.matrix(autism_data$data),
nB = 10) # should be more in real applications

# Plot Summary
plotRes(object = res_aut,
quantiles = c(.05, .95),
labels = NULL,
axis.ticks = c(-.25, 0, .25, .5, .75))

## End(Not run)

predict.mgm Compute predictions from mgm model objects

Description

Computes predictions and prediction errors from a mgm model-object (mgm, mvar, tvmgm or tvmvar).

Usage

## S3 method for class 'mgm'
predict(object, data, errorCon, errorCat,
tvMethod, consec, beepvar, dayvar, errordecimals=3,

D)
Arguments
object An mgm model object (the output of one of the functions mgm(), mvar (), tvmgm()
or tvmvar())
data A n x p data matrix with the same structure (number of variables p and types of
variables) as the data used to fit the model.
errorCon Either a character vector specifying the types of nodewise errors that should be

computed, where the two provided error functions for continuous varaibles are
errorCon = "RMSE", the Root Mean Squared Error, and errorCon = "R2", the
proportion of explained variance. The default is errorCon = c("RMSE" "R2").
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Alternatively, errorCon can be a list, where each list entry is a custom error
function of the form foo(true, pred), where true and pred are the argu-
ments for the vectors of true and predicted values, respectively. If predictions are
made for a time-varying model and tvMethod = "weighted”, the weighted R2
or RMSE are computed. If a custom function is used, an additional argument for
the weights has to be provided: foo(true, pred, weights). Note that custom
error functios can also be combined with the buildt-in functions, i.e. errorCon
=1ist("RMSE", "CustomError"=fo00).

errorCat Either a character vector specifying the types of nodewise errors that should
be computed, where the two provided error functions for categorical variables
are errorCat = "CC", the proportion of correct classification (accuracy) and
errorCat = "nCC", the proportion of correct classification normalized by the
marginal distribution of the variable at hand. Specifically, nCC = (CC - norm_constant)
/ (1 - norm_constant), where norm_constant is the highest relative frequency
across categories. Another provided error is "CCmarg" which returns the accu-
racy of the intercept/marginal model. The default is to return all types of errors
errorCon =c("CC” "nCC", "CCmarg").
Alternatively, errorCat can be a list, where each list entry is a custom error
function of the form foo(true, pred), where true and pred are the argu-
ments for the vectors of true and predicted values, respectively. If predictions are
made for a time-varying model and tvMethod = "weighted”, the weighted R2
or RMSE are computed. If a custom function is used, an additional argument for
the weights has to be provided: foo(true, pred, weights). Note that custom
error functios can also be combined with the buildt-in functions, i.e. errorCon
=1list("nCC", "CustomError"”"=foo0).

tvMethod Specifies how predictions and errors are computed for time-varying models:
tvMethod = "weighted"” computes errors by computing a weighted error over
all cases in the time series at each estimation point specified in estpoints in
tvmgm() or tvmvar(). The weighting corresponds to the weighting used for
estimation (see ?tvmgm or ?tvmvar). tvMethod = "closestModel” determines
for each time point the closest model and uses that model for prediction. See
Details below for a more detailed explanation.

consec Only relevant for (time-varying) mVAR models. An integer vector of length
nrow(data), indicating the sequence of measurement points in a time series.
This is only relevant for mVAR models and time series with unequal time inter-
vals. Defaults to consec = NULL, which assumes equal time intervals. consec is
ignored if a mgm or tvmgm object is provided to predict.mgm(). For details see
?mvar.

beepvar Together with the argument dayvar, this argument is an alternative to the consec
argument (see above) to specify the consecutiveness of measurements. This is
tailored to ecological momentary assessment (EMA) studies, where the consec-
tutiveness is defined by the number of notification on a given day (beepvar) and
the given day (dayvar).

dayvar See beepvar.

errordecimals Number of decimals to which predictability / prediction error values are rounded.
Defaults to errordecimals = 3.

Additional arguments.
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Details

Nodewise errors in time-varying models can be computed in two different ways: first, one computes
the predicted value for each of the N cases in the time series for all models (estimated at different
estimation points, see ?tvmgm or ?tvmvar). Then the error of each of the N cases for each of the
models is weighted by the weight that has been used to estimate a given model at its estimation
point. This means that the error of a data point close to the end of a time-series gets a high weight
for models estimated in the end of the time-series and a low weight for models estimated in the
beginning of the time series.

Second, we determine for each case in the time-series the closest estmation point, and use the model
estimated at that estimation point to make predictions for that case.

Note that the error function normalized accuracy (nCC) is negative if the full model performs worse
than the intercept model. This can happen if the model overfits the data.

