
Package ‘mgcViz’
July 4, 2025

Title Visualisations for Generalized Additive Models

Date 2025-07-2

Version 0.2.1

Description Extension of the 'mgcv' package, providing visual tools for Generalized Additive Mod-
els that exploit the additive structure of such mod-
els, scale to large data sets and can be used in conjunction with a wide range of response distribu-
tions. The focus is providing visual methods for better understanding the model out-
put and for aiding model checking and development beyond simple exponential family regres-
sion. The graphical framework is based on the layering system provided by 'ggplot2'.

Depends R (>= 4.0), mgcv (>= 1.9), qgam (>= 1.2.3), ggplot2

Imports gamm4, matrixStats, viridis, GGally, KernSmooth, gridExtra,
plyr

Suggests shiny, miniUI, rgl, knitr, rmarkdown, testthat, MASS,
webshot2

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://github.com/mfasiolo/mgcViz

BugReports https://github.com/mfasiolo/mgcViz/issues

NeedsCompilation no

Author Matteo Fasiolo [aut, cre],
Raphael Nedellec [aut],
Yannig Goude [ctb],
Christian Capezza [ctb],
Simon N. Wood [ctb]

Maintainer Matteo Fasiolo <matteo.fasiolo@gmail.com>

Repository CRAN

Date/Publication 2025-07-04 09:50:02 UTC

1

https://github.com/mfasiolo/mgcViz
https://github.com/mfasiolo/mgcViz/issues

2 Contents

Contents
ALE . 3
ALE.gam . 4
bamV . 6
check.gamViz . 7
check0D . 9
check1D . 10
check2D . 12
fix.family.cdf . 14
gamm4V . 14
getGam . 16
getViz . 16
gridPrint . 17
listLayers . 18
l_bound . 19
l_ciBar . 20
l_ciLine . 20
l_ciPoly . 21
l_clusterLine . 22
l_coordContour . 22
l_dens1D . 23
l_dens2D . 23
l_densCheck . 24
l_fitBar . 26
l_fitContour . 27
l_fitDens . 27
l_fitLine . 28
l_fitPoints . 29
l_fitRaster . 29
l_glyphs2D . 30
l_gridCheck1D . 32
l_gridCheck2D . 34
l_gridQCheck1D . 35
l_gridQCheck2D . 36
l_hist . 37
l_points . 37
l_poly . 38
l_pvContour . 39
l_pvRaster . 39
l_rug . 40
l_simLine . 40
l_vline . 41
mqgamV . 42
plot.ALE1D . 43
plot.fs.interaction.1D . 44
plot.gamViz . 45
plot.mgamViz . 48

ALE 3

plot.mgcv.smooth.1D . 49
plot.mgcv.smooth.2D . 52
plot.mgcv.smooth.MD . 54
plot.mrf.smooth . 56
plot.multi.ptermFactor . 57
plot.multi.random.effect . 58
plot.nested1D . 59
plot.ptermInteraction . 60
plot.ptermMatrixNumeric . 61
plot.sos.smooth . 62
plotDiff . 64
plotDiff.mgcv.smooth.1D . 65
plotDiff.mgcv.smooth.2D . 66
plotDiff.sos.smooth . 68
plotRGL . 70
plotRGL.mgcv.smooth.2D . 71
plotRGL.mgcv.smooth.MD . 73
plotSlice . 75
postSim . 77
print.checkGam . 78
print.plotGam . 79
print.plotSmooth . 80
print.qqGam . 80
pterm . 81
qgamV . 82
qq . 83
qq.gamViz . 84
qqplots . 88
residuals.gamViz . 89
shine . 90
shine.qqGam . 91
simulate.gam . 92
sm . 93
zoom . 94
zoom.qqGam . 94
zto1 . 96

Index 97

ALE Generic function for Accumulated Local Effect (ALE)

Description

Generic function for producing ALE effects, to be plottied using the plot generic.

4 ALE.gam

Usage

ALE(o, ...)

Arguments

o the model we want to use to produce the ALE effect.

... arguments to be passed to methods.

References

Apley, D.W., and Zhu, J, 2016. Visualizing the effects of predictor variables in black box supervised
learning models. arXiv preprint arXiv:1612.08468.

See Also

ALE.gam

ALE.gam Create Accumulated Local Effects (ALE) for GAMs

Description

Create Accumulated Local Effects (ALE) for GAMs

Usage

S3 method for class 'gam'
ALE(
o,
x,
newdata = NULL,
type = "link",
nbin = 40,
bins = NULL,
oind = 1,
center = 1,
...

)

Arguments

o a fitted GAM model.

x the name of the variable along which we want to produce the ALE effect.

newdata optional argument indicating the data to be used to produce the ALE effect. If
NULL the data contained in o will be used.

ALE.gam 5

type if set to "link" (the default option) the model output will be the linear predictor,
if set to "response" the model output is on the scale of the response.

nbin number of intervals into which the predictor range is divided when calculating
the ALE effects. Ignored for factor predictors of if the bins argument is pro-
vided.

bins a grid defining the interval into which the predictor should be binned. Deter-
mined automatically by default. Ignored for factor predictors.

oind relevant only when the model o has multiple linear predictors (e.g. for GAMLSS
models or for multinom regression). oind is the index of the output variable
used for the ALE effect (i.e., only predict(o)[, oind].

center if set to 0 the ALE effect is not centered and the effect is equal to zero at the
smallest value on x-grid. If set to 1 (default) the effect is centered as done in
Apley and Zhu, 2016. That is, an estimate of the expected value of the uncen-
tered effect is subtracted, so the effect is centered similarly to smooth effects in
GAMs. If set to 2, the expected value of the model output at the smallest value
on the x-grid is added to the uncentered effect.

... extra arguments that will be passed to predict and vcov.

Value

An object of class ALEXD, where X is the number of dimensions, which can be plotted using plot.ALEXD
(only X=1 is provided at the moment).

Author(s)

Matteo Fasiolo and Christian Capezza, with some internal code having been adapted from the ALE-
Plot package of Dan Apley.

References

Apley, D.W., and Zhu, J, 2016. Visualizing the effects of predictor variables in black box supervised
learning models. arXiv preprint arXiv:1612.08468.

See Also

plot.ALE1D

Examples

Example using Tweedie distribution
library(mgcViz)
set.seed(3)
n<-400
Simulate data...
dat <- gamSim(1,n=n,dist="poisson",scale=.2)
dat$y <- rTweedie(exp(dat$f),p=1.3,phi=.5) ## Tweedie response

Fit a fixed p Tweedie, with wrong link ...
b <- gam(list(y~s(x0)+s(x1)+s(x2)+s(x3),~1,~1), family=twlss(), data=dat)

6 bamV

plot(ALE(b, "x2", type = "response", oind = 1))

With manually chosen bins
plot(ALE(b, "x2", type = "response", oind = 1,

bins = c(0.1, 0.25, 0.5, 0.6, 0.9, 0.95, 0.99, 1)))

bamV Fit a GAM model and get a gamViz object

Description

These are wrapper that fits a GAM model using mgcv::gam or mgcv::bam and converts it to a
gamViz object using the getViz function. It is essentially a shortcut.

Usage

bamV(
formula,
family = gaussian(),
data = list(),
method = "fREML",
aGam = list(),
aViz = list()

)

gamV(
formula,
family = gaussian(),
data = list(),
method = "REML",
aGam = list(),
aViz = list()

)

Arguments

formula, family, data, method
same arguments as in mgcv::gam or mgcv::bam.

aGam list of further arguments to be passed to mgcv::gam or mgcv::bam.

aViz list of arguments to be passed to getViz.

Value

An object of class "gamViz" which can, for instance, be plotted using plot.gamViz.

check.gamViz 7

Examples

gam example
Simulate data
library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=1000,dist="normal",scale=2)

Fit GAM and get gamViz object
b <- gamV(y~s(x0)+s(x1, x2)+s(x3), data = dat,

aGam = list(scale = 2), aViz = list("nsim" = 20))

This is equivalent to doing
1. Fit GAM
b <- gam(y~s(x0)+s(x1, x2)+s(x3), data=dat, method="REML", scale = 2)
2. Convert to gamViz object
b <- getViz(b, nsim = 20)

Either way, we plot first and third effects by doing
print(plot(b, select = c(1, 3)), pages = 1)

bam example
Simulate data
library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=2000,dist="normal",scale=2)

Fit using bam() and get gamViz object
b <- bamV(y~s(x0)+s(x1, x2)+s(x3), data = dat,

aGam = list(discrete = TRUE), aViz = list("nsim" = 0))

Either way, we plot first and third effects by doing
print(plot(b, select = c(2)), pages = 1)

check.gamViz Some diagnostics for a fitted gam model

Description

Takes a fitted GAM model and produces some diagnostic information about the fitting procedure
and results. The default is to produce 4 residual plots, some information about the convergence of
the smoothness selection optimization, and to run diagnostic tests of whether the basis dimension
choises are adequate.

Usage

S3 method for class 'gamViz'
check(
obj,
type = c("auto", "deviance", "pearson", "response", "tunif", "tnormal"),

8 check.gamViz

k.sample = 5000,
k.rep = 200,
maxpo = 10000,
a.qq = list(),
a.hist = list(),
a.respoi = list(),
...

)

Arguments

obj an object of class gamViz, the output of a getViz() call.

type type of residuals, see residuals.gamViz, used in all plots.

k.sample above this k testing uses a random sub-sample of data.

k.rep how many re-shuffles to do to get p-value for k testing.

maxpo maximum number of residuals points that will be plotted in the scatter-plots. If
number of datapoints > maxpo, then a subsample of maxpo points will be plotted.

a.qq list of arguments to be passed to qq.gamViz. See qq.gamViz.

a.hist list of arguments to be passed to ggplot2::geom_histogram.

a.respoi list of arguments to be passed to ggplot2::geom_point.

... currently not used.

Details

This is a essentially a re-write of mgcv::gam.check using ggplot2. See mgcv::gam.check for
details.

Value

An object of class checkGam, which is simply a list of ggplot objects.

Examples

library(mgcViz)
set.seed(0)
dat <- gamSim(1, n = 200)
b <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat)
b <- getViz(b)

Checks using default options
check(b)

Change some algorithmic and graphical parameters
check(b,

a.qq = list(method = "tnorm",
a.cipoly = list(fill = "light blue")),

a.respoi = list(size = 0.2),
a.hist = list(bins = 10))

check0D 9

check0D Checking GAM simulated residuals or responses

Description

This function extracts the residuals or responses of a fitted GAM model, then it compares their
distribution with that of model-based simulations.

Usage

check0D(
o,
type = "auto",
maxpo = 10000,
na.rm = TRUE,
trans = NULL,
useSim = TRUE

)

Arguments

o an object of class gamViz.

type the type of residuals to be used. See residuals.gamViz. If "type == y" then the
raw observations will be used.

maxpo maximum number of residuals points that will be used by layers such as l_rug().
If number of datapoints > maxpo, then a subsample of maxpo points will be taken.

na.rm if TRUE missing cases in x or y will be dropped out.

trans function used to transform the observed and simulated residuals or responses. It
must take a vector of as input, and it must either a vector of the same length or a
scalar.

useSim if FALSE then the simulated responses contained in object o will not be used by
this function or by any of the layers that can be used with its output.

Value

An object of class c("plotSmooth", "gg").

Examples

The variance of the response distribution changes along x2
library(mgcViz)
n <- 400
x1 <- runif(n, -1, 1)
x2 <- runif(n, -1, 1)
dat <- data.frame("x1" = x1, "x2" = x2,

"y" = sin(3*x1) + 0.5 * x2^2 + pmax(x2, 0.2) * rnorm(n))

10 check1D

Fit model with constant variance and perform posterior simulations (post = TRUE)
which take into account smoothing parameter uncertainty (unconditional = TRUE)
b <- gamV(y ~ s(x1)+s(x2), data = dat,

aViz = list(nsim = 50, post = TRUE, unconditional = TRUE))

Histogram of simulated vs observed residuals: the latter are fat tailed
check0D(b) + l_hist() + l_rug()

Histogram of simulated 4th central moment (~ kurtosis) of simulated residuals.
The vertical line is the 4th moment of the observed residuals
check0D(b, trans = function(.y) mean((.y - mean(.y))^4)) + l_dens1D() + l_vline() + l_rug()
Residuals look very fat tails, but the real problem here is the heteroscedasticity
which can be diagnosted using check1D(b, "x2") + l_gridCheck1D(sd)

check1D Checking GAM residuals or responses along one covariate

Description

This function extracts the residuals of a fitted GAM model, and orders them according to the value
of a single covariate. Then several visual residuals diagnostics can be plotted by adding layers.

Usage

check1D(
o,
x,
type = "auto",
maxpo = 10000,
na.rm = TRUE,
trans = NULL,
useSim = TRUE

)

Arguments

o an object of class gamViz.

x it can be either a) a single character, b) a numeric vector or c) a list of characters.
In case a) it should be the name of one of the variables in the dataframe used
to fit o. In case b) its length should be equal to the length of o$y. In case c) it
should be a list of names variables in the dataframe used to fit o.

type the type of residuals to be used. See residuals.gamViz. If "type == y" then the
raw observations will be used.

maxpo maximum number of residuals points that will be used by layers such as l_rug().
If number of datapoints > maxpo, then a subsample of maxpo points will be taken.

na.rm if TRUE missing cases in x or y will be dropped out.

check1D 11

trans function used to transform the observed and simulated residuals or responses. It
must take a vector of as input, and must return a vector of the same length.

useSim if FALSE then the simulated responses contained in object o will not be used by
this function or by any of the layers that can be used with its output.

Value

The function will return an object of class c("plotSmooth", "gg"), unless argument x is a list. In
that case the function will return an object of class c("plotGam", "gg") containing a checking plot
for each variable.

Examples

Example 1: diagnosing heteroscedasticity
library(mgcViz);
set.seed(4124)
n <- 1e4
x <- rnorm(n); y <- rnorm(n);

Residuals are heteroscedastic w.r.t. x
ob <- (x)^2 + (y)^2 + (0.2*abs(x) + 1) * rnorm(n)
b <- bam(ob ~ s(x,k=30) + s(y, k=30), discrete = TRUE)
b <- getViz(b)

Look at residuals along "x"
ck <- check1D(b, "x", type = "tnormal")

Can't see that much
ck + l_dens(type = "cond", alpha = 0.8) + l_points() + l_rug(alpha = 0.2)

Some evidence of heteroscedasticity
ck + l_densCheck()

Compare observed residuals std dev with that of simulated data,
heteroscedasticity is clearly visible
b <- getViz(b, nsim = 50)
check1D(b, "x") + l_gridCheck1D(gridFun = sd, showReps = TRUE)

This also works with factor or logical data
fac <- sample(letters, n, replace = TRUE)
logi <- sample(c(TRUE, FALSE), n, replace = TRUE)
b <- bam(ob ~ s(x,k=30) + s(y, k=30) + fac + logi, discrete = TRUE)
b <- getViz(b, nsim = 50)

Look along "fac"
ck <- check1D(b, "fac")
ck + l_points() + l_rug()
ck + l_gridCheck1D(gridFun = sd)

Look along "logi"
ck <- check1D(b, "logi")
ck + l_points() + l_rug()

12 check2D

ck + l_gridCheck1D(gridFun = sd)

check2D Checking GAM residuals along two covariates

Description

This function extracts the residuals of a fitted GAM model, and plots them according to the values
of two covariates. Then several visual residuals diagnostics can be plotted by adding layers.

Usage

check2D(
o,
x1,
x2,
type = "auto",
maxpo = 10000,
na.rm = TRUE,
trans = NULL,
useSim = TRUE

)

Arguments

o an object of class gamViz.

x1 it can be either a) a single character, b) a numeric vector or c) a list of characters.
In case a) it should be the name of one of the variables in the dataframe used
to fit o. In case b) its length should be equal to the length of o$y. In case c) it
should be a list of names of variables in the dataframe used to fit o.

x2 same as x2, but this will appear on the y-axis.

type the type of residuals to be used. See residuals.gamViz. If "type == y" then the
raw observations will be used.

maxpo maximum number of residuals points that will be used by layers such as l_rug().
If number of datapoints > maxpo, then a subsample of maxpo points will be taken.

na.rm if TRUE missing cases in x or y will be dropped out

trans function used to transform the observed and simulated residuals or responses. It
must take a vector of as input, and must return a vector of the same length.

useSim if FALSE then the simulated responses contained in object o will not be used by
this function or by any of the layers that can be used with its output.

check2D 13

Value

The function will return an object of class c("plotSmooth", "gg"), unless arguments x1 and/or
x2 are lists. If they are lists of the same length, then the function will return an object of class
c("plotGam", "gg") containing a checking plot for each pair of variables. If x1 is a list and x2 is
not specified, the function will return an object of class c("plotGam", "gg") containing a plot for
each unique combination of the variables in x1.

