
An introduction to the metafolio R package

Sean C. Anderson1*, Jonathan W. Moore1,2, Michelle M. McClure3,
Nicholas K. Dulvy1 Andrew B. Cooper2

1Department of Biological Sciences, Simon Fraser University, Burnaby BC, V5A 1S6,
Canada

2School of Resource and Environmental Management, Simon Fraser University, Burn-
aby, BC, V5A 1S6, Canada

3Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, WA
98110, USA

The metafolio R package is a tool to simulate metapopulations and apply financial
portfolio optimization concepts to those metapopulations. The package is primarily
intended for salmon simulations, but could be adapted for other taxonomic groups.
This vignette accompanies the paper Portfolio conservation of metapopulations under
climate change, which is In Press at Ecological Applications. In this vignette we will
describe the main functions in the metafolio package, show how to re-create the
main analyses in our paper, and demonstrate some of the included plotting functions
for exploring the output. You can get more detailed installation instructions, read
the source code, and report bugs on GitHub: https://github.com/seananderson/
metafolio

1 Loading the package and getting help

You can load the package with:

library(metafolio)

You can find a copy of this vignette and access the help files with:

1

vignette("metafolio")

?metafolio

help(package = "metafolio")

2 An example simulation

The main simulation function in metafolio is meta sim(). We’ll start by running a
simulation using the base-case parameter values from the paper. First, we’ll set up
an R list object that contains the argument values for the stationary environmental
stochasticity scenario.

arma_env_params <- list(mean_value = 16, ar = 0.1, sigma_env = 2,

ma = 0)

The arguments mean value, ar, and ma refer to the mean, autoregressive (AR), and
moving-average (MA) components of an ARIMA model. See ?arima for further
explanation of ARIMA models in R. The argument sigma env refers to the standard
deviation of the environmental signal.

Next we’ll run the simulation for one iteration. We’ll simulate ten populations and re-
assess the fishery every five years. Re-assessing the fishery means that the simulation
fits a Ricker curve to the observed spawner-return data and updates the harvest-level
targets. See the accompanying paper for details.

base1 <- meta_sim(n_pop = 10, env_params = arma_env_params,

env_type = "arma", assess_freq = 5)

We can plot the output with the function plot sim ts(). The output is shown in
Figure 1.

plot_sim_ts(base1, years_to_show = 70, burn = 30)

2

Index

x$
en

v_
ts

[to
_s

ho
w

]

Environmental signal

15

20

Time

da
t

0

2

Productivity parameter

Time

da
t

Returns

0

5000

10000

Time

da
t

0

5000

10000
Fisheries catch

Time

da
t

0

500

1000
Escapement

Time

da
t

0

200
Strays leaving

Time

da
t

0

50 Strays joining

Time

da
t

0

Spawner−return residuals

Time

da
t

Estimated a

1.5

2.0

Time

da
t

Estimated b

1000

1500

10 20 30 40 50 60 70

Generation

Figure 1: An example simulation with stationary environmental stochasticity and
the base-case parameter values.

3

3 Exploring prioritization strategies

One of the key elements to the analysis in our paper is the choice of which popu-
lations to prioritize for conservation. We can try different prioritization strategies
by manipulating the “investment weights” in each stream of salmon. In the case
of salmon, we represent these with the Ricker bi parameters, which indicate the
maximum population capacity of streams i 1 through n.

In this example, we’ll create one scenario in which we conserve response diversity
from across the spectrum of possible responses and another scenario in which we
conserve one half of the response diversity. We’ve set up the weights carefully so
that each metapopulation contains the same number of populations (10) and the
same total capacity. We set the Ricker bi parameters equal to the nominal level of
five salmon for the streams that we choose not to prioritize.

w_plans <- list()

w_plans[["balanced"]] <- c(5, 1000, 5, 1000, 5, 5, 1000, 5,

1000, 5)

w_plans[["one_half"]] <- c(rep(1000, 4), rep(5, 6))

w <- list()

for(i in 1:2) { # loop over plans

w[[i]] <- list()

for(j in 1:80) { # loop over iterations

w[[i]][[j]] <- matrix(w_plans[[i]], nrow = 1)

}
}

We’ve now created a nested list of stream capacities (w). (w refers to the mnemonic
“weights” for investment weights.) The first level of the list contains the two different
scenarios The second level of the list contains the bi values for each iteration. Each
iteration will have re-sampled process noise and observation error when run with
meta sim(). Here, we’re keeping the bi values the same between iterations, but that
might not be the case if we wanted to stochastically simulate the bi values. We’re
only going to run 80 iterations to reduce the runtime of the example, but in reality
you would likely want to run many more iterations.

We can now stochastically simulate with these strategies using the function
run cons plans() and plot the output with plot cons plans() (Figure 2).

set.seed(1)

arma_sp <- run_cons_plans(w, env_type = "arma", env_params =

4

Variance of growth rate

M
ea

n
gr

ow
th

 r
at

e

0.3 0.4 0.5 0.6

−
0.