Value

A list with the following entries:

call Contains all provided input arguments.
predicted A n x p matrix with predicted values, matching the dimension of the true values
in true.

probabilities A list with p entries corresponding to p nodes in the data. If a variable is categor-
ical, the corresponding entry contains a n x k matrix with predicted probabilities,
where k is the number of categories of the categorical variable. If a variable is
continuous, the corresponding entry is empty.

true Contains the true values. For mgm and tvmgm objects these are equal to the data
provided via data. For mvar and tvmvar objects, these are equal to the rows
that can be predicted in a VAR model, depending on the largest specified lag
and (if specified) the consec argument.

errors A matrix containing the all types of errors specified via errorCon and errorCat,
for each variable. If tvMethod = "weighted”, the matrix becomes an array, with
an additional dimension for the estimation point.

tverrors If tvMethod = "weighted", this list entry contains a list with errors of the format
of errors, separately for each estimation point. The errors are computed from
predictions of the model at the given estimation points and weighted by the
weight-vector at that estimation point. If tvMethod = "closestModel”, this
entry is empty.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOLI:
10.18637/jss.v093.108
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Examples

## Not run:
# See examples in ?mgm, ?tvmgm, ?mvar and ?tvmvar.

## End(Not run)
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print.int Print method for int objects

Description

Returns basic information about objects created with showInteraction()

Usage
## S3 method for class 'int'
print(x, ...)
Arguments
X The output object of showlInteraction().
Additional arguments.
Value

Writes basic information about the object in the console.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

print.mgm Print method for mgm objects

Description

Returns basic information about fit objects, prediction objects and bandwidth-selection objects.

Usage

## S3 method for class 'mgm'
print(x, ...)
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Arguments
X The output object of mgm(), mvar(), tvmgm(), tvmvar(), predict.mgm() or
bwSelect().
Additional arguments.
Value

Writes basic information about the object in the console.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

resample Resampling scheme for mgm objects

Description

Fits mgm model types (mgm, mvar, tvmgm, tvmvar) to a specified number of bootstrap samples.

Usage
resample(object, data, nB, blocks, quantiles,
pbar, verbatim, ...)
Arguments
object An mgm model object, the output of mgm(), tvmgm(), mvar(), tvmvar(). The
model specifications for all fitted models are taken from this model object.
data The n x p data matrix.
nB The number of bootstrap samples.
blocks The number of blocks for the block bootstrap used for time-varying models.
quantiles A vector with two values in [0, 1], specifying quantiles computed on the boot-
strapped sampling distributions. Defaults to quantiles = c(.05, .95)
pbar If TRUE, a progress bar is shown. Defaults to pbar = TRUE.
verbatim If TRUE, the seed of the current bootstrap sample is printed in the console. Useful

to exclude zero-variance bootstrap samples in datasets with low variance.

Additional arguments.
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Details

resample() fits a model specified via the object argument to nB bootstrap samples obtained from
the orginial dataset. For stationary models (mgm() and mvar()) objects, we use the standard boot-
strap. For time-varying models (tvmgm() and tvmvar()) we use the block bootstrap.

For mvar models, bootParameters is a p x p x nlags x nB array, where p is the number of vari-
ables, nlags is the number of specified lags, and nB is the number of bootstrap samples. Thus
bootParameters[7, 3, 2, ] returns the bootstrapped sampling distribution of the lagged effect
from variable 3 on 7 for the 2nd specified lag. See also ?mvar.

For tvmar models, bootParameters is a p x p x nlags x nestpoints x nB array, analogously to mvar
models. nestpoints is the number of specified estpoints. See also ?tvmvar.

Resampling is currently only supported for pairwise MGMs (k = 2). For mgms, bootParameters
is a p x p x nB array. For tvmgms, bootParameters is a p X p X nestpoint x nB array.

The seeds for the bootstrap samples are randomly sampled. For MGMs, the seeds are resampled
until there are nB bootstrap samples on which an MGM can be estimated. This resampling has been
implemented, because especially for small data sets, one can obtain bootstrap samples in which one
or several variables have zero variance. For the other model classes, an informative error is returned
in case the respective model cannot be estimated on one or more of the bootstrap samples.

Value

The output consists of a list with the entries

call Contains the function call.
models A list with nB entries, containing the models fit to the bootstrapped sampels.

bootParameters Contains all the bootstrapped sampling distribution of all parameters. The di-
mension of this object depends on the type of model. Specifically, this object
has the same dimension as the main parameter output of the corresponding es-
timation function, with one dimension added for the bootstrap iterations. See
"Details" above.

bootQuantiles Contains the specified quantiles of the bootstrapped sampling distribution for
each parameter. Has the same structure as bootParameters. See "Details"

above.
Times Returns the running time for each bootstrap model in seconds.
totalTime Returns the running time for all bootstrap models together in seconds.
seeds nB integers indicating the seeds used to sample the nB bootstrap samples.

Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/jss.v093.108
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Examples

## Not run:

# 1) Fit mgm to example dataset (true edges: 1-4, 2-3, 1-2)
mgm_obj <- mgm(data = mgm_data$data,

typezc(lg'y 'CI; Ic‘y 'g')r

level = c(1, 2, 4, 1),

k =2,
lambdaSel = 'CV',
threshold = 'none')

# 2) Take 50 bootstrap samples using resample()
res_obj <- resample(object = mgm_obj,

data = mgm_data$data,

nB = 50)

# 3) Plot histogram of bootstrapped sampling distribution of edge 1-4
hist(res_obj$bootParameters[1, 4, ],
main = ""

)

xlab = "Parameter Estimate”)

# 4) Plot summary of all sampling distributions
plotRes(object = res_obj,
quantiles = c(0.05, .95))

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

showInteraction Retrieving details of interactions

Description

Retrieves details of a specified interaction from mgm model objects.

Usage

showInteraction(object, int)
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Arguments
object The output of one of the estimation functions mgm(), tvmgm(), mvar (), tvmvar().
int An integer vector specifying the interaction. For mVAR models, this vector has
length 2. For MGMs the vector can be larger to request details of interaction of
order > 2.
Details

Currently the function only returns details of pairwise interactions from output objects of mgm().

Value
variables Integer vector returning the variables specified via the argument int
type Character vector returning the type of the specified variables variables
level Integer vector returning the number of levels of the specified variables variables
parameters A list of length equal to the order k of the specified interaction. The entries
contain the set of parameters obtained from the nodewise regressions on the
k variables. Depending on the type of the variables in the interaction, these
sets can obtain one or several parameters. For details see ?mgm or Haslbeck &
Waldorp (2017).
Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/js5.v093.108

See Also

mgm, tvmgm, mvar, tvmvar

Examples

## Not run:

## We fit a pairwise and 3-order MGM to the mixed Autism dataset (?autism_data)
# 1) Fit Pairwise MGM

# Call mgm()
fit_d2 <- mgm(data = autism_data$data,
type = autism_data$type,
level = autism_data$lev,
k = 2) # ad most pairwise interacitons
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tvmgm

# Weighted adjacency matrix
fit_d2$pairwise$wadj # for instance, we see there is an interaction 1-2

# 2) Look at details of interaction 1-2
showInteraction(object = fit_d2,

int = c(1, 2))

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

tvmgm

Estimating time-varying Mixed Graphical Models

Description

Estimates time-varying k-order Mixed Graphical Models (MGMs) via elastic-net regularized kernel
smoothed Generalized Linear Models

Usage
tvmgm(data, type, level, timepoints, estpoints, bandwidth, ...)
Arguments
data n x p data matrix.
type p vector indicating the type of variable for each column in data: "g" for Gaus-
sian, "p" for Poisson, "c" for categorical.
level p vector indicating the number of categories of each variable. For continuous
variables set to 1.
timepoints A strictly increasing numeric vector of length nrow(data) indicating the time
points of the measurements in data. If timepoints is not specified, it is as-
sumed that the time points are equally spaced. For details, see Haslbeck and
Waldorp (2018).
estpoints Vector indicating estimation points on the unit interval [0, 1] (the provided time
scale is normalized interally to [0,1]).
bandwidth We use a gaussian density on the unit time-interval [0,1] to determine the weights

for each observation at each estimated time point. The bandwidth specifies the
standard deviation the Gaussian density. To get some intuition, which band-
width results in the combination of how many data close in time one can plot
Gaussians on [0,1] for different bandwidths. The bandwidth can also be selected
in a data driven way using the function (see bwSelect).

Arguments passed to mgm, specifying the MGM. See ?mgm.



tvmgm

Details
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Estimates a sequence of MGMs at the time points specified at the locations specified via estpoints.
tvmgm() is a wrapper around mgm() and estimates a series of MGM with different weightings which
are defined by the estimation locations in estpoints and the bandwidth parameter specified in
bandwidth. For details see Haslbeck and Waldorp (2018).

Note that MGMs are not normalizable for all parameter values. See Chen, Witten & Shojaie (2015)
for an overview of when pairwise MGMs are normalizable. To our best knowledge, for MGMs with
interactions of order > 2 that include non-categorical variables, the conditions for normalizablity are

unknown.

Value

A list with the following entries:

call

pairwise

interactions

intercepts

tvmodels

Author(s)

Contains all provided input arguments. If saveData = TRUE, it also contains the
data.

Contains a list with all information about estimated pairwise interactions. wadj
contains a p X p X estpoints array containing the weighted adjacency matrix for
each estimation point specified in estpoints, if p is the number of variables
in the network. signs has the same dimensions as wadj and contains the signs
for the entries of wadj: 1 indicates a positive sign, -1 a negative sign and 0
an undefined sign. A sign is undefined if an edge is a function of more than
one parameter. This is the case for interactions involving a categorical variable
with more than 2 categories. edgecolor also has the same dimensions as wadj
contains a color for each edge, depending on signs. It is provided for more con-
venient plotting. If only pairwise interactions are modeled (k = 2), wadj contains
all conditional independence relations.