Examples

Not run:
library(mgcViz);
Example 1: Rosenbrock function
Simulate data
n <- 1e4
X <- data.frame("x1"=rnorm(n, 0.5, 0.5), "x2"=rnorm(n, 1.5, 1))
X$y <- (1-X$x1)^2 + 100*(X$x2 - X$x1^2)^2 + rnorm(n, 0, 2)
b <- bam(y ~ te(x1, x2, k = 5), data = X, discrete = TRUE)
b <- getViz(b, nsim = 50)

Plot joint density of observed covariate x1 and x2
check2D(b, x1 = "x1", x2 = "x2") + l_rug() + l_dens(type="joint", alpha=0.6) + l_points()

Look at how mean of residuals varies across x1 and x2
check2D(b, x1 = "x1", x2 = "x2") + l_gridCheck2D() + l_points()

Can't see much in previous plot, let's zoom in central area, where most
data is. Here we can clearly see that the mean model is mispecified
check2D(b, x1 = "x1", x2 = "x2") + l_gridCheck2D(bw = c(0.05, 0.1)) +

xlim(-1, 1) + ylim(0, 3)
Fit can be improved by increasing k in the bam() call

Example 2: checking along factor variables
Simulate data where variance changes along factor variable "fac"
n <- 1e4
X <- data.frame("x1"=rnorm(n, 0.5, 0.5), "x2"=rnorm(n, 1.5, 1))
X$fac <- as.factor(sample(letters, n, replace = TRUE))
X$fac2 <- as.factor(sample(c("F1", "F2", "F3", "F4", "F5"), n, replace = TRUE))
X$y <- (1-X$x1)^2 + 5*(X$x2 - X$x1^2)^2 + 0.1*as.numeric(X$fac) * rnorm(n, 0, 2)
b <- bam(y ~ te(x1, x2, k = 5) + fac + fac2, data = X, discrete = TRUE)
b <- getViz(b, nsim = 50)

Check standard deviation of residuals along covariates "x1" and "fac"
a <- check2D(b, x1 = "x2", x2 = "fac")
a + l_gridCheck2D(gridFun = sd) + l_rug() + l_points()

Points and rug are jittered by default, but we can over-ride this
a + l_rug(position = position_jitter(width = 0, height = 0)) +

l_points(position = position_jitter(width = 0, height = 0))

Check standard deviation of residuals along the two factor variables
a <- check2D(b, x1 = "fac", x2 = "fac2")
a + l_gridCheck2D(gridFun = sd, bw = c(1, 4)) + l_rug() + l_points()

14 gamm4V

End(Not run)

fix.family.cdf Getting the CDF of a gam family

Description

Some methods implemented in mgcViz require the c.d.f. of the response distribution. This function
takes a family object as input and returns the same object, but with the cdf function added to the
$cdf slot. Mainly for internal use.

Usage

fix.family.cdf(fam)

Arguments

fam an object of class family.

gamm4V Fit a GAMM or GAMM4 model and get a gamViz object

Description

These are wrappers that fit GAM models using mgcv::gamm or gamm4::gamm4 and convert them
to a gamViz object using the getViz function. It is essentially a shortcut.

Usage

gamm4V(
formula,
random = NULL,
family = gaussian(),
data = list(),
REML = TRUE,
aGam = list(),
aViz = list(),
keepGAMObj = FALSE

)

gammV(
formula,
random = NULL,
family = gaussian(),

gamm4V 15

data = list(),
method = "REML",
aGam = list(),
aViz = list(),
keepGAMObj = FALSE

)

Arguments

formula, random, family, data
same arguments as in mgcv::gamm or gamm4::gamm4.

REML same as in gamm4::gamm4

aGam list of further arguments to be passed to mgcv::gamm or gamm4::gamm4.

aViz list of arguments to be passed to getViz.

keepGAMObj if TRUE a copy of the gamViz Object is kept under $gam to assure compatibility
with mgcv::gamm and gamm4::gamm4. Defaults to FALSE.

method same as in mgcv::gamm

Details

WARNING: Model comparisons (e.g. with anova) should only be done using the mixed model part
as described in gamm4::gamm4. For mgcv::gamm please refer to the original help file.

Value

An object of class "gamViz" which can, for instance, be plotted using plot.gamViz. Also the object
has the following additional elements:

• lme mixed model as in mgcv::gamm

• mer mixed model as in gamm4::gamm4

• gam a copy of the gamViz Object if setting keepGAMObj = TRUE.

Examples

gam example
library(mgcViz)
Simulate data
dat <- gamSim(1,n=400,scale=2) ## simulate 4 term additive truth
Now add 20 level random effect `fac'...
dat$fac <- fac <- as.factor(sample(1:20,400,replace=TRUE))
dat$y <- dat$y + model.matrix(~fac-1) %*% rnorm(20) * 0.5

br <- gammV(y~s(x0)+x1+s(x2), data=dat,random=list(fac=~1))
summary(br)
plot(br)

summary(br$lme)

Not run:

16 getViz

gamm4::gamm4 example
br4 <- gamm4V(y~s(x0)+x1+s(x2),data=dat,random=~(1|fac))
summary(br4)
plot(br4)

summary(br4$mer)

End(Not run)

getGam Convert gamViz object to gamObject

Description

Function for converting a gamViz object to a gamObject. It is essentially the inverse of the getViz
function.

Usage

getGam(o)

Arguments

o a gamViz object, the output of getViz.

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=1000,dist="normal",scale=2)
b <- gam(y~s(x0)+s(x1, x2)+s(x3), data=dat, method="REML")
a <- getViz(b)
identical(b, getGam(a)) # Must be TRUE

getViz Converting gam objects to gamViz objects

Description

This function converts gam objects into gamViz objects, for which mgcViz provides several plotting
methods.

Usage

getViz(o, nsim = 0, post = FALSE, newdata, ...)

gridPrint 17

Arguments

o an object of class gam.

nsim the number of simulated vectors of responses. A positive integer.

post if TRUE then posterior simulation is performed. That is, we simulate nsim vec-
tors of regression coefficients from a Gaussian approximation to the posterior,
and then we simulate a vector of response using each parameter vector. If FALSE,
then nsim vectors of responses are simulated using parameters fixed at the pos-
terior mode.

newdata Optional new data frame used to perform the simulations. To be passed to pre-
dict.gam and, if post == TRUE, to postSim.

... extra arguments to be passed to simulate.gam (if post==FALSE) or postSim (if
post==TRUE). For instance, we could pass prior weights w and offset.

Value

An object of class gamViz.

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=1000,dist="normal",scale=2)
b <- gam(y~s(x0)+s(x1, x2)+s(x3), data=dat, method="REML")
b <- getViz(b, nsim = 20)
str(b$store$sim) # Simulated responses now stored here

plot(sm(b,1)) + l_fitLine() + l_ciLine() + l_rug() + l_points()
plot(sm(b,2)) + l_rug() + l_fitRaster() + l_fitContour()

gridPrint Plotting plotSmooth objects on a grid

Description

This is a wrapper for gridExtra::grid.arrange, which allows to plot several plotSmooth objects
on a grid.

Usage

gridPrint(...)

Arguments

... arguments to be passed to gridExtra::grid.arrange.

18 listLayers

Details

This function simply extracts the ggplot objects contained in any object of class plotSmooth and
passes them to gridExtra::grid.arrange.

Examples

library(mgcViz)
n <- 1e3
x1 <- rnorm(n)
x2 <- rnorm(n)
dat <- data.frame("x1" = x1, "x2" = x2,

"y" = sin(x1) + 0.5 * x2^2 + pmax(x2, 0.2) * rnorm(n))
b <- bam(y ~ s(x1)+s(x2), data = dat, method = "fREML", discrete = TRUE)
b <- getViz(b)

o1 <- plot(sm(b, 1)) + l_fitLine() + l_ciLine()
o2 <- plot(sm(b, 2)) + l_fitLine() + l_ciLine()
qpl <- qq(b)

All on one page, method 1:
gridPrint(o1, o2, qpl, ncol = 2)

All on one page, method 2:
gridPrint(grobs = list(o1, o2, qpl), ncol = 2)

Works also when some ggplot objects are present
gridPrint(o1, o2, qpl, ggplot(), ncol = 2)

listLayers Lists available layers for plotSmooth objects

Description

This function takes as input an object of class plotSmooth and returns the names of all the possible
visual layers that could be used with that object.

Usage

listLayers(o)

Arguments

o an object of class plotSmooth.

Value

A vector containing the names of the available layers.

l_bound 19

Examples

library(mgcViz)
n <- 400
x1 <- rnorm(n)
x2 <- rnorm(n)
dat <- data.frame("x1" = x1, "x2" = x2,

"y" = sin(x1) + 0.5 * x2^2 + rnorm(n))
b <- gam(y ~ x1+s(x2), data = dat, method = "REML")
b <- getViz(b)

List layers available for parametric effect plot
o <- plot(pterm(b, 1))
listLayers(o)

List layers available for smooth effect plot
o <- plot(sm(b, 1))
listLayers(o)

List layers available for checking plot
o <- check1D(b, x1)
listLayers(o)

l_bound Add boundaries to smooth effect plot

Description

This layer adds boundaries to a smooth effect plot.

Usage

l_bound(n = 200, ...)

Arguments

n number of discrete intervals along the boundary.

... graphical arguments to be passed to ggplot2::geom_path.

Value

An object of class gamLayer.

See Also

plot.sos.smooth

20 l_ciLine

l_ciBar Adding confidence intervals to barplots

Description

This layer adds confidence intervals to barplots, such as those produced by factor effects GAM.

Usage

l_ciBar(level = 0.95, mul = NULL, ...)

Arguments

level the level of the confidence intervals (e.g. 0.9 means 90% intervals).

mul number multiplied by the standard errors when calculating standard error curves.
By default NULL, if set to a positive number it will over-ride level.

... graphical arguments to be passed to ggplot2::geom_errorbar.

Value

An object of class gamLayer.

See Also

See plot.ptermFactor for examples.

l_ciLine Adding confidence intervals to effect plot

Description

This layer adds confidence interval lines to smooth, random or parametric effect plots.

Usage

l_ciLine(level = 0.95, mul = NULL, ...)

Arguments

level coverage level (e.g. 0.9 means 90% intervals). Should be in (0, 1).

mul number multiplied by the standard errors when calculating standard error curves.
By default NULL, if set to a positive number it will over-ride level.

... graphical arguments to be passed to ggplot2::geom_line.

l_ciPoly 21

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.1D, plot.ptermNumeric or plot.random.effect for examples.

l_ciPoly Adding confidence band to effect plots

Description

This layer adds a polygon representing the confidence band of a smooth, random or parametric
effect plots.

Usage

l_ciPoly(level = 0.95, mul = NULL, ...)

Arguments

level coverage level (e.g. 0.9 means 90% intervals). Should be in (0, 1).

mul number multiplied by the standard errors when calculating standard error curves.
By default NULL, if set to a positive number it will over-ride level.

... graphical arguments to be passed to ggplot2::geom_polygon.

Value

An object of class gamLayer

See Also

See plot.mgcv.smooth.1D, plot.ptermNumeric or plot.random.effect for examples.

22 l_coordContour

l_clusterLine Cluster and plot smooth effects

Description

This layers clusters several smooth effects and plots the cluster centers.

Usage

l_clusterLine(centers, cluFun = kmeans, a.clu = list(), ...)

Arguments

centers the number of clusters. This is the same a the centers argument in stats::kmeans.

cluFun the function used for clustering. I must take (at least) arguments x, centers
and data, which have the same interpretation as in stats::kmeans (which is the
default).

a.clu list of further argument to be passed to cluFun.

... graphical arguments to be passed to ggplot2::geom_line.

Value

An object of class gamLayer.

See Also

See plot.fs.interaction.1D for examples.

l_coordContour Adding coordinate lines

Description

This layers adds coordinate contours to smooth effect plots. It is mainly useful for smooth-on-the-
sphere plots.

Usage

l_coordContour(brLO = c(-9:9 * 20), brLA = c(-8:8 * 10), ...)

Arguments

brLO a vector of meridians to be plotted.

brLA a vector of parallels to be plotted.

... graphical arguments to be passed to ggplot2::geom_contour.

l_dens1D 23

Value

An object of class gamLayer.

See Also

See plot.sos.smooth for examples.

l_dens1D Adding density estimate to a plot

Description

This layer adds a density estimate to a plot. It is mainly a wrapper around ggplot2::geom_density.

Usage

l_dens1D(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_density.

Value

An object of class gamLayer.

See Also

See check0D for examples.

l_dens2D Adding density estimate heatmap

Description

This layer adds a 2D density estimate heat-map to a plot. For 1D effect plots, it adds either the
conditional density of the partial residuals, p(r|x), or the joint density p(r, x). For 2D effect plots
it adds either p(x1|x2) or p(x1, x2), where x1 and x2 are the relevant covariates.

Usage

l_dens2D(type, n = c(50, 50), bw = NULL, tol = 1e-06, trans = sqrt, ...)

l_dens(type, n = c(50, 50), bw = NULL, tol = 1e-06, trans = sqrt, ...)

24 l_densCheck

Arguments

type for 1D effect plots, if set to "cond" then the conditional residual density p(r|x)
is plotted. If set to "joint" the joint density of residuals, p(r, x), is plotted. The
behaviour is similar for 2D effect plots, but r indicates the second covariate, not
the residuals.

n vector of two positive integers, indicating the number of grid points at which the
density is evaluated on the x and y axes.

bw vector with two positive entries, indicating the bandwidth to be used by the
kernel density estimator of p(x1, x2) along x1 and x2.

tol small positive numerical tolerance. The estimated density at a certain location is
set to NA (hence it will appear white) when it falls below tol/sqrt(2*pi*sig),
where sig is the standard deviation of the residuals. Set tol to -1 plot the
density on the whole x-y plane, no matter how low it is.

trans the density on x-y is transformed using this function before being plotted.

... graphical arguments to be passed to ggplot2::geom_raster.

Details

The density function is estimated using the fast binned kernel density estimation methods provided
by the KernSmooth package, hence this function should be able to handle relatively large datasets
(~ 10^6 observations).

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.1D, plot.mgcv.smooth.2D and check1D for examples.

l_densCheck Checking residuals conditional density

Description

This layer calculates and plots how the empirical conditional density of the residuals, r, differs from
its theoretical or model-based counterpart, along a covariate, x.

Usage

l_densCheck(n = c(80, 80), bw = NULL, tol = 1e-06, dFun = NULL, ...)

l_densCheck 25

Arguments

n vector of two positive integers, indicating the number of grid points at which the
density is evaluated on the x and r axes.

bw vector with two positive entries, indicating the bandwidth to be used by the
kernel density estimator of p(r|x) along x and r.

tol small positive numerical tolerance. The estimated density at a certain location is
set to NA (hence it will appear white) when it falls below tol/sqrt(2*pi*sig),
where sig is the standard deviation of the residuals. Set tol to -1 plot the
density on the whole x-y plane, no matter how low it is.

dFun function used to compute the difference between the empirical (em) and theoreti-
cal (th) conditional density of the residuals. By default it is (sqrt(em)-sqrt(th))^(1/3),
where th is computed using either a uniform or a normal density, depending on
the type of residuals used in the check1D call. It should have as arguments three
vectors: .ed (the empirical conditional density), .gr (the points along the y-axis
where the density is evaluated) and .y (the residuals).

... graphical arguments to be passed to ggplot2::geom_raster.

Details

This layer is mainly meant to work together with the check1D function. If check1D() is called with
residual type == "tunif" or "tnormal", then l_densCheck compares the conditional distribution of
the residuals with Unif(0, 1) or N(0, 1). By changing the distance function dFun one could of course
change both the distance metric and the reference distribution (see Examples below).

WARNING: if check1D() is called with type != "tunif" or "tnormal", then the default distance
used by l_densCheck is
dFun <- function(.ed, .gr, .y) {
d <- dnorm(.gr, 0, sd=sd(.y)) # sd=sd(.y) !!!
d <- sqrt(.ed)-sqrt(d)
return(sign(d)*abs(d)^(1/3))
}
so the residuals are standardized using their own std dev sd(.y). Hence l_densCheck might not
detect that the mean estimated variance under the fitted model is different from the residuals vari-
ance. Hence it is safer to use residual types "tunif" or "tnormal", or a customized distance function
dFun (see below for an example on how to do this).