02
−

0.
01

0.
00

0.
01

0.
02 Balanced

One half

Figure 2: Two spatial conservation strategies shown in risk-return space with sta-
tionary environmental stochasticity. The dots show simulated metapopulations and
the contours show 25% and 75% quantiles across 80 simulations per scenario. The
grey line indicates the efficient frontier across all simulated metapopulations. The
efficient frontier represents the minimum expected mean growth rate for a given
expected variance in growth rate.

arma_env_params)

plot_cons_plans(arma_sp$plans_mv,

plans_name = c("Balanced", "One half"),

cols = c("#E41A1C", "#377EB8"), xlab = "Variance of growth rate",

ylab = "Mean growth rate")

5

4 Generating alternative environmental time se-

ries

We can use the function generate env ts() to create alternative environmental
time series. The function can generate five kinds of time series: sine waves, regime
shifts, linear changes, and constant values. Each type has its own set of parameter
arguments that are passed in a list format. See ?generate env ts for examples of
all of these.

We can see demonstrations of all environmental time series types with the default
argument values with the following code (Figure 3).

types <- c("sine", "arma", "regime", "linear", "constant")

x <- list()

for(i in 1:5) x[[i]] <- generate_env_ts(n_t = 100, type = types[i])

par(mfrow = c(5, 1), mar = c(3,3,1,0), cex = 0.7)

for(i in 1:5) plot(x[[i]], type = "o", main = types[i])

0 20 40 60 80 100

−
1.

0
0.

0
1.

0 sine

Index

x[
[i]

]

0 20 40 60 80 100

−
1.

5
0.

0
1.

5 arma

Index

x[
[i]

]

0 20 40 60 80 100

−
1.

0
0.

0
1.

0 regime

Index

x[
[i]

]

0 20 40 60 80 100

−
1.

0
0.

5

linear

Index

x[
[i]

]

0 20 40 60 80 100

−
1.

0
0.

0
1.

0 constant

Index

x[
[i]

]

Figure 3: Example environmental time series.

6

5 Additional plotting functions

We can visualize the variability in the Ricker a parameters using the function plot rickers()

(Figure 4).

plot_rickers(base1, pal = rep("black", 10))

0

500

1000

1500

2000

1 2 3 4 5

0

500

1000

1500

2000

0 500 1000

6

0 500 1000

7

0 500 1000

8

0 500 1000

9

0 500 1000

10

Spawners

R
et

ur
ns

Figure 4: Ricker curves from a sample of 40 years in the example simulation. Each
panel represents a different stream population. Population 1 is more productive
in cool conditions and population 10 is more producitive in warm conditions. The
colour of the Ricker curves represents the relative temperatue in that year (warm:
red; cool: blue). The grey shaded area represents the variation in spawners observed
within the simulation.

We can look at the correlation between salmon returns in the various streams using
the function plot correlation between returns() (Figure 5).

plot_correlation_between_returns(base1)

6 Optimizing metapopulation portfolios

A standard procedure in financial portfolio management is to determine optimal
investment weights of the assets in a portfolio. The portfolios made up of these

7

1

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

2

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

3

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

4

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

5

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

6

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

7

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

8

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

9

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

1

10

x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

2
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

3
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

4
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

5
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

6
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

7
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

8
x$A[−burn, i]

x$
A

[−
bu

rn
, j

]

9 10
log of return abundance by population

lo
g

of
 r

et
ur

n
ab

un
da

nc
e

by
 p

op
ul

at
io

n

Figure 5: A plot comparing the log(returns) between each population. The pop-
ulation IDs are coloured from warm tolerant (warm colours) to cool tolerant (cool
colours). Note how populations 1 and 10 have asynchronous returns whereas popu-
lations with more similar thermal-tolerance curves (say populations 9 and 10) have
more synchronous dynamics. Populations with thermal tolerance curves in the mid-
dle (e.g. population 6) are less correlated with other populations. Their popula-
tion dynamics end up primarily driven by demographic stochasticity and less so by
temperature-induced systematic changes in productivity.

8

0.02 0.04 0.06 0.08 0.10 0.12

−
0.

00
8

−
0.

00
4

0.
00

0
0.

00
4

Variance of metapopulation growth rate

M
ea

n
of

 m
et

ap
op

ul
at

io
n

gr
ow

th
 r

at
e

20.03 25.56 29.17 35.4 46.34

Variance (multiplied by 1000)

P
er

ce
nt

ag
e

0

20

40

60

80

100

Figure 6: Efficient frontier of metapopulation portfolios (red dots). Each dot repre-
sents a different set of weights of the Ricker b parameters. The colours in the right
panel correspond to the five populations with warm tolerant populations in warmer
colours and cool tolerant populations in cooler colours.

optimal investment weights are referred to as the efficient frontier. This efficient
frontier describes a set of portfolios which have minimal risk for a specified level of
return or maximum return for a specified level of risk. While it would be complicated
to determine the optimal metapopulation portfolios via algebra we can do so by
letting metafolio sample from possible investment weights — a form of Monte Carlo
sampling (Figure 6).

set.seed(1)

weights_matrix <- create_asset_weights(n_pop = 6, n_sims = 3000,

weight_lower_limit = 0.001)

mc_ports <- monte_carlo_portfolios(weights_matrix = weights_matrix,

n_sims = 3000, mean_b = 1000)

col_pal <- rev(gg_color_hue(6))

ef_dat <- plot_efficient_portfolios(port_vals = mc_ports$port_vals,

pal = col_pal, weights_matrix = weights_matrix)

9