Contains a list with one entry for each estimation point specified in estpoints;
each entry is a list with three entries that relate each interaction in the model
to all its parameters. indicator contains a list with k-1 entries, one for each
order of modeled interaction, which contain the estimated (nonzero) interac-
tions. weights contains a list with k-1 entries, which in turn contain R lists,
where R is the number of interactions (and rows in the corresponding list entry
inindicator) that were estimated (nonzero) in the given entry. signs has the
same structure as weights and provides the sign of the interaction, if defined.

Contains a list with one entry for each estimation point specified in estpoints;
each entry is a list with p entries, which contain the intercept/thresholds for each
node in the network. In case a given node is categorical with m categories, there
are m thresholds for this variable (one for each category).

Contains the MGM model estimated by mgm() at each time point specified via
estpoints. See ?mgm for a detailed description of this output.

Jonas Haslbeck <jonashaslbeck @ gmail.com>
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References
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Examples

## Not run:

## We specify a time-varying MGM and recover it using tvmgm()
# 1) Specify Model

# a) Define Graph

p<-6

type = c("c", "c", "g", "g", "p", "p")
level = c(2, 3, 1, 1, 1, 1)
n_timepoints <- 1000

# b) Define Interaction
factors <- list()
factors[[1]1] <- matrix(c(1,2,
2,3,
3,4), ncol=2, byrow = T) # no pairwise interactions
factors[[2]] <- matrix(c(1,2,3,
2,3,4), ncol=3, byrow = T) # one 3-way interaction

interactions <- list()

interactions[[1]] <- vector("list"”, length
interactions[[2]] <- vector("list”, length
# 3 2-way interactions
interactions[[1]I[[1]] <- array(@, dim = c(level[1], level[2], n_timepoints))
interactions[[1]][[2]] <- array(@, dim = c(level[2], level[3], n_timepoints))
interactions[[1]][[3]] <- array(@, dim = c(level[3], level[4], n_timepoints))

# 2 3-way interactions

interactions[[2]][[1]] <- array(@, dim = c(level[1], level[2], level[3], n_timepoints))
interactions[[2]]1[[2]] <- array(@, dim = c(level[2], level[3], level[4], n_timepoints))
theta <- .3

3
2)

interactions[[1]JCL1]1][1, 1, 1 <- theta

interactions[[1]1[[2]1]1[1, 1, ] <- theta

interactions[[1]JC[3]11[1, 1, 1 <- seq(@, theta, length = n_timepoints)
interactions[[2]JCL1]1J[1, 1, 1, 1 <- theta

interactions[[2]1[[2]1]1[1, 1, 1, 1 <- theta

# c) Define Thresholds
thresholds <- list()
thresholds[[1]] <- matrix(@, nrow = n_timepoints, ncol= level[1])
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thresholds[[2]] <- matrix(@, nrow = n_timepoints, ncol= level[2])
thresholds[[3]] <- matrix(@, nrow = n_timepoints, ncol= level[3])
thresholds[[4]] <- matrix(@, nrow = n_timepoints, ncol= level[4])
thresholds[[5]] <- matrix(.1, nrow = n_timepoints, ncol= level[5])
thresholds[[6]] <- matrix(.1, nrow = n_timepoints, ncol= level[6])
# d) define sds

sds <- matrix(.2, ncol=p, nrow=n_timepoints)

# 2) Sample Data

set.seed(1)

d_iter <- tvmgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,

sds = sds,
type = type,
level = level,
nlter = 100,
pbar = TRUE)

data <- d_iter$data

head(data)

# delete inf rows:

ind_finite <- apply(data, 1, function(x) if(all(is.finite(x))) TRUE else FALSE)
table(ind_finite) # all fine for this setup & seed

# in case of inf values (no theory on how to keep k-order MGM well-defined)
data <- data[ind_finite, ]

# 3) Recover
mgm_c_cv <- tvmgm(data = data,

type = type,
level = level,
k =3,

estpoints = seq(@, 1, length=10),
bandwidth = .1,

lambdaSel = "CV",

ruleReg = "AND",

pbar = TRUE,

overparameterize = T,

signInfo = FALSE)

# Look at time-varying pairwise parameter 3-4
mgm_c_cv$pairwise$wadj[3,4,] # recovers increase

# 4) Predict values / compute nodewise Errors
pred_mgm_cv_w <- predict.mgm(mgm_c_cv,
data = data,
tvMethod = "weighted”)
pred_mgm_cv_cM <- predict.mgm(mgm_c_cv,
data = data,
tvMethod = "closestModel”)

pred_mgm_cv_w$errors
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pred_mgm_cv_cM$errors # Pretty similar!