Value

An object of class gamLayer.

Examples

library(mgcViz);
Dataset where variance increases linearly with x2, for x2 > 0.2
n <- 1e3
x1 <- rnorm(1e3)
x2 <- rnorm(1e3)
dat <- data.frame("x1"=x1,

26 l_fitBar

"x2"=x2, "y"=sin(x1) + 0.5*x2^2 + pmax(x2, 0.2)*rnorm(n))
b <- gam(y ~ s(x1)+s(x2), data=dat)
b <- getViz(b)

(Red) Blue indicates area where the empirical density
of the residuals is (lower) higher than it should be under
the model (residuals should be N(0, sigma) here).
Here there are clear signs of heteroscedasticity:
the conditional variance is is increasing for x2 > 0.2.
check1D(b, "x2", type = "tnormal") + l_densCheck() + l_rug()

Suppose we want to compare the conditional density of the standardized residuals
not with a Gaussian, but with a Student-t density with 3 degree of freedom.
We could achieve this as follows:
myDistance <- function(.ed, .gr, .y){

d <- dt(.gr / sd(.y), df = 3)
d <- abs(sqrt(.ed) - sqrt(d)) # We are using absolute difference between sqrt-densities

}

check1D(b, "x2", type = "response") + l_densCheck(dFun = myDistance) + l_rug()
NB comparing with a Student density is not useful for this example, but it illustrates
how both the distance function and the reference density can be customized.

l_fitBar Adding barplot to effect plots

Description

This layer adds a barplot to an effect plots. Mainly useful for factor or binary effect plots.

Usage

l_fitBar(a.aes = list(), ...)

Arguments

a.aes list of aesthetic mapping arguments that will be passed to ggplot2::geom_bar.
For instance we could set a.aes=list("fill"="red") to change the colour of
the barplot.

... graphical arguments to be passed to ggplot2::geom_bar.

Value

an object of class gamLayer.

See Also

See plot.ptermFactor for examples.

l_fitContour 27

l_fitContour Adding fitted effect contour lines

Description

This layer adds the contour lines corresponding to a fitted multidimensional effect.

Usage

l_fitContour(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_contour.

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.2D, plot.mgcv.smooth.MD, plot.sos.smooth and plotSlice for examples.

l_fitDens Adding density strip of fitted effect

Description

This layer adds a conditional posterior density strip to 1D smooth effects plots. With the default
colour scale, the opacity is proportional to the conditional density of the fitted effects, under the
usual Gaussian approximation the posterior.

Usage

l_fitDens(n = 50, level = 0.95, trans = identity, ...)

Arguments

n sqrt of the number of grid points used to compute the effect plot.

level confidence level. By default the conditional density of the fit will be plotted
between the Gaussian quantiles 0.025 and 0.975, hence the level determines
the width of the y-axis.

trans monotonic function to be applied to the density of the fit, which determines
colour of the plot. Monotonicity is not checked.

... further arguments to be passed to ggplot2::geom_raster.

28 l_fitLine

Details

See Bowman (2018) for explanations about the advantages of density strips, relative to plots includ-
ing the mean fit + confidence intervals.

Value

An object of class gamLayer.

References

Bowman, D. W (2018). Graphics for uncertainty. Journal of the Royal Statistical Society: Series A.

Examples

library(mgcViz)
set.seed(44)
dat <- gamSim(1,n=400,dist="normal",scale=2)
b <- gamV(y~s(x0)+x1+s(x2)+s(x3),data=dat)

plot(sm(b, 1)) + l_fitDens() + l_fitLine()
plot(pterm(b, 1)) + l_fitDens(trans = function(x) x^0.25) + l_fitLine()

l_fitLine Add fitted smooth effect curve

Description

This layer add lines representing a single or a group of parametric or smooth 1D effects.

Usage

l_fitLine(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_line.

Details

When used in conjuction with plot.fs.interaction.1D, which plots smooth effects of type bs="fs",
this function uses transparency to avoid over-plotting. This can be avoided by setting alpha = 1 in
the call to l_fitLine.

Value

An object of class gamLayer.

l_fitPoints 29

See Also

See plot.mgcv.smooth.1D, plot.ptermNumeric, or plot.fs.interaction.1D for examples.

l_fitPoints Adding points representing the fitted effect

Description

This function adds points representing the fitted effect. Mainly useful for plotting factor effects.

Usage

l_fitPoints(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_point.

Value

an object of class gamLayer.

See Also

See plot.ptermFactor for examples.

l_fitRaster Adding raster representing the fitted effect

Description

This layer adds a raster or heat-map representing a fitted multidimensional effect.

Usage

l_fitRaster(pTrans = function(.p) 1, noiseup = FALSE, mul = 1, ...)

30 l_glyphs2D

Arguments

pTrans a function from (0, 1) to (0, 1) which takes as input a p-value and returns a value,
alpha, which will be passed on to ggplot2::geom_raster, and will determine the
opacity of the heat-map. The p-value quantifies the significance of the smooth
effect at each location (x1, x2). By default pTrans returns 1, but if we set it
to, say, pTrans = function(.p) .p<0.05 then the regions with p-values higher
than 0.05 will disappear. The zto1 function can be used to specify pTrans in a
flexible way.

noiseup if TRUE the fitted effect, mu(x1, x2), will be perturbed with random noise before
being plotted. That is, at each location (x1, x2) a random variable z(x1, x2) ~
N(0, mul * V(x1, x2)) will be added to mu(x1, x2). Here V(x1, x2) is the esti-
mated variance of mu(x1, x2) and mul is a scalar multiplier (see next argument).
This is useful for understanding in which areas the smooth is more uncertain, as
these areas will appear more noisy.

mul positive multiplier that scales the variance of the fitted effect. See the noiseup
argument.

... graphical arguments to be passed to ggplot2::geom_raster.

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.2D, plot.sos.smooth or plotSlice for examples.

l_glyphs2D Adding glyphs to 2D plots

Description

This layer adds glyphs or subplots to 2D plots. It is mainly meant to be used with check2D and to
produce residuals checks.

Usage

l_glyphs2D(
glyFun,
ggLay = "geom_points",
n = c(4, 4),
mapping = NULL,
data = NULL,
polar = FALSE,
height = ggplot2::rel(0.95),
width = ggplot2::rel(0.95),
y_scale = identity,

l_glyphs2D 31

x_scale = identity,
...

)

Arguments

glyFun the function that produces the data needed to construct the glyphs. It will take
a single argument (.d), which is a data.frame with columns "x", "y" and
"z". When l_glyphs2D is used with check2D, then "x" and "y" will be the
locations of the residual "z" in the relevant covariates. glyFun needs to output a
data.frame that will be passed to the ggLay function, which does the plotting.

ggLay the ggplot2 layer function (such as "geom_point") used to plot the glyphs. Its
mapping needs to take at least argument "x", "y" and "group". See the mapping
argument below.

n vector of two positive integers, indicating the number of 2D grid cell along x
and y in which the data is divided.

mapping list of aesthetic mappings to be used by ggLay. By default it is aes(x=gx, y=gy,
group = gid). Here gx and gy specify the x-y location of each data-point used
to plot the glyphs, while gid specifies to which glyph each data-point belongs
(there are n[1]*n[2] glyphs).

data an optional data.frame to be used for computing the glyphs. It must have two
variables called x and y. If left to NULL then the glyphs will be computed using
the data in the plotSmooth object to which this layer is being added.

polar, height, width, y_scale, x_scale
see GGally::glyphs.

... graphical arguments to be passed to ggLay function.

Value

An object of class gamLayer.

See Also

check2D.

Examples

library(mgcViz);
set.seed(4124)
n <- 1e4
dat <- data.frame("x1" = rnorm(n), "x2" = rnorm(n))

Residuals are heteroscedastic w.r.t. x1
dat$y <- (dat$x1)^2 + (dat$x2)^2 + (1*abs(dat$x1) + 1) * rnorm(n)
b <- bam(y ~ s(x1,k=30) + s(x2, k=30), data = dat, discrete = TRUE)
b <- getViz(b)

pl <- check2D(b, x1 = "x1", x2 = "x2", type = "tnormal") +
l_points(colour = "blue", alpha = 0.5)

32 l_gridCheck1D

Look at distributions of residuals across x1 and x2
Approach 1: using binned kernel density estimate
Colour indicates whether we have more that 50 obs in that bin
glyFun <- function(.d){

.r <- .d$z

.qq <- as.data.frame(density(.r)[c("x", "y")], n = 100)

.qq$colour <- rep(ifelse(length(.r)>50, "black", "red"), nrow(.qq))
return(.qq)

}

pl + l_glyphs2D(glyFun = glyFun, ggLay = "geom_path", n = c(8, 8),
mapping = aes(x=gx, y=gy, group = gid, colour = I(colour)),
height=1.5, width = 1)

Approach 2: using binned worm-plots. These are simply rotated QQplots.
An horizontal plot indicates well specified residual model.
Increasing (decreasing) worm indicates over (under) dispersion
glyFun <- function(.d){

n <- nrow(.d)
px <- qnorm((1:n - 0.5)/(n))
py <- sort(.d$z)
clr <- if(n > 50) { "black" } else { "red" }
clr <- rep(clr, n)
return(data.frame("x" = px, "y" = py - px, "colour" = clr))

}

pl + l_glyphs2D(glyFun = glyFun, ggLay = "geom_point", n = c(10, 10),
mapping = aes(x=gx, y=gy, group = gid, colour = I(colour)),
height=2, width = 1, size = 0.2)

l_gridCheck1D Binning and checking GAM residuals

Description

This layer bins the residuals, r, according to the value of the corresponding covariate, x. Then the
residuals in each bin are summarized using a scalar-valued statistic. Confidence intervals for the
statistic corresponding to each bin can be obtained by simulating residuals from the fitted GAM
model, binning and summarizing them. Mainly useful in conjuction with check1D.

Usage

l_gridCheck1D(
gridFun = NULL,
n = 20,
level = 0.8,
stand = "none",

l_gridCheck1D 33

showReps = TRUE,
showObs = TRUE,
...

)

Arguments

gridFun scalar-valued function used to summarize the residuals in each bin. It takes a
vector as input. By default it is mean(r)*sqrt(length(r)), where r is the
vector of residuals in that bin.

n number of grid intervals along the relevant covariate.

level the level of the confidence intervals (e.g. 0.9 means 90% intervals).

stand if "none" the residuals in each bin are transformed by gridFun and the result
statistics are plotted directly. If "sc" the statistics in each bin are scaled and
centered using the mean and standard deviation of the simulated stats in that
bin. If "s" we do only scaling, if "c" only centering.

showReps if TRUE the individuals simulated statistics are also plotted using small points.

showObs if TRUE the observed statistics are plotted using large points.

... graphical arguments to be passed to ggplot2::geom_point.

Value

An object of class gamLayer

Examples

library(mgcViz);
set.seed(4124)
n <- 1e4
x <- rnorm(n); y <- rnorm(n);

Residuals are heteroscedastic w.r.t. x
ob <- (x)^2 + (y)^2 + (0.2*abs(x) + 1) * rnorm(n)
b <- bam(ob ~ s(x,k=30) + s(y, k=30), discrete = TRUE)
b <- getViz(b, nsim = 50)

Don't see much by looking at mean
check1D(b, "x") + l_gridCheck1D()

Heteroscedasticity clearly visible here
check1D(b, "x") + l_gridCheck1D(gridFun = sd, stand = "sc") # <- we are scaling and centering
Last point on the right of the rug seems to indicate that a bin is missing.
It is not an error, only on observation falls in that bin, hence the
standard deviation is not defined there.

34 l_gridCheck2D

l_gridCheck2D Binning and checking GAM residuals

Description

This layer bins the residuals, r, according to the value of the corresponding covariates, x1 and x2.
Then the residuals in each bin are summarized using a scalar-valued statistic. Confidence intervals
for the statistic corresponding to each bin can be obtained by simulating residuals from the fitted
GAM model, which are then binned and summarized. Mainly useful in conjuction with check2D.

Usage

l_gridCheck2D(gridFun = mean, bw = c(NA, NA), stand = TRUE, binFun = NULL, ...)

Arguments

gridFun scalar-valued function used to summarize the residuals in each bin.

bw numeric vector giving bin width in the vertical and horizontal directions. See the
binwidth arguments in ?ggplot2::stat_summary_hex. If left to NA, it will be
set to 1/20 of the ranges of x1 and x2.

stand if left to TRUE then the observed statistic in the i-th cell is normalized using the
simulated statistics in that same cell. That is, we will actually plot std_stat =
(obs_stat-mean(sim_stat))/sd(sim_stat).

binFun the ggplot2 function used to perform the binning. By default it is either gg-
plot2::stat_summary_2d or ggplot2::stat_summary_hex, depending on the class
of the covariates x1 and x2.

... graphical arguments to be passed to ggplot2::stat_summary_hex.

Value

An object of class gamLayer

Examples

library(mgcViz);
set.seed(4124)
n <- 1e4
x <- rnorm(n); y <- rnorm(n);

Residuals are heteroscedastic w.r.t. x
ob <- (x)^2 + (y)^2 + (1*abs(x) + 1) * rnorm(n)
b <- bam(ob ~ s(x,k=30) + s(y, k=30), discrete = TRUE)
b <- getViz(b, nsim = 50)

Don't see much by looking at mean
check2D(b, "x", "y") + l_gridCheck2D(gridFun = mean, bw = c(0.4, 0.4))

l_gridQCheck1D 35

Variance pattern along x-axis clearer now
check2D(b, "x", "y") + l_gridCheck2D(gridFun = sd, bw = c(0.4, 0.4))

l_gridQCheck1D Checking sign of residuals along one covariate

Description

This layer is mainly useful when checking quantile GAMs fitted using the qgam package. The
residuals, r, are binned according to the corresponding value of a covariate, x. Then the proportions
of negative residuals within each bin are calculated, and compared with the theoretical value, qu.
Confidence intervals for the proportion of negative residuals can be derived using binomial quantiles
(under an independence assumption). To be used in conjuction with check1D.

Usage

l_gridQCheck1D(qu = NULL, n = 20, level = 0.8, ...)

Arguments

qu the quantile of interest. Should be in (0, 1).

n number of grid intervals.

level the level of the confidence intervals plotted.

... graphical arguments to be passed to ggplot2::geom_point.

Value

An object of class gamLayer

Examples

Simulate some data
library(mgcViz)
set.seed(3841)
dat <- gamSim(1,n=400,dist="normal",scale=2)
dat$fac <- as.factor(sample(letters[1:8], nrow(dat), replace = TRUE))
fit <- qgam(y~s(x1)+s(x2)+s(x3)+fac, data=dat, err = 0.05, qu = 0.4)
fit <- getViz(fit)

"x0" effect is missing, but should be there. l_gridQCheck1D shows
that fraction of negative residuals is quite different from the theoretical 0.4
in several places along "x0".
check1D(fit, dat$x0) + l_gridQCheck1D(qu = 0.4, n = 20)
The problem gets better if s(x0) is added to the model.

Works also with factor variables
check1D(fit, "fac") + l_gridQCheck1D(qu = 0.4)

36 l_gridQCheck2D

l_gridQCheck2D Binning and checking QGAM residuals

Description

This layer bins the residuals, r, according to the value of the corresponding covariates, x1 and x2.
Then we calculate the proportion of negative residuals in each bin, which should not deviate too
much from the theoretical proportion (eg 0.5 if we fit the median). Mainly useful in conjuction with
check2D.

Usage

l_gridQCheck2D(qu = NULL, bw = c(NA, NA), stand = TRUE, binFun = NULL, ...)

Arguments

qu the quantile of interest. Should be in (0, 1).

bw numeric vector giving bin width in the vertical and horizontal directions. See the
binwidth arguments in ?ggplot2::stat_summary_hex. If left to NA, it will be
set to 1/20 of the ranges of x1 and x2.

stand if left to TRUE then the observed proportion of negative residuals p_hat in the
i-th cell is normalized using the standard error se = sqrt(qu(1-qu)/n), where
n is the number of observation in that cell. That is, if stand=TRUE we plot
(p_hat-qu)/se rather than simply p_hat.

binFun the ggplot2 function used to perform the binning. By default it is either gg-
plot2::stat_summary_2d or ggplot2::stat_summary_hex, depending on the class
of the covariates x1 and x2.

... graphical arguments to be passed to ggplot2::stat_summary_hex.