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

tvmgmsampler

Sample from time-varying k-order Mixed Graphical Model

Description

Generates samples from a time-varying k-order Mixed Graphical Model

Usage

tvmgmsampler (factors, interactions, thresholds, sds, type,

Arguments

factors

interactions

thresholds

sds

type

level

nlter

pbar

level, nlIter = 250, pbar = TRUE, ...)

The same object as factors in mgmsampler(). An interaction is specified in
factors if it should be nonzero at least at one time point in the time series. The
values of each parameter at each time point is specified via interactions.

The same object as factors in mgmsampler (), except that each array indicating
the parameters of an interaction has an additional (the last) dimension, indicating
time. Corresponding to the time vector in factors, the time vector has to be a
sequence of integers {1, 2, ..., N}. For an illustration see the examples below.

A list with p entries for p variables, each of which contains a N x m matrix. The
columns contain the m thresholds for m categories (for continuous variables m
= 1 and the entry contains the threshold/intercept). The rows indicate how the
thresholds change over time.

N x p matrix indicating the standard deviations of Gaussians specified in type
for {1, ..., N} time points. Entries not referring to Gaussians are ignored.

p character vector indicating the type of variable for each column in data. "g

non

for Gaussian, "p" for Poisson, "c" of each variable.

p integer vector indicating the number of categories of each variable. For con-
tinuous variables set to 1.

Number of iterations in the Gibbs sampler until a sample is drawn.
If pbar = TRUE a progress bar is shown. Defaults to pbar = TRUE.

Additional arguments.
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Details

tvmgmsampler is a wrapper function around mgmsampler. Its input is the same as for mgmsampler,
except that each object has an additional dimension for time. The number of time points is specified
via entries in the additional time dimension.

Value

A list containing:

call Contains all provided input arguments.
data The N x p data matrix of sampled values
Author(s)

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/js5.v093.108

Yang, E., Baker, Y., Ravikumar, P., Allen, G. 1., & Liu, Z. (2014, April). Mixed Graphical Models
via Exponential Families. In AISTATS (Vol. 2012, pp. 1042-1050).

Examples
## Not run:
R Example 1: p = 4 dimensional Gaussian ---------
#-—-—- 1) Specify Model -----

# a) General Graph Info
type = c("g", "g", "g", "g") # Four Gaussians
level = c(1, 1, 1, 1)

n_timepoints = 500 # Number of time points

# b) Define Interaction

factors <- list()

factors[[1]] <- array(NA, dim=c(2, 2)) # two pairwise interactions
factors[[1]I[1, 1:2] <- c(3,4)

factors[[1]1[2, 1:2] <- c¢(1,2)

# Two parameters, one linearly increasing from @ to @.8, another one lin decreasing from 0.8 to @
interactions <- list()

interactions[[1]] <- vector("”list”, length = 2)

interactions[[1]J[[1]] <- array(@, dim = c(level[1], level[2], n_timepoints))
interactions[[1]11[[1]1]1[1,1, ] <- seq(.8, @, length = n_timepoints)

interactions[[1]][[2]] <- array(@, dim = c(level[1], level[2], n_timepoints))
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interactions[[1]]1[[2]1][1,1, ] <- seq(@, .8, length = n_timepoints)

# c) Define Thresholds
thresholds <- vector("list”, length = 4)
thresholds <- lapply(thresholds, function(x) matrix(@, ncol = level[1], nrow = n_timepoints))

# d) Define Standard deviations
sds <- matrix (1, ncol = length(type), nrow = n_timepoints) # constant across variables and time

set.seed(1)

dlist <- tvmgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,

sds = sds,
type = type,
level = level,
nlter = 75,
pbar = TRUE)
# - 3) Recover model from sampled cases -----

set.seed(1)
tvmgm_obj <- tvmgm(data = dlist$data,
type = type,
level = level,
estpoints = seq(@, 1, length = 15),
bandwidth .2,
k =2,
lambdaSel = "CV",
ruleReg = "AND")

# How well did we recover those two time-varying parameters?
plot(tvmgm_obj$pairwise$wadj[3,4,], type="1", ylim=c(0,.8))
lines(tvmgm_obj$pairwise$wadj[1,2,], type="1", col="red")

# Looks quite good

# a) General Graph Info

p <- 5 # number of variables

type = rep(”c”, p) # all categorical
level = rep(2, p) # all binary
n_timepoints <- 1000

# b) Define Interaction
factors <- list()
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factors[[1]] <- NULL # no pairwise interactions
factors[[2]] <- array(NA, dim = c(1,3)) # one 3-way interaction
factors[[2]11[1, 1:3] <- c(1, 2, 3)

interactions <- list()

interactions[[1]] <- NULL # no pairwise interactions

interactions[[2]] <- vector("list”, length = 1) # one 3-way interaction

# 3-way interaction nol

interactions[[2]1[[1]] <- array(@, dim = c(level[1], level[2], level[3], n_timepoints))
theta <- 2

interactions[[2]1[[1]1]1[1, 1, 1, 1 <- seq(@, 2, length = n_timepoints) # fill in nonzero entries

# c) Define Thresholds
thresholds <- list()
for(i in 1:p) thresholds[[i]] <- matrix(@, nrow = n_timepoints, ncol = level[i])

set.seed(1)

dlist <- tvmgmsampler(factors = factors,
interactions = interactions,
thresholds = thresholds,

type = type,

level = level,

nlter = 150,

pbar = TRUE)
# -—-—- 3) Check Marginals -----

dat <- dlist$datal1:round(n_timepoints/2),]
table(dat[,1], dat[,21, dat[,31)

dat <- dlist$datalround(n_timepoints/2):n_timepoints,]
table(dat[,1], dat[,21, dat[,31)

# Observation: much stronger effect in second hald of the time-series,
# which is what we expect

set.seed(1)
tvmgm_obj <- tvmgm(data = dlist$data,
type = type,
level = level,
estpoints = seq(@, 1, length = 15),
bandwidth .2,
k =3,
lambdaSel = "CV",
ruleReg = "AND")
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tvmgm_obj$interactions$indicator
# Seems very difficult to recover this time-varying 3-way binary interaction
# See also the corresponding problems in the examples of ?mgmsampler

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

tvmvar

Estimating time-varying Mixed Vector Autoregressive Model (mVAR)

Description

Estimates time-varying Mixed Vector Autoregressive Model (mVAR) via elastic-net regularized
kernel smoothed Generalized Linear Models

Usage
tvmvar(data, type, level, timepoints, estpoints, bandwidth, ...)
Arguments
data n x p data matrix.
type p vector indicating the type of variable for each column in data: "g" for Gaus-
sian, "p" for Poisson, "c" for categorical.
level p vector indicating the number of categories of each variable. For continuous
variables set to 1.
timepoints A strictly increasing numeric vector of length nrow(data) indicating time points
for the measurements in data. If timepoints is not specified, it is assumed
that the time points are equally spaced. For details, see Haslbeck and Waldorp
(2018).
estpoints Vector indicating estimation points on interval [0, 1]. Note that we define this
unit interval on the entire time series. This also includes measurements that
are excluded because not enough previous measurements are available to fit the
model. This ensures that the a model estimated at, for example, estimation point
0.15 is actually estimated on data close to data points around this time point.
See Haslbeck and Waldorp (2018) Section 2.5 and 3.4 for a detailed description.
bandwidth We use a gaussian density on the unit time-interval [0,1] to determine the weights

for each observation at each estimated time point. The bandwidth specifies the
standard deviation the Gaussian density. To get some intuition, which band-
width results in the combination of how many data close in time one can plot
Gaussians on [0,1] for different bandwidths. The bandwidth can also be selected
in a data driven way using the function (see bwSelect).
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Arguments passed to mvar, specifying how each single model should be esti-
mated. See ?mvar.

Estimates a sequence of mVAR models at the time points specified at the locations specified via
estpoints. tvmvar() is a wrapper around mvar () and estimates a series of MGM with different
weightings which are defined by the estimation locations in estpoints and the banwdith parameter
specified in bandwidth. For details see Haslbeck and Waldorp (2018)

Value

A list with the following entries:

call

wadj

signs

intercepts

tvmodels

Author(s)

Contains all provided input arguments. If saveData = TRUE, it also contains the
data.

A p x pxn_lags x S array, where n_lags is the number of specified lags in lags
(see ?mvar) and S is the number of estimation points specified in estpoints.
For instance, wadj[1, 2, 1, 10] is the cross-lagged predicting variable 1 at time
point t by variable 2 at time point t - z, where z is specified by the first lag
specified in 1lags (see ?mvar), in the model estimated at estimation point 10.

Has the same structure as wadj and specifies the signs corresponding to the
parameters in wadj, if defined. 1/-1 indicate positive and negative relationships,
respectively. O indicates that no sign is defined, which is the case for interactions
that involve a categorical variable where an interaction can have more than one
parameter. If binarySign = TRUE, a sign is calculated for interactions between
binary variables and binary and continuous variables, where the interaction is
still defined by one parameter and hence a sign can be specified. NA indicates
that the corresponding parameter in wadj is zero. See also ?mvar.

A list with S entries, where S is the number of estimated time points. Each entry
of that list contains a list p entries with the intercept/thresholds for each node in
the network. In case a given node is categorical with m categories, there are m
thresholds for this variable.

Contains the mVAR model estimated by mvar () at each time point specified via
estpoints. See ?mvar for a detailed description of this output.