Value

An object of class gamLayer

Examples

library(mgcViz);
set.seed(4124)
n <- 4e2
dat <- data.frame(x = rnorm(n), y = rnorm(n))

Simulate some data, residuals are heteroscedastic w.r.t. x
dat$ob <- (dat$x)^2 + (dat$y)^2 + (0.2*abs(dat$x) + 1) * rnorm(n)
b <- qgamV(ob ~ x + s(y), qu = 0.3, data = dat)

We have a residual pattern along x (increase n above to
see the problem more clearly)
check2D(b, "x", "y") + l_gridQCheck2D(qu = 0.3, bw = c(0.4, 0.4))

l_hist 37

We need a smooth wrt x to make the pattern disappear
Not run:
b1 <- qgamV(ob ~ s(x) + s(y), qu = 0.3, data = dat)

check2D(b1, "x", "y") + l_gridQCheck2D(qu = 0.3, bw = c(0.4, 0.4))

End(Not run)

l_hist Adding histogram to a plot

Description

This layer adds a histogram to a plot. It is mainly a wrapper around ggplot2::geom_histogram.

Usage

l_hist(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_histogram.

Value

An object of class gamLayer.

See Also

See check0D for examples.

l_points Add points to plot

Description

This layers add points to smooth, parametric or random effect plots. It can also be used to add points
to the output of check1D and check2D. The meaning of the added points, which could represent
residuals or covariate values, should be clear from context.

Usage

l_points(...)

38 l_poly

Arguments

... graphical arguments to be passed to ggplot2::geom_point.

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.1D, plot.mgcv.smooth.2D, check1D or check2D for examples.

l_poly Add polygons to effect plots

Description

This layers adds polygons to plots and it is mainly usefuls for plotting Markov random field smooths.

Usage

l_poly(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_polygon.

Value

An object of class gamLayer.

See Also

See plot.mrf.smooth for examples.

l_pvContour 39

l_pvContour Adding contour of p-values

Description

This function adds contour lines proportional to the p-value of a multidimensional smooth effects. It
is useful for checking where (across covariates x1 and x2) the fitted smooth is significantly different
from zero.

Usage

l_pvContour(pTrans = identity, ...)

Arguments

pTrans a transformation to be applied to the p-values before plotting.

... graphical arguments to be passed to ggplot2::geom_contour.

Value

An object of class gamLayer.

See Also

See plotDiff.mgcv.smooth.2D and plotDiff.sos.smooth for examples.

l_pvRaster Adding raster or heat-map of p-values

Description

This function adds a raster or heat-map proportional to the p-value of a multidimensional smooth
effects. It is useful for checking where (across covariates x1 and x2) the fitted smooth is significantly
different from zero.

Usage

l_pvRaster(pTrans = identity, ...)

Arguments

pTrans a transformation to be applied to the p-values before plotting.

... graphical arguments to be passed to ggplot2::geom_raster.

40 l_simLine

Value

An object of class gamLayer.

See Also

See plotDiff.mgcv.smooth.2D and plotDiff.sos.smooth for examples.

l_rug Adding rug to margins of a plot

Description

This layer adds a rug plot to the margins of a plot. It is mainly a wrapper around ggplot2::geom_rug.
Notice that for factor effects plots the rug is jittered by default.

Usage

l_rug(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_rug.

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.1D, plot.mgcv.smooth.2D or check1D for examples.

l_simLine Add simulated smooth effect curves

Description

This layer adds curves representing smooth effects simulated from the posterior distribution.

Usage

l_simLine(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_line.

l_vline 41

Details

This function uses transparency to avoid over-plotting. This can be avoided by setting alpha = 1 in
the call to l_simLine.

Value

An object of class gamLayer.

See Also

See plot.mgcv.smooth.1D for examples.

l_vline Adding vertical line to a plot

Description

This layer adds a vertical to a plot. It is mainly a wrapper around ggplot2::geom_vline.

Usage

l_vline(...)

Arguments

... graphical arguments to be passed to ggplot2::geom_vline.

Value

An object of class gamLayer.

See Also

See check0D for examples.

42 mqgamV

mqgamV Fit multiple QGAM models and get a mgamViz object

Description

These are wrapper that fits multple QGAM models using qgam::mqgam and converts it to a mgamViz
object using the getViz function. It is essentially a shortcut.

Usage

mqgamV(form, data, qu, lsig = NULL, err = NULL, aQgam = list(), aViz = list())

Arguments

form, data, qu, lsig, err
same arguments as in qgam::mqgam.

aQgam list of further arguments to be passed to qgam::mqgam.

aViz list of arguments to be passed to getViz.

Value

An object of class "mgamViz" which can, for instance, be plotted using plot.mgamViz.

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(2,n=500,dist="normal",scale=0.25)$data

Fit GAM and get gamViz object
b <- mqgamV(y~s(x) + s(z) + I(x*z), data = dat, qu = c(0.25, 0.5, 0.75),

aQgam = list(argGam = list(select = TRUE)), aViz = list("nsim" = 0))

This is equivalent to doing
1. Fit QGAM
b <- mqgam(y~s(x) + s(z) + I(x*z), data=dat,
qu = c(0.25, 0.5, 0.75), argGam = list(select = TRUE))
2. Convert to gamViz object
b <- getViz(b, nsim = 0)

Either way, we all effects by doing
print(plot(b, allTerms = TRUE), pages = 1)

plot.ALE1D 43

plot.ALE1D Plot 1D Accumulated Local Effects (ALE)

Description

Plot 1D Accumulated Local Effects (ALE)

Usage

S3 method for class 'ALE1D'
plot(x, trans = identity, maxpo = 10000, nsim = 0, ...)

Arguments

x a 1D ALE effects, produced by the ALE function

trans monotonic function to apply to the ALE effect, before plotting. Monotonicity is
not checked.

maxpo maximum number of rug lines that will be used by l_rug. If number of data-
points > maxpo, then a subsample of maxpo points will be taken.

nsim number of ALE effect curves to be simulated from the posterior distribution.
These can be plotted using the l_simLine layer. See Examples section below.

... currently not used.

Value

An objects of class plotSmooth.

Author(s)

Matteo Fasiolo and Christian Capezza, with some internal code having been adapted from the ALE-
Plot package of Dan Apley.

References

Apley, D.W., and Zhu, J, 2016. Visualizing the effects of predictor variables in black box supervised
learning models. arXiv preprint arXiv:1612.08468.

Examples

library(mgcViz)
Here x1 and x2 are very correlated, but only
x1 has influence of the response
set.seed(4141)
n <- 1000
X <- rmvn(n, c(0, 0), matrix(c(1, 0.9, 0.9, 1), 2, 2))
y <- X[, 1] + 0.2 * X[, 1]^2 + rnorm(n, 0, 0.8)
dat <- data.frame(y = y, x1 = X[, 1], x2 = X[, 2])

44 plot.fs.interaction.1D

fit <- gam(y ~ te(x1, x2), data = dat)

Marginal plot suggests that E(y) depends on x2, but
this is due to the correlation between x1 and x2...
plot(dat$x2, fit$fitted.values)

... in fact ALE effect of x2 is flat ...
plot(ALE(fit, "x2")) + l_ciPoly() + l_fitLine() + l_rug()

... while ALE effect of x1 is strong.
plot(ALE(fit, "x1", center = 2), nsim = 20) +

l_simLine() + l_fitLine()

plot.fs.interaction.1D

Plotting one dimensional smooth factor interactions

Description

This method should be used to plot smooth effects of class "fs.interaction.1D", that is smooth
constructed using the basis bs="tp". See mgcv::s.

Usage

S3 method for class 'fs.interaction.1D'
plot(x, n = 100, xlim = NULL, trans = identity, ...)

Arguments

x a smooth effect object.

n number of grid points used to compute main effect and c.i. lines. For a nice
smooth plot this needs to be several times the estimated degrees of freedom for
the smooth.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

... currently unused.

Value

An object of class c("plotSmooth", "gg").

plot.gamViz 45

Examples

library(mgcViz)
set.seed(0)
simulate data...
f0 <- function(x) 2 * sin(pi * x)
f1 <- function(x, a = 2, b = -1) exp(a * x) + b
f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 *

(10 * x)^3 * (1 - x)^10
n <- 500; nf <- 25
fac <- sample(1:nf, n, replace = TRUE)
x0 <- runif(n); x1 <- runif(n); x2 <- runif(n)
a <- rnorm(nf) * .2 + 2; b <- rnorm(nf) * .5
f <- f0(x0) + f1(x1, a[fac], b[fac]) + f2(x2)
fac <- factor(fac)
y <- f + rnorm(n) * 2
so response depends on global smooths of x0 and
x2, and a smooth of x1 for each level of fac.

fit model (note p-values not available when fit
using gamm)...
bm <- gamm(y ~ s(x0)+ s(x1, fac, bs = "fs", k = 5) + s(x2, k = 20))
v <- getViz(bm$gam)

Plot with fitted effects and changing title
plot(sm(v, 2)) + l_fitLine(alpha = 0.6) + labs(title = "Smooth factor interactions")

Changing plotting limits
plot(sm(v, 2)) + l_fitLine() + ylim(-0.5, 0.5) + xlim(0.25, 0.75)

Change line type and remove legend
plot(sm(v, 2)) + l_fitLine(size = 1.3, linetype="dotted") +

theme(legend.position="none")

Clustering smooth effects in 3 groups
plot(sm(v, 2)) + l_fitLine(colour = "grey") +

l_clusterLine(centers = 3, a.clu = list(nstart = 100))

plot.gamViz Basic GAM plotting

Description

This function is the mgcViz equivalent of plot.gam. It is the workhorse of the mgcViz package,
and allows plotting (almost) any type of smooth, parametric or random effects. It is basically
a wrapper around plotting methods that are specific to individual smooth effect classes (such as
plot.mgcv.smooth.1D and plot.random.effect).

Usage

S3 method for class 'gamViz'
plot(x, n = 100, n2 = 40, select = NULL, allTerms = FALSE, ...)

46 plot.gamViz

Arguments

x an object of class gamViz, the output of a getViz call.

n number of points used for each 1-d plot. For a nice smooth plot this needs to be
several times the estimated degrees of freedom for the smooth.

n2 square root of number of grid points used for plotting 2D functions effects using
contours or heatmaps.

select allows plotting a subset of model terms. For instance, if you just want the plot
for the second smooth term, set select = 2. Parametric effects always come
after smooth or random effects.

allTerms if TRUE also the parametric effects will be plotted.

... other parameters, such as maxpo or trans, to be passed to the specific plotting
methods for each effect (e.g. to plot.mgcv.smooth.1D).

Value

An object of class c("plotGam", "gg").

Examples

library(mgcViz)

######## Basic example
Simulate some data and fit model
set.seed(2)
dat <- gamSim(1,n=1e3,dist="normal",scale=2)
b <- bam(y~s(x0)+s(x1, x2)+s(x3), data=dat)
b <- getViz(b)

Default smooth effect plotting
print(plot(b), ask = FALSE)

Now on one page and with out title on the second plot
print(plot(b) + labs(title = NULL), pages = 1)

So far we used default layers, added in the printing phase, but
we might want to specify our own layers. Here we is how to do it
pl <- plot(b) + l_points() + l_fitLine(linetype = 3) + l_fitContour() +

l_ciLine(colour = 2) + theme_get() + labs(title = NULL)
print(pl, pages = 1)

We might want to plot only the first smooth
plot(b, select = 1) + l_dens(type = "cond") + l_fitLine() + l_ciLine()

Not run:
######## Example with "by variable" smooth effect
Simulate data and fit model
dat <- gamSim(4)
b <- gam(y ~ fac+s(x2,by=fac)+s(x0),data=dat)
b <- getViz(b)

plot.gamViz 47

print() only needed because we want to plot on a single page
print(plot(b), pages = 1)
print(plot(b, allTerms = TRUE), pages = 1) # Including also parametric effect

######## Example with 3D smooth effect which cannot be plotted
Simulate data and fit model
n <- 5e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n); z2 <- rnorm(n)

ob <- (x-z)^2 + (y-z)^2 + z2^3 + rnorm(n)
b1 <- bam(ob ~ s(x, y, z) + s(z2), discrete = TRUE)
b1 <- getViz(b1)

Only second effect get plotted
plot(b1)
In fact this does not plot anything
plot(b1, select = 1)
For plotting effects with more than 2D, one we need specific method.
See ?plot.mgcv.smooth.MD

######## Examples about plotting parametric effects
1 Gaussian GAM
set.seed(3)
dat <- gamSim(1,n=2500,dist="normal",scale=20)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))
bs <- "cr"; k <- 12
b <- bam(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) + fac + x3:fac + I(x1*x2) + logi +

s(x3, bs=bs),data=dat, discrete = TRUE)
b <- getViz(b)

All effects in one page. Notably 'x3:fac' is missing: we have no methods
for plotting second order effects.
print(plot(b, allTerms = TRUE), pages = 1)

Plotting only parametric effects
print(plot(b, select = 3:9), pages = 1)

2 GAMLSS Gaussian model
library(mgcv);library(MASS)
mcycle$fac <- as.factor(sample(c("z", "k", "a", "f"), nrow(mcycle), replace = TRUE))
b <- gam(list(accel~times + I(times^2) + s(times,k=10), ~ times + fac + s(times)),

data=mcycle,family=gaulss())
b <- getViz(b)

All effects on one page: effect of second linear predictor end with '.1'
print(plot(b, allTerms = TRUE), pages = 1)

End(Not run)

48 plot.mgamViz

plot.mgamViz Plotting multiple quantile GAMs

Description

This function is similar to plot.gamViz, but it is used to plot multiple quantile GAM models fitted
using mqgamV or mqgam. It allows plotting standards 1D and 2D smooths, and parametric effects,
It is basically a wrapper around plotting methods that are specific to individual smooth effect classes
(such as plot.multi.mgcv.smooth.1D).

Usage

S3 method for class 'mgamViz'
plot(x, n = 100, n2 = 40, select = NULL, allTerms = FALSE, ...)

Arguments

x an object of class mgamViz, the output of a getViz call. Alternatively x can be a
list of fitted GAM models, each having the same model formula.

n number of points used for each 1-d plot. For a nice smooth plot this needs to be
several times the estimated degrees of freedom for the smooth.

n2 square root of number of grid points used for plotting 2D functions effects using
contours or heatmaps.

select allows plotting a subset of model terms. For instance, if you just want the plot
for the second smooth term, set select = 2. Parametric effects always come
after smooth or random effects.

allTerms if TRUE also the parametric effects will be plotted.

... other parameters, such as maxpo or trans, to be passed to the specific plotting
methods for each effect (e.g. to plot.multi.mgcv.smooth.1D).

Value

An object of class c("plotGam", "gg").

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1,n=500,dist="normal",scale=2)
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))

dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))

Fit GAM and get gamViz object
fit <- mqgamV(y ~ fac + s(x0) + s(x1, x2) + x3 + logi, data = dat,

qu = c(0.2, 0.4, 0.6, 0.8))

plot.mgcv.smooth.1D 49

print(plot(fit, select = 1:4, allTerms = T), pages = 1)

Not run:
Example where we are fitting the same model to different datasets, but
plotting the estimate effects together
dat <- list()
for(ii in 1:4){

Simulate 4 datasets, we are adding 2 factor variables "fac" and "ref" just
for illustrating the plotting method (the two factors have no effect on y)
n <- 1000
dat[[ii]] <- gamSim(1,n=n,dist="normal",scale=2)
dat[[ii]]$fac <- as.factor(sample(c("A1", "A2", "A3"), n, replace = TRUE))
dat[[ii]]$ref <- as.factor(sample(letters[1:10], n, replace = TRUE))

}

Estimating model on each dataset
mods <- list()
for(ii in 1:4){

mods[[ii]] <- gamV(y~s(x0)+s(x1, x2)+x3+fac+s(ref, bs = "re"), data = dat[[ii]])
}

Names will be used to identify the four models we have fitted
names(mods) <- c("M1", "M2", "M3", "M4")
Plotting on the same plots
print(plot.mgamViz(mods, allTerms = TRUE), pages = 1)

End(Not run)

plot.mgcv.smooth.1D Plotting one dimensional smooth effects

Description

Plotting method for one dimensional smooth effects.

Usage

S3 method for class 'mgcv.smooth.1D'
plot(
x,
n = 100,
xlim = NULL,
maxpo = 10000,
trans = identity,
unconditional = FALSE,
seWithMean = FALSE,
nsim = 0,
...

50 plot.mgcv.smooth.1D

)

S3 method for class 'multi.mgcv.smooth.1D'
plot(
x,
n = 100,
xlim = NULL,
maxpo = 10000,
trans = identity,
unconditional = FALSE,
seWithMean = FALSE,
asFact = NULL,
...

)

Arguments

x a smooth effect object, extracted using sm.

n number of grid points used to compute main effect and c.i. lines. For a nice
smooth plot this needs to be several times the estimated degrees of freedom for
the smooth.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

nsim number of smooth effect curves to be simulated from the posterior distribution.
These can be plotted using the l_simLine layer. See Examples section below.

... currently unused.

asFact determines whether to use a factor or colour bar legend for plot.multi.mgcv.smooth.1D.
For most models the default is TRUE. When working with QGAM models fitted
with mqgamV, the default is FALSE for less than 10 quantiles, TRUE otherwise.
For QGAM models there a third option, asFact = "force", which forces the
use of a discrete colour scale.

Value

An objects of class plotSmooth.

plot.mgcv.smooth.1D 51

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

library(mgcViz)
n <- 1e3
x1 <- rnorm(n)
x2 <- rnorm(n)
dat <- data.frame("x1" = x1, "x2" = x2,

"y" = sin(x1) + 0.5 * x2^2 + pmax(x2, 0.2) * rnorm(n))
b <- bamV(y ~ s(x1)+s(x2), data = dat, method = "fREML", aGam = list(discrete = TRUE))

o <- plot(sm(b, 1), nsim = 50) # 50 posterior simulations

Not run:
Plot with fitted effect + posterior simulations + rug on x axis
(o <- o + l_simLine() + l_fitLine(colour = "red") +

l_rug(alpha = 0.8))

Add CI lines at 1*sigma and 5*sigma
(o <- o + l_ciLine(mul = 1) + l_ciLine(mul = 5, colour = "blue", linetype = 2))

Add partial residuals and change theme
(o + l_points(shape = 19, size = 1, alpha = 0.2) + theme_classic())

Get second effect plot
o2 <- plot(sm(b, 2))

Plot it with polygon for partial residuals
o2 + l_ciPoly(mul = 5, fill = "light blue") +

l_fitLine(linetype = 2, colour = "red")

Plot is with conditional density of partial residuals
o2 + l_dens(type = "cond", alpha = 0.9) +

l_fitLine(linetype = 2, colour = "red")

########
Quantile GAM example
########
Fit model
b <- mqgamV(y ~ s(x1) + s(x2), qu = c(0.2, 0.5, 0.8), data = dat)

plot(sm(b, 1)) + l_fitLine(linetype = 2) + l_rug(colour = "blue")

End(Not run)

52 plot.mgcv.smooth.2D

plot.mgcv.smooth.2D Plotting two dimensional smooth effects

Description

Plotting method for two dimensional smooth effects.

Usage

S3 method for class 'mgcv.smooth.2D'
plot(
x,
n = 40,
xlim = NULL,
ylim = NULL,
maxpo = 10000,
too.far = 0.1,
trans = identity,
seWithMean = FALSE,
unconditional = FALSE,
...

)

S3 method for class 'multi.mgcv.smooth.2D'
plot(
x,
n = 30,
xlim = NULL,
ylim = NULL,
maxpo = 10000,
too.far = 0.1,
trans = identity,
seWithMean = FALSE,
unconditional = FALSE,
a.facet = list(),
...

)

Arguments

x a smooth effect object, extracted using sm.

n sqrt of the number of grid points used to compute the effect plot.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

plot.mgcv.smooth.2D 53

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

too.far if greater than 0 then this is used to determine when a location is too far from
data to be plotted. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and
too.far is a distance within the unit square. Setting to zero can make plotting
faster for large datasets, but care then needed with interpretation of plots.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

a.facet arguments to be passed to ggplot2::facet_wrap or ggplot2::facet_grid. The for-
mer gets called when fix contains one vector, the latter when fix contains two
vectors.

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(1, n = 700, dist = "normal", scale = 2)
b <- gam(y ~ s(x0) + s(x1, x2) + s(x3), data = dat, method = "REML")
b <- getViz(b)

Plot 2D effect with noised-up raster, contour and rug for design points
Opacity is proportional to the significance of the effect
plot(sm(b, 2)) + l_fitRaster(pTrans = zto1(0.05, 2, 0.1), noiseup = TRUE) +

l_rug() + l_fitContour()

Plot contour of effect joint density of design points
plot(sm(b, 2)) + l_dens(type = "joint") + l_points() + l_fitContour() +

coord_cartesian(expand = FALSE) # Fill the plot

54 plot.mgcv.smooth.MD

###
Quantile GAM example
###
b <- mqgamV(y ~ s(x0) + s(x1, x2) + s(x3), qu = c(0.3, 0.7), data = dat)

plot(sm(b, 2)) + l_fitRaster(noiseup = TRUE) + l_fitContour(colour = 2)

plot.mgcv.smooth.MD Plotting slice of higher-dimensional smooth effects

Description

This function plots a 2D slice of a higher-dimensional smooth effects.

Usage

S3 method for class 'mgcv.smooth.MD'
plot(
x,
fix,
n = 40,
xlim = NULL,
ylim = NULL,
maxpo = 10000,
too.far = c(0.1, NA),
trans = identity,
seWithMean = FALSE,
unconditional = FALSE,
...

)

Arguments

x a smooth effect object, extracted using sm.

fix a named vector indicating which variables must be kept fixed and to what values.
When plotting a smooth in (d+2) dimensions, then d variables must be fixed.

n sqrt of the number of grid points used to compute the effect plot.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

plot.mgcv.smooth.MD 55

too.far a numeric vector with two entries. The first has the same interpretation as in
plot.mgcv.smooth.2D and it avoids plotting the smooth effect in areas that are
too far form any observation. The distance will be calculated only using the
variables which are not in fix (see above). Hence in two dimensions, not in
the full d+2 dimensions. Set it to -1 to plot the whole smooth. The second
entry determines which residuals and covariates pairs are closed enough to the
selected slice. If left to NA on the 10\ closest (in terms of scaled Euclidean
distance) to the current slice will be plotted. Set it to -1 to plot all the residuals.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

Not run:
3D example
library(mgcViz)
n <- 1e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n)

ob <- (x-z)^2 + (y-z)^2 + rnorm(n)
b <- gam(ob ~ s(x, y, z))
b <- getViz(b)

Plot one 2D slice
plot(sm(b, 1), fix = c("z"=0)) + l_fitRaster(noiseup = TRUE, mul = 3) +

l_fitContour(linetype = 2) + l_points(shape = 2)

4D
n <- 5e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n); z2 <- rnorm(n)

ob <- (x-z)^2 + (y-z)^2 + z2^3 + rnorm(n)

56 plot.mrf.smooth

b1 <- bam(ob ~ s(x, y, z, z2), discrete = TRUE)
b1 <- getViz(b1)

Plot one 2D slice
plot(sm(b1, 1), fix = c("z"=0, "z2"=1)) + l_fitRaster() + l_fitContour()

End(Not run)

plot.mrf.smooth Plotting Markov random field smooths

Description

This is the plotting method for Markov random field smooths.

Usage

S3 method for class 'mrf.smooth'
plot(x, trans = identity, seWithMean = FALSE, unconditional = FALSE, ...)

Arguments

x a smooth effect object, extracted using sm.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

plot.multi.ptermFactor 57

Examples

library(mgcViz)
Load Columbus Ohio crime data (see ?columbus for details and credits)
data(columb) ## data frame
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys) ## neighbourhood structure info for MRF
par(mfrow=c(2,2))
First a full rank MRF...
b <- gam(crime ~ s(district,bs="mrf",xt=xt),data=columb,method="REML")
b <- getViz(b)

Manual plot
plot(sm(b, 1)) + l_poly(colour = 2) +

scale_fill_gradientn(colours = heat.colors(50))

Default plot
plot(b)

plot.multi.ptermFactor

Plotting factor or logical parametric effects

Description

These are the plotting methods for parametric factor or logical effects.

Usage

S3 method for class 'multi.ptermFactor'
plot(x, a.facet = list(), asFact = TRUE, ...)

S3 method for class 'multi.ptermLogical'
plot(x, ...)

S3 method for class 'ptermFactor'
plot(x, maxpo = 10000, trans = identity, ...)

S3 method for class 'ptermLogical'
plot(x, maxpo = 10000, trans = identity, ...)

Arguments

x a factor or logical parametric effect object, extracted using pterm.

a.facet arguments to be passed to ggplot2::facet_wrap or ggplot2::facet_grid. The for-
mer gets called when fix contains one vector, the latter when fix contains two
vectors.

58 plot.multi.random.effect

asFact relevant only when working with models fitted with mqgamV. If FALSE quantile
of interest (qu) is treated as a continuous variable, otherwise as a factor.

... currently unused.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

trans monotonic function to apply to the fit, confidence intervals and residuals, before
plotting. Monotonicity is not checked.

Value

An object of class plotSmooth.

Examples

Simulate data and fit GAM
set.seed(3)
dat <- gamSim(1,n=2000,dist="normal",scale=20)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))
bs <- "cr"; k <- 12
b <- gam(y~fac + s(x0) + s(x1) + s(x2) + s(x3) + logi, data=dat)
o <- getViz(b, nsim = 0)

Extract factor terms and plot it
pt <- pterm(o, 1)
plot(pt) + l_ciBar() + l_fitPoints(colour = 2) + l_rug(alpha = 0.2)

Use barplot instead of points
pt <- pterm(o, 1)
plot(pt) + l_fitBar() + l_ciBar()

Same with binary varible
pt <- pterm(o, 2)
plot(pt) + l_fitPoints() + l_ciBar()

plot.multi.random.effect

Plotting random effects

Description

This is the plotting method for random effects (simple random intercepts).

plot.nested1D 59

Usage

S3 method for class 'multi.random.effect'
plot(x, trans = identity, ...)

S3 method for class 'random.effect'
plot(x, trans = identity, ...)

Arguments

x a random effect object, extracted using sm.

trans monotonic function to apply to the fit, confidence intervals and residuals, before
plotting. Monotonicity is not checked.

... currently unused.

Value

An object of class plotSmooth.

Examples

library(mgcViz)
b <- gam(travel~s(Rail,bs="re"), data=Rail, method="REML")
b <- getViz(b)
plot(sm(b, 1)) + l_fitLine(colour = 2, linetype = 2) + l_points() +

l_ciLine(colour = 4, linetype = 3)

plot(sm(b, 1)) + l_ciPoly() + l_points()

Default
plot(b)

###
Quantile GAM version
###
b <- mqgamV(travel~s(Rail,bs="re"), data=as.data.frame(Rail), qu = c(0.2, 0.4, 0.6, 0.8))

plot(sm(b, 1)) + l_ciPoly() + l_points()

Default
plot(b)

plot.nested1D Plotting one dimensional nested effects

Description

This method should be used to plot smooth effects of class "si.smooth.1D".

60 plot.ptermInteraction

Usage

S3 method for class 'nested1D'
plot(
x,
inner = FALSE,
n = 100,
xlim = NULL,
ylim = NULL,
maxpo = 10000,
trans = identity,
...

)

Arguments

x a smooth effect object.

inner if TRUE we are doing to plot the inner transformation, rather that then outer
smooth effect.

n number of grid points used to compute main effect and c.i. lines. For a nice
smooth plot this needs to be several times the estimated degrees of freedom for
the smooth.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

... currently unused.

Value

An object of class c("plotSmooth", "gg").

plot.ptermInteraction Plotting parametric interactions

Description

This function is here only to deal with parametric interactions (eg x0:fact), which cannot be plotted
at the moment.

plot.ptermMatrixNumeric 61

Usage

S3 method for class 'ptermInteraction'
plot(x, ...)

S3 method for class 'multi.ptermInteraction'
plot(x, ...)

Arguments

x a parametric interaction object, extracted using pterm.

... currently unused.

Value

Currently it returns NULL.

plot.ptermMatrixNumeric

Plotting numeric parametric effects

Description

This is the plotting method for parametric numerical effects.

Usage

S3 method for class 'ptermMatrixNumeric'
plot(x, n = 100, xlim = NULL, trans = identity, ...)

S3 method for class 'multi.ptermNumeric'
plot(x, ...)

S3 method for class 'ptermNumeric'
plot(x, n = 100, xlim = NULL, maxpo = 10000, trans = identity, ...)

Arguments

x a numerical parametric effect object, extracted using pterm.

n number of grid points used to compute main effect and c.i. lines.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

trans monotonic function to apply to the fit, confidence intervals and residuals, before
plotting. Monotonicity is not checked.

... currently unused.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

62 plot.sos.smooth

Value

An object of class plotSmooth.

Examples

Simulate data and fit GAM
set.seed(3)
dat <- gamSim(1,n=2000,dist="normal",scale=20)
bs <- "cr"; k <- 12
b <- gam(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) +

I(x1*x2) + s(x3, bs=bs), data=dat)
o <- getViz(b, nsim = 0)

Extract first terms and plot it
pt <- pterm(o, 1)
plot(pt, n = 60) + l_ciPoly() + l_fitLine() + l_ciLine()

Extract I(x1^2) terms and plot it with partial residuals
pt <- pterm(o, 3)
plot(pt, n = 60) + l_ciPoly() + l_fitLine() + l_ciLine() + l_points()

plot.sos.smooth Plotting smooths on the sphere

Description

This is the plotting method for smooth effects on the sphere.

Usage

S3 method for class 'sos.smooth'
plot(
x,
n = 40,
xlim = NULL,
ylim = NULL,
maxpo = 10000,
too.far = 0.1,
phi = 30,
theta = 30,
trans = identity,
scheme = 0,
seWithMean = FALSE,
unconditional = FALSE,
...

)

plot.sos.smooth 63

Arguments

x a smooth effect object, extracted using sm.

n sqrt of the number of grid points used to compute the effect plot.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

maxpo maximum number of residuals points that will be used by layers such as resRug()
and resPoints(). If number of datapoints > maxpo, then a subsample of maxpo
points will be taken.

too.far if greater than 0 then this is used to determine when a location is too far from
data to be plotted. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and
too.far is a distance within the unit square. Setting to zero can make plotting
faster for large datasets, but care then needed with interpretation of plots.

phi one of the plotting angles, relevant only if scheme = 0.

theta the other plotting angle, relevant only if scheme = 0.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

scheme if 0 the smooth effect is plotted on the sphere. If 1 the smooth effect is plotted
on the two hemispheres.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

library(mgcViz)
set.seed(0)
n <- 400

f <- function(la,lo) { ## a test function...

64 plotDiff

sin(lo)*cos(la-.3)
}

generate with uniform density on sphere...
lo <- runif(n)*2*pi-pi ## longitude
la <- runif(3*n)*pi-pi/2
ind <- runif(3*n)<=cos(la)
la <- la[ind];
la <- la[1:n]

ff <- f(la,lo)
y <- ff + rnorm(n)*.2 ## test data

generate data for plotting truth...
lam <- seq(-pi/2,pi/2,length=30)
lom <- seq(-pi,pi,length=60)
gr <- expand.grid(la=lam,lo=lom)
fz <- f(grla,grlo)
zm <- matrix(fz,30,60)

require(mgcv)
dat <- data.frame(la = la *180/pi,lo = lo *180/pi,y=y)

fit spline on sphere model...
bp <- gam(y~s(la,lo,bs="sos",k=60),data=dat)
bp <- getViz(bp)

Plot on sphere
plot(sm(bp, 1), scheme=0) + l_fitRaster() + l_fitContour() +

l_points(shape = 19) + l_rug() + l_coordContour() + l_bound()

Plotting as in standard 2D plots
plot(sm(bp, 1), scheme=1) + l_fitRaster() + l_fitContour() +

l_points(shape = 19) + l_rug()

plotDiff Generic plotting of differences

Description

Generic function for plotting differences between objects. Useful mainly for plotting the differences
between two smooth effects.

Usage

plotDiff(...)

Arguments

... arguments to be passed to methods. This first one will determine which method
will be called.

plotDiff.mgcv.smooth.1D 65

See Also

plotDiff.mgcv.smooth.1D, plotDiff.mgcv.smooth.2D, plotDiff.sos.smooth

plotDiff.mgcv.smooth.1D

Plotting differences between two 1D smooth effects

Description

This method can be used to plot the difference between two 1D smooth effects. Mainly meant to be
used with by-factor smooths.

Usage

S3 method for class 'mgcv.smooth.1D'
plotDiff(s1, s2, n = 100, trans = identity, unconditional = FALSE, ...)