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/jss.v093.108
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## Not run:

## We set up the same model as in the example of mvar(), but

## specify one time-varying parameter, and try to recover it with

## tvmvar()
# a) Specify time-varying VAR model

p <- 6 # Six variables

n n.n n

type <- c("c", "c", "c", "c", "g", "g") # 4 categorical, 2 gaussians
level <- c(2, 2, 4, 4, 1, 1) # 2 categoricals with 2 categories, 2 with 5

max_level <- max(level)
n_timepoints <- 4000

lags <- c(1, 3, 9) # include lagged effects
n_lags <- length(lags)

# Specify thresholds

thresholds <- list()

thresholds[[1]] <- matrix(@, ncol=level[1],
thresholds[[2]] <- matrix(@, ncol=level[2],
thresholds[[3]] <- matrix(@, ncol=level[3],
thresholds[[4]] <- matrix(@, ncol=level[4],
thresholds[[5]] <- matrix(@, ncol=level[5],
thresholds[[6]] <- matrix(@, ncol=levell[6],

# Specify standard deviations for the Gaussi
sds <- matrix(NA, ncol=p, nrow=n_timepoints)

sds[, 5:6] <- 1

# Create coefficient array

coefarray <- array(@, dim=c(p, p, max_level, max_level, n_lags, n_timepoints))

# a.1) interaction between continuous 5<-6,

of order 1, 3, 9

nrow=n_timepoints)
nrow=n_timepoints)
nrow=n_timepoints)
nrow=n_timepoints)
nrow=n_timepoints)
nrow=n_timepoints)

ans

lag=3

tvimvar

coefarray[5, 6, 1, 1, 2, 1 <- seq(@, .4, length = n_timepoints) # only time-varying parameter

# a.2) interaction between 1<-3, lag=1

ml <- matrix(@, nrow=level[2], ncol=level[4]
mi[1,1:2] <- 1

mi[2,3:4] <- 1

coefarray[1, 3, 1:level[2], 1:level[4], 1, ] <- ml # constant across time

# a.3) interaction between 1<-5, lag=9

coefarray[1, 5, 1:level[1], 1:level[5], 3, 1 <- c(@, 1) # constant across time

# b) Sample
set.seed(1)

)

dlist <- tvmvarsampler(coefarray = coefarray,

lags = lags,
thresholds = threshol
sds = sds,

ds,
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type = type,
level = level,
pbar = TRUE)

# c.1) Recover: stationary

set.seed(1)

mvar_obj <- mvar(data = dlist$data,
type = type,
level = level,
lambdaSel = "CV",
lags = c(1, 3, 9),
signInfo = FALSE)

# Did we recover the true parameters?

mvar_obj$wadj[5, 6, 2] # cross-lagged effect of 6 on 5 over lag lags[2] (lag 3)
mvar_obj$wadj[1, 3, 1] # cross-lagged effect of 3 on 1 over lag lags[1] (lag 1)
mvar_obj$wadj[1, 5, 3] # cross-lagged effect of 1 on 5 over lag lags[3] (lag 9)

# c.2) Recover: time-varying
set.seed(1)
mvar_obj <- tvmvar(data = dlist$data,
type = type,
level = level,
estpoints = seq(@, 1, length=10),
bandwidth = .15,
lambdaSel = "CVv",
lags = c(1, 3, 9),
signInfo = FALSE)

# Did we recover the true parameters?
mvar_obj$wadj[5, 6, 2, 1 # true sort of recovered
mvar_obj$wadjl[1, 3, 1, 1 # yes

mvar_obj$wadj[1, 5, 3, ] # yes

# Plotting parameter estimates over time
plot(mvar_obj$wadj[5, 6, 2, 1,

type="1", ylim=c(-.2,.7),

lwd=2, ylab="Parameter value”, xlab="Estimation points")
lines(mvar_obj$wadj[1, 3, 1, ], col="red", lwd=2)
lines(mvar_obj$wadj[1, 5, 3, 1, col="blue”, lwd=2)
legend("bottomright”, c("5 <-- 6", "1 <-- 3", "1 <-- 5"),

lwd = ¢(2,2,2), col=c("black”, "red”, "blue"))

# d) Predict values / compute nodewise error
mvar_pred_w <- predict.mgm(object=mvar_obj,
data=dlist$data,

tvMethod = "weighted")

mvar_pred_cM <- predict.mgm(object=mvar_obj,
data=dlist$data,

53
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tvMethod = "closestModel”)

mvar_pred_w$errors
mvar_pred_cM$errors

# For more examples see https://github.com/jmbh/mgmDocumentation

## End(Not run)

tvmvarsampler

Sampling from a time-varying mixed VAR model

Description

Function to sample from a time-varying mixed VAR (mVAR) model

Usage

tvmvarsampler (coefarray, lags, thresholds,

Arguments

coefarray

lags

thresholds

sds

sds, type, level, pbar)

A p x p x max(level) x max(level) x n_lags x N array, where p are the number of
variables, level is the input argument level and n_lags is the number of speci-
fied lags in lags, so n_lags = length(n_lags), and N is the number of time points
in the time series. The first four dimensions specify the parameters involved in
the cross-lagged effects of the lag specified in the Sth dimension. L.e. coefar-
ray[5, 6, 1, 1, 3, 100] indicates the cross-lagged effect of variable 6 on variable
5 (if both are continuous), for the third lag specified in lags at time point 100. If
variable 1 and 3 are categorical with m = 2 and = 4 categories, respectively, then
coefarray[1, 3, 1:2, 1:4, 1, 250] indicates the m*s=8 parameters specifying this
interaction for the first lag specified in lags at time point 250. See the examples
below for an illustration.