Arguments

s1 a smooth effect object, extracted using sm.
s2 another smooth effect object.
n number of grid points used to compute main effects and c.i. lines. For a nice

smooth plot this needs to be several times the estimated degrees of freedom for
the smooth.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Details

Let sd be the difference between the fitted smooths, that is: sd = s1 - s2. sd is a vector of length n,
and its covariance matrix is Cov(sd) = X1\ where: X1 (X2) and Sig11 (Sig22) are the design matrix
and the covariance matrix of the coefficients of s1 (s2), while Sig12 is the cross-covariance matrix
between the coefficients of s1 and s2. To get the confidence intervals we need only diag(Cov(sd)),
which here is calculated efficiently (without computing the whole of Cov(sd)).

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

66 plotDiff.mgcv.smooth.2D

Examples

Simulate data and add factors uncorrelated to the response
library(mgcViz)
set.seed(6898)
dat <- gamSim(1,n=1500,dist="normal",scale=20)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))
bs <- "cr"; k <- 12
b <- gam(y ~ s(x2,bs=bs,by = fac), data=dat)
o <- getViz(b, nsim = 0)

Extract the smooths correspoding to "A1" and "A2" and plot their differences
with credible intervals
plotDiff(s1 = sm(o, 1), s2 = sm(o, 2)) + l_ciPoly() +

l_fitLine() + geom_hline(yintercept = 0, linetype = 2)

plotDiff.mgcv.smooth.2D

Plotting differences between two 2D smooth effects

Description

This method can be used to plot the difference between two 2D smooth effects. Mainly meant to be
used with by-factor smooths.

Usage

S3 method for class 'mgcv.smooth.2D'
plotDiff(
s1,
s2,
n = 40,
too.far = 0.1,
trans = identity,
unconditional = FALSE,
...

)

Arguments

s1 a smooth effect object, extracted using sm.

s2 another smooth effect object.

n sqrt of the number of grid points used to compute the effect plot.

too.far if greater than 0 then this is used to determine when a location is too far from
data to be plotted. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and

plotDiff.mgcv.smooth.2D 67

too.far is a distance within the unit square. Setting to zero can make plotting
faster for large datasets, but care then needed with interpretation of plots.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Details

Let sd be the difference between the fitted smooths, that is: sd = s1 - s2. sd is a vector of length n,
and its covariance matrix is Cov(sd) = X1\ where: X1 (X2) and Sig11 (Sig22) are the design matrix
and the covariance matrix of the coefficients of s1 (s2), while Sig12 is the cross-covariance matrix
between the coefficients of s1 and s2. To get the confidence intervals we need only diag(Cov(sd)),
which here is calculated efficiently (without computing the whole of Cov(sd)).

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

Simulate data and add factors uncorrelated to the response
library(mgcViz)
set.seed(235)
dat <- gamSim(1,n=1500,dist="normal",scale=20)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))
bs <- "cr"; k <- 12
b <- gam(y ~ s(x2, x1, by = fac), data=dat)
o <- getViz(b, nsim = 0)

Extract the smooths correspoding to "A1" and "A2" and plot their difference
pl <- plotDiff(s1 = sm(o, 1), s2 = sm(o, 2))
pl + l_fitRaster() + l_fitContour()

Plot p-values for differences between the two smooths
pl + l_pvRaster() + l_pvContour()

68 plotDiff.sos.smooth

plotDiff.sos.smooth Plotting differences between two smooths on the sphere

Description

This method can be used to plot the difference between two smooth effects on the sphere. Mainly
meant to be used with by-factor smooths.

Usage

S3 method for class 'sos.smooth'
plotDiff(
s1,
s2,
n = 40,
too.far = 0.1,
phi = 30,
theta = 30,
scheme = 0,
trans = identity,
unconditional = FALSE,
...

)

Arguments

s1 a smooth effect object, extracted using sm.

s2 another smooth effect object.

n sqrt of the number of grid points used to compute the effect plot.

too.far if greater than 0 then this is used to determine when a location is too far from
data to be plotted. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and
too.far is a distance within the unit square. Setting to zero can make plotting
faster for large datasets, but care then needed with interpretation of plots.

phi one of the plotting angles, relevant only if scheme = 0.

theta the other plotting angle, relevant only if scheme = 0.

scheme if 0 the smooth effect is plotted on the sphere. If 1 the smooth effect is plotted
on the two hemispheres.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

plotDiff.sos.smooth 69

Details

Let sd be the difference between the fitted smooths, that is: sd = s1 - s2. sd is a vector of length n,
and its covariance matrix is Cov(sd) = X1\ where: X1 (X2) and Sig11 (Sig22) are the design matrix
and the covariance matrix of the coefficients of s1 (s2), while Sig12 is the cross-covariance matrix
between the coefficients of s1 and s2. To get the confidence intervals we need only diag(Cov(sd)),
which here is calculated efficiently (without computing the whole of Cov(sd)).

Value

An objects of class plotSmooth.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

Not run:
1) Simulate data and add factors uncorrelated to the response
library(mgcViz)
set.seed(0)
n <- 500

f <- function(la,lo) { ## a test function...
sin(lo)*cos(la-.3)

}

generate with uniform density on sphere...
lo <- runif(n)*2*pi-pi ## longitude
la <- runif(3*n)*pi-pi/2
ind <- runif(3*n)<=cos(la)
la <- la[ind];
la <- la[1:n]

ff <- f(la,lo)
y <- ff + rnorm(n)*.2 ## test data

generate data for plotting truth...
lam <- seq(-pi/2,pi/2,length=30)
lom <- seq(-pi,pi,length=60)
gr <- expand.grid(la=lam,lo=lom)
fz <- f(grla,grlo)
zm <- matrix(fz,30,60)

dat <- data.frame(la = la *180/pi,lo = lo *180/pi,y=y)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))

2) fit spline on sphere model...
bp <- gam(y~s(la,lo,bs="sos",k=60, by = fac),data=dat)
bp <- getViz(bp)

70 plotRGL

Extract the smooths correspoding to "A1" and "A3" and plot their difference
Using scheme = 0
pl0 <- plotDiff(s1 = sm(bp, 1), s2 = sm(bp, 3))
pl0 + l_fitRaster() + l_fitContour() + l_coordContour() + l_bound()

Plot p-values for significance of differences
pl0 + l_pvRaster() + l_pvContour(breaks=c(0.05, 0.1, 0.2, 0.3, 0.5))

Using scheme = 1
pl1 <- plotDiff(s1 = sm(bp, 1), s2 = sm(bp, 2), scheme = 1)
pl1 + l_fitRaster() + l_fitContour()

Plot p-values for significance of differences
pl1 + l_pvRaster() + l_pvContour(breaks=c(0.05, 0.1, 0.2, 0.3, 0.5))

End(Not run)

plotRGL Generic RGL plotting function

Description

Generic function for producing an interactive RGL plot.

Usage

plotRGL(x, ...)

Arguments

x the object we want to plot using the rgl package.

... arguments to be passed to methods.

See Also

plotRGL.mgcv.smooth.2D, plotRGL.mgcv.smooth.MD

plotRGL.mgcv.smooth.2D 71

plotRGL.mgcv.smooth.2D

Visualizing 2D smooth effects in 3D

Description

This method plots an interactive 3D representation of a 2D smooth effect, using the rgl package.

Usage

S3 method for class 'mgcv.smooth.2D'
plotRGL(
x,
se = TRUE,
n = 40,
residuals = FALSE,
type = "auto",
maxpo = 1000,
too.far = 0,
xlab = NULL,
ylab = NULL,
main = NULL,
xlim = NULL,
ylim = NULL,
se.mult = 1,
trans = identity,
seWithMean = FALSE,
unconditional = FALSE,
...

)

Arguments

x a smooth effect object, extracted using sm.
se when TRUE (default) upper and lower surfaces are added to the plot at se.mult

(see below) standard deviations for the fitted surface.
n sqrt of the number of grid points used to compute the effect plot.
residuals if TRUE, then the partial residuals will be added.
type the type of residuals that should be plotted. See residuals.gamViz.
maxpo maximum number of residuals points that will be plotted. If number of data-

points > maxpo, then a subsample of maxpo points will be taken.
too.far if greater than 0 then this is used to determine when a location is too far from

data to be plotted. This is useful since smooths tend to go wild away from data.
The data are scaled into the unit square before deciding what to exclude, and
too.far is a distance within the unit square. Setting to zero can make plotting
faster for large datasets, but care is then needed when interpreting the plots.

72 plotRGL.mgcv.smooth.2D

xlab if supplied then this will be used as the x label of the plot.

ylab if supplied then this will be used as the y label of the plot.

main used as title for the plot if supplied.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

se.mult a positive number which will be the multiplier of the standard errors when cal-
culating standard error surfaces.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

Value

Returns NULL invisibly.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

Example 1: taken from ?mgcv::te, shows how tensor pruduct deals nicely with
badly scaled covariates (range of x 5% of range of z)
library(mgcViz)

Simulate some data
test1 <- function(x,z,sx=0.3,sz=0.4) {

x <- x*20
(pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+

0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2))
}
n <- 500
old.par <- par(mfrow=c(2,2))
x <- runif(n)/20;z <- runif(n);
xs <- seq(0,1,length=30)/20;zs <- seq(0,1,length=30)
pr <- data.frame(x=rep(xs,30),z=rep(zs,rep(30,30)))
truth <- matrix(test1(prx,prz),30,30)
f <- test1(x,z)
y <- f + rnorm(n)*0.2

plotRGL.mgcv.smooth.MD 73

Fit with t.p.r.s. basis and plot
b1 <- gam(y~s(x,z))
plotRGL(sm(getViz(b1), 1))

Need to load rgl at this point
Not run:
library(rgl)
rgl.close() # Close

Fit with tensor products basis and plot (with residuals)
b2 <- gam(y~te(x,z))
plotRGL(sm(getViz(b2), 1), residuals = TRUE)

We can still work on the plot, for instance change the aspect ratio
aspect3d(1, 2, 1)

rgl.close() # Close

End(Not run)

plotRGL.mgcv.smooth.MD

Visualizing a 2D slice of a smooth effects in 3D

Description

This method plots an interactive 3D representation of a 2-dimensional slice of a multi-dimensional
smooth effect, using the rgl package.

Usage

S3 method for class 'mgcv.smooth.MD'
plotRGL(
x,
fix,
se = TRUE,
n = 40,
residuals = FALSE,
type = "auto",
maxpo = 1000,
too.far = c(0, NA),
xlab = NULL,
ylab = NULL,
main = NULL,
xlim = NULL,
ylim = NULL,
se.mult = 1,

74 plotRGL.mgcv.smooth.MD

trans = identity,
seWithMean = FALSE,
unconditional = FALSE,
...

)

Arguments

x a smooth effect object, extracted using sm.

fix a named vector indicating which variables must be kept fixed and to what values.
When plotting a smooth in (d+2) dimensions, then d variables must be fixed.

se when TRUE (default) upper and lower surfaces are added to the plot at se.mult
(see below) standard deviations for the fitted surface.

n sqrt of the number of grid points used to compute the effect plot.

residuals if TRUE, then the partial residuals will be added.

type the type of residuals that should be plotted. See residuals.gamViz.

maxpo maximum number of residuals points that will be plotted. If number of data-
points > maxpo, then a subsample of maxpo points will be taken.

too.far a numeric vector with two entries. The first has the same interpretation as in
plot.mgcv.smooth.2D and it avoids plotting the smooth effect in areas that are
too far form any observation. The distance will be calculated only using the
variables which are not in fix (see above). Hence in two dimensions, not in
the full d+2 dimensions. Set it to -1 to plot the whole smooth. The second
entry determines which residuals and covariates pairs are closed enough to the
selected slice. If left to NA on the 10\ closest (in terms of scaled Euclidean
distance) to the current slice will be plotted. Set it to -1 to plot all the residuals.

xlab if supplied then this will be used as the x label of the plot.

ylab if supplied then this will be used as the y label of the plot.

main used as title for the plot if supplied.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

se.mult a positive number which will be the multiplier of the standard errors when cal-
culating standard error surfaces.

trans monotonic function to apply to the smooth and residuals, before plotting. Mono-
tonicity is not checked.

seWithMean if TRUE the component smooths are shown with confidence intervals that in-
clude the uncertainty about the overall mean. If FALSE then the uncertainty
relates purely to the centred smooth itself. Marra and Wood (2012) suggests
that TRUE results in better coverage performance, and this is also suggested by
simulation.

unconditional if TRUE then the smoothing parameter uncertainty corrected covariance matrix
is used to compute uncertainty bands, if available. Otherwise the bands treat the
smoothing parameters as fixed.

... currently unused.

plotSlice 75

Value

Returns NULL invisibly.

References

Marra, G and S.N. Wood (2012) Coverage Properties of Confidence Intervals for Generalized Ad-
ditive Model Components. Scandinavian Journal of Statistics.

Examples

Example 1: taken from ?mgcv::te, shows how tensor pruduct deals nicely with
badly scaled covariates (range of x 5% of range of z)
library(mgcViz)
n <- 1e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n)

ob <- (x-z)^2 + (y-z)^2 + rnorm(n)
b <- gam(ob ~ s(x, y, z))
v <- getViz(b)

plotRGL(sm(v, 1), fix = c("z" = 0))

Need to load rgl at this point
Not run:
library(rgl)
rgl.close() # Close

plotRGL(sm(v, 1), fix = c("z" = 1), residuals = TRUE)

We can still work on the plot, for instance change the aspect ratio
aspect3d(1, 2, 1)

rgl.close() # Close

End(Not run)

plotSlice Plotting sequence of slices of 2D smooth effect

Description

This function allows to slice a multi-dimensional (D > 2) smooth effect, and to plot the resulting
sequence of 2D slices in an array of plots.

Usage

plotSlice(x, fix, a.facet = list(), ...)

76 plotSlice

Arguments

x a smooth effect object, extracted using sm.

fix a named list of vectors, where the i-th entry of each vector indicates the value
we want to use for the covariate for i-th slice. When plotting a smooth in (d+2)
dimensions, we need d vectors, because d variables must be fixed. All vectors
must have either the same length (the number of slices) or length 1. fix can
contain at most 2 vectors, so if d>=5, we need to set at least one covariate to a
scalar.

a.facet arguments to be passed to ggplot2::facet_wrap or ggplot2::facet_grid. The for-
mer gets called when fix contains one vector, the latter when fix contains two
vectors.

... further arguments to be passed to plot.mgcv.smooth.MD.

Value

An objects of class plotSmooth.

Examples

Not run:
Example 1: plotting slices of 3D smooth
Simulate data and fit GAM
library(mgcViz)
n <- 1e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n)
ob <- (x-z)^2 + (y-z)^2 + rnorm(n)
b <- gam(ob ~ s(x, y, z))
v <- getViz(b)

Get plot of slices and add layers
pl <- plotSlice(x = sm(v, 1),

fix = list("z" = seq(-2, 2, length.out = 9)))
pl + l_fitRaster() + l_fitContour() + l_points() + l_rug()

Over-ride default layout
pl <- plotSlice(x = sm(v, 1),

fix = list("z" = seq(-2, 2, length.out = 9)),
a.facet = list(nrow = 2))

pl + l_fitRaster() + l_fitContour() + theme(panel.spacing = unit(0.5, "lines"))

Example 2: plotting slices of 4D smooth
Simulate data and fit GAM
n <- 5e3
x <- rnorm(n); y <- rnorm(n); z <- rnorm(n); z2 <- rnorm(n)
ob <- (x-z)^2 + (y-z)^2 + z2^3 + rnorm(n)
b <- bam(ob ~ s(x, y, z, z2), discrete = TRUE)
v <- getViz(b)

Plot slices across "z" and "x"
pl <- plotSlice(x = sm(v, 1),

postSim 77

fix = list("z" = seq(-2, 2, length.out = 3), "x" = c(-1, 0, 1)))
pl + l_fitRaster() + l_fitContour() + l_points() + l_rug()

Plot slices across "x", keeping "z" fixed
pl <- plotSlice(x = sm(v, 1),

fix = list("z" = 0, "x" = seq(-3, 3, length.out = 9)))
pl + l_fitRaster() + l_fitContour() + l_points() + l_rug()

End(Not run)

postSim Posterior simulation from a GAM object

Description

This method can be used to simulate vectors of responses from the Gaussian posterior approxima-
tion of a gamObject.

Usage

postSim(
o,
nsim,
newdata,
trans = NULL,
method = "auto",
w = NULL,
offset = NULL,
savePar = FALSE,
...

)

Arguments

o the output of a gam() or bam() call.

nsim the number of simulated vectors of responses. A positive integer.

newdata Optional new data frame used to perform the simulations. To be passed to pre-
dict.gam.

trans function used to transform or summarize each vector of simulated responses. It
must take a vector as argument, but it can output a vector or a scalar. Potentially
useful for saving storage (e.g. by transforming each simulated vector to a scalar).
If left to NULL then trans = identity will be used.

method the method used for the simulation of responses. See simulate.gam.

w vector of prior weights of each response. See simulate.gam.

78 print.checkGam

offset numeric vector of offsets. For GAMs with multiple linear predictor (see eg
gaulss) it must be a list of vectors. If newdata!=NULL the offsets will be as-
sumed to be zero, unless their are explicitly provided. If newdata==NULL the
simulations will use the offsets used during model fitting, unless offset is explic-
itly provided.

savePar if TRUE than also the simulated parameters will be returned.
... arguments to be passed to vcov.gam.

Value

If savePar == FALSE the function will return a matrix where each column is a vector of simulated
responses or a transformed version of it. If savePar == TRUE it will return a list where the $simY
entry will contain the simulated responses and $simBeta the simulated parameters.

Examples

library(mgcViz)
library(MASS)
b <- gam(accel~s(times, k=20), data=mcycle)

Simulate list of 10 vectors of responses from posterior, taking into
account smoothing parameters uncertainty (see ?vcov.gam)
n <- 10
sim <- postSim(o = b, nsim = n, unconditional = TRUE)

Posterior simulations in grey and data in red
plot(rep(mcycle$times, n), as.vector(sim), col = "grey",

ylab = "Acceleration", xlab = "Times")
points(mcycle$times, mcycle$accel, col = 2)

There is clear disagreement between simulations' and data's
conditional variance, which can be solved using flexible GAMLSS model:
b <- gam(list(accel~s(times, k=20), ~s(times)), data=mcycle, family = gaulss)
sim <- postSim(o = b, nsim = n)
plot(rep(mcycle$times, n), as.vector(sim), col = "grey",

ylab = "Acceleration", xlab = "Times")
points(mcycle$times, mcycle$accel, col = 2)

print.checkGam Printing the output of check.gamViz

Description

This method prints the output of check.gamViz.

Usage

S3 method for class 'checkGam'
print(x, lay = NULL, ...)

print.plotGam 79

Arguments

x the output of check.gamViz.

lay the layout_matrix passed to gridExtra::grid.arrange.

... further arguments to be passed to grid.arrange.

Value

Returns the output of grid.arrange, invisibly.

print.plotGam Printing the output of plot.gamViz

Description

This method prints the output of plot.gamViz.

Usage

S3 method for class 'plotGam'
print(x, ask = TRUE, pages = NULL, addLay = TRUE, ...)

Arguments

x an object of class plotGam.

ask should we ask before moving from one page to the next?

pages the number of pages over which to spread the output.

addLay if TRUE, and if the $empty slot of the plotGam object is TRUE, we add some de-
fault layers to the plots, before printing. Does not have any affect if the plotGam
object already contains some layers.

... further arguments to be passed to grid.arrange.

Value

Returns the output of gridExtra::grid.arrange, invisibly.

80 print.qqGam

print.plotSmooth Printing plots of smooth effects

Description

This method prints objects of class plotSmooth.

Usage

S3 method for class 'plotSmooth'
print(x, addLay = TRUE, ...)

Arguments

x an object of class plotSmooth.

addLay if TRUE, and if the $empty slot of the plotSmooth object is TRUE or NULL,
we add some default layers to the plots, before printing. Does not have any
affect if the plotSmooth object already contains some layers (e.g. l_rug()).

... currently unused.

Value

Returns NULL, invisibly.

print.qqGam Printing the output of qq.gamViz

Description

This method prints the output of qq.gamViz.

Usage

S3 method for class 'qqGam'
print(x, ...)

Arguments

x an object of class qqGam.

... currently unused.

Value

Returns NULL, invisibly.

pterm 81

pterm Extracting parametric effects from a GAM model

Description

This function can be used to extract a parametric effect from an object of class gamViz.

Usage

pterm(o, select)

Arguments

o an object of class gamViz, the output of a getViz() call.

select index of the selected parametric effect.

Value

An object of class "pTermSomething" where "Something" is substituted with the class of the vari-
able of interest. For instance if this "numeric", the pterm will return an object of class "ptermNu-
meric".

Examples

####### 1. Gaussian GAM
library(mgcViz)
set.seed(3)
dat <- gamSim(1,n=1500,dist="normal",scale=20)
dat$fac <- as.factor(sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE))
dat$logi <- as.logical(sample(c(TRUE, FALSE), nrow(dat), replace = TRUE))
bs <- "cr"; k <- 12
b <- gam(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) + fac + x3:fac + I(x1*x2) + logi,data=dat)
o <- getViz(b)

Plot effect of 'x0'
pt <- pterm(o, 1)
plot(pt, n = 60) + l_ciPoly() + l_fitLine() + l_ciLine() + l_points()

Plot effect of 'x3'
pt <- pterm(o, 1)
plot(pt, n = 60) + l_fitLine() + l_ciLine(colour = 2)

Plot effect of 'fac'
pt <- pterm(o, 4)
plot(pt) + l_ciBar(colour = "blue") + l_fitPoints(colour = "red") +

l_rug(alpha = 0.3)

Plot effect of 'logi'
pt <- pterm(o, 6)

82 qgamV

plot(pt) + l_fitBar(a.aes = list(fill = I("light blue"))) + l_ciBar(colour = "blue")

Plot effect of 'x3:fac': no method available yet available for second order terms
pt <- pterm(o, 7)
plot(pt)

Not run:
####### 1. Continued: Quantile GAMs
b <- mqgamV(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) + x3:fac +

I(x1*x2) + logi, data=dat, qu = c(0.3, 0.5, 0.8))

plot(pterm(b, 3)) + l_ciBar(colour = 2) + l_fitPoints()

plot(pterm(b, 4)) + l_fitBar(colour = "blue", fill = 3) + l_ciBar(colour = 2)

Don't know how to plot this interaction
plot(pterm(b, 6))

####### 2. Gaussian GAMLSS model
library(MASS)
mcycle$fac <- as.factor(sample(c("z", "k", "a", "f"), nrow(mcycle), replace = TRUE))
b <- gam(list(accel~times + I(times^2) + s(times,k=10), ~ times + fac + s(times)),

data=mcycle,family=gaulss(), optimizer = "efs")
o <- getViz(b)

Plot effect of 'I(times^2)' on mean: notice that partial residuals
are unavailable for GAMLSS models, hence l_point does not do anything here.
pt <- pterm(o, 2)
plot(pt) + l_ciPoly() + l_fitLine() + l_ciLine() + l_points()

Plot effect of 'times' in second linear predictor.
Notice that partial residuals are unavailable.
pt <- pterm(o, 3)
plot(pt) + l_ciPoly() + l_fitLine() + l_ciLine(linetype = 3) + l_rug()

Plot effect of 'fac' in second linear predictor.
pt <- pterm(o, 4)
plot(pt) + l_ciBar(colour = "blue") + l_fitPoints(colour = "red") +

l_rug()

End(Not run)

qgamV Fit a QGAM model and get a gamViz object

Description

These are wrapper that fits a QGAM model using qgam::qgam and converts it to a gamViz object
using the getViz function. It is essentially a shortcut.

qq 83

Usage

qgamV(form, data, qu, lsig = NULL, err = NULL, aQgam = list(), aViz = list())

Arguments

form, data, qu, lsig, err
same arguments as in qgam::qgam.

aQgam list of further arguments to be passed to qgam::qgam.

aViz list of arguments to be passed to getViz.

Value

An object of class "gamViz" which can, for instance, be plotted using plot.gamViz.

Examples

library(mgcViz)
set.seed(2) ## simulate some data...
dat <- gamSim(2,n=1000,dist="normal",scale=0.25)$data

Fit GAM and get gamViz object
b <- qgamV(y~s(x) + s(z) + I(x*z), data = dat, qu = 0.2,

aQgam = list(argGam = list(select = TRUE)), aViz = list("nsim" = 0))

This is equivalent to doing
1. Fit QGAM
b <- qgam(y~s(x) + s(z) + I(x*z), data=dat, qu = 0.2, argGam = list(select = TRUE))
2. Convert to gamViz object
b <- getViz(b, nsim = 0)

Either way, we all effects by doing
print(plot(b, allTerms = TRUE), pages = 1)

qq Generic QQ plots

Description

Generic function for producing QQ-plots.

Usage

qq(...)

Arguments

... arguments to be passed to methods. This first one will determine which method
will be called.

84 qq.gamViz

See Also

qq.gamViz

qq.gamViz QQ plots for gam model residuals

Description

Takes a fitted gam object, converted using getViz, and produces QQ plots of its residuals (condi-
tional on the fitted model coefficients and scale parameter). If the model distributional assumptions
are met then usually these plots should be close to a straight line (although discrete data can yield
marked random departures from this line).

Usage

S3 method for class 'gamViz'
qq(
o,
rep = 10,
level = 0.8,
method = "auto",
type = "auto",
CI = "none",
worm = FALSE,
showReps = FALSE,
sortFun = NULL,
discrete = NULL,
ngr = 1000,
xlim = NULL,
ylim = NULL,
a.qqpoi = list(),
a.ablin = list(),
a.cipoly = list(),
a.replin = list(),
...

)

Arguments

o an object of class gamViz, the output of a getViz() call.

rep how many replicate datasets to generate to simulate quantiles of the residual
distribution. Relevant only if method is set to "simul1" or "simul2".

level the level of the confidence intervals (e.g. 0.9 means 90% intervals).

qq.gamViz 85

method the method used to calculate the QQ-plot and, possibly, the confidence intervals.
If set to ("tunif") "tnormal" the residuals are transformed to (uniform) nor-
mal, for which analytic expression for the confidence intervals are available. If
set to "simul1" or "simul2" the theoretical QQ-line is constructed by simulat-
ing residuals from the model. Method "simul2" does not produce confidence
intervals. If set to "normal" no simulation or transformation is performed, and a
simple normal QQ-plot is produced. If set to "auto" the method used to produce
the QQ-plot is determined automatically.

type the type of residuals to be used. See residuals.gamViz.

CI the type of confidence intervals to be plotted. If set to "none" they are not added,
if set to "normal" they will be based on the assumption that the theoretical
quantile distribution is Gaussian and if set to "quantile" they will be sample
quantiles of simulated responses from the model.

worm if TRUE a worm-plot (a de-trended QQ-plot) is plotted.

showReps if TRUE all the QQ-lines corresponding to the simulated (model-based) QQ-plots.

sortFun the function to be used for sorting the residuals. If left to NULL it will be set to
function(.x) sort(.x, method = "quick") internally.

discrete if TRUE the QQ-plot is discretized into ngr bins before plotting, in order to save
plotting time (when the number of observations is large). If left to NULL, the
discretization is used if there are more than 10^4 observations.

ngr number of bins to be used in the discretization.

xlim if supplied then this pair of numbers are used as the x limits for the plot.

ylim if supplied then this pair of numbers are used as the y limits for the plot.

a.qqpoi list of arguments to be passed to ggplot2::geom_point, which plots the main
QQ-plot.

a.ablin list of arguments to be passed to ggplot2::geom_abline, which adds the ref-
erence line.

a.cipoly list of arguments to be passed to ggplot2::geom_polygon, which add the con-
fidence intervals.

a.replin list of arguments to be passed to ggplot2::geom_line, which adds a line for
each simulated QQ-plot.

... currently unused.

Details

Here method = "simul1" corresponds to the algorithm described in section 2.1 of Augustin et al.
(2012), which involves direct simulations of residuals from the models. This requires o$family$rd
to be defined. Setting method = "simul2" results in a cheaper method, described in section 2.2 of
Augustin et al. (2012), which requires o$family$qf to be defined.

Value

An object of class c("qqGam", "plotSmooth", "gg").

86 qq.gamViz

References

Augustin, N.H., Sauleau, E.A. and Wood, S.N., 2012. On quantile quantile plots for generalized
linear models. Computational Statistics & Data Analysis, 56(8), pp.2404-2409.

Examples

######## Example: simulate binomial data
library(mgcViz)
set.seed(0)
n.samp <- 400
dat <- gamSim(1,n = n.samp, dist = "binary", scale = .33)
p <- binomial()$linkinv(dat$f) ## binomial p
n <- sample(c(1, 3), n.samp, replace = TRUE) ## binomial n
dat$y <- rbinom(n, n, p)
dat$n <- n
lr.fit <- gam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3)

, family = binomial, data = dat,
weights = n, method = "REML")

lr.fit <- getViz(lr.fit)

Quick QQ-plot of deviance residuals
qq(lr.fit, method = "simul2")

Same, but changing points share and type of reference list
qq(lr.fit, method = "simul2",

a.qqpoi = list("shape" = 1), a.ablin = list("linetype" = 2))

Simulation based QQ-plot with reference bands
qq(lr.fit, rep = 100, level = .9, CI = "quantile")

Simulation based QQ-plot, Pearson resids, all simulations lines shown
qq(lr.fit, rep = 100, CI = "none", showReps = TRUE, type = "pearson",

a.qqpoi = list(shape=19, size = 0.5))

Now fit the wrong model and check
pif <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3)

, family = poisson, data = dat, method = "REML")
pif <- getViz(pif)

qq(pif, method = "simul2")

qq(pif, rep = 100, level = .9, CI = "quantile")

qq(pif, rep = 100, type = "pearson", CI = "none", showReps = TRUE,
a.qqpoi = list(shape=19, size = 0.5))

######## Example: binary data model violation so gross that you see a problem
######## on the QQ plot
y <- c(rep(1, 10), rep(0, 20), rep(1, 40), rep(0, 10), rep(1, 40), rep(0, 40))
x <- 1:160
b <- glm(y ~ x, family = binomial)
class(b) <- c("gamViz", class(b)) # Tricking qq.gamViz to use it on a glm

qq.gamViz 87

Note that the next two are not necessarily similar under gross
model violation...
qq(b, method = "simul2")
qq(b, rep = 50, CI = "none", showReps = TRUE)

alternative model
b <- gam(y ~ s(x, k = 5), family = binomial, method = "ML")
b <- getViz(b)

qq(b, method = "simul2")
qq(b, rep = 50, showReps = TRUE, CI = "none", shape = 19)

Not run:
######## "Big Data" example:
set.seed(0)
n.samp <- 50000
dat <- gamSim(1,n=n.samp,dist="binary",scale=.33)
p <- binomial()$linkinv(dat$f) ## binomial p
n <- sample(c(1,3),n.samp,replace=TRUE) ## binomial n
dat$y <- rbinom(n,n,p)
dat$n <- n
lr.fit <- bam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3)

, family = binomial, data = dat,
weights = n, method = "fREML", discrete = TRUE)

lr.fit <- getViz(lr.fit)

Turning discretization off (on by default for large datasets).
set.seed(414) # Setting the seed because qq.gamViz is doing simulations
o <- qq(lr.fit, rep = 10, method = "simul1", CI = "normal", showReps = TRUE,

discrete = F, a.replin = list(alpha = 0.1))
o # This might take some time!

Using default discretization
set.seed(414)
o <- qq(lr.fit, rep = 10, method = "simul1", CI = "normal", showReps = TRUE,

a.replin = list(alpha = 0.1))
o # Much faster plotting!

Very coarse discretization
set.seed(414)
o <- qq(lr.fit, rep = 10, method = "simul1", CI = "normal", showReps = TRUE,

ngr = 1e2, a.replin = list(alpha = 0.1), a.qqpoi = list(shape = 19))
o

We can also zoom in at no extra costs (most work already done by qq.gamViz)
zoom(o, xlim = c(-0.25, 0.25), showReps = TRUE, discrete = TRUE, a.replin = list(alpha = 0.2))

End(Not run)

88 qqplots

qqplots Quantile-Quantile Plots

Description

This is a re-write of the QQ-plotting functions provided by stats, using the ggplot2 library.
qqnorm is a generic function the default method of which produces a normal QQ plot of the values
in y. qqline adds a line to a “theoretical”, by default normal, quantile-quantile plot which passes
through the probs quantiles, by default the first and third quartiles. qqplot produces a QQ plot of
two datasets.

Usage

qqnorm(
y,
ylim,
main = "Normal Q-Q Plot",
xlab = "Theoretical Quantiles",
ylab = "Sample Quantiles",
datax = FALSE

)

qqplot(
x,
y,
xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)),
main = "Q-Q Plot"

)

qqline(
y,
datax = FALSE,
distribution = qnorm,
probs = c(0.25, 0.75),
qtype = 7,
...