A vector indicating the lags in the mVAR model. E.g. lags = c(1, 4, 9) spec-
ifies lags of order 1, 3, 9. The number of specified lags has to match the 5th
dimension in coefarray.

A list with p entries, each consisting of a matrix indicating a threshold for each
category of the given variable (column) and time point (row). For continuous
variable, the matrix has 1 column.

A N x p matrix specifying the standard deviation of Gaussian variables (columns)
at each time point (rows)If non-Gaussian variables are included in the mVAR
model, the corresponding columns are ignored.
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type

level

pbar

Details
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p vector indicating the type of variable for each column in data. "g" for Gaus-

nn

sian, "p" for Poisson, "c" for categorical.

p vector indicating the number of categories of each variable. For continuous
variables set to 1.

If pbar = TRUE, a progress bar is shown.

We sample from the mVAR model by separately sampling from its corresponding p conditional

distributions.

Value

A list with two entries:

call
data

Author(s)

The function call

The sampled n x p data matrix

Jonas Haslbeck <jonashaslbeck @ gmail.com>

References

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying Mixed Graphi-
cal Models in high-dimensional Data. Journal of Statistical Software, 93(8), pp. 1-46. DOI:
10.18637/jss.v093.108

Examples

## Not run:

## We specify a tvmvar model, sample from it and recover it

# a) Set up time-varying mvar model

p <- 6 # Six variables

n_n n_n n.n nn

type <- c("c"”, "c",

c", "c", "g", "g") # 4 categorical, 2 gaussians

level <- c(2, 2, 4, 4, 1, 1) # 2 categoricals with 2 categories, 2 with 5
max_level <- max(level)

lags <- c(1, 3, 9) # include lagged effects of order 1, 3, 9
n_lags <- length(lags)

N <- 5000

# Specify thresholds
thresholds <- list()
thresholds[[1]] <- matrix(@, ncol=2, nrow=N)
thresholds[[2]] <- matrix(@, ncol=2, nrow=N)
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thresholds[[3]] <- matrix(@, ncol=4, nrow=N)
thresholds[[4]] <- matrix(@, ncol=4, nrow=N)
thresholds[[5]] <- matrix(@, ncol=1, nrow=N)
thresholds[[6]] <- matrix(@, ncol=1, nrow=N)

# Specify standard deviations for the Gaussians
sds <- matrix(NA, ncol=6, nrow=N)

sds[,5:6] <- 1

# Create coefficient array

coefarray <- array(@, dim=c(p, p, max_level, max_level, n_lags, N))

# a.1) interaction between continuous 5<-6, lag=3
coefarray[5, 6, 1, 1, 2, 1 <- c(rep(.5, N/2), rep(@, N/2))
# a.2) interaction between 1<-3, lag=1

ml <- matrix(@, nrow=level[2], ncol=level[4])

mi[1, 1:2] <= 1

mi[2, 3:4] <- 1

coefarray[1, 3, 1:levell[2], 1:level[4], 1, ] <- ml

# a.3) interaction between 1<-5, lag=9

coefarray[1, 5, 1:level[1], 1:level[5], 3, 1 <- c(0, 1)

dim(coefarray)
# b) Sample

set.seed(1)
dlist <- tvmvarsampler(coefarray = coefarray,

lags = lags,

thresholds = thresholds,
sds = sds,

type = type,

level = level,

pbar = TRUE)

# c) Recover: time-varying mVAR model
set.seed(1)
tvmvar_obj <- tvmvar(data = dlist$data,

type = type,

level = level,

lambdaSel = "CV",

lags = c(1, 3, 9),

estpoints = seq(@, 1, length=10),

bandwidth = .05)
tvmvar_obj$wadj[5, 6, 2, 1 # parameter goes down, as specified
tvmvar_obj$wadj[1, 3, 1, ]
tvmvar_obj$wadj[1, 5, 3, 1]

’

’ ’

# For more examples see https://github.com/jmbh/mgmDocumentation

tvmvarsampler
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## End(Not run)
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plotRes, 32
predict.mgm, 34
print.int, 37
print.mgm, 37
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resample, 38
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showInteraction, 40
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symptom_data (datasets), 8

tv.mgmfit (tvmgm), 42
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tvmvar, 50
tvmvarsampler, 54
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