)

Arguments

y The second or only data sample.

ylim, ... Graphical parameters.

main, xlab, ylab Plot labels. The xlab and ylab refer to the y and x axes respectively if datax =
TRUE.

datax Logical. Should data values be on the x-axis ?

residuals.gamViz 89

x The first sample for qqplot.

distribution quantile function for reference theoretical distribution.

probs numeric vector of length two, representing probabilities. Corresponding quan-
tile pairs define the line drawn.

qtype the type of quantile computation used in quantile.

Note

Help file is mainly from stats::qqnorm since this is a rewrite of stats::qqplot, stats::qqline
and stats::qqnorm using the ggplot2 library.

Examples

library(mgcViz)
y <- rt(500, df = 5)

Compare new and old version of qqnorm
stats::qqnorm(y)
qqnorm(y)

Compare new and old version of qqplot
x <- rt(200, df = 5)
y <- rt(300, df = 5)
stats::qqplot(x, y)
qqplot(x, y)
add a qqline()
ggplot2::last_plot() + qqline(y = rt(500, df = 4.8), col = "green")

"QQ-Chisquare" : --------------------------
y <- rchisq(500, df = 3)
Q-Q plot for Chi^2 data against true theoretical distribution:
x <- qchisq(ppoints(500), df = 3)
stats::qqplot(qchisq(ppoints(500), df = 3), rchisq(500, df = 3),

main = expression("Q-Q plot for" ~~ {chi^2}[nu == 3]))
qqplot(qchisq(ppoints(500), df = 3), rchisq(500, df = 3),

main = expression("Q-Q plot for" ~~ {chi^2}[nu == 3])) + theme_bw()

residuals.gamViz Generalized Additive Model residuals

Description

Extension of mgcv::residuals.gam. Returns residuals for a fitted GAM model object. Pearson,
deviance, working and response residuals are available as in the method from mgcv, but this version
also provides residual types "tunif" and "tnormal". The former are obtained using the cdf of the
response distribution (if available). The latter are obtained by further transforming the uniform
residuals using the quantile function (i.e. the inverse cdf) of a standard normal variable.

90 shine

Usage

S3 method for class 'gamViz'
residuals(object, type = "deviance", ...)

Arguments

object an object of class gamViz, the output of a getViz() call.

type the type of residuals wanted. If should be one of "deviance", "pearson", "scaled.pearson",
"working", "response", "tunif" or "tnormal". Not all are available for each fam-
ily.

... further arguments passed to mgcv::residuals.gam.

See Also

See also mgcv::residuals.gam for details.

shine Generic shine function

Description

Generic function for taking an object and transforming it into a shiny app.

Usage

shine(o, ...)

Arguments

o the object we want to transform into a shiny app.

... arguments to be passed to methods.

See Also

shine.qqGam

shine.qqGam 91

shine.qqGam Shiny QQ-plots for GAMs

Description

This function takes the output of qq.gamViz and transforms it into an interactive shiny app.

Usage

S3 method for class 'qqGam'
shine(o, ...)

Arguments

o the output of qq.gamViz.

... currently not used.

Details

In RStudio, this function returns a call to qq.gamViz that reproduces the last plot rendered in the
interactive shiny window.

Examples

Not run:

simulate binomial data...
library(mgcv)
library(mgcViz)
set.seed(0)
n.samp <- 400
dat <- gamSim(1,n = n.samp, dist = "binary", scale = .33)
p <- binomial()$linkinv(dat$f) ## binomial p
n <- sample(c(1, 3), n.samp, replace = TRUE) ## binomial n
dat$y <- rbinom(n, n, p)
dat$n <- n
lr.fit <- gam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3)

, family = binomial, data = dat,
weights = n, method = "REML")

lr.fit <- getViz(lr.fit)

Need to load shiny and miniUI at this point
launch shiny gagdet
shine(qq(lr.fit))

End(Not run)

92 simulate.gam

simulate.gam Simulating responses from a GAM object

Description

This method can be used to simulate vectors of responses from a gamObject.

Usage

S3 method for class 'gam'
simulate(
object,
nsim = 1,
seed = NULL,
method = "auto",
newdata,
u = NULL,
w = NULL,
offset = NULL,
trans = NULL,
...

)

Arguments

object the output of a gam() or bam() call.
nsim the number of simulated vectors of responses. A positive integer.
seed currently not used.
method the method used for the simulation. If set to "rd" then o$family$rd() will be

used, if available. If set to "qf" then o$family$qf() (which is the inverse cdf
of the response distribution) will be used to transform some uniform variates.

newdata Optional new data frame or list to be passed to predict.gam.
u a matrix where each row is a vector of uniform random variables in (0, 1). This

will be used to simulate responses only if method = "qf".
w vector of prior weights to be used in the simulations. If newdata==NULL then w

is set to object$prior.weights otherwise it is a vector of ones.
offset numeric vector of offsets. For GAMs with multiple linear predictor (see eg

gaulss) it must be a list of vectors. NB: if newdata!=NULL the offsets will be
assumed to be zero, unless their are explicitly provided. If newdata==NULL then
simulations will use the offsets used during model fitting, and offset argument
will be ignored.

trans function used to transform or summarize each vector of simulated responses. It
must take a vector as argument, but it can output a vector or a scalar. Potentially
useful for saving storage (e.g. by transforming each simulated vector to a scalar).
If left to NULL then trans = identity will be used.

... extra arguments passed to predict.gam.

sm 93

Value

A matrix where each column is a vector of simulated responses. The number of rows is equal to the
number of responses in the fitted object.

Examples

library(mgcViz)

set.seed(2) ## simulate some data...
dat <- gamSim(1,n=400,dist="normal",scale=2)
b <- gam(y~s(x0)+s(x1)+s(x2)+s(x3),data=dat)

Simulate three vectors of responses
matplot(simulate(b, nsim = 3), pch = 19, col = c(1, 3, 4))

sm Extracting a smooth effect from a GAM model

Description

This function can be used to extract a smooth or random effect from an object of class gamViz.

Usage

sm(o, select)

Arguments

o an object of class gamViz, the output of a getViz call.

select index of the selected smooth or random effect.

Value

An object representing a smooth effect.

See Also

See getViz for examples.

94 zoom.qqGam

zoom Generic zooming function

Description

Generic function for zooming, mainly meant to work with graphical objects.

Usage

zoom(o, ...)

Arguments

o the object we want to zoom into.
... arguments to be passed to methods.

See Also

zoom.qqGam

zoom.qqGam Efficiently zooming on GAM QQ-plots

Description

This function allows to zoom into a QQ-plot produced by qq.gamViz, in a computationally efficient
manner.

Usage

S3 method for class 'qqGam'
zoom(
o,
xlim = NULL,
ylim = NULL,
discrete = NULL,
ngr = 1000,
adGrid = TRUE,
CI = FALSE,
worm = FALSE,
showReps = FALSE,
a.qqpoi = list(),
a.ablin = list(),
a.cipoly = list(),
a.replin = list(),
...

)

zoom.qqGam 95

Arguments

o the output of mgcViz::qq.gamViz.
xlim if supplied then this pair of numbers are used as the x limits for the plot.
ylim if supplied then this pair of numbers are used as the y limits for the plot.
discrete if TRUE the QQ-plot is discretized into ngr bins before plotting, in order to save

plotting time (when the number of observations is large). If left to NULL, the
discretization is used if there are more than 10^4 observations.

ngr number of bins to be used in the discretization.
adGrid if TRUE the discretization grid is computed using the QQ-points falling within

xlim. If FALSE, zoom.qqGam will compute ngr values using all the QQ-points
used in the original qq.gamViz call (but only those falling within xlim and ylim
will be plotted).

CI if TRUE confidence intervals are plotted.
worm if TRUE a worm-plot (a de-trended QQ-plot) is plotted, rather than a QQ-plot.
showReps if TRUE all the QQ-lines corresponding to the simulated (model-based) QQ-plots.
a.qqpoi list of arguments to be passed to ggplot2::geom_point, which plots the main

QQ-plot.
a.ablin list of arguments to be passed to ggplot2::geom_abline, which adds the ref-

erence line.
a.cipoly list of arguments to be passed to ggplot2::geom_polygon, which add the con-

fidence intervals.
a.replin list of arguments to be passed to ggplot2::geom_line, which adds a line for

each simulated QQ-plot.
... currently unused.

Examples

library(mgcViz);
set.seed(0)
n.samp <- 500
dat <- gamSim(1,n=n.samp,dist="binary",scale=.33)
p <- binomial()$linkinv(dat$f) ## binomial p
n <- sample(c(1,3),n.samp,replace=TRUE) ## binomial n
dat$y <- rbinom(n,n,p)
dat$n <- n
lr.fit <- bam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3)

, family = binomial, data = dat,
weights = n, method = "REML")

lr.fit <- getViz(lr.fit)

set.seed(414)
o <- qq(lr.fit, rep = 50, method = "simul1", CI = "normal")
o # This is the whole qqplot

We can zoom in along x at little extra costs (most computation already done by qq.gamViz)
zoom(o, xlim = c(0, 1), showReps = TRUE,

a.replin = list(alpha = 0.1), a.qqpoi = list(shape = 19))

96 zto1

zto1 Constructing a decreasing function from (0,1) to (0,1)

Description

This function returns a non-increasing function from (0, 1) to (0, 1). It takes inputs o, a and m, and
it returns the function f(p)={z=max(0, p-o); return(max((1-z)^a, m))}. The function f(p) can
be used, for instance, for transforming p-values before plotting them.

Usage

zto1(o, a, m)

Arguments

o, a, m the output function’s parameters, as described above.

Value

A function whose parameters o, a and m have been fixed.

Examples

library(mgcViz)
x <- seq(0, 1, by = 0.01)
plot(x, zto1(0.05, 2, 0.1)(x), ylim = c(0, 1), type = 'l')
lines(x, zto1(0.05, 1, 0.2)(x), col = 2)
lines(x, zto1(0.1, 3, 0)(x), col = 3)

Index

ALE, 3
ALE.gam, 4

bamV, 6

check.gamViz, 7, 78
check0D, 9, 23, 37, 41
check1D, 10, 24, 25, 32, 35, 38, 40
check2D, 12, 30, 31, 34, 36, 38

fix.family.cdf, 14

gamm4::gamm4, 14, 15
gamm4V, 14
gammV (gamm4V), 14
gamV (bamV), 6
gaulss, 78, 92
getGam, 16
getViz, 6, 14–16, 16, 42, 46, 48, 82–84, 93
GGally::glyphs, 31
ggplot2::facet_grid, 53, 57, 76
ggplot2::facet_wrap, 53, 57, 76
ggplot2::geom_bar, 26
ggplot2::geom_density, 23
ggplot2::geom_histogram, 37
ggplot2::geom_raster, 30
ggplot2::geom_rug, 40
ggplot2::geom_vline, 41
ggplot2::stat_summary_2d, 34, 36
ggplot2::stat_summary_hex, 34, 36
gridExtra::grid.arrange, 79
gridPrint, 17

l_bound, 19
l_ciBar, 20
l_ciLine, 20
l_ciPoly, 21
l_clusterLine, 22
l_coordContour, 22
l_dens (l_dens2D), 23
l_dens1D, 23

l_dens2D, 23
l_densCheck, 24
l_fitBar, 26
l_fitContour, 27
l_fitDens, 27
l_fitLine, 28
l_fitPoints, 29
l_fitRaster, 29
l_glyphs2D, 30
l_gridCheck1D, 32
l_gridCheck2D, 34
l_gridQCheck1D, 35
l_gridQCheck2D, 36
l_hist, 37
l_points, 37
l_poly, 38
l_pvContour, 39
l_pvRaster, 39
l_rug, 40
l_simLine, 40, 43, 50
l_vline, 41
listLayers, 18

mgcv::bam, 6
mgcv::gam, 6
mgcv::gam.check, 8
mgcv::gamm, 14, 15
mgcv::residuals.gam, 90
mgcv::s, 44
mqgam, 48
mqgamV, 42, 48, 50, 58

plot.ALE1D, 5, 43
plot.fs.interaction.1D, 22, 28, 29, 44
plot.gam, 45
plot.gamViz, 6, 15, 45, 48, 79, 83
plot.mgamViz, 42, 48
plot.mgcv.smooth.1D, 21, 24, 29, 38, 40, 41,

45, 46, 49

97

98 INDEX

plot.mgcv.smooth.2D, 24, 27, 30, 38, 40, 52,
55, 74

plot.mgcv.smooth.MD, 27, 54, 76
plot.mrf.smooth, 38, 56
plot.multi.mgcv.smooth.1D, 48
plot.multi.mgcv.smooth.1D

(plot.mgcv.smooth.1D), 49
plot.multi.mgcv.smooth.2D

(plot.mgcv.smooth.2D), 52
plot.multi.ptermFactor, 57
plot.multi.ptermInteraction

(plot.ptermInteraction), 60
plot.multi.ptermLogical

(plot.multi.ptermFactor), 57
plot.multi.ptermNumeric

(plot.ptermMatrixNumeric), 61
plot.multi.random.effect, 58
plot.nested1D, 59
plot.ptermFactor, 20, 26, 29
plot.ptermFactor

(plot.multi.ptermFactor), 57
plot.ptermInteraction, 60
plot.ptermLogical

(plot.multi.ptermFactor), 57
plot.ptermMatrixNumeric, 61
plot.ptermNumeric, 21, 29
plot.ptermNumeric

(plot.ptermMatrixNumeric), 61
plot.random.effect, 21, 45
plot.random.effect

(plot.multi.random.effect), 58
plot.sos.smooth, 19, 23, 27, 30, 62
plotDiff, 64
plotDiff.mgcv.smooth.1D, 65, 65
plotDiff.mgcv.smooth.2D, 39, 40, 65, 66
plotDiff.sos.smooth, 39, 40, 65, 68
plotRGL, 70
plotRGL.mgcv.smooth.2D, 70, 71
plotRGL.mgcv.smooth.MD, 70, 73
plotSlice, 27, 30, 75
postSim, 17, 77
predict.gam, 17, 77, 92
print.checkGam, 78
print.plotGam, 79
print.plotSmooth, 80
print.qqGam, 80
pterm, 57, 61, 81

qgam::mqgam, 42

qgam::qgam, 82, 83
qgamV, 82
qq, 83
qq.gamViz, 8, 80, 84, 84, 91, 94
qqline (qqplots), 88
qqnorm (qqplots), 88
qqplot (qqplots), 88
qqplots, 88
quantile, 89

residuals.gamViz, 8–10, 12, 71, 74, 85, 89

shine, 90
shine.qqGam, 91
simulate.gam, 17, 77, 92
sm, 50, 52, 54, 56, 59, 63, 65, 66, 68, 71, 74,

76, 93
stats::kmeans, 22

vcov.gam, 78

zoom, 94
zoom.qqGam, 94
zto1, 30, 96

	ALE
	ALE.gam
	bamV
	check.gamViz
	check0D
	check1D
	check2D
	fix.family.cdf
	gamm4V
	getGam
	getViz
	gridPrint
	listLayers
	l_bound
	l_ciBar
	l_ciLine
	l_ciPoly
	l_clusterLine
	l_coordContour
	l_dens1D
	l_dens2D
	l_densCheck
	l_fitBar
	l_fitContour
	l_fitDens
	l_fitLine
	l_fitPoints
	l_fitRaster
	l_glyphs2D
	l_gridCheck1D
	l_gridCheck2D
	l_gridQCheck1D
	l_gridQCheck2D
	l_hist
	l_points
	l_poly
	l_pvContour
	l_pvRaster
	l_rug
	l_simLine
	l_vline
	mqgamV
	plot.ALE1D
	plot.fs.interaction.1D
	plot.gamViz
	plot.mgamViz
	plot.mgcv.smooth.1D
	plot.mgcv.smooth.2D
	plot.mgcv.smooth.MD
	plot.mrf.smooth
	plot.multi.ptermFactor
	plot.multi.random.effect
	plot.nested1D
	plot.ptermInteraction
	plot.ptermMatrixNumeric
	plot.sos.smooth
	plotDiff
	plotDiff.mgcv.smooth.1D
	plotDiff.mgcv.smooth.2D
	plotDiff.sos.smooth
	plotRGL
	plotRGL.mgcv.smooth.2D
	plotRGL.mgcv.smooth.MD
	plotSlice
	postSim
	print.checkGam
	print.plotGam
	print.plotSmooth
	print.qqGam
	pterm
	qgamV
	qq
	qq.gamViz
	qqplots
	residuals.gamViz
	shine
	shine.qqGam
	simulate.gam
	sm
	zoom
	zoom.qqGam
	zto1
	Index

